
Optimal consumption policies in illiquid markets∗

Alessandra Cretarola1), Fausto Gozzi1), Huyên Pham2),3), Peter Tankov2)

1) Dipartimento di Scienze Economiche 2) Laboratoire de Probabilités et
ed Aziendali - Facoltà di Economia, Modelèles Aléatoires,
Università LUISS Guido Carli, CNRS, UMR 7599
viale Romania 32, 00197 Roma. Université Paris 7,
Email: acretarola@luiss.it, Email: pham@math.jussieu.fr
fgozzi@luiss.it peter.tankov@polytechnique.org

3) CREST-ENSAE,
and Institut Universitaire de France

Abstract
We investigate optimal consumption policies in the liquidity risk model intro-

duced in [5]. Our main result is to derive smoothness C1 results for the value
functions of the portfolio/consumption choice problem. As an important conse-
quence, we can prove the existence of the optimal control (portfolio/consumption
strategy) which we characterize both in feedback form in terms of the derivatives of
the value functions and as the solution of a second-order ODE. Finally, numerical
illustrations of the behavior of optimal consumption strategies between two trading
dates are given.
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1 Introduction
We investigate the optimal consumption policies in the portfolio/consumption choice
problem introduced in [5]. In this model, the investor has access to a market in which
an illiquid asset (stock or fund) is traded. The price of the asset can be observed
and trade orders can be passed only at random times given by an exogenous Poisson
process. These times model the arrival of buy/sell orders in an illiquid market, or the
dates on which the results of a hedge fund are published. More generally, these times
may correspond to the dates on which the performance of certain investment projects
becomes known. The investor is also allowed to consume (or distribute dividends to
shareholders) continuously from the bank account and the objective is to maximize the
expected discounted utility from consumption. The resulting optimization problem is
a nonstandard mixed discrete/continuous time stochastic control problem, which leads
via the dynamic programming principle to a coupled system of nonlinear integro-partial
di�erential equations (IPDE).

In [6], the authors proved that the value functions to this stochastic control problem
are characterized as the unique viscosity solutions to the corresponding coupled IPDE.
This characterization makes the computation of value functions possible (see [5]), but it
does not yield the optimal consumption policies in explicit form. In this paper, we go
beyond the viscosity property, and focus on the regularity of the value functions. Using
arguments of (semi)concavity and the strict convexity of the Hamiltonian for the IPDE
in connection with viscosity solutions, we show that the value functions are continuously
di�erentiable. This regularity result is obtained partly by adapting a technique intro-
duced in [3] (see also [1, p. 80]) and partly by a kind of bootstrap argument that exploits
carefully the special structure of the problem. This allows then to get the existence of an
optimal control through a veri�cation theorem and to produce two characterizations of
the optimal consumption strategy: in feedback form in terms of the classical derivatives
of the value functions, and as the solution of the Euler-Lagrange ordinary di�erential
equation. We then use these characterizations to study the properties of the optimal
consumption policies and to produce numerical examples, both in the stationary and in
the nonstationary case.

Portfolio optimization problems with discrete trading dates were studied by several
authors, but the pro�le of optimal consumption strategies between the trading interven-
tions has received little attention so far. Matsumoto [4] supposes that the trades succeed
at the arrival times of an exogenous Poisson process but does not allow for consumption.
Rogers [8] considers an investor who can trade at discrete times and assumes that the
consumption rate is constant between the trading dates. Finally, Rogers and Zane [9]
allow the investor to change the consumption rate between the trading dates and derive
the HJB equation for the value function but do not compute the optimal consumption
policy.

The rest of the paper is structured as follows. In section 2, we rephrase the main
assumptions of the liquidity risk model introduced in [5], introduce the necessary de�ni-
tions, and recall the viscosity characterization of the value function. Section 3 establishes
some new properties of the value function such as the scaling relation. Section 4 contains
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the main result of the paper, proving the regularity of the value function, which is used
in section 5 to characterize and study the optimal consumption policies. Some numerical
illustrations depict the behavior of the consumption policies between two trading dates.
The technical proofs of some lemmas and propositions can be found in the appendix.

2 Formulation of the problem
Let us �x a probability space (Ω, F,P) endowed with a �ltration F = (Ft)t≥0 satisfying
the usual conditions. All stochastic processes involved in this paper are de�ned on the
stochastic basis (Ω, F,F,P).
We consider a model of an illiquid market where the investor can observe the positive
stock price process S and trade only at random times {τk}k≥0 with τ0 = 0 < τ1 < . . . <
τk < . . .. For simplicity, we assume that S0 is known and we denote by

Zk =
Sτk

− Sτk−1

Sτk−1

, k ≥ 1,

the observed return process valued in (−1, +∞), where we set by convention Z0 equal
to some �xed constant.
The investor may also consume continuously from the bank account (the interest rate r
is assumed w.l.o.g. to be zero) between two trading dates. We introduce the continuous
observation �ltration Gc = (Gt)t≥0 where:

Gt = σ{(τk, Zk) : τk ≤ t)},

and the discrete observation �ltration Gd = (Gτk
)k≥0. Notice that Gt is trivial for t < τ1.

A control policy is a mixed discrete-continuous process (α, c), where α = (αk)k≥1 is real-
valued Gd-predictable, i.e. αk is Gτk−1

-measurable, and c = (ct)t≥0 is a nonnegative Gc-
predictable process: αk represents the amount of stock invested for the period (τk−1, τk]
after observing the stock price at time τk−1, and ct is the consumption rate at time t
based on the available information. Starting from an initial capital x ≥ 0, and given a
control policy (α, c), we denote by Xx

k the wealth of investor at time τk de�ned by:

Xx
k = x−

∫ τk

0
ctdt +

k∑

i=1

αiZi, k ≥ 1, Xx
0 = x. (2.1)

De�nition 2.1. Given an initial capital x ≥ 0, we say that a control policy (α, c) is
admissible, and we denote (α, c) ∈ A(x) if

Xx
k ≥ 0, a.s. ∀k ≥ 1.

According to [5, 6], we assume the following conditions on (τk, Zk) stand in force from
now on.

Assumption 2.2.
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a) {τk}k≥1 is the sequence of jumps of a Poisson process with intensity λ.

b) (i) For all k ≥ 1, conditionally on the interarrival time τk − τk−1 = t ∈ R+, Zk is
independent from {τi, Zi}i<k and has a distribution denoted by p(t, dz).
(ii) For all t ≥ 0, the support of p(t, dz) is

- either an interval with interior equal to (−z, z̄), z ∈ (0, 1] and z̄ ∈ (0, +∞];
- or it is �nite equal to {−z, . . . , z̄}, z ∈ (0, 1] and z̄ ∈ (0, +∞).

c)
∫

zp(t, dz) ≥ 0, for all t ≥ 0, and there exist some k ∈ R+ and b ∈ R+, such that
∫

(1 + z)p(t, dz) ≤ kebt, ∀t ≥ 0.

d) The following continuity condition is ful�lled by the measure p(t, dz):

lim
t→t0

∫
w(z)p(t, dz) =

∫
w(z)p(t0,dz), ∀t0 ≥ 0,

for all measurable functions w ∈ (−z, z̄) with linear growth condition.

The following simple but important examples illustrate Assumption 2.2.

Example 2.3. S is extracted from a Black-Scholes model: dSt = bStdt + σStdWt, with
b ≥ 0, σ > 0. Then p(t, dz) is the distribution of

Z(t) = exp
[(

b− σ2

2

)
t + σWt

]
− 1,

with support (−1, +∞) and condition c) of Assumption 2.2 is clearly satis�ed, since in
this case

∫
(1 + z)p(t,dz) = E

[
exp

(
(b− σ2/2)t + σWt

)]
= ebt.

Example 2.4. Zk is independent of the waiting times τk − τk−1, in which case its dis-
tribution p(dz) does not depend on t. In particular p(dz) may be a discrete distribution
with support {z0, . . . , zd} such that z = −z0 ∈ (0, 1] and zd = z̄ ∈ (0,+∞).

We are interested in the optimal portfolio/consumption problem:

v(x) = sup
(α,c)∈A(x)

E
[∫ +∞

0
e−ρtU(ct)dt

]
, x ≥ 0, (2.2)

where ρ is a positive discount factor and U is an utility function de�ned on R+. We
introduce the following assumption:

Assumption 2.5. The function U is strictly increasing, strictly concave and C1 on
(0,+∞) satisfying U(0) = 0 and the Inada conditions U ′(0+) = +∞ and U ′(+∞) = 0.
Moreover, U satis�es the following growth condition: there exists γ ∈ (0, 1) s.t.

U(x) ≤ K1x
γ , x ≥ 0, (2.3)
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for some positive constant K1. In addition, condition (4.1) of [6] is satis�ed, i.e.

ρ > bγ + λ

(
kγ

zγ
− 1

)
,

where γ ∈ (0, 1) and k, b ∈ R+ are provided by Assumption 2.2.

Remark 2.6. Assumption 2.5 rules out the case of power utilities which have risk aver-
sion higher than 1. Taking this class of functions U would make the problem more di�cult
to handle. In particular:

- the value functions (v, v̂) would be no more bounded from below;

- the boundary condition at minus in�nity would be more di�cult to treat (see [6]);

- results of existence and uniqueness could not be proved in the same way.

