
 

Prediction and Error Propagation in Cohort Diffusion 

Models 

Mikko Myrskylä
1
 

Joshua R. Goldstein
2
 

 

February 6, 2009 

 

Abstract 

We study prediction and error propagation in the Gompertz, logistic, and Hernes cohort 

diffusion models. We show that the models can be treated in a unifying framework in which 

the models are linearized with respect to cohort age and predictions and prediction variance 

are derived from the underlying linear process. We develop and compare different methods 

for deriving predictions from the underlying linear process and show that a midpoint 

method, which has not been used in cohort diffusion models, improves accuracy over 

standard methods. For an important special case, random walk with drift, we develop an 

analytical prediction variance estimator and study its accuracy with respect to a Monte Carlo 

estimator. Simulation studies and empirical applications to first births and marriages show 

that the analytical estimator is accurate, allowing forecasters to make precise the level of 

within-model prediction uncertainty.  
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1 Introduction 

Diffusion models have proven to be useful in forecasting uncompleted cohort experience. 

Goldstein and Kenney (2001) and Li and Wu (2008) show that the Hernes model (Hernes 

1972) can be used for predicting marriage rates. It was long believed that the Gompertz 

model was inadequate for predicting fertility (Hoem, Madsen et al. 1981; Pollard and 

Valkovics 1992), but recent research (Goldstein 2008) suggests that if fit to the cohort rates, 

instead of fitting the model to period rates as was common in the early literature, the 

Gompertz model actually performs quite well. In principle, also the logistic model can be 

also be used to forecast cohort experience, but while the model has been used to explain 

fertility patterns (Ike 2002), it has not been used for forecasting purposes in the cohort 

context. The model has, however, been used extensively in the economic literature to 

forecast the diffusion of innovation (Mar-Molinero 1980; Harvey 1984; Gruber and 

Verboven 2001; Meade and Islam 2006).  

Irrespective of the context, it is a common practice to linearize the diffusion model before 

estimation (Harvey 1984; Frances 1994; Li and Wu 2008). When forecasting is the goal, this 

approach has obvious advantages over some other methods such as fitting the diffusion 

curve to observed cumulative proportions (Hernes 1972; Goldstein and Kenney 2001; 

Martin 2004; Billari and Toulemon 2006). In prior research, the linear processes have been 

usually modeled as static time trends (Frances 1994; Li and Wu 2008) or, in the rare cases 

where the process has had a dynamic, autoregressive structure, no attempt to derive 

prediction variance has been made (Harvey 1984).  

Our aim is to provide a unified framework for time series based estimation, prediction and 

prediction error estimation in the Gompertz, logistic, and Hernes cohort diffusion models. 

We build on prior research on cohort diffusion models by i) treating the underlying linear 

process as a dynamic time series process; ii) showing how predictions based on the 

underlying linear process can be improved using the midpoint method, a method is often 

used in the numerical analysis of differential equations; and iii) deriving an analytical 

variance estimator for the predictions in an important special case, random walk with drift. 

Empirical applications to first births and marriages suggest that the random walk based 
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cohort diffusion models may be useful in predicting the future experience of a cohort and in 

quantifying the prediction uncertainty.  

The paper is organized as follows. In Section 2, we briefly introduce our approach in a non-

technical way. In Sections 3-5, we show how estimation, prediction and prediction error 

estimation can be done in the Gompertz, logistic and Hernes cohort diffusion models using 

the time series approach. In Section 6 we apply the models to simulated and empirical data. 

Section 7 discusses the results. The Appendix provides certain equations and formulas 

which are used throughout the paper and a summary table of the most important results.  
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2 Overview of the time series approach 

The idea of linearizing a diffusion
3
 model, fitting a regression model to the underlying linear 

process, and deriving predictions from the linear process is not new. For example, Winsor 

(1932) shows how the logistic and Gomperts models can be linearized with respect to time, 

and Harvey (1984) takes the next step by showing how the predictions of a logistic model 

can be constructed from an autoregressive integrated moving average (ARIMA) time series 

model fit to the linearized part. More recently, Li and Wu (2008) use the Hernes model to 

predict first births, and follow Winsor and Harvey by first linearizing the model and then 

fitting a regression model to the underlying linear process.  

The steps in the process of obtaining predictions and prediction error estimates from an 

underlying linear process are as follows. Let tP  denote the proportion in a cohort “infected” 

by age t  – that is the proportion of those who, depending on the application, have married, 

have experienced a first birth, or more generally have adopted the innovation that is being 

modeled. We assume that tP  depends on age t  through a monotonic increasing function :F  

( )tP F t= . The following steps are needed to produce a time series modeling based 

prediction and prediction intervals of P  at age t k+ , given observations up to t :  

1. Find a linearization H  so that ( )t tH P g≡  is linear in cohort age t . We call 

tg  the underlying linear process.  

2. Model tg  as time series process (e.g., ARIMA model), and estimate the 

parameters of the model using standard techniques as detailed in for example 

Hamilton (Hamilton 1994). 

Repeat steps 3-4 for 1,...,i k= : 

3. Construct a one-step ahead prediction ˆ
t ig +  for the underlying linear process 

and derive a one-step ahead prediction ˆt iP+  from ˆ t ig +  using the inverse of H .  

