
1 

Lack of depth of iterative reasoning in non-
interactive contexts 
 

Ketti Mazzocco*, Paolo Cherubini° 
 

* Department of Cognitive Sciences and Education, University of Trento 
° Department of psychology, University of Milano-Bicocca 
 

 

 

 

 

 

Author for correspondence is PC: 

Dipartimento di Psicologia, Università di Milano-Bicocca 

Room 425, 4th floor, U6 Building 

1, Piazza dell’Ateneo Nuovo, 20126 MILANO (Italy) 

Telephone: ++39 02 6448 3811 

Facsimile:  ++39 02 6448 3706 

e-mail: paolo.cherubini@unimib.it 
 

Keywords: iterative reasoning, mental models, problem representation, beauty 
contest game 
 

 
This study was partly funded by a grant PRIN2006 from the Italian Government to the 
second author. 
 

Abbreviations 

BCG Beauty Contest Game 

MMT Mental Models Theory 
 

 

 



2 

Abstract 

In four Experiments we show that individuals tend to not iteratively pursue further consequences 
of an initial conclusion that they draw from an initial representation of a problem. This occurs with 
non-interactive tasks where the source of the difficulty cannot lie in an inability to adequately 
represent other actors’ beliefs, actions, social values and goals. The difficulty at reasoning 
iteratively was previously mostly observed in interactive games, such as the beauty contest game, 
and partly attributed to bounded individual rationality. The present results, obtained in non-
interactive games, support the bounded-rationality view, and further specify it by showing that 
lack of depth in iterative reasoning might be the direct result of a very basic cognitive tendency, 
originally illustrated by mental models theory. 
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It is common experience that people sometimes perform some actions in order to 

obtain an initial, predicted outcome, without realizing that that effect has further 

foreseeable consequences. Examples abound in interactive contexts, such as 

popular strategic board games (i.e. chess, checkers, kalaha, go), where one can 

miss the non-immediate – but quite deterministically foreseeable – consequences 

of a move. Similarly, one rarely considers that if she decides to drive on a 

crowded road, it will be more crowded, and slower (Schelling, 1978). In auctions, 

one’s own bid might cause others to reevaluate what the item is worth and induce 

them to raise their bids (Roth and Ockenfels, 2002). This tendency to 

underestimate the non-immediate consequences of one’s own actions can 

originate from an inability at reasoning iteratively (i.e., seeing the consequences 

of consequences in a chain of reasoning). In interactive contexts, this inability 

might be a factor in the development of inefficient markets and financial bubbles, 

as shown by typical performances in guessing games such as the “beauty contest 

game” (BCG; nicknamed after an example by John Maynard Keynes, 1936, but 

first studied by Nagel, 1995). 

 

In the beauty contest game, N decision-makers simultaneously choose a real 

number from the interval I ≡ [0, 100]. The winner is the decision-maker whose 

number is closest to p times the mean of all chosen numbers (including her own), 

where p !  (0, 1) is known. The winner receives a prize, whilst other decision-

makers earn nothing. In case of a tie, the prize is split equally among those who 

have tied. The game has a Nash equilibrium in which all decision-makers choose 

zero. In BCG with large N – where each individual choice has a negligible effect 

on the aggregated mean – a rational player will not simply choose a random 

number or his favourite number, nor will she choose a number above 100p, since 

it is dominated by 100p. Moreover, if she believes that the other players are 

rational as well, she will not pick a number above 100p2, and if she again believes 

that the others are this rational, she will not pick a number above 100p3 and so on, 

until all numbers but zero are eliminated. Elementary algebra shows that, at each 

step of iteration, given k the current choice provisionally attributed to the 

estimated mean of the other players’ choices and N the number of players, the 

player’s rational choice at each step of iteration is C = p(N-1)k/(N-p)  (in the 

specific case where N→ ∞, C=pK, as in the large N case above). For example, 
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with p =.5 and N = 3, in the first step a rational player might attribute randomness 

to the choice of the other players (that is, estimated mean k=50), and then opt for 

C=20; at the second step of iteration, she will attribute k=20 to the other players, 

and then she will think that she will be better off by choosing C=8; at the third 

step, she will choose 3; and so on, converging to zero.  

 

The game-theoretic structure of the beauty-contest game allows analyzing the 

depth of players’ reasoning, that is how many steps of iteration decision-makers 

actually apply in choosing their numbers. Previous studies have found that depth 

of reasoning is rather limited across a wide range of different pools of 

participants, sample sizes, or parameters p (see Bosch-Domènech, García-

Montalvo, Nagel, and Satorra, 2002; Camerer, 2003; Camerer, Ho, and Chong,, 

2003, 2004; Duffy and Nagel, 1997; Güth, Kocher, and Sutter, 2002; Ho, 

Camerer, and Weigelt, 1998; Kocher and Sutter, 2005; Nagel, 1995, 1999a, 

1999b; Weber, 2003). First round guesses are usually far from the equilibrium, 

either random choices (0 steps of iteration), or choices near 50p (depth 1), or a 

few choices near 50p2  (depth 2). The equilibrium 0 is chosen by very few 

participants (e.g., less than 10% in Grosskopf and Nagel 2007).1 This performance 

might originate from individuals’ intrinsic difficulty at reasoning iteratively; 

however, it might also occur if individuals were good at reasoning iteratively, but 

unable or unwilling to attribute the same capacity to other individuals. That is, a 

person that can see that the equilibrium point in the BCG is 0, but believes that 