For these reasons, this case could be treated but with a strong change in the various proofs.

We denote by Ũ the convex conjugate of U , i.e.

Ũ(y) = sup
x>0

[U(x)− xy], y ≥ 0.

It is easy to see that Ũ is strictly increasing and it is worth noticing that Ũ is strictly
convex under our assumptions (see Theorem 26.6, Part V in [7]).

Remark 2.7. In [5, 6], U is supposed to be nondecreasing and concave while here U is
strictly increasing and strictly concave. This assumption is not very restrictive, since the
most common utility functions (like the ones of the CRRA type) satisfy it.
The main reason of this new hypothesis is that it implies the strict convexity of the
function Ũ , which is a key assumption to get the regularity of the value functions to our
control problem.

Following [6], we consider the following version of the dynamic programming principe
(in short DPP) adapted to our context

v(x) = sup
(α,c)∈A(x)

E
[∫ τ1

0
e−ρtU(ct)dt + e−ρτ1v (Xx

1 )
]

, τ1 > 0. (2.4)

This DPP is proved rigorously in Appendix of [6]. From the expression (2.1) of the
wealth, and the measurability conditions on the control, the above dynamic programming
relation is written as

v(x) = sup
(a,c)∈Ad(x)

E
[∫ τ1

0
e−ρtU(ct)dt + e−ρτ1v

(
x−

∫ τ1

0
ctdt + aZ1

)]
, (2.5)

5



where Ad(x) is the set of pairs (a, c) with a deterministic constant, and c a deterministic
nonnegative process s.t. a ∈ [−x/z̄, x/z] and

∫ t

0
cudu ≤ x− l(a) i.e. x−

∫ t

0
cudu + az ≥ 0, ∀t ≥ 0, ∀z ∈ (−z, z̄), (2.6)

where l(a) = max(az,−az̄) with the convention that max(az,−az̄) = az when z̄ = +∞
(see Remark 2.3 of [5, 6] for further details). Given a ∈ [−x/z̄, x/z], we denote by Ca(x)
the set of deterministic nonnegative processes satisfying (2.6). Moreover under conditions
a) and b) of Assumption 2.2, it is possible to write more explicitly the right-hand-side
of (2.5), so that:

v(x) = sup
a ∈ [− x

z̄
, x

z

]

c ∈ Ca(x)

∫ +∞

0
e−(ρ+λ)t

[
U(ct) + λ

∫
v
(
x−

∫ t

0
csds + az

)
p(t, dz)

]
dt

(see the details in Lemma 4.1 of [6]). Let

D = R+ × X with X = {(x, a) ∈ R+ ×A : x ≥ l(a)} ,

by setting A = R if z̄ < +∞ and A = R+ if z̄ = +∞. Then, according to [5, 6], we
introduce the dynamic auxiliary control problem: for (t, x, a) ∈ D

v̂(t, x, a) = sup
c∈Ca(t,x)

∫ +∞

t
e−(ρ+λ)(s−t)

[
U(cs) + λ

∫
v

(
Y t,x

s + az
)
p(s,dz)

]
ds, (2.7)

where Ca(t, x) is the set of deterministic nonnegative processes c = (cs)s≥t, such that
∫ s

t
cudu ≤ x− l(a), i.e. Y t,x

s + az ≥ 0, ∀s ≥ t, ∀z ∈ (z, z̄),

and Y t,x is the deterministic controlled process by c ∈ Ca(t, x):

Y t,x
s = x−

∫ s

t
cudu, s ≥ t.

In particular if we consider the function g : D −→ R+ de�ned by:

g (t, x, a) := λ

∫
v (x + az) p(t, dz), (2.8)

we can rewrite (2.7) as follows

v̂(t, x, a) = sup
c∈Ca(t,x)

∫ +∞

t
e−(ρ+λ)(s−t)

[
U(cs) + g

(
s, Y t,x

s , a
)]

ds. (2.9)

We know that the original value function is related to the auxiliary optimization problem
by:

v(x) = sup
a∈[−x/z̄,x/z]

v̂(0, x, a). (2.10)

6



The Hamilton-Jacobi (in short HJ) equation associated to the deterministic problem
(2.7) is the following Integro Partial Di�erential Equation (in short IPDE):

(ρ + λ)v̂(t, x, a)− ∂v̂(t, x, a)
∂t

− Ũ

(
∂v̂(t, x, a)

∂x

)
− λ

∫
v(x + az)p(t, dz) = 0, (2.11)

with (t, x, a) ∈ D. In terms of the function g:

(ρ + λ)v̂(t, x, a)− ∂v̂(t, x, a)
∂t

− Ũ

(
∂v̂(t, x, a)

∂x

)
− g(t, x, a) = 0, (t, x, a) ∈ D. (2.12)

In [6], the authors have already proved some basic properties of the value function
v̂ as �niteness, concavity, monotonicity and continuity on D (see Corollary 4.1 and
Proposition 4.2). In particular the authors have characterized the value function through
its dynamic programming equation by means of viscosity solutions (see Theorem 5.1).
Our aim is to prove the smoothness of the value function v̂ in order to get a veri�cation
theorem that provides the existence (and uniqueness) of the optimal control feedback.
We �rst prove some further properties of the value functions (v, v̂), as strict monotonicity
(see Section 3). Then we will study the regularity in the stationary case, i.e. when v̂ does
not depend on t. Finally we will extend the results to the general case. In particular we
will provide some regularity properties by means of semiconcavity.

It is helpful to recall the following de�nitions and basic results from nonsmooth
analysis concerning the generalized di�erentials.

De�nition 2.8. Let u be a continuous function on an open set D ⊂ Ω. For any y ∈ D,
the sets

D−u(y) =
{

p ∈ Ω : lim inf
z∈D,z→y

u(z)− u(y)− 〈p, z − y〉
|z − y| ≥ 0

}
,

D+u(y) =
{

p ∈ Ω : lim sup
z∈D,z→y

u(z)− u(y)− 〈p, z − y〉
|z − y| ≤ 0

}

are called respectively, the (Fréchet) superdi�erential and subdi�erential of u at y.

The next lemma provides a description of D+u(x), D−u(x) in terms of test functions.

Lemma 2.9. Let u ∈ C(D), D ⊂ Ω open set. Then,

1. p ∈ D+u(y) if and only if there exists ϕ ∈ C1(D) such that Dϕ(y) = p and u− ϕ
has a local maximum at y;

2. p ∈ D−u(y) if and only if there exists ϕ ∈ C1(D) such that Dϕ(y) = p and u− ϕ
has a local minimum at y.

Proof. See Lemma II.1.7 of [1] for the proof.

As a direct consequence of Lemma 2.9, we can rewrite De�nition 5.1 of [6] of viscosity
solution adapted to our context, in terms of sub and superdi�erentials.
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De�nition 2.10. The pair of value functions (v, v̂) ∈ C+(R+)× C+(D) given in (2.2)-
(2.7) is a viscosity solution to (2.10)-(2.12) if:

(i) viscosity supersolution property: v(x) ≥ supa∈[−x/z̄,x/z] v̂(0, x, a) and for all a ∈ A,

(ρ + λ)v̂(t, x, a)− q − Ũ(p)− g(t, x, a) ≥ 0, (2.13)

for all (q, p) ∈ D−
t,xv̂(t, x, a), for all (t, x, a) ∈ D.

(ii) viscosity subsolution property: v(x) ≤ supa∈[−x/z̄,x/z] v̂(0, x, a) and for all a ∈ A,

(ρ + λ)v̂(t, x, a)− q − Ũ(p)− g(t, x, a) ≤ 0, (2.14)

for all (q, p) ∈ D+
t,xv̂(t, x, a), for all (t, x, a) ∈ D.

The pair of functions (v, v̂) will be called a viscosity solution of (2.10)-(2.12) if (2.13)
and (2.14) hold simultaneously.

Hence, we can reformulate the viscosity result stated in [6].

Proposition 2.11. Suppose Assumptions 2.2 and 2.5 stand in force. The pair of value
functions (v, v̂) de�ned in (2.2)-(2.7) is the unique viscosity solution to (2.10)-(2.12) in
the sense of De�nition 2.10.

Proof. See Theorem 5.1 of [6] for a similar proof.

3 Some properties of the value functions
In this section we discuss and prove some basic properties (as strict monotonicity) of the
value functions (v, v̂). We will always suppose Assumptions 2.2 and 2.5 throughout this
section.
By Proposition 4.2 of [6], we already know that v is nondecreasing, concave and con-
tinuous on R+, with v(0) = 0. Moreover by Corollary 4.1 of [6], v satis�es a growth
condition, i.e. there exists a positive constant K such that

v(x) ≤ Kxγ , ∀x ≥ 0. (3.1)

Here we provide the following properties on the function v and g respectively whose
proof can be found in Appendix:

Proposition 3.1. The value function v is strictly increasing on R+.

Now recall the function g given in (2.8).

Lemma 3.2. The function g is:

(i) continuous in t ∈ R+, for every (x, a) ∈ X;

(ii) strictly increasing in x ∈ [l(a), +∞), for every a ∈ A and t ∈ R+;
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(iii) concave in (x, a) ∈ X.