                                                 
3
 Depending on the context, these models are also called growth curve models, or growth models. 
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4. Estimate the variance of ˆ
t iP+ . The source of the variance is the randomness in 

the underlying linear process identified in step 2.  

A few comments are in place here. First, the linearization of the model in step 1 may not be 

unique. Further, the linearization is constructed using a continuous notation for the diffusion 

model. Data, however, is invariable discrete. The way continuous notation is translated to 

accommodate discrete data, most importantly the way derivatives are treated, has 

implications on the predictions. Second, our empirical analysis indicates that the underlying 

linear process may be accurately described by a simple model such as random walk with 

drift (ARIMA(0,1,0)). Third, transforming the predictions ˆ
t ig +  for the underlying linear 

process into predictions ˆ
t iP+  may not be straightforward because H  is defined for 

continuous time but the observations are in discrete time. Moreover, the predictions ˆ
t iP+  

invariably involve the past value 1
ˆ
t iP+ − , therefore the predictions need to proceed recursively. 

Finally, when estimating the variance in step 4, the errors cumulate rather than fade away if 

the model for tg  includes unit roots (as does the random walk with drift model). 

The Sections 3-5 show how this approach is operationalized for the Gompertz, logistic and 

Hernes models. The Section 3 for the Gompertz model is the most detailed, since the logistic 

and Hernes cases are very much analogous to the Gompertzian case. To anticipate the 

results, Appendix Table 1 summarizes the model equations, linearizations, models for the 

underlying linear process, prediction equations and analytical prediction variance estimators 

for the Gompertz, logistic and Hernes models.   

     



 6 

3 The Gompertz diffusion model 

3.1 The model 

Let tP  be the proportion in a cohort that has by age t  adopted the innovation under study. 

Throughout the paper we assume that we have observed 0 1, ,..., tP P P  and that 1 2, ,...,t t t kP P P+ + +  

are being predicted. The Gompertz growth model for a proportion tP  is  

(3.1) ( )exp exptP k a bt= − −   . 

For a behavioral interpretation of the Gompertz model see Goldstein (2008). Log of the log-

derivative linearizes the model to lnb a bt+ − . To accommodate the model for discrete data, 

we use the discretization 1 1ln 1

2

t t t

t

d P P P

dt P

+ −−
≈  (see Appendix (8.2)), proposed by Li and 

Wu (2008) in the context of the Hernes model. With this linearization we have  

(3.2) 1 11
ln ln

2

t t
t

t

P P
b a bt g

P

+ − −
+ − ≈ ≡ 

 
. 

We model the underlying linear process tg  as a time series process. In the case of a random 

walk with drift, the model is  

(3.3) ( )21 0

1

, ~ 0,
t

t t t i t

i

g g g t N εδ ε δ ε ε σ−
=

= + + = + +∑  

and the model parameters ( )2, εδ σ  are estimated by
4
  

(3.4) 1 1ˆ
2

tg g

t
δ − −
=

−
    and    

( )
1 2

1
2 1

ˆ

ˆ
3

t

i i

i

g g

t
ε

δ
σ

−

−
=

− −
=

−

∑
. 

                                                 
4
 In (3.2), the number of observations drops from 1t +  to 1t − .  
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3.2 Prediction 

One-step and k -step ahead predictions 1
ˆ
tP+  and ˆ

t kP+  are based on predictions for the 

underlying linear process. For the case of a random walk with drift, the predictions are 

1
ˆˆ

t tg g δ+ = +  and ˆˆ
t k tg g kδ+ = + . To derive the predictions 1

ˆ
tP+  and ˆt kP+  from the underlying 

linear process we need the approximation (8.3), ( )1 1 10.5 t t t tP P P P+ − −⋅ − ≈ − . This is done as 

follows. First note that for a Gompertz model, ( )exp tg  describes proportional change. This 

can be approximated by  

(3.5) ( ) ( )1 1 1
1

1 1
exp 1

2

t t t
t t t

t t t

P P P
g P P

P P P

+ − −
−

−
= ≈ − = − . 

Using the right hand side expression for tg  in (3.5) we can approximate tP  in terms of the 

previous observed proportion, 1tP− , and current value of the underlying process, tg : 

1 /[1 exp( )]t t tP P g−≈ − . Similarly, one-step ahead prediction 1
ˆ
tP+  can be expressed in terms 

of the last observed proportion tP  and predicted value of the underlying linear process 1
ˆ
tg + :  

(3.6) 
( )1

1

ˆ
ˆ1 exp

t
t

t

P
P

g
+

+

=
−

. 