other persons won’t see it and won’t choose 0, should not choose 0 herself. Both 

accounts have been put forth and both have been supported by empirical evidence 

(e.g., Grosskopf and Nagel, 2007, 2008; Bosch et al., 2002), and the two of them 

are not necessarily exclusive. However, in some recent studies Grosskopf and 

Nagel (2007, 2008), by using an N=2 version of the BCG – where the game turns 

to “the one who picks lowest, wins”, and accordingly selecting 0 does not depend 

on the representation of the other player’s choice – observed very few rational 

choices. The authors suggested that the typical behaviour in these sorts of 

                                                
1 In repeated BCGs chosen numbers decrease; however, learning of the equilibrium can be slow, 
sometimes is not attained, is affected by contextual factors, and is mostly caused by feedback on 
other participants’ choices and outcome of each round (Duffy and Nagel, 1997; Grosskopf and 
Nagel, 2007). Learning in repeated BCGs is particularly slow when the individual choice affects 
appreciably the target number, e.g. with a small N (e.g. Ho et al., 1998) or in some slightly 
different versions of the game (e.g., the “maximum” game, Duffy and Nagel, 1997). 
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interactive contexts is mostly caused by individual bounded rationality, more than 

by the tendency to attribute irrationality to others. Chou, McConnell, Nagel and 

Plott (2008) in a subsequent study showed that the source of poor performance in 

the two-person BCG might be scarce comprehension of the problem form. They 

showed that if oversimplified versions of the game are offered, people’s behaviour 

is consistent with game theory predictions; yet, people have overwhelming 

difficulties at spontaneously modelling the standard version of the two persons 

BCG in a way that is isomorphic to its game-theoretic structure.  

In this study we show some results that support and extend Grosskopf and Nagel’s 

idea that individual cognitive constraints might affect performance in the BCG. 

People have intrinsic difficulties at following chains of iterative conclusions, and 

not only in interactive contexts: the same can be observed in non interactive 

contexts, where performance cannot be affected by difficulties at representing 

other people’s behaviors. Some results to this effect were already reported by 

Cherubini and Johnson-Laird (2004), that used iterative problems based on the 

logic of predicate calculus. The authors presented problems with premises such as 

“Imagine a world in which there are four people: Anne, Beth, Carol, and Diane, 

and in which the following two assertions are true: 1) Everybody loves anyone 

who loves someone; 2) Anne loves Beth”. Participants were then asked whether it 

followed that everyone loved Anne. Nearly all participants gave the correct “yes” 

response to this question. However, only a few participants correctly surmised 

that the answer to the following question “Does it follow that Carol loves Diane?” 

was also “yes”. Answering properly to the latter question involves iterative 

application of the rule stated in the premises: since Anne loves Beth, everyone 

loves Anne; therefore Diane loves Anne; since Diane loves Anne, then everyone 

loves Diane, including Carol (the chain can be lengthened to the conclusion 

“everyone loves everyone”). In the negative version (Cherubini and Johnson-

Laird, 2004, Experiment 2), the difficulty of pursuing iterative chains of reasoning 

increased: nearly all participants were defeated by problems such as “Everybody 

loves anyone who loves someone”,  “Anne does not love Beth”, “Does it follow 

that Carol does not love Diane?” (correct response: ). The authors concluded that 

people have intrinsic difficulties at applying iteratively a premise, and interpreted 

those difficulties from the theoretical perspective of mental models theory (MMT; 

Johnson-Laird, 2001; Johnson-Laird and Byrne, 1991), currently one of the most 
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influential theories of human thinking and reasoning in cognitive psychology. The 

theory states that when people reason, they build a first, initial model of the 

premises, and draw a first conclusion; they barely look for alternative models, and 

thus it is difficult for them to realize that sometimes (i.e., in iterative reasoning 

chains) the first conclusion modifies the initial model, and conveys further 

conclusions. In the present study we corroborate and generalize Cherubini and 

Johnson-Laird’s findings, by using different sorts of problems that involve set-

based premises (Experiment 1a and 1b), a simple numerical problem strictly 

analogous to the BCG but in a non-interactive setting (Experiment 2), and an 

explicitly iterative numerical function (Experiment 3). Our aim is to specify a 

psychological mechanism that contributes to limit human rationality whenever 

iterative reasoning is required for optimal performance, and thus might also 

contribute to poor performance in the BCG and other interactive contexts, such as 

the financial markets. We think that knowledge concerning these sorts of 

psychological constraints might be of advantage for further detailing those 

economic models that allow for imperfect individual rationality among the factors 

needed for understanding collective behaviours.   

 

EXPERIMENT 1a 

Task 

Imagine a box, and an experimenter that fills the box with five marbles described 

by two attributes: color (blue or red), and material (glass or plastic). That is, the 

experimenter can pick marbles from red glass ones, red plastic ones, blue glass 

ones, and blue plastic ones. She tells you that more than half of the marbles in the 

box are red, and more than half of the marbles in the box are glass marbles. She 

also assures you that – in filling the box – she conformed to the requirement R: if 

at least one red glass marble is in the box, then at least one blue plastic marble 

must be in the box. Now, she asks you if you can derive a certain conclusion 

concerning the maximal minimal  number of red glass marbles and blue plastic 

marbles in the box – that is, if you are certain that there is at least one red glas 

marble, or at least two, and so on.  
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Predictions 

A useful initial mental representation of the box depicts the minimal number of 

glass marbles and red marbles in it, that is three each. Because the marbles are 

five, most people should then be able to easily grasp the initial conclusion that 

there is necessarily at least one red glass marble in the box (Figure 1).  This initial 

conclusion can be integrated to R, yielding the very easy modus ponens 

conclusion “there is at least one blue plastic marble in the box”. If people insert 

this blue plastic marble in the initial representation of the box, they should realize 

that – in the light of that conclusion – the minimal overlap between red marbles 

and glass marbles is two, and conclude accordingly that there are necessarily at 

least two red glass marbles in the box (Figure 2).  

