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Abstract

We recover the posterior distribution of the equilibrium asset pricing functional
p in a completely nonparametric way. We consider rational expectation models for
assets pricing as in Lucas (1978), where the pricing functional p is a function of a
vector of n state variables and is characterized as the solution of an integral equation
of second kind. We adopt a Bayesian procedure since it allows to incorporate all the
prior information we have and this is particular useful in nonparametric estimation.
Moreover, a Bayesian estimation mimics the Bayesian learning process of economic
agents that leads to form rational expectations.
The Bayesian approach reformulates the problem of solving an integral equation as an
estimation problem in an Hilbert space. The infinite dimension of this space and of the
parameter of interest causes inconsistency of the posterior distribution of p due to non-
continuity of its posterior mean. The contribution of this paper is to propose two kind
of solution for restoring consistency. The first one consists in using a regularization
scheme, like a Tikhonov scheme, for computing the posterior distribution. The second
approach proposes to use a prior distribution of the g-prior type, like in Zellner (1986),
that we show is able to get rid of the ill-posedness in the posterior distribution.
Finally, frequentist asymptotic properties of the regularized posterior distribution are
established.

JEL codes: C11, C14, E44.
Keywords: Rational Expectations, Tikhonov Regularization, Hilbert scale, g-prior,
Posterior Consistency.
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1 Introduction

In this paper we propose a new nonparametric Bayesian estimator for the solution of an
Euler equation. In particular, we focus on the Euler equation defined in consumption-based
asset pricing model. We link two ingredients. The first one is the bayesian nonparametric
approach we have proposed in Florens and Simoni (2008a) and Florens and Simoni (2008b)
to solve integral equations of first kind stated in infinite dimensional Hilbert spaces. In
this paper we develop a similar bayesian procedure for solving integral equations of second
kind, whose Euler Equations are a well-known example in economics. The second ingre-
dient is the consumption-based asset pricing model in the style of the Lucas’(1978) tree
model.
We have introduced the nonparametric bayesian approach in a general setting where the
object of interest was the solution of an integral equation of first kind. Several estima-
tion problems in econometrics can be restated as problems of recovering the solution of
a functional equation (i.e. as inverse problems) and there exist numerous techniques to
solve them, see Carrasco et al. (2007). Our contribution is the development of a Bayesian
approach that is new both as solution technique of inverse problem and as bayesian non-
parametric estimation method. The main Bayesian solution of a functional equation, that
we propose, is the regularized posterior distribution of the parameter of interest. It is
a regularized version of the ”classical” posterior distribution where the regularization is
performed through alternative techniques, like Tikhonov scheme or Hilbert Scale regular-
ization, and it is necessary in order to guarantee posterior consistency.
The application of these bayesian techniques to dynamic rational expectation models is
a first attempt to illustrate the usefulness in economics and econometrics of our new
Bayesian approach.