By applying (3.6) recursively we get the k-step ahead predictions. These predictions, 

however, are still preliminary: predictions based on (3.6) will underestimate t kP+  because a 

discrete growth factor ( )1ˆexp tg +  is applied to tP , whereas optimally one would apply a 

continuous growth factor to all values between 1
ˆ
tP+  and tP . Obviously, if the step length is 

small enough the problem is negligible. We reduce the bias by splitting the step into two 

parts and applying the factor ( )ˆexp tg  to the first part and the factor ( )1ˆexp tg +  to the second 

part. The method is analogous to the midpoint method which is a refinement of the Euler 

method for solving differential equations numerically (Griffiths and Smith 1991). The 

method can be applied in two steps or by taking the average of ( )1ˆexp tg +  and ( )ˆexp tg  and 
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applying that to tP .
5
 For simplicity, we use the latter approach. The mid-point modified one-

step and k -step ahead predictions are 

(3.7) 
( )1

1

ˆ
ˆ1 exp 0.5

t

t

t t

P
P

g g
+

+

=
− ⋅ +  

   and   
( )

1

1

ˆ
ˆ

ˆ ˆ1 exp 0.5

t k

t k

t k t k

P
P

g g

+ −
+

+ + −

=
− ⋅ +  

. 

3.3 Prediction variance 

We develop an analytical and a Monte Carlo estimator for the variance ( )ˆ
t jV P+  for 

1,...,j k= . 

3.3.1 An analytical variance estimator 

The analytical variance estimator is based on two approximations; first we approximate the 

predictions and then we approximate the variance using the delta method (8.4) and the 

Taylor series approximation (8.6). For small ( )ˆexp t jg +  (that is large, negative ˆ
t jg + ) the 

predictions (3.7) can be approximated as  

(3.8) ( )1 1
ˆ ˆexpt t tP P g+ +≈ +    and   ( )

1

ˆ ˆexp
k

t k t t i

i

P P g+ +
=

≈ +∑ . 

These predictions are linear in ( )ˆexp t jg + , so their variance is easier to derive than the 

variance of the predictions (3.7). We derive the one-step and k -step ahead prediction 

variances as follows.  

Variance for one-step ahead predictions 

For the one-step ahead prediction ( )1 1
ˆ ˆexpt t tP P g+ += +  the variance is  

(3.9) ( ) ( )1 1
ˆ ˆexpt tV P V g+ +=     

                                                 
5
 This is not exactly the same as dividing the step into two parts and applying two separate growth 

factors to each part, but empirically the difference is negligible.  
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because tP  is a constant. The delta method approximation for ( )1ˆexp tV g +    is given by 

(3.10) ( ) ( )
( )

2

1

1 1

ˆexp
ˆ ˆexp

t

t t

d E g
V g V g

dx

+
+ +

   =    
  

. 

We assume that the contribution of the uncertainty in the drift estimate to the prediction 

variance is negligible. Then  

(3.11) ( ) ( ) ( )
2 2 2

1 1 1
ˆˆ

t t t t tV g E g g E εδ δ ε ε σ+ + += + − − − ≈ = , 

and 

(3.12) 
( )

( ) ( )1

1

ˆexp
ˆexp exp

t

t t

d E g
E g g

dx
δ+

+

   = = +   . 

Plugging (3.11) and (3.12) into (3.10) we get the variance for the one-step ahead prediction: 

(3.13) ( ) ( )2

1
ˆ exp 2 2t tV P gεσ δ+ = + . 

The variance (3.13) is estimated by replacing 2

εσ  and δ  by their estimators, given in (3.4).  

Variance for k-step ahead predictions 

The variance of ( )
1

ˆ ˆexp
k

t k t t i

i

P P g+ +
=

= +∑  is a double sum of the covariances:  

(3.14) ( ) ( ) ( )
1 1

ˆ ˆ ˆexp cov exp ,exp
k k k

t i t i t j

i i j i

V g g g+ + +
= = =

   =    
∑ ∑∑ . 

The diagonal elements of the covariance matrix can be estimated using the delta method as   

(3.15) ( ) ( )2ˆexp exp 2 2t i tV g i g iεσ δ+ = +   . 
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Simulation experiments indicated that the off-diagonal elements ( ) ( )ˆ ˆcov exp ,expt i t jg g+ +
 
  , 

i j≠ , contribute significantly to the variance. The reason for this is the double-counting of 

the errors: shocks tε  up to t i=  are both in t ig +  and t jg + , provided j i≥ . These off-

diagonal elements can be approximated using the first order Taylor series approximation as 

(3.16) ( ) ( ) ( ) ( ) ( )2ˆ ˆcov exp ,exp min , exp expt i t j t tg g i j g i g jεσ δ δ+ +
  ≈ ⋅ ⋅ + +  . 

The interpretation for (3.16) is the following. There are ( )min ,i j  common shocks tε  in t ig +  

and t jg + , each contributing 2

εσ  to the covariance, and the exponential terms of the form 

( )exp tg iδ+  which are present both in the diagonal terms in (3.15) and in the off-diagonal 

terms in (3.16) scale the covariance proportionally to the size of the terms ( )ˆexp t ig + . Note 

that for i j= , the equation for off-diagonal elements (3.16) reduces to the equation (3.15) 

for the diagonal elements.  

The k -step ahead prediction variance is obtained by plugging (3.15) and (3.16) into (3.14): 

(3.17) ( ) ( ) ( ) ( )2

1 1

ˆ exp 2 min , exp
k k

t k t

i j

V P g i j i jεσ δ+
= =

= ⋅ +  ∑∑ . 

First order Taylor series approximation applied directly to (3.14) would deliver the same 

variance estimator (3.17). 