If we do not assume condition d) of Assumption 2.2, then the function g is only measu-
rable in t while (ii) and (iii) still hold.

To conclude this section, we discuss a property of the value function v̂. We already know
by Proposition 4.2 of [6], that v̂ is concave and continuous in (x, a) ∈ X, and that has
the following representation on the boundary ∂X:

v̂(t, x, a) =
∫ +∞

t
e−(ρ+λ)(s−t)g(s, x, a)ds, ∀t ≥ 0, ∀(x, a) ∈ ∂X. (3.2)

In addition, by Corollary 4.1 of [6], we know that there exists a constant K that provides
the following growth estimate:

v̂(t, x, a) ≤ K
(
ebtx

)γ
, ∀(t, x, a) ∈ D, (3.3)

with γ ∈ (0, 1) and b is the constant given in condition c) of Assumption 2.2.

Lemma 3.3. The value function v̂ is strictly increasing in x, for every x ≥ l(a), given
a ∈ A.

Proof. The proof follows from the same arguments of the proof of Proposition 3.1 (see
Appendix), using the strict monotonicity of U in c and of g in x respectively.

3.1 The scaling relation for power utility
In the case where the utility function is given by

U(x) = K1x
γ , 0 < γ < 1,

using the fact that c ∈ Ca(t, x) if and only if βc ∈ Cβa(t, βx) for any β > 0, we can easily
deduce from the decoupled dynamic programming principle in [5] a scaling relation for
the value function v and the auxiliary value function v̂:

v̂(t, βx, βa) = βγ v̂(t, x, a), v(βx) = βγv(x).

This shows that the value function has the same form as in the Merton model (con�rmed
by the graphs in [5]) and that the optimal investment strategy consists in investing a
�xed proportion of the wealth into the risky asset. In the case z̄ = ∞, a is nonnegative
and we can therefore reduce the dimension of the problem and denote

v(x) = ϑ1x
γ , v̂(t, x, a) = aγ v̄(t, ξ), ξ = x/a

The equation satis�ed by the auxiliary value function then becomes

(ρ + λ)v̄ − ∂v̄

∂t
− Ũ

(
∂v̄

∂ξ

)
− λϑ1

∫
(ξ + z)γp(t, dz) = 0,

ϑ1 = sup
ξ≥z

ξ−γ v̄(0, ξ),

9



in the nonstationary case and

(ρ + λ)v̄ − Ũ

(
∂v̄

∂ξ

)
− λϑ1

∫
(ξ + z)γp(dz) = 0,

ϑ1 = sup
ξ≥z

ξ−γ v̄(ξ),

in the stationary case, with

Ũ(y) = K̃1y
−γ̃ , γ̃ =

γ

1− γ
.

4 Regularity of the value functions
In this section we investigate the regularity property of the value functions (v, v̂) in order
to provide a feedback representation form for the optimal strategies. Throughout the
whole section we will let Assumptions 2.2 and 2.5 stand in force.

4.1 The stationary case
We start the study of the regularity with the simple case when the distribution p(t,dz)
of the observed return process Zk, k ≥ 1, does not depend on t, i.e. p(t, dz) = p(dz), for
every t ≥ 0, as in Example 2.4. Then g and v̂ are independent of t and the IPDE (2.12)
reduces to the integro ordinary di�erential equation (in short IODE) for v̂(x, a):

(ρ + λ)v̂(x, a)− Ũ

(
∂v̂(x, a)

∂x

)
− g(x, a) = 0, (x, a) ∈ X, (4.1)

where

v̂(x, a) = sup
c∈Ca(x)

∫ +∞

0
e−(ρ+λ)s

[
U(cs) + λ

∫
v (Y x

s + az) p(dz)
]

ds

= sup
c∈Ca(x)

∫ +∞

0
e−(ρ+λ)s [U(cs) + g(Y x

s , a)] ds (4.2)

with
v(x) = sup

a∈[−x/z̄,x/z]
v̂(x, a) (4.3)

All the properties of the value function v̂ discussed in the previous section still hold for
its restriction on the set X. In particular we have that v̂ given in (4.2) is concave and
continuous on X, strictly increasing in x ∈ [l(a), +∞) and satis�es the growth condition

v̂(x, a) ≤ Kxγ , ∀(x, a) ∈ X,

for some positive constant K, with γ ∈ (0, 1) and in particular the condition on the
boundary ∂X becomes:

v̂(x, a) =
∫ +∞

0
e−(ρ+λ)sg(x, a)ds =

1
ρ + λ

g(x, a), ∀(x, a) ∈ ∂X.

We start by proving a �rst smoothness result for the function v̂.
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Proposition 4.1. The value function v̂ de�ned in (4.2) is C1 with respect to x ∈
(l(a), +∞), given a ∈ A. Moreover ∂v̂

∂x
(l(a)+, a) = +∞.

Proof. We �x a ∈ A and let us show that v̂ is di�erentiable on (l(a),+∞). First we
note that the superdi�erential D+

x v̂(x, a) is nonempty since v̂ is concave. In view of
Proposition II.4.7 (c) of [1], since v̂ is concave in x ∈ [l(a),+∞), we just have to prove
that for a given a ∈ A, D+

x v̂(x, a) is a singleton for any x ∈ (l(a), +∞).
Suppose by contradiction that p1 6= p2 ∈ D+

x v̂(x, a). Without loss of generality (since
x > l(a)), we can assume that D+

x v̂(x, a) = [p1, p2]. Denote by coD∗
xv̂(x, a) the convex

hull of the set

D∗
xv̂(x, a) =

{
p : p = lim

n→+∞Dxv̂(xn, a), xn → x

}
.

Since by Proposition II.4.7 (a) of [1], D+
x v̂(x, a) = coD∗

xv̂(x, a), there exist sequences xn,
ym in R+ where v̂ is di�erentiable and such that

x = lim
n→+∞xn = lim

m→+∞ ym, p1 = lim
n→+∞Dxv̂(xn, a), p2 = lim

m→+∞Dxv̂(ym, a).

Since condition d) of Assumption 2.2 and Assumption 2.5 hold, by Theorem 5.1 of [6],
the pair of value functions (v, v̂) is a viscosity solution to (4.1)-(4.3); then by Proposition
1.9 (a) of [1],

(ρ + λ)v̂(xn, a)− Ũ (Dxv̂(xn, a))− g(xn, a) = 0

(ρ + λ)v̂(ym, a)− Ũ (Dxv̂(ym, a))− g(ym, a) = 0;

by continuity this yields

(ρ + λ)v̂(x, a)− Ũ (p1)− g(x, a) = 0 (4.4)
(ρ + λ)v̂(x, a)− Ũ (p2)− g(x, a) = 0. (4.5)

Now let p̄ = ηp1 + (1− η)p2, for η ∈ (0, 1). Since p̄ ∈ (p1, p2) ⊂ D+
x v̂(x, a), we have by

the viscosity subsolution property of v̂ :

(ρ + λ)v̂(x, a)− Ũ(p̄)− g(x, a) ≤ 0,

so by (4.4)-(4.5), we get

Ũ(p̄) ≥ ηŨ(p1) + (1− η)Ũ(p2). (4.6)

On the other hand, by strict convexity of Ũ , we get

Ũ(p̄) = Ũ(ηp1 + (1− η)p2) < ηŨ(p1) + (1− η)Ũ(p2),

contradicting (4.6). Hence v̂ is di�erentiable at any x ∈ (l(a), +∞). In addition, we
deduce from (4.1) that for all a ∈ A, ∂v̂

∂x
is continuous in x. This also follows from
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Proposition 3.3.4 (e), pages 56-57 of [2].
Now we prove the last statement in Proposition 4.1. If we get x = l(a) in (4.2), then

v̂(l(a), a) =
1

ρ + λ
g(l(a), a).

Now we send x → l(a) in (4.1) (this is possible since v̂ and g are continuous in x ∈
[l(a),+∞) and since ∂v̂

∂x
is monotone in x) and we obtain

(ρ + λ)v̂
(
l(a)+, a

)− Ũ

(
∂v̂ (l(a)+, a)

∂x

)
− g

(
l(a)+, a

)
= 0.

Comparing the last formulas, we obtain

Ũ

(
∂v̂ (l(a)+, a)

∂x

)
= 0 ⇐⇒ ∂v̂ (l(a)+, a)

∂x
= +∞. (4.7)

Before the �nal result we provide the following lemma.

Lemma 4.2. Let v and v̂ be the value functions given in (2.2) and (4.2) respectively.
Then, given any x > 0 and calling ax a maximum point of the problem (4.3), we have

D+v(x) ⊆ D+
x v̂(x, ax). (4.8)

Proof. Let x > 0. Since v is concave we have

D+v(x) = {p : v(x + h)− v(x) ≤ ph, ∀h s.t. x + h ≥ 0} ,

Since v is concave we have D+v(x) 6= ∅. Let p ∈ D+v(x). We have to prove that

v̂(x + h, ax)− v̂(x, ax) ≤ ph, (4.9)

for every h such that x + h ≥ l(ax). We �rst observe that

v̂(x + h, ax+h)− v̂(x, ax) = v(x + h)− v(x) ≤ ph, (4.10)

for every h such that x + h ≥ 0 (here ax and ax+h are optimal for v(x) and v(x + h)
respectively).
Now call I(x) =

[
−x

z̄ , x
z

]
and observe that, for 0 < x1 < x2 we have 0 ⊂ I(x1) ⊂ I(x2).