 

 

--- Insert figure 1 about here --- 

 

 

--- insert figure 2 about here --- 

 

 

Otherwise, if people do not easily integrate the conclusion concerning the blue 

plastic marble into the initial mental representation of the box, they should stick to 

the initial conclusion “there is at least one red glass marble in the box”, and will 

not  grasp that the maximin conclusion “at least 2 red glass marbles in the box” 

follows from the premises.  

Control task 

Mentally overlapping two subsets of three marbles each out of a set of five 

marbles – as required by the second step of iteration above – might be intrinsically 

harder than overlapping two subsets of three marbles each out of a set of five 

marbles (as required by the first step of iteration). This can be checked for by a 

control task where the first premises, describing the red and glass marbles in the 

box, are kept the same, but the requirement R is missing; in its place, participants 

are explicitly told that at least one of the marbles in the box is a blue plastic one. 

That is, they are directly told what they have to initially infer in the experimental 

task. If difficulty in responding to the question concerning the red glass marbles is 
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caused by a difficulty in integrating one’s own spontaneous conclusions into the 

initial representation of the problem, then this difficulty should not occur in the 

control task, and correct “at least 2 red glass marbles” responses should be more 

frequent in the control task than in the experimental task. 

METHODS 

Participants 

Thirty-four participants (24 females; mean age 22.7, ranging 19-29) volunteered 

to take part in the experiment, without retribution. Seventeen of them were 

randomly allocated to the experimental condition, and 17 to the control condition. 

All participants where undergraduate students of psychology from the university 

of Padova. Some of them had taken courses in logic or in the psychology of 

thinking and reasoning.  

Procedure and material 

Each participant was tested individually in a quiet room. The problem was part of 

a set comprising three other reasoning and decision problems, unrelated to the 

present study and administered in random order. The experimenter put a closed 

box (with marbles in it) and some example marbles on the desk, and verbally 

instructed the participant in accordance with the problems described in the Task or 

Control task paragraphs, repeating the instructions – when needed – in order to 

assure understanding of the premises. Instructions were also available to 

participants in written form. Questions concerning the maximin of red glass 

marbles and blue plastic marbles would have been linguistically awkward, and so 

they were formulated as follows: 

 

What can you say for certain regarding the number of red glass marbles in the 

box? That is, can’t you conclude anything certain regarding their number, or can 

you establish that there is certainly at least one of them, or can you establish that  

there are certainly at least two of them, or anything else? Take your time to 

decide, and please explain your answer. 

 

What can you say for certain regarding the number of blue plastic marbles in the 

box? That is, can’t you conclude anything certain regarding their number, or can 
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you establish that there certainly is at least one of them, or can you establish that 

there certainly are at least two of them, or anything else? Take your time to 

decide, and please explain your answer. 

 

The order of the two questions was balanced across participants. Of course, 

participants given the control task were only asked the question concerning the 

red glass marbles.  

Original instructions and questions were in Italian, and all participants were native 

Italian speakers.  

Results and analyses 

Quantitative results surpassed our expectations. Of the 17 participants in the 

experimental condition, none stated that they were certain that there were at least 

two red glass marbles in the box. Two participants stated that they could not 

conclude anything for certain. One stated that a red glass marble was “more likely 

than a blue plastic marble”. The remaining 14 (82%) participants concluded that 

they were certain that there was at least one red glass marble in the box, that is, 

the conclusion supported by the initial model of the problem. Of the 17 

participants in the control task, two responded that they could not conclude 

anything for certain. The remaining 15 (88%) correctly concluded that they were 

certain that there were at least two red glass marbles in the box. A χ2 test run on 

the 2x2 contingency table obtained by crossing correct and incorrect responses to 

the red-glass-marble question in the two conditions shows that the difference in 

the distribution of responses is highly significant (exact p: less than one in ten 

millions). In the experimental task, by setting at .33 the probability that the 

predicted response “at least one red glass marble” was picked at random, 

predicted responses were significantly more frequent than chance (binomial test, p 

<.0001). 

Responses to the blue plastic marble question in the experimental task matched 

responses to the red glass marble question: 14 people responded – correctly – that 

they were certain that there was at least one blue plastic marble in the box; one 

participant said that a blue plastic marble was “less likely than a red glass 

marble”; the remaining two participants said that they could not conclude 

anything for certain. Correct responses were significantly greater than chance 

(binomial test, chance level set at .33, p<.0001). 
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Qualitative results were based on the explanations put forth by the participants. 

The 14 participants responding that there was at least a red glass marble in the box 

in the experimental task and the 15 participants concluding that there were at least 

two red glass marbles in the control task described – with different wordings, 

gestures, and sketches – that they had established the minimal overlap between 

three red marbles and three glass marbles. All participants which realized that 

there was at least one red glass marble in the experimental task, also realized that 

this conclusion, once integrated with R, endorsed the further conclusion that there 

was at least one blue plastic marble in the box. All of them were surprised – in the 

debriefing session – when they finally realized, upon explanation by the 

experimenter, that the consequence of the necessary blue plastic marble was that 

there was a second red glass marble in the box, and all admitted that they did not 

consider revising the initial overlap of the red and glass marbles in the light of the 

conclusion concerning the blue plastic marble. 

Discussion 

Results of Experiment 1a show that people do not tend to integrate their initial 

conclusion into the problem representation that allowed drawing that very same 

conclusion.  Participants  in the control condition and those participants in the 

experimental condition that managed to conclude that there was at least one blue 

plastic marble in the box had exactly the same information available. The only 

difference was that people in the control group were given a piece of information 

that people in the experimental group had to infer by themselves.  The difference 

between the two conditions was impressive: no one in the experimental condition 

revised their initial representation of the problem, and no one drew the correct 

conclusion concerning the red glass marbles; by contrast, almost all participants in 

the control condition were able to draw that very same correct conclusion. 