The estimators (3.13) and (3.17) reveal important facts about the nature of prediction 

uncertainty in cohort diffusion models. First, the multiplying factor 2

εσ  shows that the 

prediction variance grows linearly with the variance of the error term ε . Second, the factor 

( )exp 2 tg  implies that if the predictions are made at a late age (so t  is large and tg  negative 

and large, as the drift δ  in g  is always negative), the prediction variance is small. If the 

predictions are made at an early age, then t  is small, tg  is less negative, and the variance is 

large. Finally, the term ( )exp δ  in (3.13) and (3.17) implies that if the drift in g  is large (the 

drift is always negative), meaning that diffusion takes place soon, the prediction variance is 
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small. If, however, the drift is closer to 0 and diffusion happens at a slow pace and, the 

prediction variance is large. The same remarks apply also to the logistic and Hernes models 

(see Sections 4 and 5).  

3.3.2 Monte Carlo variance estimator 

A simple Monte Carlo variance estimator can be based on simulated paths of the underying 

linear process. In the case of a random walk with drift, we simulate 1,000K =  sample paths 

1 2, ,...,t t t kg g g+ + +  using the equation  

(3.18) ( )2
1

ˆ ˆ, ~ 0,
j

t j t i i

i

g g j N εδ ε ε σ+
=

= + +∑ . 

The simulated paths of g  are transformed to predictions P̂  using the prediction equation 

(3.7). The variance and parametric or non-parametric confidence intervals can be calculated 

from the simulated realizations of P . We use the 0.025 and 0.975 percentiles of the 

simulated prediction distribution as the lower and upper bounds for the 95 % confidence 

interval for the predictions.  

Appendix Table 1 summarizes the important results of the Section 3: The Gompertz model.  
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4 The logistic diffusion model 

4.1 The model 

As in the Gompertz case, let tP  be the proportion in a cohort that has by age t  adopted the 

innovation, 0 1, ,..., tP P P  the observed proportions and 1 2, ,...,t t t kP P P+ + +  the yet to be observed 

proportions we wish to predict. The logistic diffusion model for a proportion tP  is  

(4.1) 
( )1 exp

t

a
P

a bt
=

+ −
. 

For a behavioral interpretation of the logistic diffusion model see Mansfield (1963). The 

model is linearized by 
2

1
ln lnt

t

dP
b a bt

dt P

 
= + − 

 
. To accommodate the model for discrete 

data, we use the discretization ( )1 1/ 0.5t t tdP dt P P+ −≈ ⋅ −  (see Appendix (8.1)). This gives us 

(4.2) 1 1

2

1
ln ln

2

t t
t

t

P P
b a bt g

P

+ − −
+ − ≈ ≡ 

 
. 

We model the underlying linear process tg  as a time series process. In the case of a random 

walk with drift, the model is given by (3.3) and the model parameters are estimated by (3.4).  

4.2 Prediction and variance estimation 

Predictions for the underlying linear process are used to derive predictions ˆ
t jP+ . In order to 

be able to express tP  in terms of 1tP−  and tg , we use the approximation  

(4.3) ( )1 1
12 2

1

1 1

2

t t
t t

t t

P P
P P

P P

+ −
−

−

−
≈ − . 

Noting that ( ) 1 1

2

1
exp

2

t t

t

t

P P
g

P

+ −−
= , we how have an approximate expression for tP  in 

terms of 1tP−  and tg : ( )2

1 1 expt t t tP P P g− −= + . The predictions can then be constructed as  
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(4.4) ( )2

1 1
ˆ ˆexpt t t tP P P g+ += +    and   ( )2

1 1
ˆ ˆ ˆ ˆexpt k t k t k t kP P P g+ + − + − += + . 

Harvey (1984) presents the same prediction equations for the logistic diffusion model. 

Predictions based on (4.4), however, underestimate t kP+  for the same reason the predictions 

(3.6) underestimates t kP+  in the Gompertz case: The growth factor is applied to tP , instead 

of applying a continuous growth factor to all values between 1
ˆ
tP+  and tP . We use the same 

midpoint technique to reduce the bias as we did in the Gompertz case: we split the steps into 

two parts, and to apply the growth factor ( )ˆexp tg  to the first part, and growth factor 

( )1ˆexp tg +  to the second part. We do this by taking the mean of the two successive growth 

factors and applying that to tP . Thus the one-step ahead and k-step ahead predictions are 

(4.5) ( )2

1 1
ˆ ˆexp 0.5t t t t tP P P g g+ += + ⋅ +      and   ( )2

1 1 1
ˆ ˆ ˆ ˆ ˆexp 0.5t k t k t k t k t kP P P g g+ + − + − + + −= + ⋅ +   . 