So if h ≥ 0 we have that ax ∈ I(x + h), v̂(x + h, ax) is well de�ned and

v̂(x + h, ax) ≤ v̂(x + h, ax+h) (4.11)

which, together with (4.10), implies (4.9) for h ≥ 0. Now if x = l(ax) there is nothing
more to prove. If x > l(ax) take h < 0 such that x + h ≥ l(ax). For such h we have
ax ∈ I(x + h) so we still have (4.11) and so the claim as for the case h > 0. Hence
p ∈ D+

x v̂(x, ax).

12



Now we are ready to prove the �nal regularity result for the stationary case.

Theorem 4.3. Let v, v̂ be the value functions given in (2.2) and (2.7) respectively.
Then:

• v ∈ C1(0, +∞) and any maximum point in (4.3) is internal for every x > 0;
moreover v′(0+) = +∞;

• for every a ∈ A we have v̂(·, a) ∈ C2(l(a), +∞). Finally ∂v̂

∂x
(l(a)+, a) = +∞.

Proof. Since v is concave then D+v(x) is nonempty at every x > 0. This implies, by
(4.8), that also D+

x v̂(x, ax) is nonempty for every x > 0. Since, by (4.7), ∂v̂

∂x
(l(a)+, a) =

+∞ (which implies D+
x v̂(l(a), a) = ∅) we get that it must be x > l(ax) and so any

maximum point in (4.3) is internal. Moreover since, given a ∈ A we have that v̂ is C1 in
x ∈ (l(a), +∞) then the superdi�erential is a single point and so from (4.8) also D+v(x)
ia single point, which implies the wanted regularity of v. The statement v′(0+) = +∞
follows simply observing that v(x) ≥ v̂(x, 0), v(0) = v̂(0, 0) = 0, and from (4.7) for a

= 0. Finally v̂(·, a) ∈ C2(l(a), +∞) follows from (4.1) and ∂v̂

∂x
(l(a)+, a) = +∞ from

Proposition 4.1. Indeed from (4.1) we have

∂v̂

∂x
(x, a) =

(
Ũ

)−1
((ρ + λ)v̂(x, a)− g(x, a)) .

Since the right-hand side of this equality is C1 in x ∈ (l(a), +∞), given a ∈ A (note
that v ∈ C1(0, +∞) implies that g(·, a) ∈ C1(l(a),+∞)), then the left-hand side is C1

in x ∈ (l(a), +∞), given a ∈ A and this proves the claim.

4.2 The nonstationary case
In this subsection we study the regularity of the value function v̂ in the general case
where the distribution p(t,dz) may depend on time. With respect to the stationary
case, the value function v̂ is in general not concave in both time-space variables, and
we cannot apply directly arguments as in Proposition 4.1. Actually, we shall prove the
regularity of the value function v̂ as well as in the stationary case, by means of (locally)
semiconcave functions.
First, we recall the concept of semiconcavity. Let S be a subset of Ω.

De�nition 4.4. We say that a function u : S → R is semiconcave if there exists a
nondecreasing upper semicontinuous function ω : R+ → R+ such that limρ→0+ ω(ρ) = 0
and

ηu(x1) + (1− η)u(x2)− u(ηx1 + (1− η)x2) ≤ η(1− η)|x1 − x2|ω(|x1 − x2|), (4.12)

for any pair x1, x2 such that the segment [x1, x2] is contained in S and for η ∈ [0, 1]. In
particular we call locally semiconcave a function which is semiconcave on every compact
subset of its domain of de�nition.
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Clearly, a concave function is also semiconcave. An important example of semiconcave
functions is given by the smooth ones.

Proposition 4.5. Let u ∈ C1(A), with A open. Then both u and −u are locally semi-
concave in A with modulus equal to the modulus of continuity of Du.

Proof. See Proposition 2.1.2 of [2] for the proof.

Remark 4.6. We should stress that the superdi�erential of a locally semiconcave function
is nonempty, since all the properties of superdi�erential hold even locally.

We introduce an additional assumption on the measure p(t,dz):

Assumption 4.7. for every a ∈ A− {0} , the map

(t, x) 7−→ λ

∫
w(x + az)p(t, dz)

is locally semiconcave for (t, x) ∈ (0,+∞)×(l(a), +∞), and for all measurable continuous
functions w on R with linear growth condition.

Remark 4.8. Since it is not trivial to check the validity of Assumption 4.7, we give some
conditions the guarantee it. First of all, we exclude the case a = 0 from Assumption 4.7
since in this case we have, for every (t, x) ∈ R+ × [l(a), +∞)

g(t, x) = λv(x)

so we are in the stationary case and we already know from the previous section that v̂ is
C1. Now, when a 6= 0, we set the new variable y = x + az = hx(z) and call µ(t, x; dy)
the measure (hx ◦ p)(t,dz). The measure µ has the following support:

1. (x− az,+∞), if z̄ = +∞, and a > 0;

2. (x− az, x + az̄), if z̄ < +∞ and a > 0

3. (x + az̄, x− az), if z̄ < +∞ and a < 0;

4. {x− az, . . . , x + az̄}, if the support of p is �nite and a > 0 (in this case z̄ < +∞);

5. {x + az̄, . . . , x− az}, if the support of p is �nite and a < 0 (in this case z̄ < +∞).

Now Assumption 4.7 can be written as: the function gw given by

(t, x) 7−→ λ

∫
w(y)µ(t, x; dy)

is locally semiconcave for (t, x) ∈ (0,+∞)×(l(a), +∞), and for all measurable continuous
functions w on R with linear growth condition.
In this form, it is easier to �nd conditions that guarantee the validity of this assumption
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in terms of the regularity of µ. For example, if we assume the measure p(t,dz) has a
density f(t, z), the integral ∫

w(x + az)f(t, z)dz

by the above change of variable is rewritten as:

1
a

∫
w(y)f

(
t,

y − x

a

)
dy.

Now, by Proposition 4.5, the local semiconcavity of gw in the interior (0,+∞)×(l(a), +∞)
of its domain follows from its continuous di�erentiability.
Let us give a condition that guarantees that gw is C1 in the case 1. If the density f
is continuously di�erentiable and suitable integrability conditions are satis�ed, then we
have: for every a > 0,

∂gw(t, x)
∂t

=
1
a

∫ +∞

x−az
w(y)

∂f

∂t

(
t,

y − x

a

)
dy,

∂gw(t, x)
∂x

= − 1
a2

∫ +∞

x−az
w(y)

∂f

∂x

(
t,

y − x

a

)
dy − 1

a
w(x− az̄)f(t, z),

for (t, x) ∈ (0, +∞) × (l(a),+∞). From the above expressions, it is easy to check that
we can derive the continuous di�erentiability from the following assumptions:

• the density f is continuous and for each a ∈ A, the generalized integral
∫ +∞

x−az
(1 + |y|)f

(
t,

y − x

a

)
dy

converges for every (t, x) ∈ (0, +∞)× (l(a),+∞);

• the partial derivatives ∂f

∂t
, ∂f

∂x
are continuous and satisfy respectively the following

integrability conditions: for each a ∈ A,
∫ +∞

x−az
(1 + |y|)∂f

∂t

(
t,

y − x

a

)
dy

converges uniformly with respect to t ∈ T, for any compact set T of (0, +∞), for
every x ∈ (l(a),+∞), and

∫ +∞

x−az
(1 + |y|)∂f

∂x

(
t,

y − x

a

)
dy

converges uniformly with respect to x ∈ K, for any compact set K of (l(a),+∞),
for every t ∈ (0, +∞).
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Let us check the above assumptions in the Black-Scholes model, introduced in Example
2.3. We recall that the dynamics of S is given by dSt = bStdt + σStdWt, with b ≥ 0,
σ > 0, so that p(t,dz) is the distribution of

Z(t) = exp
[(

b− σ2

2

)
t + σWt

]
− 1,

with support (−1,+∞). Then, since S has a lognormal distribution, the density fZ is
given by:

fZ(t, z) =
1

σ
√

2πt(z + 1)
exp


−

(
ln(z + 1)−

(
b− σ2

2

)
t
)2

2σ2t


 .

We compute the partial derivatives ∂fZ

∂t
,

∂fZ

∂z
and we get:

∂fZ(t, z)
∂t

=
1

2σ
√

2πt(z + 1)
e−

(ln(z+1)−(b−σ2

2 )t)2

2σ2t

[
−1

t
+

1
σ2t

ln2(z + 1)− b

σ2
+

1
2

]
,

∂fZ(t, z)
∂z

=
1

σ
√

2πt(z + 1)2
e−

(ln(z+1)−(b−σ2

2 )t)2

2σ2t

[
− 1

σ2t
ln(z + 1) +

b

σ2t
− 3

2

]
.

Hence it is not di�cult to check that the assumptions described above are satis�ed.

We start by proving a smoothness property for v̂.