Dynamic rational expectation models have been extensively studied in economic and
econometric theory. In these models economic agents are supposed to face an intertem-
poral choice problem in which they have to determine their consumption and investment
plans through a maximization of an infinite horizon expected utility function under bud-
get and positivity constraints. The result is a model for general equilibrium assets pricing
where the assumption of rational expectations is fundamental. In fact, it is assumed that
the market clearing price, implied by consumer behavior, is the same as the price on which
consumer decisions are based.
This paper exploits the equilibrium characterization provided by such kind of models in
order to analyze the performance of the Bayesian nonparametric approach for estimating
the equilibrium asset pricing functional. In dynamic rational expectation models, such
a functional is characterized as the solution of a functional equation. The aim of this
paper is to recover the stochastic character of the price process {pt} of a financial asset.
Consumption-based asset pricing models assume that at each time t, the price of a finan-
cial asset is equal to a fixed function of the state of the economy Yt, namely ∀t, pt = p(Yt).
Our idea is to estimate both p(·) and the dynamic of the state of the economy in a non-
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parametric way and to combine them for obtaining {pt}.
Having a nonparametric estimation of {pt} is useful for many reasons. First, it allow to
test parametric specifications on the price process. If we take as the state of the econ-
omy the aggregate consumption, the price series that we obtain can be interpreted as a
measure of the market portfolio and this is very useful since we observe it only through
proxies. Moreover, {pt} can be used in order to empirically study the implications of the
consumption-based asset pricing model for explaining observed data on asset returns and
dividends, that is for trying to explain the equity premium puzzle. Lastly, we can use it
for analyzing if a financial asset is over- or under-priced.
The Bayesian approach is appropriate to analyze rational expectation models since the
way in which economic agents form rational expectations is driven by a Bayesian learning
process. The theory of rational expectations was introduced by Muth (1961) and applied
to the economy as a whole by Lucas during the 1970s, see Lucas (1976) and Lucas (1978).
This theory revolutionized macroeconomics and economic thinking. It is based on the
belief that economic agents make their economic choices by taking into account their pre-
vious experiences and their rational expectations of the result of those choices. So, as
Lucas (1978) points out, the hypothesis of rational expectation ”is not behavioral : it does
not describe the way agents think about their environment, how they learn...It is rather a
properly likely to be (approximately) possessed by the outcome of this unspecified process
of learning and adapting”.
Furthermore, a bayesian analysis is interesting, from an econometric point of view, for
many other reasons. (i), in computing the estimator of the pricing functional, it allows
to exploit the prior information we could have. This is very important for nonparametric
estimation since it is difficult to estimate infinite dimensional objects with a finite number
of data and parameters that are identified from a mathematical point of view are usu-
ally partially identified by the data. Hence, any kind of prior information can helps in
restoring identification. In financial markets it is usual to possess this kind of information
and it is efficient to use it for improving forecasting. (ii), the Bayesian method that we
propose for recovering solution of integral equations broadens the nonparametric estima-
tion techniques in the background of the bayesian statisticians. In fact, we consider a
prior different than the Dirichlet process, or its transformations, that is the usual prior for
nonparametric estimation. In this paper we are able to stay completely nonparametric by
using a gaussian process prior. (iii), the fact that we get the whole posterior distribution
of the pricing functional represents a big advantage with respect to the classical estimation
procedure that provides only a punctual estimator. The posterior distribution has good
small sample properties and so it can be used for recovering every quantity linked to it
(as quantiles and confidence intervals) and for implementing testing procedures. (iv), in
nonparametric estimation there usually are some free parameters (tuning parameters) to
choose, like the bandwidth in the kernel estimation or the regularization parameter in the
stabilization techniques. Bayesian theory could give some further insight, from a practical
point of view, for optimally choosing them. In particular, the prior-to-posterior transfor-
mation would provide a value for the tuning parameter that incorporates information in
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both our prior knowledge and data.

The econometric analysis of dynamic rational expectation models is widely developed.
Lucas (1976) and Hansen et al. (1980) observed that, instead of estimating the parameter
of agents’ decision rules, we should estimate the parameters of agents’ objective functions
and the random process they face as decision makers. This is enough for enabling the
econometricians to predict how agents’ decision rules change over time across alterations
in their stochastic environment.
On the basis of the nature of the optimization problem solved by economic agents, in
this kind of models, it is possible to find two veins of econometric literature. The first
one considers quadratic optimization problems subject to linear constraints where it is
possible to completely characterize the equilibrium time paths of the variables of interest.
Econometric analysis of this case can be found in Hansen et al. (1980), Hansen et al.
(1981) and Sargent (1981).
In the second vein, the linear-quadratic framework is replaced with a nonquadratic ob-
jective function; this causes dynamic rational expectations models no more yield repre-
sentations for the variable of interest that are easy to handle from an econometric point
of view. However, the dynamic optimization problem of economic agents provides a set
of stochastic Euler equations that must be satisfied in equilibrium. These Euler equa-
tions, in turn, imply a set of population orthogonality conditions that can be exploited
to estimate the parameters of interest. Several authors have proposed to use Euler equa-
tions to estimate parameters, see Hayashi (1980), Hansen et al. (1982) or Fair et al. (1980).

An other branch of econometric literature concerning dynamic rational expectation
models, is interested in directly recovering the equilibrium asset pricing functional and it
considers as general dynamic equilibrium model the rational expectations model proposed
by Lucas (1978) [31]. Our paper gets into this literature. By considering a one-good, pure
exchange economy with identical consumers, the equilibrium asset vector price is char-
acterized as a functional p(·) of the Markov state of the economy solution of an integral
equation of second kind. The functional equation is of the form (I − K)p = r, where
I and K are two operators (the identity and an integral operator, respectively) onto an
infinite dimensional Hilbert space and r is a known element of this Hilbert space 1. Such
characterization is particularly useful since it allows to recover the equilibrium asset prices
without imposing any parametric restriction on them by using the theory on inverse prob-
lems. Only regularity and smoothness conditions will be imposed.
Carrasco et al. (2007) propose a classical method for estimating the asset price in Lucas’
model based on an estimation of r and K and on the simple inversion of operator (I−K).
The inverse problem is well-posed so that no regularization technique is demanded for