The prediction variance for the logistic model is analogous to the prediction variance for the 

Gompertz model, the difference being that in the logistic model we have multipliers 2ˆ
t iP+  and 

2ˆ
t jP+  entering the covariance term (3.16). Therefore the approximation for the covariances is  

(4.6) ( ) ( ) ( ) ( ) ( )2 2 2 2 2ˆ ˆ ˆ ˆˆ ˆcov exp , exp exp 2 min , expt i t i t j t j t t i t jP g P g g i j i j P Pεσ δ+ + + + + +
  ≈ ⋅ ⋅ +     

and the estimator for the variance of a k -step ahead prediction is  

(4.7) ( ) ( ) ( ) ( )2 2 2

1 1

ˆ ˆ ˆexp 2 min , exp .
k k

t k t t i t j

i j

V P g i j i j P Pεσ δ+ + +
= =

= ⋅ + ⋅  ∑∑  

Monte Carlo variance estimation for the logistic model is constructed the same way the 

Monte Carlo variance estimator is constructed in the Gompertz case. Appendix Table 1 

summarizes the results of the Section 4: The Logistic diffusion model. 
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5 The Hernes diffusion model 

As in the Gompertz case, let tP  be the proportion in a cohort that has by age t  adopted the 

innovation, 0 1, ,..., tP P P  the observed proportions and 1 2, ,...,t t t kP P P+ + +  the yet to be observed 

proportions we wish to predict. The Hernes diffusion model for a proportion tP  is  

(5.1) 
0

0

1

1
1 exp

ln

t t
P

P a ab

P b

=
 − −

+  
 

. 

For a behavioral interpretation of the model, see Hernes (1972). The model is linearized as 

( )
1

ln ln
1

t

t t

dP
a bt

dt P P

 
= +  − 

. To accommodate the model for discrete data, we use 

discretization ( )1 1/ 0.5t t tdP dt P P+ −≈ ⋅ −  (see Appendix (8.1)). This gives us  

(5.2) 
( )

1 1 1
ln ln

2 1

t t
t

t t

P P
a bt g

P P

+ −
 −

+ ≈ ≡  − 
. 

We model the underlying linear process tg  as a time series process. In the case of a random 

walk with drift, the model is given by (3.3) and the model parameters are estimated using 

(3.4).  

5.2 Prediction and variance estimation 

Li and Wu (2008) propose the equation 

(5.3) 

1

1ˆ
1

ˆ1 exp exp

t k k
t

t k

i tt

P
P

g
P

+

+
= +

=
 −  

+ −  
  
∑

 

for predicting t kP+ . In our simulation experiments, however, (5.3) severely underestimated 

t kP+  for large k . Better predictions were obtained using any of the following three 

equations: 
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(5.4) 

( )1

1

1ˆ
ˆ1

ˆ1 exp exp
ˆ

t k

t k
t k

t k

P
P

g
P

+

+ −
+

+ −

=
−

+ −  

, 

(5.5) ( ) ( )1 1 1
ˆ ˆ ˆ ˆ ˆ1 expt k t k t k t k t kP P P P g+ + − + − + − += + − , 

(5.6) ( ) ( )2

1
ˆ ˆ ˆexp 1 expt t k t t k t kg P g P P+ + + −+ − =   . 

The equation (5.4) is a simple modification of Li and Wu’s equation (5.3), the difference 

being that (5.3) is not recursive, whereas (5.4) is. The equation (5.5) is obtained using the 

approximation 

(5.7) 
( )

( ) ( )
( )

1 1
1

1 1

1 1
exp

2 1 1

t t
t t t

t t t t

P P
g P P

P P P P

+ −
−

− −

−
= ≈ −

− −
 

and solving tP  in terms of 1tP−  and tg . The third prediction equation (5.6) is quadratic and 

arises from the approximation  

(5.8) 
( )

( ) ( )
( )

1 1
1

1 1
exp

2 1 1

t t
t t t

t t t t

P P
g P P

P P P P

+ −
−

−
= ≈ −

− −
. 

Simulation experiments indicated that the prediction equations (5.4)-(5.6) produce almost 

identical results for large and small k , and estimate t kP+  markedly better than (5.3). Because 

of its simplicity and linearity in ( )exp tg , we use equation (5.5). As in the Gompertz and 

logistic models, we use the midpoint method to correct the downward bias that arises from 

the fact that the growth factor ( )1ˆexp tg +  is applied to tP , instead of applying a continuous 

growth factor continuously to values between 1
ˆ
tP+  and tP  by splitting the step into two parts 

and applying the growth factor ( )ˆexp tg  to the first part, and growth factor ( )1ˆexp tg +  to the 

second part. We do this by taking the mean of the two successive growth factors and 

applying that to tP . Thus the k -step ahead prediction in the Hernes model is  
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(5.9) ( ) ( )1 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ1 exp 0.5t k t k t k t k t k t kP P P P g g+ + − + − + − + + −= + − ⋅ +   . 

The prediction variance for the Hernes model is similar to the prediction variance for the 

Gompertz model. The difference is that we have multipliers ( )ˆ ˆ1t i t iP P+ +−  and ( )ˆ ˆ1t j t jP P+ +−  

which enter the covariance term (3.16). Therefore the approximation for the covariances is  

(5.10) 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )2

ˆ ˆ ˆ ˆˆ ˆcov 1 exp , 1 exp

ˆ ˆ ˆ ˆexp 2 min , exp 1 1

t i t i t i t j t j t j

t t i t i t j t j

P P g P P g

g i j i j P P P Pεσ δ

+ + + + + +

+ + + +

 − − 

≈ ⋅ ⋅ ⋅ + ⋅ − −  

 

and the estimator for the variance of a k -step ahead prediction is  

(5.11) ( ) ( ) ( ) ( ) ( ) ( )2

1 1

ˆ ˆ ˆ ˆ ˆexp 2 min , exp 1 1
k k

t k t t i t i t j t j

i j

V P g i j i j P P P Pεσ δ+ + + + +
= =

= ⋅ + ⋅ − −  ∑∑ . 