Proposition 4.9. Suppose that Assumption 4.7 is satis�ed. Then the value function v̂
de�ned in (2.7) belongs to C1 ([0,+∞)× (l(a), +∞)), given a ∈ A. Moreover

∂v̂(t, l(a)+, a)
∂x

= +∞, for every t ≥ 0. (4.13)

Proof. We �x a ∈ A and let us show that v̂ is di�erentiable at any (t, x) ∈ (0,+∞) ×
(l(a), +∞). When a = 0, as we noted at the beginning of Remark 4.8, v̂ is independent
of t and C1 in x thanks to the results of section 5. Take then a 6= 0. First, we notice
from Assumption 4.7 that g is (locally) semiconcave in (t, x) ∈ (0, +∞) × (l(a), +∞).
Together with the concavity of U , this shows that v̂ is (locally) semiconcave in (t, x) ∈
(0,+∞)× (l(a), +∞). Indeed, if we set r = s− t we can rewrite (2.9) as follows:

v̂(t, x, a) = sup
c∈Ca(0,x)

∫ +∞

0
e−(ρ+λ)r

[
U(cr) + g

(
r + t, Y 0,x

r , a
)]

dr

= sup
c∈Ca(x)

∫ +∞

0
e−(ρ+λ)r [U(cr) + g (r + t, Y x

r , a)] dr.
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For every (t, x) ∈ R+ × (l(a),+∞), c ∈ Ca(x), we put

J(t, x, a; c) :=
∫ +∞

0
e−(ρ+λ)r [U(cr) + g (r + t, Y x

r , a)] dr.

Let t1, t2 > 0, with t1 < t2, x1, x2 ∈ (l(a), +∞), with x1 < x2. By setting tη =
ηt1 + (1− η)t2, xη = ηx1 + (1− η)x2, we have for all (t, x) ∈ (0, +∞)× (l(a), +∞)

ηJ(t1, x1, a; c1) + (1− η)J(t2, x2, a; c2)− J(tη, xη, a; cη)

=
∫ +∞

0
e−(ρ+λ)r [ηU(c1(r)) + (1− η)U(c2(r))− U(cη(r))] dr

+
∫ +∞

0
e−(ρ+λ)r

[
ηg (r + t1, Y

x1
r , a) + (1− η)g (r + t2, Y

x2
r , a)− g

(
r + tη, Y

xη
r , a

)]
dr

<

∫ +∞

0
e−(ρ+λ)r

[
ηg (r + t1, Y

x1
r , a) + (1− η)g (r + t2, Y

x2
r , a)− g

(
r + tη, Y

xη
r , a

)]
dr,

by using the strict concavity of U . By the semiconcavity of the function g and by taking
the supremum of the functional J over the set Ca(x), we can derive the semiconcavity
of v̂ for (t, x) ∈ (0, +∞)× (l(a), +∞). Hence D+

t,xv̂(t, x, a) 6= ∅, so we have just to prove
that D+

t,xv̂(t, x, a) is a singleton, for each (t, x) ∈ (0, +∞) × (l(a), +∞). By using the
same arguments of Proposition 4.1, we get the Fréchet di�erentiability.
By Proposition 3.3.4 (e), pages 55-56 of [2], we get the continuity of the couple

(
∂v̂

∂t
,
∂v̂

∂x

)

for (t, x) ∈ (0, +∞) × (l(a), +∞), given a ∈ A. Then the value function v̂ de�ned in
(2.7) belongs to C1((0, +∞)× (l(a), +∞)), given a ∈ A.
To get that v̂(·, ·, a) ∈ C1([0, +∞)× (l(a), +∞)) it is enough to extend the datum g (and
so the value function v̂) to small negative times and repeat the above arguments.

Now we prove (4.13) by using similar arguments to the ones to check the �nal state-
ment of Proposition 4.1. If we get x = l(a) in (2.9), then

v̂(t, l(a), a) =
∫ +∞

t
e−(ρ+λ)(s−t)g(s, l(a), a)ds, ∀t ≥ 0.

Now we send x → l(a) in (2.12) (this is possible since v̂, g and ∂v̂

∂t
are continuous in

x ∈ [l(a), +∞)1 and since ∂v̂

∂x
is monotone in x) and we obtain

(ρ + λ)v̂
(
t, l(a)+, a

)− ∂v̂ (t, l(a)+, a)
∂t

− Ũ

(
∂v̂ (t, l(a)+, a)

∂x

)
− g

(
t, l(a)+, a

)
= 0.

Comparing the last formulas, we obtain

Ũ

(
∂v̂ (t, l(a)+, a)

∂x

)
= 0 ⇐⇒ ∂v̂ (t, l(a)+, a)

∂x
= +∞, ∀t ≥ 0.

1By Remark 4.4 of [6] we already know that v̂ is di�erentiable in t on the boundary and in particular
the continuity follows from (2.7).
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Lemma 4.10. Suppose that Assumption 4.7 is satis�ed. Let v and v̂ be the value func-
tions given in (2.2) and (2.7) respectively. Then, given any x > 0 and calling ax a
maximum point of the problem (2.10), we have

D+v(x) ⊆ D+
x v̂(0, x, ax).

Proof. It works exactly as well as in the stationary case.

We come now to the �nal regularity result for the nonstationary case.

Theorem 4.11. Suppose that Assumption 4.7 is satis�ed. Let v, v̂ be the value functions
given in (2.2) and (2.7) respectively. Then:

• v ∈ C1(0, +∞) and any maximum point in (4.3) is internal for every x > 0;
moreover v′(0+) = +∞;

• for every a ∈ A we have v̂(·, ·, a) ∈ C1 ([0, +∞)× (l(a), +∞)); �nally

∂v̂(t, l(a)+, a)
∂x

= +∞, for every t ≥ 0.

Proof. It follows as in the stationary case.

Remark 4.12. We should stress that even if the semiconcavity assumption 4.7 does
not hold, the continuous di�erentiability in x of the function g given in (2.8) is still
guaranteed in the case of power utility and when the density p(t,dz) is supposed to be
�su�ciently regular� in x.

5 Existence and characterization of optimal strategies

Let Assumptions 2.2, 2.5 and 4.7 stand in force throughout this section.

5.1 Feedback representation form of the optimal strategies
The following result guarantees the existence and uniqueness of the optimal control for
the auxiliary problem (2.7).

Proposition 5.1. Let v̂ be the value function given in (2.7). Fix a ∈ A. We denote
by I = (U ′)−1 : (0, +∞) → (0,+∞) the inverse function of the derivative U ′ and we
consider the following nonnegative measurable function for each a ∈ A:

ĉ(t, x, a) = I

(
∂v̂(t, x, a)

∂x

)
= arg max

c≥0

[
U(c)− c

∂v̂(t, x, a)
∂x

]
. (5.1)

Let (t, x) ∈ R+ × [l(a), +∞). There exists a unique optimal couple (c̄·, Ȳ·) at (t, x) for
the auxiliary problem introduced in (2.7) given by:

c̄s := ĉ(s, Ȳs, a), s ≥ t, (5.2)
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where Ȳs, s ≥ t, is the unique solution of
{

Y ′
s = −ĉ(s, Ys, a), s ≥ t

Yt = x.
(5.3)

Note that the triplet (s, Ȳs, a) ∈ D, for s ≥ t.
Proof. A rigorous proof can be found in Appendix.

Under suitable assumptions, we state the veri�cation theorem for the coupled IPDE
(2.10)-(2.12), which provides the optimal control in feedback form.
Theorem 5.2. There exists an optimal control policy (α∗, c∗) given by

α∗k+1 = arg max
−Xx

k
z̄
≤a≤Xx

k
z

v̂(0, Xx
k , a), k ≥ 0 (5.4)

c∗t = ĉ
(
t− τk, Y

(k)
t , α∗k+1

)
, τk < t ≤ τk+1, (5.5)

where Xx
k is the wealth investor at time τk given in (2.1) and Y

(k)
· is the unique solution

of {
Y ′

s = −ĉ(s, Ys, α
∗
k+1), τk < s ≤ τk+1

Yτk
= Xx

k .
(5.6)

Proof. Thanks to Proposition 5.1, we can prove the existence of an optimal feedback
control (α∗, c∗) for v(x).
Given x ≥ 0, consider the control policy (α∗, c∗) de�ned by (5.4)-(5.5). By construction,
the associated wealth process satis�es for all k ≥ 0,

Xx
k+1 = Xx

k −
∫ τk+1

τk

c∗sds + α∗k+1Zk+1

= Y (k)
τk+1

+ α∗k+1Zk+1

≥ l(α∗k+1) + α∗k+1Zk+1 ≥ 0, a.s.

since −z ≤ Zk+1 ≤ z̄ a.s. Hence, (α∗, c∗) ∈ A(x), i.e. (α∗, c∗) is admissible. By
Proposition 5.1 and de�nition of α∗k+1 and v, we have:

v(Xx
k )

= v̂(0, Xx
k , α∗k+1)

=
∫ +∞

τk

e−(ρ+λ)(s−τk)
[
U(ĉs(τk, Y

(k)
s , α∗k+1)) + g

]
(s− τk, Y

(k)
s , α∗k+1)ds

= E
[∫ τk+1

τk

e−ρ(s−τk)U(c∗s)ds + e−(ρ+λ)(τk+1−τk)v(Xx
k+1)

∣∣∣∣Gτk

]
,

by Lemma 4.1 of [6]. By iterating these relations for all k, and using the law of conditional
expectations, we obtain

v(x) = E
[∫ τn

0
e−ρsU(c∗s)ds + e−ρτnv(Xx

n)
]

,
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for all n. By sending n to in�nity, we get:

v(x) = E
[∫ +∞

0
e−ρsU(c∗s)ds

]
,

which provides the required result.