Apparently, in this problem, the human inferential horizon is very short: people 

are happy with drawing a first conclusion, but do not pursue its further 

consequences.  

 

EXPERIMENT 1b 
Despite the consistency of the results of Experiment 1a with our expectations, we 

were surprised by the strength of the effect. Cherubini and Johnson-Laird’s (2004) 
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found effects fully consistent with the present ones, but weaker than those 

observed in Experiment 1a – unless participants were time-constrained or 

cognitive load was increased by the use of negative premises (respectively 

Experiment 1 and 2 of Cherubini and Johnson-Laird, 2004). Perhaps, the 

procedure of individual verbal presentation of the problems – even though it 

enhances a more proper understanding of the premises – somehow affected the 

findings. Unpredictable additional factors could have intervened: e.g., some 

participants could have been anxious at being tested by one of their professors 

(even though full guarantee was given that this was not an intelligence test, and 

was not to affect in any way their careers); or, since the experimenters were not 

blind to the hypothesis, they could have involuntarily encouraged some 

participants to give responses consistent with the hypothesis. In order to neutralize 

these sorts of unpredictable parasite factors, Experiment 1b used the same 

experimental and control task as Experiment 1a, but was administered as a 

questionnaire – with written instructions and closed-choice responses – to a large 

group of participants. 

 

METHODS 

Participants 

One-hundred and eight (69 females) students taking a first-year course in general 

psychology at the University of Milan-Bicocca participated in the experiment as a 

course requirement. None of them had previously taken courses in logic or the 

psychology of thinking and reasoning.  

Task and procedure 

The experimental task was as follows: 

 
Imagine that in front of you there is a closed box. In the box there are 5 marbles, which you cannot 
see. The marbles can be either red or blue, and they can be either plastic marbles, or glass marbles. 
In other words, there can be 4 types of marbles: red glass ones, red plastic ones, blue glass ones, 
and blue plastic ones. Furthermore: 

1. more than half of the marbles in the box are red marbles; 
2. more than half of the marbles in the box are glass marbles; 
3. If in the box there is at least a red glass marble, then there also is at least one blue 

plastic marble. 
On the ground of the above information, what can you establish with certainty concerning the 
number of blue plastic marbles in the box? 
 I cannot establish anything for certain. 
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 I am certain that in the box there is at least one blue plastic marble  
 I am certain that in the box there are at least two blue plastic marbles 
On the ground of the above information, what can you establish with certainty concerning the 
number of red glass marbles in the box? 
 I cannot establish anything with certainty 
 I am certain that in the box there is at least one red glass marble  
 I am certain that in the box there are at least two red glass marbles 
 
[for half of the participants, the two final questions were inverted] 
 

The control task was as follows: 
Imagine that in front of you there is a closed box. In the box there are 5 marbles, which you cannot 
see. The marbles can be either green or yellow, and they can be either large or small. In other 
words, there can be 4 types of marbles: large green marbles, small green marbles, large yellow 
marbles, small yellow marbles. Furthermore: 

1. more than half of the marbles in the box are green; 
2. more than half of the marbles in the box are large; 
3. in the box there is at least one small yellow marble. 

On the ground of the above information, what can you establish with certainty concerning the 
number of large green marbles in the box? 
 I cannot establish anything for certain. 
 I am certain that in the box there is at least one large green marble  
 I am certain that in the box there are at least two large green marbles  
 

Each participant received both problems, in random orders. The problems were 

inserted in a booklet comprising four other reasoning and decision problems, 

unrelated to the present study. Even though the order of the problems was 

randomized, care was paid that the two problems were interspaced by at least one 

irrelevant problem. The booklets were anonymous, and participants did not have 

time limits for filling them.   

Results and analyses 

In the experimental task, 93 participants (86%; significantly more than chance, 

p<.0001) correctly responded that there was at least one blue plastic marble in the 

box. Four (4%) said that there were at least two blue plastic marbles in the box, 

and 11 (10%) could not conclude anything for certain. Responses to the critical 

questions about the red glass (experimental task), or the large green marbles 

(control task) are reported in Table 1. 

 

--- Insert Table 1 about here --- 

 

The “cannot conclude” responses are very few and their frequency does not differ 

between the two tasks. The distributions of the critical “at least one” and  “at least 

two” responses were reliably different in the two tasks (exact χ2 = 39.6, 1-tailed p 
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=1.97e-10), showing that correct responses were more frequent in the control task 

than in the experimental task. Correct responses in the Experimental task were 

note significantly different from chance (chance level set at .33), and wrong “at 

least one” responses in the control task were not significantly different from 

chance. Limiting analyses to the 93 participants that correctly responded to the 

question concerning the blue plastic marble in the experimental task – that is, 

those participants for whom we are definitely sure that the available information 

in the experimental and control task was exactly the same – 61 (66%) of them 

responded correctly in the control task, vs. 22 (24%) responding correctly in the 

experimental task (exact χ2 = 33.1; 1-tailed p =6.32e-9). 

Discussion 

The results confirmed the findings of Experiment 1a. Participants responding 

correctly to the question concerning the blue plastic marble in the experimental 

task had exactly the same information available as in the control task. This 

notwithstanding, a vast majority of participants did not pursue the consequences 

of the initial conclusions of the experimental problem, and hence did not draw the 

correct conclusion that was easy to draw in the control problem. These findings 

corroborate the idea that the difficulty in iteratively pursuing the consequences of 

a conclusion depends on a basic difficulty in spontaneously integrating one’s own 

provisional conclusions – derived from an initial mental model of a problem – 

into that very same model. 