Monte Carlo variance estimation for the Hernes model is constructed the same way the 

Monte Carlo variance estimator is constructed in the Gompertz case. Appendix Table 1 

summarizes the important results of the Section 5: Hernes diffusion model.  
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6 Simulation experiments and empirical applications 

In this section we put the stochastic Gompertz, logistic and Hernes diffusion models described in 

Sections 3-5 into work. In Section 6.1 we conduct simulation experiments where the data 

generating process can be controlled and compare different methods for deriving predictions 

from the underlying linear process and the accuracy of the analytical variance estimator. In 

Sections 6.2 and 6.3 we apply the methods to predict marriage rates in France (Section 6.2) and 

first births in the Netherlands (Section 6.3). 

6.1 Simulation experiments 

We construct artificial data sets using the Gomperts, logistic, and Hernes model formulations. 

For each model, the values tP  are derived from an artificially generated tg  using the model 

equations shown on row 1 of Appendix Table 1. The underlying process tg  is for all models 

random walk with drift with normal, independent shocks with zero mean and variance 2

εσ . For 

the Gompertz model, we use as the drift and variance parameters 2 20.2, 0.015εδ σ= − = , for 

logistic model, they are 2 20.2, 0.025εδ σ= − = , and for the Hernes model the parameters are 

2 20.2, 0.030εδ σ= − = . The starting value 0P  is 0.001 for all models. As the process tg  is a 

random walk, the shocks cumulate over time in tg  also in the proportion tP .  

For each of the three models, Gompertz, logistic, and Hernes, we generate data 0 1 35, ,...,P P P  

using the process described above. This data is then “observed” up to ages 16 and 26. Using the 

observed data (up to age 16 or 26), we fit the correct models (Gompertz model for the Gompertz 

data, logistic model for the logistic data, and Hernes model for the Hernes data) and use the 

models to predict the values of P  up to age 35. We also estimate the prediction variances and 

corresponding 95% confidence intervals using both the analytical variance estimator and the 

Monte Carlo based estimator. When using the Monte Carlo estimator, we calculate confidence 

intervals non-parametrically, using the percentiles of the prediction distribution rather than 

multiples of standard error as the basis for confidence interval.  
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We start by considering the prediction accuracy with and without the midpoint correction. Figure 

1 shows one simulated path 0 1 35, ,...,P P P  for the Gompertz model and predictions with and 

without the midpoint correction when predictions start at age 16. The figure indicates that the 

predictions not using midpoint correction may be downward biased, whereas the midpoint 

corrected predictions may be approximately unbiased.  

Figure 1. Simulated diffusion data using the Gompertz model and predictions with and 
without midpoint correction. Data used up to age 16.  
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Table 1 shows the estimated bias for Gompertz, logistic and Hernes models from 1,000 

simulated samples at ages 20, 25, 30 and 35. The data confirms what the Figure 1 suggested: The 

predictions not using the midpoint correction are downward biased, and the longer the prediction 

horizon, the larger the bias. This holds for the Gompertz, logistic, and Hernes models. The 

midpoint correction, however, significantly reduces the bias for all models, to less than one 

percentage in all cases.  
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Table 1. Estimated relative bias* (%) for forecasts with and without midpoint correction 
for Gompertz, logistic and Hernes models at selected ages. Number of sample paths 
1,000; data used up to age 16.  
 

Model Midpoint Age

correction 20 25 30 35

Gompertz No -0.8 -3.1 -3.8 -4.2

Yes 0.9 0.9 0.7 0.5

Logistic No -1.6 -3.6 -3.1 -3.0

Yes 0.5 0.0 0.3 0.8

Hernes No -1.9 -2.1 -2.1 -2.3

Yes -0.2 -0.3 -0.5 -0.5  

* Relative bias calculated as the average of ˆ( ) /P P P−  over simulated samples. 

Next we consider prediction variance estimation. In order to assess the accuracy of our delta-

method approximations, we compared the confidence intervals obtained with the variability 

obtained by Monte Carlo simulation. Figure 2 shows comparisons of the analytical and Monte 

Carlo confidence intervals for the Gompertz, logistic, and Hernes models for cases where the 

predictions start at age 16 and at age 26. For all models the analytical and Monte Carlo estimator 

produce fairly similar confidence intervals. The Monte Carlo estimator should be accurate since 

it uses the same model as the data generating process. Thus the fact that the confidence intervals 

for the analytical variance estimator closely track the Monte Carlo estimator indicates that the 

analytical, delta method and Taylor series approximation based variance estimator works 

reasonably well.  
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Figure 2. Comparison of the analytical and Monte Carlo variance estimators. Simulated 
data; Gompertz, logistic and Hernes models; predictions with midpoint correction and 
confidence interval estimates use data up to age 16 (left) and age 26 (right hand side).  
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6.2 Application I: French first marriages and the Hernes model 

In prior research the Hernes model has been used to predict proportion married within a cohort 

(Goldstein and Kenney 2001; Li and Wu 2008). Goldstein and Kenney (2001), however, do not 

provide any bounds of uncertainty for their predictions, and Li and Wu (2008) use a prediction 

method that produces severely biased estimates. Here we use the Hernes model discussed in 

Section 5 to predict the proportion married using French data, and use the estimated prediction 

intervals to assess the likelihood that younger cohorts would catch up to the older cohort’s 

marriage rates. We start by fitting the Hernes model to the 1950 and 1960 cohorts. For both 

cohorts, we estimate the parameters of the underlying random walk with drift model using data 

up to age 23 (starting from age 14), and then predict the marriage rates up to age 50.  