Remark 5.3. In the stationary case the Assumption 4.7 is not needed to prove the
existence of feedback controls, as it is automatically satis�ed. Moreover we note that in
the stationary case there is not an explicit dependence on t of the optimal control in
feedback form. Indeed, it is given by the couple (α∗, c∗), where

α∗k+1 = arg max
−Xx

k
z̄
≤a≤Xx

k
z

v̂(Xx
k , a), k ≥ 0

c∗t = ĉ
(
Y

(k)
t , α∗k+1

)
, τk < t ≤ τk+1,

and in particular ĉ is the restriction on the set X of the nonnegative measurable functions
introduced in (5.1), i.e.

ĉ(x, a) = I

(
∂v̂(x, a)

∂x

)
= arg max

c≥0

[
U(c)− c

∂v̂(x, a)
∂x

]
. (5.7)

Remark 5.4. It is not trivial to state the uniqueness of the strategy (a∗, c∗), whose
existence is proved in Theorem 5.2. We can only say that, if we prove that a∗ is unique,
then also c∗ will be unique thanks to Theorem 5.2. The problem is strictly related to the
behavior of the functions v̂ and g that are ex ante not strictly concave in a.

Remark 5.5. From the feedback representation given in Proposition 5.1 and in Theorem
5.2, it follows that the function v is strictly concave and that the functions g and v̂
are strictly concave in x. Indeed, given two points x1, x2 > l(a) and calling c∗1, c

∗
2 the

corresponding optimal consumption paths for the original problem, we have, for η ∈ (0, 1),

v(ηx1 + (1− η)x2)− ηv(x1)− (1− η)v(x2)

≥ E
[∫ +∞

0
e−ρs [U(ηc∗1s + (1− η)c∗2s)− U(ηc∗1s)− (1− η)U(c∗2s)] ds

]
.

(5.8)

Thanks to the feedback formulas, the two consumption rates c∗1, c
∗
2 must be di�erent in a

set of positive measure (dt × dP) so the right-hand-side of (5.8) is strictly positive and
we get strict concavity of v. Then the strict concavity of g in x follows directly from its
de�nition whereas the strict concavity of v̂ in x follows from the IPDE (2.12).
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5.2 Consumption policy between two trading dates
From the regularity properties discussed in subsection 4, we can deduce more properties
of the optimal consumption policy. We discuss them separately for the stationary and
the nonstationary case.

5.2.1 The stationary case
Proposition 5.6. Let a ∈ A and (t, x) ∈ R+ × [l(a),+∞). Let (c̄·, Ȳ·) be the optimal
couple for the auxiliary problem starting at (t, x). If x = l(a), then c̄ ≡ 0, so Ȳ ≡ l(a). If
x > l(a) then c̄ is continuous, strictly positive and strictly decreasing while Ȳ is strictly
decreasing and strictly convex. Moreover limt→+∞ c̄t = 0 and limt→+∞ Ȳt = l(a).

Proof. The �rst statement follows immediately from the setting of the auxiliary pro-
blem. We prove the second statement. Indeed, by (5.7) and Remark 5.5 it follows that
the function ĉ is strictly increasing and continuous in x. Since c̄t = ĉ(Ȳt, a) and Ȳ is
continuous and decreasing, then also c̄ is decreasing. Moreover, c̄t > 0 for every t: indeed
if it becomes zero in �nite time then the associated costate would have a singularity and
this is impossible: see the proof of Proposition 5.10 in the nonstationary case. The strict
positivity of c̄ implies that Ȳ is strictly decreasing and so, by (5.7) that c̄ is strictly
decreasing and Ȳ is strictly convex.
Finally, by the de�nition of the auxiliary control problem,

∫ +∞
0 c̄sds ≤ x − l(a) which

implies the limit of c̄. If the limit of Ȳ is x1 > l(a), we get from the feedback formula
(5.2) that

lim
t→+∞ c̄t = ĉ(x1, a) > 0

which is impossible.

The regularity results for c then allow to deduce an autonomous equation for the optimal
consumption policy between two trading dates.

Proposition 5.7. Suppose that U ∈ C2((0,∞)) with U ′′(x) < 0 for all x. Then the
wealth process Y between two trading dates is twice di�erentiable and satis�es the second-
order ODE

d2Yt

dt2
=

g′(Yt)− (ρ + λ)U ′(ct)
U ′′(ct)

, ct = −dYt

dt
. (5.9)

Proof. Di�erentiating equations (4.1) and (5.7) with respect to x and (5.3) (restricted
on X) with respect to t, we obtain

d2Yt

dt2
=

∂ĉ(Yt, a)
∂x

ct,

∂ĉ(x, a)
∂x

= I ′
(

∂v̂(x, a)
∂x

)
∂2v̂(x, a)

∂x2
=

1
U ′′(ĉ(x, a))

∂2v̂(x, a)
∂x2

,

(ρ + λ)
∂v̂(x, a)

∂x
− Ũ ′

(
∂v̂(x, a)

∂x

)
∂2v̂(x, a)

∂x2
− ∂g(x, a)

∂x
= 0.
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Using the equality Ũ ′(U ′(y)) = −y, the last equation can be rewritten in terms of ĉ:

(ρ + λ)U ′ (ĉ(x, a)) + ĉ(x, a)
∂2v̂(x, a)

∂x2
− ∂g(x, a)

∂x
= 0.

Assembling all the pieces together, we obtain the �nal result (5.9).

The equation (5.9) is a second-order ODE similar to equations of theoretical mechanics
(second Newton's law), and it should be solved on the interval [0, +∞) with the boundary
conditions Y0 = x and Y∞ = l(a) (which corresponds to resetting the time to zero after
the last trading date). Solving this equation does not require the auxiliary value function
v̂ but only the original value function v, which, in the case of power utility, can be found
from the scaling relation.

The case of power utility. In the case of power utility function U(x) = K1x
γ , the

equation (5.9) takes the form

d2Yt

dt2
=

ρ + λ

1− γ
ct − 1

K1γ(1− γ)
c2−γ
t g′(Yt), Y0 = x, Y∞ = l(a). (5.10)

In this case, one can deduce a simple exponential lower bound on the integrated con-
sumption, corresponding to the solution of (5.10) in the case g ≡ 0.

Proposition 5.8. The process Y solution of (5.10) satis�es

Yt ≥ Y 0
t ,

where Y 0 is the solution of (5.10) with g ≡ 0, given explicitly by

Y 0
t = x− (x− l(a))(1− e

− (ρ+λ)t
1−γ ). (5.11)

The condition g ≡ 0 means that the value function of the investor resets to zero (the
investor dies) at a random future time. In this case it is clear that a rational agent
will consume faster than in the case where more interesting investment opportunities are
available. The typical shape of optimal consumption policies is plotted in Figure 1.

Proof. The equation (5.10) can be rewritten as

dct

dt
= −ρ + λ

1− γ
ct + f(t), f(t) ≥ 0.

From Gronwall's inequality we then �nd

ct ≥ cse
− ρ+λ

1−γ
(t−s)

,

Yt ≤ Ys − cs(1− γ)
ρ + λ

(1− e
− ρ+λ

1−γ
(t−s)), t ≥ s.
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Figure 1: Left: typical pro�le of the optimal wealth process Yt and the exponential lower
bound given by the proposition 5.8. Right: the corresponding consumption strategies.
In the presence of investment opportunities, the agent �rst consumes slowly but if the
investment opportunity does not appear, the agent eventually �gets disappointed� and
starts to consume fast.

The terminal condition Y∞ = l(a) implies

l(a) ≤ Yt − ct(1− γ)
ρ + λ

.

On the other hand, the solution of the problem without investment opportunities satis�es

l(a) = Y 0
t −

c0
t (1− γ)
ρ + λ

.

Therefore,
Yt − ct(1− γ)

ρ + λ
≥ Y 0

t −
c0
t (1− γ)
ρ + λ

and
d
dt

(Y 0
t − Yt) ≤ −ρ + λ

1− γ
(Y 0

t − Yt).

Since Y 0
0 = Y0 = x, another application of Gronwall's inequality shows that Y 0

t ≤ Yt for
all t.

5.2.2 The nonstationary case
In this case the regularity results for the optimal strategies are weaker and more di�cult
to prove.

Proposition 5.9. Let a ∈ A and (t, x) ∈ R+ × [l(a),+∞). Let (c̄·, Ȳ·) be the optimal
couple for the auxiliary problem starting at (t, x). If x = l(a), then c̄ ≡ 0, so Ȳ ≡ l(a).
If x > l(a) then c̄ is continuous, strictly positive and limt→+∞ c̄t = 0.
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Proof. The proof is the same as in the stationary case.