1An integral equation of second kind is a particular type of inverse problem and it can be ill-posed

or well-posed according to the fact that the integral operator K in it has an eigenvalue equal to one or

not. Methods for treating integral equations of second kind are extensively treated in Kress (1999) and

Carrasco et al. (2007).
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solving it. Alternatively, numerical procedures have been proposed. Tauchen et al. (1991)
compute a discrete state space solution method for the pricing functional based on nu-
merical quadrature approximation of the integral operator K. Rust et al. (2002) use the
observation that operator K + r is a quasi linear contraction and compute a pointwise
ε-approximation of its fixed point. This approximation is shown to converge at a rate
close to T−1. Numerical procedures need to specify a parametric dynamic for the state of
the economy.
A particular feature of the method that we propose in this paper is that we stay nonpara-
metric also in the dynamic of the state of the economy. This choice is motivated by the fact
that we want to stay as general as possible and, in particular, by the finding of Bansal and
Yaron (2004) that it is empirically ”difficult to distinguish an i.i.d. consumption growth
model and a long-run risk model.

The new approach that we propose to estimate the asset pricing functional is differ-
ent from the previous ones first of all because it is bayesian. Our approach restates the
integral equation in a larger space of probability distributions so that each quantity in
it (p and r in our case) are re-interpreted as random functions. This reformulation of
an inverse problem as a parameter estimation is due to Franklin (1970). Hence, from a
Bayesian point of view, the solution to an inverse problem is the posterior distribution of
the quantity of interest p.
Some element of the integral equation defining the asset pricing functional is unknown
and requires to be estimated, so that we obtain an approximation of the integral equation:
r̂ ≈ (I−K̂)p. In particular, it is the transition density of the Markov state of the economy
to be unknown and it is estimated nonparamettrically. The asymptotic properties of such
estimation impact the sampling probability associated to this functional equation. The
exact sampling distribution is not computable and derivation of a suitable asymptotic
distribution requires to transform the model as K̂∗r̂ = K̂∗(I − K̂)p, where K̂∗ denotes
the estimation of the adjoint of K. We end up with an integral equation of first kind that
is solvable through the technique we have proposed in Florens and Simoni (2008). Hence,
even if both the classical and the bayesian approaches start with the same functional equa-
tion, they finally solve two substantially different, though linked, functional equations.
The infinite dimension of the pricing functional inverse problem makes the posterior dis-
tribution not well defined due to lack of continuity of its mean function. Hence, the
posterior mean, and consequently the posterior distribution, is prevented from being con-
sistent in the frequentist sense. This is an interesting example of frequentist inconsistency
in Bayesian nonparametric estimation, see Diaconis et al. (1986). If p∗ denotes the true
value of the pricing functional having generated the data, the posterior distribution is said
to be consistent in the frequentist sense if it degenerates, with respect to the sampling
distribution, towards a point mass in p∗ as more and more observations are collected.
Previous literature on Bayesian analysis of integral equations, see Franklin (1970) and
Mandelbaum (1984), has solved this problem of non-continuity by restricting the space of
definition of the observable element (r in our case). However, this technique is not always
applicable, above all with real data.
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The strategy that we propose consists in getting rid of the lack of continuity by apply-
ing a regularization scheme in the computation of the posterior distribution. We propose
two alternative regularization schemes: a classical Tikhonov scheme and a Tikhonov reg-
ularization in the Hilbert scale induced by the prior covariance operator. The posterior
distribution that we get is slightly modified and it is called Regularized Posterior distri-
bution to highlight the role played by the regularization scheme. We take as punctual
Bayesian estimator the mean of this distribution. Under some regularity condition on the
true pricing functional p∗, our bayesian estimator converges towards p∗ faster, in L2-norm
and in the sampling probability, than the classical estimator proposed in Carrasco et al.
(2007).
Finally, we study a particular prior distribution that is able by itself to introduce the reg-
ularization scheme necessary for making the posterior distribution consistent. This prior
is of the an extended version of the g-prior type proposed by Zellner (1986).
The paper is organized as follows. In Section 2 we briefly remind the rational expectation
general equilibrium model of Lucas (1978) and we explicit the functional equation in equi-
librium asset price as an integral equation of second kind. We properly define the Hilbert
space we are working in and the integral operator K. The Bayesian approach will be
explained and adapted to this particular inverse problem in Section 3. In this section we
compute the regularized posterior distribution by using the two alternative regularization
schemes. In Section 4, posterior consistency of the regularized posterior distribution of
the asset price p is proved. Section 5 presents the particular g-prior distribution for the
pricing functional that is able to regularize. We develop an extension of our model in
Section 6 where the variance parameter in the sampling covariance operator is unknown.
Section 7 concludes. All the proofs and some numerical simulation can be found in the
Appendix.