Results for the 1950 cohort are shown in Figure 3, Panel A. Results for the 1960 cohort are 

shown in Figure 3, Panel B. Panel A shows that the Hernes model produces reasonable 

predictions for the future experience for cohort 1950 when data is observed only up to age 23. 

The maximum prediction error (at age 50) is only 2.2 percentage points. The difference between 

the predictions and observed data emerge quite late, after age 33.  

Figure 3. Proportion having married by age; French female cohorts 1950 and 1960. 
Predictions and 95% confidence interval are based on the Hernes model with 
underlying random walk with drift model. The predictions use the midpoint correction.  
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Panel B of Figure 3 shows the results for the 1960 cohort. Again, we have used data up to age 23 

when estimating the random walk with drift model, and have then used this estimated model to 

derive predictions and prediction errors. The Hernes model predicts reasonably well the cohort’s 

experience up to age 45, which is the oldest age for which data was available at the time of 

modeling. The observed data may, however, be reaching outside the 95% confidence interval, 

potentially implying that at these ages the reality may not be exactly Hernesian.  

Figure 4. Proportion having married by age; French female cohorts 1965, 1970 and 
1975. Predictions and 95 % confidence interval are based on the Hernes model with 
underlying random walk with drift model. The predictions use the midpoint correction.  
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Next we compare the cohorts born in 1965, 1970 and 1975, and analyze the likelihood that the 

younger cohorts’ proportion ever married would catch up with the older cohorts’ proportion ever 

married. We do this by constructing for each cohort predictions and 95% confidence intervals 

(using the analytical estimator) for proportion ever married by age. Figure 4 shows the 

predictions. The lower bound of the predictions for the 1965 cohort is higher than the upper 
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bound of the predictions for the 1970 and 1975 cohorts. Thus it is extremely unlikely that the 

1970 or 1975 cohorts would catch up with the 1965 cohort. The prediction interval for the 1975 

cohort, however, overlaps with the prediction interval of the 1970 cohort, suggesting that the 

1975 cohort’s proportion ever married might catch up with 1970 cohort.  

It is important to note, however, that in the predictions shown in Figure 4 the shocks in the 

underlying random walk with drift model which ultimately give rise to the uncertainty in the 

predictions are assumed to be independent. This is may not be an accurate description of reality: 

period fluctuations which influence marriage rates (or the underlying random walk process) may 

do so for all cohorts. Therefore we have also used the Monte Carlo method to construct 

predictions for the 1970 and 1975 cohorts using the same shocks in the random walk processes 

that give raise to the uncertainty in the predictions (not shown). As the shocks are the same, the 

correlation between the shocks in for the 1970 cohort and 1975 cohort is one. When the 

probability of catching up is evaluated assuming this extreme correlation in the shocks, none of 

the 1,000 simulated paths for the 1970 and 1975 cohorts resulted in overlap in the proportion 

ever married, suggesting that also for the 1975 cohort, catching up with the 1970 cohort is 

unlikely. However, the assumption that the shocks are perfectly correlated may be too strong; 

thus in future research, we will use historical data to estimate the correlations across the cohorts’ 

underlying linear processes and use the estimated correlation in the Monte Carlo simulations in 

order to get a more accurate view of the likelihood of the younger cohorts catching up to the 

older cohorts’ rates.  

6.3 Application II: Dutch first births and the Gompertz model 

Kohler (Kohler 2001) and Bernardi (Bernardi 2003) have shown that social interaction is a key 

variable influencing fertility decision. Consistent with the social interaction theories, Goldstein’s 

recent results (Goldstein 2008) indicate that the Gompertz model may work well in predicting 

first birth and childlessness if applied to cohort data, but at older ages and especially for the later 

cohorts there may be departures from the model. Without confidence intervals, however, it is 

difficult to assess what is a departure from the model and what is within-model fluctuation. Here 

we fit the Gompertz model to Dutch data, and predict, with confidence intervals, the proportion 

not childless for 1950 and 1965 cohorts. Experiments with the Gompertz model (not shown) 

suggested that the proportion should be close to 2/3 before reasonable fit can be expected. 
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Therefore we use data up to age 28 for the 1950 cohort (by this age 66 % of the cohort had had a 

first birth) and for the 1965 cohort we use data up to age 34 (by this age 67 % of the cohort had 

had a first birth.  