Note that, with respect to the stationary case here we do not have monotonicity of the
optimal consumption since the behavior of v̂ in the time variable is not known.
Moreover here the limiting property for Ȳ is proved only under the assumption of twice
continuous di�erentiability of U , as given below.
As in the stationary case we can deduce an autonomous equation for the optimal wealth
process between two trading dates. However, since we have weaker regularity results the
proof is di�erent and makes use of the maximum principle.

Proposition 5.10. Suppose that U ∈ C2((0,∞)) with U ′′(x) < 0 for all x. Then the
optimal wealth process Ys between two trading dates is twice di�erentiable, it satis�es the
second-order ODE

d2Ys

ds2
=

∂g(s,Ys)
∂x − (ρ + λ)U ′(cs)

U ′′(cs)
, cs = −dYs

ds
, Yt = x (5.12)

and limt→+∞ Ȳt = l(a).

Proof. We cannot di�erentiate equations (2.12) and (5.1) with respect to x as in the sta-
tionary case as we do not know if v̂ is C2. Then we follow a di�erent approach. We use the
maximum principle contained in Theorem 12, page 234 of [10]. Such theorem concerns
problems with endpoint constraints but without state constraints. Due to the positivity
of the consumption, our auxiliary problem (2.7) can be easily rephrased substituting the
state constraint Ys ≥ l(a), ∀s ≥ t with the endpoint constraint lims→+∞ Ys ≥ l(a). So
we can apply the above quoted theorem that, applied to our case, states the following:
Assume that g(·, ·) and ∂g(·,·)

∂x are continuous. Given an optimal couple (Ȳ·, c̄·) with c̄
continuous there exists a function p(·) ∈ C1(t,+∞;R) such that:

• p(·) is a solution of the equation

p′(s) = (ρ + λ)p(s)− ∂g(s, Ȳs)
∂x

;

• U ′(c̄s) = p(s) ↔ c̄s = I(p(s)) for every s ≥ t;

• limT→+∞ e(ρ+λ)(s−T )p(T ) = 0, for every t ≤ s ≤ T (transversality condition).

Since we already know (from Proposition 5.1) that there exists a unique optimal couple
(Ȳ·, c̄·) and that c̄ is continuous (see of Proposition 5.9) the above statements apply.
Then we get that c̄s > 0 for every s ≥ t, that c̄ is everywhere di�erentiable and that

dc̄s

ds
= I ′(p(s))p′(s) =

1
U ′′(c̄s)

[
(ρ + λ)U ′(c̄s)− ∂g(s, Ȳs)

∂x

]

which gives the claim recalling that c̄s = −dȲs

ds
.
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Concerning the limiting property of Ȳ we argue by contradiction. Let lims→+∞ Ȳs =
x1 > l(a). We have then, by the de�nition of g, for every s ≥ t,

∂g(s, Ȳs)
∂x

≤ ∂g(s, x1)
∂x

≤ λv′(x1 − l(a)) < +∞.

Then from the costate equation we get that, for t ≤ s ≤ T < +∞

p(s) ≤ e(ρ+λ)(s−T )p(T ) +
∫ T

s
e(ρ+λ)(r−T )λv′(x1 − l(a))dr

≤ e(ρ+λ)(s−T )p(T ) +
λ

ρ + λ
v′(x1 − l(a))(1− e−(ρ+λ)T )

Using that limT→+∞ e(ρ+λ)(s−T )p(T ) = 0 we get a uniform bound for p(s). This is a
contradiction as lims→+∞ p(s) = lims→+∞ U ′(cs) = +∞.

The equation (5.12) is a second-order ODE similar to equations of theoretical mechanics
(second Newton's law), and it should be solved on the interval [0, +∞) with the boundary
conditions Y0 = x and Y∞ = l(a) (which corresponds to resetting the time to zero after
the last trading date). Solving this equation does not require the auxiliary value function
v̂ but only the original value function v, which, in the case of power utility, can be found
from the scaling relation.

Remark 5.11. The Maximum Principle used in the above proof holds once we know that
g(·, ·) and ∂g(·,·)

∂x are continuous. As observed in Remark 4.12, this is true also in cases
when the semiconcavity Assumption 4.7 may fail (notably in the case of power utility and
in the case of `regular' density). So, also in such cases the Maximum Principle could
be used to get information about the optimal strategies. Clearly, without knowing the
regularity of the value function v̂ such information would be much less satisfactory.

The case of power utility. In the case of power utility function, the equation (5.12)
can again be simpli�ed:

d2Yt

dt2
=

ρ + λ

1− γ
ct − λϑ1c

2−γ
t

K1(1− γ)

∫
(Yt + az)γ−1p(t, dz), Y0 = x, Y∞ = l(a).

Because the second term in the right-hand side is still positive, the exponential bound
of Proposition 5.8 can be established in exactly the same way as in the stationary case.
Figure 2 depicts the optimal wealth process and the optimal consumption policy for the
probability distribution p(t, dz) extracted from the Black-Scholes model with the same
parameter values as in [5]: drift b = 0.4, volatility σ = 1, discount factor ρ = 0.2,
intensity λ = 2 and risk aversion coe�cient γ = 0.5. We see that at least qualitatively,
the consumption pro�le is similar to the one observed in the stationary model, with
exponential decay. For comparison, we also plot the wealth and consumption policy for
the stationary model with distribution corresponding to the Black-Scholes model in 3
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Figure 2: Optimal wealth (left) and consumption policy (right) for the probability dis-
tribution extracted from the Black-Scholes model (solid line) and from the stationary
model having the same distribution as the Black-Scholes model in 3 years' time (dashed
line).

years' time. In this case the agent consumes at a slower rate than in the nonstationary
model. The explanation is that for the parameter values we chose, 3 years is a very
long time horizon, because all the consumption happens, essentially, during the �rst 2
years after trading. During this period (�rst 2 years) the stationary model o�ers better
investment opportunities, which explains the slower consumption rate.
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A Appendix : Technical proofs
Proof of Proposition 3.1. We suppose by contradiction that v is not strictly increa-
sing on R+ This means that it is de�nitely constant on R+ from a certain x on, since v
is concave. Then we �x x̄ ∈ R+ such that v(x) = B ∈ R+, for all x ≥ x̄. Take ε > 0 and
a pair (αε, cε) ε-optimal at x̄. This means that (αε, cε) ∈ A(x̄), i.e.

X x̄
k = x̄−

∫ τk

0
cε
tdt +

k∑

i=1

αε
iZi ≥ 0, ∀k ≥ 1, X x̄

0 = x̄,

and
B = v(x̄) < E

[∫ +∞

0
e−ρtU(cε

t)dt

]
+ ε.

Now we choose x̃ > x̄ + 1. Then we have v(x̃) = v(x̄) = B. We consider the control
policy (αε, c̃), where c̃t = cε

t + I[0,1](t), for all t ≥ 0. Hence given x̃ > 0, we have for every
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k ≥ 1,

X x̃
k = x̃−

∫ τk

0
c̃tdt +

k∑

i=1

αε
iZi = x̃−

∫ τk

0
cε
tdt− (1 ∧ τk) +

k∑

i=1

αε
iZi

> x̄−
∫ τk

0
cε
tdt +

k∑

i=1

αε
iZi ≥ 0,

with X x̃
0 = x̃, so (αε, c̃) ∈ A(x̃). Moreover we have:

v(x̃) ≥ E
[ ∫ +∞

0
e−ρtU(c̃t)dt

]
= E

[∫ 1

0
e−ρtU(cε

t + 1)dt

]
+ E

[∫ +∞

1
e−ρtU(cε

t)dt

]

> E
[∫ 1

0
e−ρtU(cε

t)dt

]
+ E

[∫ +∞

1
e−ρtU(cε

t)dt

]
= v(x̄) = B,

since U is strictly increasing. But this is not possible, since we have assumed v constant
from x̄ on. Hence the statement is proved.

¤

Proof of Proposition 3.2.

(i) The continuity comes from condition d) of Assumption 2.2. If d) does not hold,
measurability follows from condition b) of Assumption 2.2.

(ii) The function g is strictly increasing in x ∈ [l(a), +∞) since v is strictly increasing
by Proposition 3.1.

(iii) This property is a direct consequence of concavity of v. Indeed, given t ≥ 0,
consider (xη, aη) = (ηx1 + (1 − η)x2, ηa1 + (1 − η)a2), with η ∈ (0, 1), x1 ≥
l(a1), x2 ≥ l(a2). First of all, xη ≥ l(aη) thanks to the convexity of the function l.
Since v is concave, we have for every t ≥ 0:

g(t, xη, aη) = λ

∫
v (ηx1 + (1− η)x2 + ηa1z + (1− η)a2z) p(t, dz)

≥ λη

∫
v (x1 + a1z) p(t, dz) + λ(1− η)

∫
v (x2 + a2z) p(t,dz)

= ληg(t, x1, a1) + λ(1− η)g(t, x2, a2).

This provides the result.

¤
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Proof of Proposition 5.1. In order to prove Proposition 5.1, we need the following
preliminary result:
Lemma A.1. Let v̂ be the value function given in (2.7). Fix a ∈ A. Assume the
followings:
(i) v̂(·, ·, a) ∈ C1 (R+ × (l(a), +∞));

(ii) ∂v̂(t, l(a)+, a)
∂x

= +∞, for every t ∈ R+;

(iii) v̂ is a classical solution of the HJ equation (2.12) satisfying the growth condition
(3.3) with representation (3.2) on the boundary.