The effects observed in Experiment 1b are weaker than those observed in 

Experiment 1a: here, 25% of the participants correctly answered the experimental 

problem, vs. 0% in Experiment 1a. At first glance, this finding might suggest that 

we were right in suspecting that the individual verbal presentation of the tasks in 

Experiment 1a somehow inflated the results. However, one must consider that in 

Experiment 2, while correct responses to the experimental problem increased, 

correct responses to the control problem decreased. Actually, this trend suggests 

that participants were not reasoning more accurately, but less accurately, and that 

some of them relied on guessing. In conclusion, the tendency not to pursue the 

further consequences of one’s own initial conclusion in this sort of problems 

ranges from strong (43% difference in correct responses between experimental 

and control task in Experiment 1b) to very strong (88% difference in Experiment 

1a). 
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EXPERIMENT 2 
In Experiment 2 we seek further support for the difficulty of integrating one’s 

own initial conclusion into the initial representation of a problem, by using a 

different task, inspired by small-N BCG, but set in a non-interactive setting. 

 

The task 

A computer randomly generates two [in alternative versions, three, or four] 

integer numbers between 0 and 100. All numbers in the span are equiprobable. 

You shall select a third [fourth or fifth, in the versions where the computer 

generated three or four numbers] number. Then, the mean of all the numbers is 

computed, including the two [three, four] generated by the computer and the one 

that you chose. The overall mean is halved, in order to obtain a target number T.  

If the number that you chose is T, or is no more than one unit away from T, you 

win € 5. Otherwise, you win nothing. (please limit your choice to numbers 

comprised between 18 and 32, extremes included).  

 

Predictions 

Given k the estimated mean of the numbers generated by the computer, N the total 

number of numbers involved, and p the target proportion of the overall mean, the 

correct choice is C = p(N-1)k/(N-p), or an integer next to C if C is not integer. In 

different versions of this task, N varied from 3 to 5. The proportion p was set at .5, 

and the most rational expectation – even though weak – concerning k was 50, 

because the numbers generated by the computer were equiprobable and random. It 

is not likely that participants – which were not mathematicians – could work out 

the above algebraic equation for calculating C in one shot. Instead, we 

hypothesize that they should search for it iteratively, as follows: 

Step 0) participants know that the expected k is 50, but they do not know the 

expected overall mean, because they have not chosen a number; henceforth, for 

lack of a better estimate, they should anchor to k for computing an approximation 

to the target number, that is pk = 25; they should provisionally set 25 as their 

choice;  
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Step 1) participants who realize that their estimation of the target number at 

step 0 was provisional, because it did not include their own number, should 

recompute the overall mean assuming that their choice is 25, obtaining  that the 

overall expected mean is 41.66 [in the N = 3 trials], and the expected target 

number is 20.8. They should set their chosen number to 20 or 21. 

Step 2) careful participants would then check the effects of their new choice 

on the target number. If their choice was 20, they can realize that the target 

number becomes exactly 20, and stop. If their choice was 21, they can realize that 

the target number becomes 20.16, and either set their choice at 20 and retry, or 

stop, given that 21 is within one unit form 20.16.2     

 The convergence values for the three games can be easily computed if people 

does not stop at step 0, and engage in at least one step of iteration; they are:  

• N=3: convergence: 20; optimal choices: 19, 20 or 21; 

• N=4: convergence: 21.42; optimal choices: 21 or 22; 

• N=5: convergence: 22.22; optimal choices: 22 or 23 

If people integrate their initial choice into the initial expected mean, and compute 

the new expected mean associated to their choice, they should be able to pursue 

iteratively the convergence values; even if they do not compute the exact 

convergence value, if they perform at least one step of iteration they could 

manage to grasp the optimal numbers reported above, all of them < 25 and 

increasing with increasing N. Otherwise, people that stops at step 0, that is people 

that initially represent the target number as half of 50 (the expected mean of the 

computer generated numbers), and do not realize that by choosing 25 they modify 

the overall mean and the target number, they should stick to 25. 

METHODS 

Participants 

The rational expectation is that the mean of two, three or four randomly chosen 

numbers between 0 and 100 is 50, but the likelihood that it will be exactly 50 is 

                                                
2 This is the most likely psychological algorithm for arriving to the convergence value, because of 
the availability of k = 50 as an anchor for initially representing the problem. However, people 
realizing that their number affects the overall mean can proceed in a different way: they can select 
from the start a random number among the available ones, and then compute the resulting target 
number. If they were not lucky at guessing, and did not choose 19, 20, or 21 [in the N = 3 game], 
they should then readjust their initial choice in further rounds of iteration, not differently from the 
algorithm illustrated above. People stopping at step 0 when following this alternative procedure do 
not necessarily choose 25; they can choose any available number. 
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very low. Probably for this reason, in pilot testing we realized that some of our 

students did not grasp that the rational expected mean of a set of two, three, or 

four randomly generated integers between 0 and 100 is 50; those students had a 

tendency to pick numbers at random in the game. Therefore, in the Experiment 

that we report here we screened candidates: those answering “50” to the question 

“If I draw at random two numbers between 0 and 100, extremes included, which 

is their most likely mean?” were admitted to participate in the Experiment; the 

others were not admitted.  Out of 28 screened students, 20 students of psychology 

(mean age: 21.9; 11 females) from the university of Milan-Bicocca eventually 

took part in the Experiment, in exchange for € 5 plus the amount of money that 

they managed to win. Some of them had taken a course in psychology of 

reasoning, none of them had taken any specialized course in logic.  

Procedure 

Participants were tested individually in a quite lab. Before the task, instructions 

were given verbally, and repeated as required in order to assure that they were 

fully understood. Each participant received all three versions of the problem, with 

N=3, 4 and 5, in random order. In each problem, either  two, three, or four boxes 

with a “?” were displayed on a computer screen. Half a second later, the sentence 

“the computer has now randomly generated 2 [3, 4] numbers. Now you pick a 

number comprised between 18 and 32. If that number is within one unit from half 

of the mean of all the numbers (those generated by the computer, plus the one you 

picked), you win € 5”. Participants wrote their choice using the numeric keypad. 