Results for the Gompertz model for the cohort 1950 are shown in Figue 5, Panel A. For the 1950 

cohort, Gompertz model produces very accurate predictions (maximum error in the predictions is 

1.1 percentage points). Panel B of Figure 5 shows the results for the 1965 cohort. The figure 

shows that almost immediately after we start predicting the data, the observations tend outside 

the 95% confidence interval. If the model holds, one should expect to see the true data be outside 

the 95 % confidence interval on average every twentieth time, and this may be what is happening 

in Panel B of Figure 5. A potentially more likely explanation is that the cohort 1965 has 

postponed their childbearing so late that the behavioral assumptions on which the Gompertz 

model is built are not anymore the only driving forces behind tP . At ages above 30 biology 

inevitably starts to enter the equation, and fecundity starts to decline; this may be the factor 

explaining the low first birth proportion compared to the forecasts. This potential explanation is 

discussed in more detail in Goldstein (Goldstein 2008).  

Figure 5. Proportion non-childless by age; Dutch female cohorts 1950 and 1965. 
Predictions and 95% confidence interval are based on the Gompertz model with 
underlying random walk with drift model. The predictions use the midpoint correction.  
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7 Discussion 

In this paper we studied prediction and error propagation in the Gompertz, logistic, and Hernes 

cohort diffusion models. We showed that for all these models predictions can be derived from an 

underlying linear process. We compared different methods for deriving the predictions and found 

that the midpoint correction, which has not been used in cohort diffusion models before, 

improves the accuracy significantly with respect to previously used methods. We also derived an 

analytical variance estimator for the predictions. This closed form estimator reveals important 

facts about the sources of uncertainty in cohort diffusion models, most importantly that the 

earlier the predictions are made and the slower the diffusion, the larger the uncertainty in the 

predictions.  

Simulation studies and empirical applications to first births and marriages showed that the 

developed methods are useful in quantifying uncertainty in the predictions: They give a precise 

sense of the within-model error, and allow the forecasters a new ability to characterize the 

uncertainty. When the model assumptions hold less than perfectly, as in the case of first births 

for the Dutch 1965 cohort whose fertility may be constrained by extra-model factors such as 

biology (Goldstein 2008), the constructed confidence intervals give a lower bound for the total 

uncertainty.  

In summary, this paper developed methods for predicting the diffusion of an innovation within 

cohorts. The new methods improve accuracy in point forecasts and allow the researcher to 

quantify the uncertainty in the predictions.  

The developed methods give raise to several future research questions. First, we will explore the 

potential of the cohort diffusion models for predicting period fertility rates by combining a large 

number of adjoining cohorts. The Lee model for fertility (Lee 1993), which can be considered 

the gold standard for stochastic fertility forecasting, has the potential drawback that it forces the 

age-shape of fertility to be constant across time. Given recent developments in fertility, 

especially the postponement of having children (Sobotka 2004), the constant shape of age-

specific fertility rates seem unrealistic. Period fertility forecasts based on cohort fertility patterns 

would automatically have realistically changing age-patterns of childbearing.  
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Second, we will expand the range of fitted populations, incorporating cohort fertility and 

marriage rates from the United States and other European countries, including Eastern and 

Mediterranean Europe in order to study how generally applicable the methods are. It is especially 

interesting to see where the methods do not work – for example in the case of postponement of 

childbearing, the tendency of the model to overpredict fertility at oldest ages for the youngest 

cohorts is likely to be an indication of sterility, a phenomenon the model is not built to capture. 

Departures from the model may provide means of indirectly estimating the magnitude of lost 

fertility due to sterility.  

Third, we will study the correlation in the underlying time series processes across cohorts in 

order to gain knowledge on first, how the cohorts’ marital and childbearing decisions are 

correlated, and second, in order to be able to accurately estimate the likelihood of the younger 

cohorts catching up to the older cohorts’ rates.  

Finally, we will look at the variability in the drift parameters over time and place in order to 

provide a richer description of past marriage and fertility changes and to inform forecasts of 

future developments.  
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Appendix. Often used equations and summary of the results 

Some identities, approximations and discretizations which are used often: 

(8.1) Discretization 1: 1 1

2

t t tdP P P

dt

+ −−
≈  

(8.2) Discretization 2: 1 1ln 1

2

t t t

t

d P P P

dt P

+ −−
≈  

(8.3) Approximating change: 1 1
1

2

t t
t t

P P
P P+ −

−

−
≈ −  

(8.4) The delta method: ( ) ( ) ( )
2

XdH
V H X V X

dX

µ 
≈    

 
 

(8.5) Variance of a sum: ( )

( ) ( )
1 1 1

1 1

cov ,

2 cov ,

k k k

i i j

i i j

k k k

i i j

i i j i

V X X X

V X X X

= = =

= = ≠

 
= 

 

= +

∑ ∑∑

∑ ∑∑

 

(8.6) First order Taylor series approximation:   

 ( )
( ) ( ) ( )

1 1 1

cov ,
ji

k k k
i Xi X

i i i j

i i j i j

dfdf
V f X X X

dX dX

µµ

= = =

 
≈ 

 
∑ ∑∑  
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Appendix Table 1. Summary of the Gompertz, logistic and Hernes models with a random walk with drift as the underlying linear 
process.  
 
 

 Gompertz Logistic Hernes 

1. Model 

equation 
( )exp exptP k a bt= − −    
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a bt
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+ −
 

1

1
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