2 Rational Expectations Asset Pricing Model

Our Bayesian estimator does not require any particular assumption about preferences to be
satisfied in the asset pricing model. It is general and it can be applied to every asset pricing
model that characterizes the asset pricing functional as solution of the Euler Equation.
In order to stay as general as possible in this paper we take the asset pricing model of
Lucas (1978) that represents the basis for all the subsequent models. Every extension to
more specific models with, for instance, non-separable utility functions, habit preferences
or Epstein and Zin (1991) utility function is possible with only minor modifications.

2.1 Lucas’ (1978) Model

Lucas (1978) [31] constructed the equilibrium in an exchange economy under the assump-
tion of rational expectations. The first-order conditions for attaining the optimum define
a functional equation in the vector of equilibrium prices of financial assets which is solved
for price as a function of the physical state of the economy.
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We consider a one-good pure exchange economy with a single consumer interpreted as
representative of a large number of identical consumers. The consumer faces the intertem-
poral choice problem between consumption and trading in financial assets and she/he
maximizes the expectation of a time-separable utility function:

Et

[ ∞∑

j=0

βjU(Ct+j)
]

(1)

where Et denotes the conditional expectation operator conditional on the information set
Ft available in t, β ∈ (0, 1) is the time discount factor, U(·) is a current period strictly
concave utility function and Ct+j is a stochastic process representing the consumption of
a single good at time t + j. Since expectations are supposed to be formed rationally, Et

denotes both the mathematical conditional expectation and the agents’ subjective expec-
tations at time t.
In this economy there exist n distinct productive units (denoted with i = 1, . . . , n) each
one producing a quantity Yit of the consumption good in period t. The production
Yt = (Y1t, . . . , Ynt) is assumed to be entirely exogenous and to follow a Markov pro-
cess defined by its transition distribution function F (yt+1|yt) = P{Yt+1 ≤ yt+1|Yt = yt}.
Moreover, since the produced output is perishable, feasible consumption levels are those
which satisfy 0 ≤ Ct ≤

∑n
i=1 Yit. Each productive unit has outstanding one perfectly

divisible equity share held by the representative consumer and traded at a competitively
determined price vector pt = (p1t, . . . , pnt). We denote with zt = (z1t, . . . , znt) the con-
sumer’s share holding at the beginning of period t, i.e. zit is the period t share holding in
the i-th productive unit.
Definition of the equilibrium of this economy requires to determine the equilibrium quan-
tities of consumption and asset holdings and the equilibrium price vector p. As Lucas
stresses, the equilibrium quantities of consumption and asset holdings are easily deter-
mined since all output will be consumed and all shares will be held, then

Ct =
n∑

i=1

Yit, zt = (1, . . . , 1), ∀t. (2)

The feasible equilibrium consumption and investment plans must satisfy, at each period
t, the budget constraint

Ct+1 + ptzt+1 ≤ Ytzt + ptzt, Ct ≥ 0 zt ≥ 0. (3)

The important economic variable whose equilibrium value remains to be determined is
the asset price. Equilibrium prices are set by the asset market by solving a problem of the
same form each period, so that it seems natural to express them as some fixed function
p(·) of the state of the economy: pt = p(Yt), where the i-th coordinate pi(Yt) is the price
of a share of unit i when the economy is in the state Yt.
The first order conditions for maximizing (1) subject to (3), once equilibrium conditions
(2) have been incorporated, gives a functional equation in the equilibrium price vector, or
equivalently, n functional equations:
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pi(Yt) = β

∫
U ′(

∑
i Yi,t+1)