Responses were not time constrained. Participants had to respond to all three 

problems before receiving feedback,  when – for each problem – the randomly 

generated numbers were disclosed, the target number was computed in two steps 

(first by showing the mean of all numbers, then by halving it), and the participant 

was acknowledged whether or not she had won. At the end of the Experiment, 

each participant was asked to explain her responses, and recorded. 

Results and analyses 

The frequency of chosen numbers is reported in Table 2. 

 

--- Insert Table 2 about here --- 
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The distribution of optimal choices and choice of 25 is not reliably different in the 

three versions of the problem. By collapsing the three versions, 25 was chosen 43 

times (72%). This is significantly more than chance, even if chance level is set, 

instead of .067 (15 numbers were available for choice; exact binomial test, 

p=4.4e-8), at a far more conservative value of .5 (p<.001). The chance level for 

the selection of optimal numbers was .2 for N=3, and .13 for N=4 or 5, so we set it 

at .16. The 13 optimal number selected were not reliably different from chance.  

However, χ2 analysis of the choices of optimal numbers – once excluded all other 

numbers – confirmed that the numbers reliably varied in the three conditions, 

suggesting that these were not random choices, but choices from a few 

participants that actually engaged in iterative reasoning (exact χ2 = 20.2; p < 

.0005). This is further confirmed by the fact that three participants consistently 

selected an optimal number in all versions of the problems, and by their 

explanations in the debriefing session, depicting a process of iterative mental 

computations matching the algorithm outlined in the prediction paragraph. All 

three participants stated that they initially considered choosing 25, because it is 

the half of the expected mean of the computer generated numbers. Then, they 

included 25 in the computation of the mean, and they realized that the expected 

mean changed, and so the target number, and thus they lowered their choice, and 

checked again. The remaining 17 participants offered various self- reports of how 

they chose their numbers, including three persons who stated that they choose at 

random a number lower than 25 and then stopped (apparently applying the 

alternative algorithm described in footnote 2, but stopping at step 0), but none 

described that they recalculated the expected mean after they had selected an 

initial number. Out of the 13 participants that selected 25 in all problems, none 

spontaneously mentioned, in the debriefing session, that they recalculated the 

expected target number after having chosen 25. These participants did not engage 

in an iterative search for the optimal choice.  

Discussion 

The task in Experiment 2 was very similar to a small-N BCG, but was set in a 

non-interactive setting, where representations of choices made by other human 

players cannot be a factor in determining the participants’ responses. Of course, 

since all numbers but the one chosen by the participant were random, the rational 
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choice here was not 0, as in the actual BCG, but a definite set of values that could 

be easily computed in a few step of iterations, if only participants integrated their 

own number in the computation of the target number. Most of them did not do so. 

Both their choices and their explanations clarified that participants that 

consistently chose “25” did so because they built a raw initial representation of 

the target number (i.e., half of the expected mean of the computer generated 

numbers), and did not realize that after considering choosing 25 they should have 

recomputed the mean: that is, they did not integrate their choice into the initial 

representation that originally suggested that choice. These findings corroborate 

and generalize those in Experiments 1a and 1b: people have difficulties at 

integrating one’s own initial conclusion into the initial representation of the 

problem that suggested that conclusion. Thus, they do not easily realize that their 

own initial decision modifies the representation of the problem, suggesting that a 

different decision might be more appropriate. Because of these cognitive 

constraints, people have difficulties at pursuing iteratively the further 

consequences of their own initial conclusions or decisions, even in non-interactive 

contexts. 

EXPERIMENT 3 
The findings from the previous Experiments, together with those by Cherubini 

and Johnson-Laird (2004), suggest that the difficulty of spontaneous iterative 

reasoning in non-interactive contexts – that is, contexts that do not tax people 

cognitive abilities by requiring them to sort out what other people will likely do – 

can be generalized to a large class of problems. Yet, in all these problems people 

were not explicitly alerted that iterative reasoning was required or useful in order 

to correctly solve the task. What happens when participants are explicitly 

instructed to reason iteratively? That is: were the problems tested so far difficult 

because people do not spontaneously realize that they should pursue a chain of 

iterative representations and conclusions (but – if they realized it – they could 

pursue it), or is it the case that their difficulty would persist even if people were 

explicitly shown how to reason iteratively? Johnson, Camerer, Sen and Rymon 

(2002) found that people do not spontaneously engage in iterative reasoning in an 

interactive bargaining game, and do not spontaneously learn from experience how 

to establish equilibrium points by thinking iteratively. They then explicitly trained 



19 

their participants to apply a simple backward iterative strategy. Participants 

learned the iterative strategy easily, and transferred it to similar problems with 

different parameters. Accordingly,  even in non-interactive problems, people 

might not spontaneously engage in iterative reasoning (as shown in the previous 

experiments), but they might do so if alerted that iterative reasoning is necessary, 

and shown examples of how to do that. In this Experiment we used a different 

problem, transparent in its iterative structure even though more complex than the 

previous ones in the calculations it required. The problem was loosely inspired by 

Berry and Broadbent’s (1984) “sugar factory” task, inasmuch it required to 

“stabilize” the output of a factory. But – contrary to their task – no random factors 

contributed to the output, and participants could give only one answer (instead of 

multiple answers, one for each cycle of production of the factory, as occurred in 

Berry and Broadbent’s study). As a consequence, our problem involves explicit 

forecasting, whereas Berry and Broadbent’s problem relied on implicit learning.   

 

METHODS 

Participants 

Eighty-four students of psychology (61 females) took part in the experiment as a 

requirement for a first-year course in general psychology at the university of 

Milan-Bicocca. None of the participants had participated in the previous 

experiments, and none had taken courses in logic or in the psychology of 

reasoning. 