Given x ∈ [l(a), +∞) and t ≥ 0, for every couple (c, Y ) admissible at (t, x) for s ≥ t, we
have the following identity: for T > t

e−(ρ+λ)T v̂ (T, YT , a)− e−(ρ+λ)tv̂(t, x, a) = −
∫ T

t
e−(ρ+λ)s [U(cs) + g(s, Ys, a)] ds

+
∫ T

t
e−(ρ+λ)s

[
U(cs)− cs

∂v̂(s, Ys, a)
∂x

− Ũ

(
∂v̂(s, Ys, a)

∂x

)]
ds,

(A.1)

with the agreement that
∂v̂(t, l(a), a)

∂x
=

∂v̂(t, l(a)+, a)
∂x

= +∞, so that Ũ

(
∂v̂(s, l(a), a)

∂x

)
= 0.

If T goes to +∞

v̂(t, x, a) =
∫ +∞

t
e−(ρ+λ)(s−t)

[
U(cs) + g(s, Ys, a)

]
ds

−
∫ +∞

t
e−(ρ+λ)(s−t)

[
U(cs)− cs

∂v̂(s, Ys, a)
∂x

− Ũ

(
∂v̂(s, Ys, a)

∂x

)]
ds.

(A.2)

Furthermore, an admissible couple (c, Y ) is optimal at (t, x) if and only if

Ũ

(
∂v̂(s, Ys, a)

∂x

)
= U(cs)− cs

∂v̂(s, Ys, a)
∂x

, for a.e. s ≥ t

such that Ys > l(a) and cs = 0 otherwise.
Proof. Let (c, Y ) be an admissible couple for the auxiliary problem such that Ys > l(a),
for every s ≥ t. By applying standard di�erential calculus to e−(ρ+λ)sv̂(s, Ys, a) between
s = t and s = T , we have:

e−(ρ+λ)T v̂(T, YT , a)− e−(ρ+λ)tv̂(t, x, a)

=
∫ T

t
e−(ρ+λ)s

[
∂v̂(s, Ys, a)

∂t
− (ρ + λ)v̂(s, Ys, a)− cs

∂v̂(s, Ys, a)
∂x

]
ds

=
∫ T

t
e−(ρ+λ)s

[
−Ũ

(
∂v̂(s, Ys, a)

∂x

)
− g(s, Ys, a)− cs

∂v̂(s, Ys, a)
∂x

]
ds,
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where in the last equation we have used the fact that v̂ satis�es (2.12). This can be
easily rewritten as (A.1) by adding and subtracting U(cs) in the integrand. Now, from
the growth condition (3.3) and since v̂ is nondecreasing in x, we have

0 ≤ v̂(T, YT , a) ≤ v̂(T, x, a) ≤ K(ebT x)γ a.s.

from which we deduce by Lemma 4.2 of [6] that

lim
T→+∞

e−(ρ+λ)T v̂ (T, YT , a) = 0, a.s.

Hence, by sending T to in�nity, we can easily derive the relation (A.2). Let (c, Y ) be an
admissible couple such that YT0 = l(a), for a T0 < +∞. Assume that T0 is the �rst time
when this happens. Then Ys = l(a), and cs = 0 for every s ≥ T0. Then for T < T0 we
get (A.1) as before. Calling

IT := −
∫ T

t
e−(ρ+λ)s

[
U(cs)− cs

∂v̂(s, Ys, a)
∂x

− Ũ

(
∂v̂(s, Ys, a)

∂x

)]
ds,

we have that IT is increasing and from (A.1) that there exists its limit for T ↗ T0 given
by:

−e−(ρ+λ)T0 v̂ (T0, l(a), a) + e−(ρ+λ)tv̂(t, x, a)−
∫ T0

t
e−(ρ+λ)(s−t) [U(cs) + g(s, Ys, a)] ds.

From the positivity of the integrand in IT , we then get that identity (A.1) also holds
in T0. For T > T0 we can easily derive (A.1) using the fact that the couple (c, Y ) is
constant after T0 and that (ii) holds. Now, let us focus on the last statement. Let (c, Y )
be an admissible couple at (t, x). Then (c, Y ) is optimal at (t, x) if and only if in (A.2)
we have

v̂(t, x, a) =
∫ +∞

t
e−(ρ+λ)(s−t) [U(cs) + g(s, Ys, a)] ds.

When Ys > l(a), for s ≥ t, this is clearly equivalent to
∫ +∞

t
e−(ρ+λ)(s−t)

[
U(cs)− cs

∂v̂(s, Ys, a)
∂x

− Ũ

(
∂v̂(s, Ys, a)

∂x

)]
ds = 0,

i.e.
Ũ

(
∂v̂(s, Ys, a)

∂x

)
= U(cs)− cs

∂v̂(s, Ys, a)
∂x

, for a.e. s ≥ t. (A.3)

When Ys > l(a) on (t, T ), we have (A.3) on (t, T ) and cs = 0 on [T, +∞).

Now we come to the proof of the Proposition 5.1. First we observe that, thanks to
Proposition 4.9 the assumptions (i)-(ii)-(iii) of the previous Lemma A.1 hold. So �x
(t, x, a) ∈ D. First we prove the existence of a solution Ȳ of the problem (5.3). The
dynamics of the system is the function −ĉ(·, ·, a) : R+ × (l(a), +∞) → (0, +∞), with
(5.1), that is well-de�ned and continuous as composition of continuous functions on

29



R+ × (l(a), +∞). We note that hypothesis (ii) of Lemma A.1 implies ĉ(t, l(a)+, a) = 0,
for every t ≥ 0. Hence, we can extend the function ĉ(·, ·, a) to a continuous function
on R+ × (−∞, +∞) such that ĉ = 0 on R+ × (−∞, l(a)]. Now the Peano's Theorem
guarantees the existence of a local solution Ȳ· of (5.3). We prove that (s, Ȳs, a) ∈ D for
every s ≥ t, i.e. that

Ȳs ≥ l(a), for s ≥ t. (A.4)
If x = l(a), we already know that ĉ(s, l(a)+, a) = 0, for s ≥ t, given t, so that Ȳs = l(a),
for all s ≥ t.
Now we suppose x > l(a). Since −ĉ(s, y, a) < 0, for each (s, y) ∈ [t, +∞)× (l(a), +∞),
the solution Ȳ is strictly decreasing on the maximal interval that we denote by (t, T ),
with T > 0. Suppose that there exists an instant t < t′ < T such that Ȳt′ < l(a). We
have that dȲt′ = 0. In particular this means that there exists an interval [t0, t1] ⊂ (t, T )
with Ȳt0 = l(a) and Ȳt1 < l(a) such that for all s ∈ (t0, t1], Ŷs < l(a) with dȲs(t, x, a) = 0,
that it is not possible. This proves the claim (A.4), for any x ≥ l(a) and that T = +∞.
Now call c̄s = ĉ(s, Ȳs, a) as in (5.2). Then the couple (c̄, Ȳ ) is admissible since c̄s ≥ 0,
for every s ≥ t and Ȳs ≥ l(a), for s ≥ t. Moreover

Ũ

(
∂v̂

∂x
(s, Ȳs, a)

)
= U(cs)− c̄s

∂v̂

∂x
(s, Ȳs, a), for a.e. s ≥ t,

so the couple (c̄, Ȳ ) is optimal at (t, x) thanks to Lemma A.1. Hence the existence of an
optimal couple for the auxiliary problem is proved.
Now we prove the uniqueness. Fix a ∈ A, x ≥ l(a) and t ≥ 0. Let c̄1, c̄2 be optimal
controls at x. Then for i = 1, 2

v̂(t, x, a) =
∫ +∞

t
e−(ρ+λ)(s−t)

[
U(c̄i(s)) + g(s, Ȳ t,x

s (c̄i), a)
]
ds

=
∫ +∞

0
e−(ρ+λ)s

[
U(c̄i(s)) + g(s + t, Ȳ x

s (c̄i), a)
]
ds,

where for every c ∈ Ca(x), Y x
s (c) = x−∫ s

0 c(u)du, s ≥ 0. Since the function U is strictly
concave, we have by setting cη = ηc̄1 + (1− η)c̄2, with η ∈ (0, 1),

U(cη(s)) = U (ηc̄1(s) + (1− η)c̄2(s)) > η1U(c̄1(s)) + (1− η)U(c̄1(s)), s ≥ 0.

Moreover, since Ȳ x
s (cη) = ηȲ x

s (c̄1) + (1− η)Ȳ x
s (c̄2), for all s ≥ 0 and g is concave in the

second variable, we have

g(s + t, Ȳ x
s (cη), a) ≥ ηg(s + t, Ȳ x

s (c̄1), a) + (1− η)g(s + t, Ȳ x
s (c̄2), a), ∀s ≥ 0.

Then
v̂(t, x, a) <

∫ +∞

0
e−(ρ+λ)s

[
U(cη(s)) + g(s + t, Ȳ x

s (cη), a)
]
ds,

that implies the uniqueness of the control of the auxiliary problem.

¤
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