U ′(
∑

i Yi,t)
(Yi,t+1 + pi(Yt+1)) d F (Yt+1|Yt), (4)

for i = 1, . . . , n, where the conditional expectation Et in (1) has been explicited. This
equilibrium asset-pricing relation is the classical Euler equation that equates current price
of the i-th security to its expected discounted future payoff, discounted using the stochastic
discount factor Mt+1(Yt, Yt+1) = β

U ′(
∑

i Yi,t+1)
U ′(

∑
i Yi,t)

. The stochastic discount factor is expressed
as a function of the vectorial Markov state {Yt} instead of consumption process {Ct}. In
the following of the paper, sometimes we shall denote it, at time t + 1, simply by Mt+1,
by neglecting its arguments.
Two remarks are in order. First, we choose to use the Lucas’ model and a separable
utility function because this represents the most general setting and it allows to explain
in a clear way our bayesian estimation approach. In any case, our bayesian procedure
does not require them and it perfectly works with every other specification of the utility
function (e.g. non-separable utility function over time and goods, habit utility function,
Epstein-Zin utility function, etc. . . ) or with a model in continuous time as Cox, Ingersoll
and Ross (1985). A different kind of utility function only affects the stochastic discount
factor Mt+1, but it does not change the characterization of the asset pricing functional p

as the solution of an integral equation.
Second, it is possible to note that the validity of equation (4) implies the validity of the
projected model

E[pi(Yt)|Ỹt+1] = E
[
Mt+1(Yt, Ỹt+1)E

(
Mt+1(Yt, Yt+1)(Yi,t+1 + pi(Yt+1))

∣∣∣Yt

)∣∣∣Ỹt+1

]
(5)

for i = 1, . . . , n, where we re-project the Euler equation through a conditional expectation
operator conditioned on the future state of the economy. This more complicated integral
equation will be required in order to compute the sampling distribution in the Bayesian
experiment. This is the price to pay for being bayesian.
The object of interest of this paper will be the determination of the vector of pricing
functionals p(·). Since equilibrium prices are a fixed function of the state of the economy,
once the transition function F (yt+1|yt) is known or estimated, this will be sufficient to
determine the stochastic process of prices pt.

2.2 Martingale Property

The equilibrium asset-pricing relation (4) says that pi(Yt) = E[Mt+1(Yi,t+1 + pi,t+1)|Yt].
Therefore, we can write:

Mt+1(Yi,t+1 + pi,t+1) = pi(Yt) + εt+1. (6)

The variable εt+1 is a noise satisfying the following assumption that will turn out use-
ful in determining the covariance operator of the sampling distribution in the Bayesian
experiment.
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Assumption 1 {εt+1} is a weak white noise with variance σ2 that is constant for each
time t.

The fact that error terms are serially uncorrelated prevents problems of endogeneity of
the regressors.

Lucas (1978) [31] stresses that ”asset prices themselves do not possess the Martingale
property”, but that asset prices properly corrected for dividends and for the stochastic
discount factor β possess this property, how can be seen from equation (4). This obser-
vation confirms the finding of Leroy (1973) [29] that the martingale property is neither
a necessary nor sufficient condition for rationally determined asset prices. However, it
is possible to show that there exists a probability, known as risk-neutral probability (or
equivalent martingale measure - EMM) under which the discounted price process corrected
for dividends is a martingale. To show this, note that relation (4), divided by the value
of the function pi(Yt), gives for a risk-free security

1 = (1 + rf )EF (Mt+1|Yt),

where rf denotes the risk-free rate compounded once in period [t, t + 1]. We make the
following assumption concerning the transition distribution function of the Markov state

Assumption 2 The transition distribution function F (yt+1|yt) is absolutely continuous
with respect to the Lebesgue measure and there exists a positive function f such that
dF (yt+1|yt)

dyt+1
= f(yt+1|yt).

Hence, under this hypothesis, we have ∀i = 1, . . . , n

pi(Yt) =
∫

Yi,t+1 + pi(Yi,t+1)
1 + rf

Mt+1(Yt, Yt+1)
E(Mt+1|Yt)

f(Yt+1|Yt)dYt+1

=
∫

Yi,t+1 + pi(Yi,t+1)
1 + rf

f∗(Yt+1|Yt)dYt+1,

where f∗(Yt+1|Yt) = Mt+1

E(Mt+1|Yt)
f(Yt+1|Yt) is the equivalent martingale measure. In the

following we denote with E∗ the expectation taken with respect to this probability.