The task 

In the iterative problem that we used participants had to set a constant rate of 

production k for a given item, such that after iterating through production cycles 

t1…tn the number of those items in stock (Xn) converged to a given target value s. 

X0, the number of items available in stock at t0, is known. The content of the stock 

at each following cycle is Xi = p(Xi-1) + k, with p !  (0, 1). The series of X, in non-

recursive form, is explicated as follows: 
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For a given k, the series converge to s = k/(1-p); that is, in order to converge to a 

given s - as required – k must be set at s(1-p). Hence, formally, X0 does not affect 

k; it only affects the minimal number of cycles n required to attain convergence to 

s. 

The problem was embedded in different scenarios. An example follows: 

 
You are the newly appointed production manager of a car factory. The monthly stock of cars 
amounts to ¼ of the stock of the previous month (the other cars are sold), plus the newly produced 
cars. For example, if you have 1200 cars in stock in May, and you produce 500 cars in June, you 
will end up with 800 cars in stock (one-fourth of the stock in May, plus 500). Out of these, 200 
will remain in stock for July; if you again produce 500 cars in July, your stock will be 700 cars 
(and 175 will remain in stock for August), and so on.   
Now it is February. The cars in stock in January were 40. Set a constant rate of monthly 
production, so as to stabilize, in a few months (it is not important how many), the number of cars 
that are in stock each month at exactly 1000 units. In doing calculations, if necessary round 
decimal numbers to the nearest unit. 
Which rate of production do you set?  _____________ 
 
 
There were two different scenarios: a car factory (example above), and a 

workshop of hand-made luxury wristwatches. The magnitude of involved 

numbers changed in the two scenarios (s=1000 for the car factory; s=100 for the 

wristwatches). The value of p was ¼ in both scenarios. The correct responses 

were k=750 for the car factory scenario and k=75 for the wristwatches scenario. 

Each scenario came in two versions: low-anchor version, where X0<s (40 cars; 4 

wristwatches); high-anchor version, where X0>s (2800 cars; 280 wristwatches) 

(the example above is the low-anchor version of the car factory scenario). As a 

result, we had four versions of the problem.  

Predictions 

Contrary to Experiment 1a, 1b, and 2, here people are explicitly told to reason 

iteratively, and an example of how this sort of reasoning works is reported at the 

beginning of each problem, where it is shown how to compute the content of the 

stock month by month. The algebraic solution for k is opaque, and non-expert 

participants should not be able to work out it.  Alternatively, participants might 

proceed by trials and errors, by setting a value for k, then estimating or calculating 

the resulting stock iteratively in order to see whether it converges to s; if not, try a 

different k. However, this sort of iterative computation, if carried out in full depth, 

is mentally distressing, and we expect that most people fall short of the steps of 
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iterations needed in order to give appropriate responses. Accordingly, their 

estimates of k should depend on the formally irrelevant initial stock: lower 

estimates in the high anchor-problems (where participants are seeking a 

“decreasing” pattern), and higher estimates in the low-anchor problems (where 

participants are seeking an “increasing” pattern). As a last resort, participants 

could guess by applying the anchoring heuristic (Tversky and Kahneman, 1974), 

thus estimating lower k values in the high-anchor problems (where the initial 

stock by far exceeds the target stock) than in the low-anchor problems (where the 

initial stock is depleted with respect to the target). The predicted result of both 

strategies is the same: estimates of k should depend on the formally irrelevant 

initial stock, being higher in the low-anchor than in the low-anchor problems. By 

contrast, participants that engaged in an in-depth iterative search of k should be 

able to work out the correct value, that is, the same for low-anchor and high-

anchor problems.  

Procedure 

Participants were tested in a large group in a classroom. Each participant received 

both scenarios, one in the low-anchor version and the other in the high-anchor 

version. The order of presentation of the scenarios was balanced across 

participants. Each scenario was reported on a page of a booklet, leaving sufficient 

space for writing notes, calculations, and explanations of answers. Participants 

were told that they had no time limits, and that they could write notes and perform 

written calculations, but could not  use electronic calculators.  

Results and analyses 

Preliminary analyses showed that there were not reliable differences between the 

car factory scenario and the wristwatches scenario. Accordingly we collapsed 

together data from the two scenarios. In order to uniform responses, instead of the 

raw k indicated by participants we used as dependent variable the ratio of 

estimated s – obtained from the k indicated by the participant – to the target s. The 

ratio is 1 for correct responses, >1 for overestimated k values, and <1 for 

underestimated k values. Means for the low-anchor scenarios and the high-anchor 

scenarios were 1.05 and .92, respectively. The difference is reliable, t(83)=4.7, 

p<.0001, showing that – as predicted – people were affected by the initial stock: 



22 

production rates were markedly underestimated for the high-anchor scenarios, 

where X0 far exceeded s, with respect to the low-anchor scenarios.  

The number of exact responses (k=750 in the car factory scenarios; k=75 in the 

wristwatches scenario) were 18 (21%) in the low-anchor scenarios, vs. 10 (12%) 

in the high-anchor scenarios. This occurrence, together with the smaller 

discrepancy of the mean from the correct value in the low-anchor scenarios, 

suggests that people, unexpectedly, found the low-anchor scenarios somewhat 

easier than the high-anchor scenarios.  

Discussion 

Even though participants were explicitly alerted of the iterative nature of the 

problems, were shown an explicit example, and were allowed to do written 

calculations, their performance was not very good. A minority of participants 

worked out the correct answers. Most of them produced estimations. More 

importantly, those estimations were affected by a formally irrelevant parameter: 

the initial amount of items in the stock. People anchored to that amount and tried 

some initial guesses at the production rate, possibly exploring the resulting 

production patterns iteratively for a few cycles, but not as far as required for a 

correct evaluation.  As a result, where the initial stock far exceeded the target 

value people underestimated production rates; by contrast, where the initial stock 

was low, people overestimated production rates. These findings confirm that even 

people that are explicitly told to pursue an iterative chain of reasoning, and are 

shown how to do it, are often unwilling to engage in this type of reasoning.    