2.3 Integral Equations of Second Kind and Characterization of the Op-

erator

We study in this subsection mathematical properties of functional equations (4) and (5),
meant as a functional equations in pi(·), and we properly characterize all the elements
appearing in it. If Assumption 2 holds we can restate equation (4) in a more general form:

pi(Yt)−
∫

Mt+1(Yt, Yt+1)pi(Yt+1)f(Yt+1|Yt)dYt+1 =
∫

Mt+1(Yt, Yt+1)bi(Yt+1)f(Yt+1|Yt)dYt+1,

(7)
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for i = 1, . . . , n. Function bi is the coordinate function associating vector Yt+1 to its i-th
component. {Yt} is an n-dimensional stationary stochastic process that satisfies Markov
property with stationary distribution Π, i.e. Π is the unique solution to

Π(Yt+1) =
∫

F (Yt+1|Yt)dΠ(Yt).

We denote with π the density function associated to Π.

Let X be the space of square integrable functions of one realization of {Yt} with respect
to the stationary distribution Π endowed with the scalar product < ·, · > inducing the
norm || · ||, i.e. X = L2

π(Y ). We assume that p ∈ X 2 and we define an operator K acting
on this space as:

∀φ ∈ X , Kφ(Yt) = EF (Mt+1(Yt, Yt+1)φ(Yt+1)|Yt),

where the conditional expectation is taken with respect to the transition distribution
F (Yt+1|Yt). Operator K is a contraction operator with norm strictly less then 1. The
contraction property can be easily proved by using Theorem 5 in Blackwell (1965) [4] or di-
rectly through the definition of contraction operator. In particular, ||K|| := supφ:||φ||≤1 ||Kφ|| ≤

1
1+rf

supφ:||φ||≤1 ||E∗(φ|Yt)|| < 1 since the conditional operator has norm equal to 1 and
1

1+rf
< 1.

The adjoint K∗ of this operator is defined through the equality < Kφ, ψ >=< φ, K∗ψ >,
∀φ, ψ ∈ X , so that K∗ψ = EF (Mt+1(Yt, Yt+1)ψ(Yt)|Yt+1) =

∫
β U ′(Yt+1)

U ′(yt)
ψ(yt)f(yt|yt+1)dyt

and it is the operator characterizing the projected model (5). Although F (Yt|Yt+1) =
F (Yt+1|Yt), the two operators K and K∗ are substantially different due to the fact that
Mt+1 is not symmetric in its arguments. Thus, Kφ coincides, up to a constant, with the
conditional expectation of the product of φ and the marginal utility function whereas K∗φ
is proportional to the conditional expectation of the ratio φ

U ′ .

We call ri(Yt), or simply ri, the right hand side of equation (7), so that we rewrite the
equilibrium model as

ri(Yt) = (I −K)pi(Yt), i = 1, . . . , n (8)

ri(Yt) := EF (Mt+1(Yt, Yt+1)bi(Yt+1)|Yt), i = 1, . . . , n

where I is the identity operator onto X . In the following we eliminate the subscript i in the
price, bi and ri functions and it will be implied that the functional equation (I −K)p = r

refers to a single security.

We will now introduce an assumption, that is only a regularity assumption but that is
useful to guarantee compacity of operator K.

2This assumption is simply an assumption on the distribution of the state of the economy Yt.
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Assumption 3 The Equivalent Martingale Measure f∗(Yt+1|Yt) is dominated by the marginal
distribution of Yt+1 and its density is square integrable with respect to the product of mar-
gins of Yt+1 and Yt.

Exploiting this assumption it is possible to show that K is an Hilbert-Schmidt operator.
Let k(Yt, Yt+1) = Mt+1

f(Yt+1|Yt)
π(Yt+1)

be the kernel characterizing operator K. K is an Hilbert-
Schmidt operator if the Hilbert-Schmidt norm || · ||HS is finite:

||K||2HS =
∫
|k(Yt, Yt+1)|2π(Yt)π(Yt+1)dYtdYt+1

≤ (1 + rf )2
∫

(Mt+1
f(Yt+1|Yt)
π(Yt+1)

)2π(Yt)π(Yt+1)dYtdYt+1

=
∫

(
Mt+1

E(Mt+1|Yt)
f(Yt+1|Yt)
π(Yt+1)

)2π(Yt)π(Yt+1)dYtdYt+1

=
∫

(g∗(Yt+1|Yt))2π(Yt)π(Yt+1)dYtdYt+1 < ∞

where the second line follows from the fact that (1 + rf )2 ≥ 1 and g∗ is the density of the
EMM f∗ with respect to π(Yt+1), i.e. dF ∗(Yt+1|Yt)

dΠ(Yt+1)
= g∗(Yt+1|Yt

).
Hilbert-Schmidt operators are compact; this is a very attractive property since every
compact operator is the limit of a sequence of operators with finite dimensional range.
Hence, when operator K has to be estimated it can be approached by a sequence of finite
dimensional operators. Furthermore, a compact operator has peculiar spectral properties.
The eigenvectors of a self-adjoint compact operator can be orthonormalized, the set of
its eigenvalues {λ2

j} is at most countable and if there are infinitely many eigenvalues
they accumulate only at 0. For a compact operator that is non self-adjoint, like K, we
consider its singular values that are defined to be the square roots of the eigenvalues of the
nonnegative self-adjoint compact operator K∗K. Then, there exist orthonormal sequences
{ϕj} and {ψj} of X such that

Kϕj = λjψj , K∗ψj = λjϕj .

Assumption 3 also implies that r(Yt) ∈ X , R(K) ⊆ X and R(K∗) ⊆ X , then K : X →
X and K∗ : X → X .
Functional equation (7) is an integral equation of second kind and its properties are well
known in the literature (see Kress (1999) [27]). While K is compact, (I − K) is not
compact. Moreover, 1 is not an eigenvalue of K so that (I − K) is one-to-one and its
inverse is bounded. Therefore, the inverse problem defined by (7) is well-posed in the
sense that it satisfies Hadamard’s conditions, see Engl et al. [11]. Unfortunately, when we
consider the projected model (5) we loose the well-posed character of the inverse problem.
The projection operation transforms a well-posed inverse problem in an ill-posed one since
operator K∗(I−K) is compact and its inverse is not continuous on X , so that the recovered
pricing functional p is very sensitive to small measurement errors in r.
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3 Bayesian Econometric Analysis

The aim moving our econometric analysis is the characterization and estimation of the
price process {pt}. The price process can be expressed at each period t as a fixed function
p(·) of the state of the economy: pt = p(Yt). Therefore, once function p(·) is known,
knowledge of the transition function F (yt+1|yt) is enough to determine the stochastic
character of the price process. While the transition function will be approximated in a
classical nonparametric way (e.g. with a kernel method) the whole pricing function p(·)
will be the object of a Bayesian analysis.
The rationalization for our estimation choice is that prices are economic variables that
economic agents have to take into consideration when they make their economic decisions
and on which they performs a Bayesian learning through a continuous updating of the
prior distribution. Hence, it seems natural to consider a similar learning process for the
econometrician. On the contrary, the transition probability of the state of the economy
is exogenous to the learning process of the economic agents and so it does not seem
suitable to treat it in a Bayesian way. Roughly speaking, we could consider F (yt+1|yt) as
a nuisance parameter. This approach has nothing of strange since it is the same as in the
classical linear model, where the parameters are estimated in a bayesian way while the
second moment of covariates and the second cross moment are estimated with a classical
procedure, see Zellner (1996).
The stochastic discount factor Mt will be considered as known. In the case in which it is
not we can calibrate it.

3.1 Nonparametric Estimation of the Transition Density

The transition density function f(Yt+1|Yt) is usually unknown. In this subsection, it
will be briefly reviewed the construction and properties of the kernel density estimation
considered in Roussas (1967).
With abuse of notation, we use f to denote both the transition density and the two-
dimensional joint density of the Markov process {Yt} with respect to Lebeasgue measure.
It is assumed that π is strictly positive on R+. Then, the transition density of the process
is written as f(Yt,Yt+1)

π(Yt)
. We state the following assumption where small letters denote

realizations of the random variable Yt.

Assumption 4 We dispose of a (T +1) sample (y1, . . . , yT+1) from the weakly stationary
Markov process {Yt}.