The better performance in the low-anchor problems with respect to the high-

anchor ones was unpredicted, but it is easily interpreted post-hoc. Almost all 

participants promptly realized that the production rate could not be greater than 

the target. As a consequence, people given the low anchor problems looked for 

large production rates (as predicted), but not as large as s (1000 in the car factory 

problem, and 100 in the watch factory problem). Because, with p set at 1/4,  

correct rates were 750 (car factory) and 75 (watches), guessing a large number 

lower than s had good chances of resulting in a correct guess from the very first 

attempts. By contrast, in the high-anchor conditions participants had an initial 

tendency to try very small k. They later revised those initial estimations, but – on 

average – they failed to increase them as much as necessary.  
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GENERAL DISCUSSION 
Not realizing the further consequences of an initial conclusion can have serious 

effects on planning abilities and rational behavior in general. For example, not 

basing our plans on anticipations of the most convenient counter-moves by an 

adversary can result in poor performance not only in board games, but also in 

auctions, economic planning, military planning, and possibly many other types of 

interactive contexts. This lack of depth in reasoning has been demonstrated and 

measured in many previous works mainly concerning interactive contexts (e.g., 

Nagel, 1995, 1999a, 1999b; Camerer, 2003; Camerer et al., 2003, 2004; Duffy 

and Nagel, 1997; Johnson et al., 2002; Güth et al., 2002; Ho et al., 1998; Kocher 

and Sutter, 2005). It can have different causes, including the inability to 

adequately represent other people as rational agents (Bosh et al., 2002; Nagel, 

1995), the inclusion of social utilities in the computation of an otherwise rational 

agent (e.g. Fehr and Schmidt, 1999; Fehr and Gachter, 2000; Berg, Dickhaut, and 

McCabe, 1995; Johnson et al., 2002), the lack of an appropriate understanding of 

the problem form (Chou et al, 2008), or be the result of cognitive constraints 

bounding the rationality of each individual (Grosskopf and Nagel, 2007, 2008). 

The present study supports the latter view, and further specifies it at the 

psychological level, in two ways. First, all previously mentioned works used 

interactive contexts, where inability to attribute rationality to the other agents or 

the consideration of social utilities can affect behavior (but see Johnson et al, 

2002, Exp. 2, where social utilities were “switched off” and nonetheless 

participants were not able to perform iterative bargaining). By contrast, the 

present study – together with the one by Cherubini and Johnson-Laird (2004) – 

shows that difficulties in iterative reasoning are present in a wide range of non-

interactive situations, where performance cannot be explained by an inability to 

represent other agents’ behaviors, or by social utilities. Of course, difficulties in 

representing other people beliefs and goals, or social values such as fairness and 

reciprocity, can be an important factor that impairs performance in interactive 

contexts, but we show that they are not the necessary cause of the psychological 

limits of iterative reasoning.  

Second, our experiments suggest that inefficiency in iterative reasoning is itself a 

byproduct of a very basic feature of human reasoning. According to MMT 

(Johnson-Laird and Byrne, 1991; Johnson-Laird, 2004), when they reason 
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spontaneously people build one initial representation of the problem, and draw 

one or some initial conclusions from it. The initial representation might be a 

provisional one, but people easily forget that alternative representations are 

possible, and thus they commonly stick to their initial conclusions. Systematic 

search of alternative representations is not commonly undertaken. Cherubini and 

Johnson-Laird (2004) showed that focusing on a given model of a problem often 

hinders the revision of that model in the light of the very same conclusions that 

were drawn from it. In other words, people can spontaneously realize that a 

consequence C follows from a situation S, and yet they can miss that C modifies 

S, so that a new consequence C’ follows. This result is now further supported by 

the present experiments. The most frequent responses in Experiments 1a, 1b, and 

2 resulted from building an appropriate initial representation, drawing an initial 

conclusion, but then not performing the required integration of that conclusions 

with the initial representation. Similarly, Experiment 3 showed that a parameter 

that was prominent in the initial representation of the problem, but was utterly 

irrelevant if one fully unraveled the iterative nature of the task (that, in that 

experiment, was made explicit to the participants), remarkably affected responses. 

In our view, these findings suggest that the basic cognitive constraint that bounds 

human rationality in the pursuit of iterative chains of conclusions is the difficulty 

of integrating one’s own initial conclusion with one’s own initial representation of 

a problem, and modify the latter accordingly.  This limitation might impair 

people’s ability to accurately forecast non-immediate consequences of their own 

decisions and actions in complex settings, such as those of interest for economic 

and financial sciences. 
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Figure legends 

 
Figure 1.   Diagram of the initial representation of the problem in Experiments 1a and 1b 
 
Figure 2.   Diagram of the revised representation of the problem in Experiments 1a and 1b. The 
revised representation allows drawing the correct conclusion. 
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Tables 
 
 
 
Table 1. Responses in Experiment 1b. 
 
 
 Experimental task Control task 
Cannot conclude 9 (8%) 6 (5%) 
At least one red glass [large green] marbles 74 (69%) 31 (29%) 
At least two red glass [large green] marbles 25 (23%) 71 (66%) 
 
 
 

 

 

 

 

 

Table 2. Frequencies of chosen numbers in Experiment 2. Numbers in bold are optimal choices. 
 
 N=3 N=4 N=5 
19 or 20 4 0 1 
21  0 2 0 
22 0 3 0 
23 0 1 4 
25 15 14 14 
Other numbers 1 0 1 
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Figure 2 
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