As already stated we want to stay as general as possible, hence we follow the original
setup of Lucas (1978) which assumes stationarity of dividends levels, so we take Yt as the
aggregate consumption process.
In some case, data may not confirm the hypothesis of stationarity of the consumption
process. When this is the case, it is sufficient to rewrite the basic asset pricing equation
(4) to express it in terms of consumption growth rates, which is shown to be stationary
and Markov by empirical evidence. Then, Yt will denote either the consumption growth
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rate process or a stationary state variable whose the consumption growth rate is a trans-
formation, see Chen et al. (2008). The slightly modified asset pricing equation can be
rewritten as

vi(Yt) = E(m(Yt+1, Yt)[1 + vi(Yt+1)]
Yt+1

Yt
|Yt) (9)

where vi denotes the i-th asset’s price-dividend ratio, m(Yt+1, Yt) = β U ′(Ct+1)
U ′(Ct)

, under the

hypothesis of homogeneous utility function, and Yt+1

Yt
is the dividend growth variable.

In the following, this specification is not used and for clarity and simplicity of exposition
we consider the basic Lucas setting. All the results in the following can be trivially adapted
to the functional equation (9) with only minor modifications.

Let L : (Rn) → R be a measurable function satisfying properties:

|L(u)| ≤ M1(< ∞), u ∈ Rn;
∫
|K(u)|du < ∞,

||u||m|K(u)| → 0, as ||u|| → ∞;
∫

K(u)du = 1,

h = h(T ) be a function of T such that h → 0 as T → ∞ and Lh(u) stands for L( u
hT

).
Then, the kernel transition density estimation is obtained as the ratio of the kernel density
estimation of the joint f and of π, f̂(Yt+1|Yt) = f̂(Yt,Yt+1)

π̂(Yt)
:

f̂(Yt+1|Yt) =
1

Th2n

∑T
j=1 Lh(Yt − yj)Lh(Yt+1 − yj+1)

1
Thn

∑T
l=1 Lh(Yt − yl)

.

We plug this estimator in the operator K and in r:

K̂p(Yt) = Ê(Mt+1(Yt, Yt+1)p(Yt+1)|Yt)

=
∫

Mt+1(Yt, Yt+1)p(Yt+1)f̂(Yt+1|Yt)dYt+1

=
1

Th2n

T∑

j=1

Lh(Yt − yj)
1

Thn

∑T
l=1 Lh(Yt − yl)

∫
Mt+1(Yt, Yt+1)p(Yt+1)Lh(Yt+1 − yj+1)dYt+1

r̂(Yt) = Ê(Mt+1(Yt, Yt+1)b(Yt+1)|Yt)

=
∫

Mt+1(Yt, Yt+1)b(Yt+1)f̂(Yt+1|Yt)dYt+1

=
1

Th2n

T∑

j=1

Lh(Yt − yj)
1

Thn

∑T
l=1 Lh(Yt − yl)

∫
Mt+1(Yt, Yt+1)b(Yt+1)Lh(Yt+1 − yj+1)dYt+1.

The expression for K̂∗ can be easily deduced from that one for K̂. We assume that K̂

and K̂∗ define operators from X into X and r̂ is an element of X . These assumptions are
actually integrability assumptions on the kernel function L. Hence, both K̂ and K̂∗ are
degenerate operators with range of dimension T , they are compact and have at most T
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nonzero eigenvalues λ̂j that implies they have not continuous inverses.
For numerical simulations and asymptotic properties it is useful to approximate K̂ and r̂

through a change of variable Yt+1−yj+1

h = u and a Taylor expansion at the first order:

K̂p =
1

Th

∑T
j=1 Mt+1(Yt, yj+1)p(yj+1)Lh(Yt − yj)

1
Th

∑T
l=1 Lh(Yt − yl)

r̂ =
1

Th

∑T
j=1 Mt+1(Yt, yj+1)b(yj+1)Lh(Yt − yj)

1
Th

∑T
l=1 Lh(Yt − yl)

.

Asymptotic properties of this kernel estimator will affect the asymptotic properties of
the Bayesian estimator for p. Note that the use of these estimated quantities implies
that the Euler Equation defining the pricing functional is now only approximately true:
r̂ ≈ (I − K̂)p.

3.2 Construction of the Bayesian experiment

We concentrate in this paragraph on the characterization of the Bayesian experiment as-
sociated to (8). Given the reasons discussed at the beginning of Section 3 preference
parameters and β are assumed as known and the transition density is substituted with
the kernel estimator previously described.

3.2.1 Prior Distribution

The first step in order to well define the Bayesian experiment is the characterization of a
prior probability µ induced by the pricing functional p on the parameter space X 3. We
endow the parameter space with the σ-field E and we assume that µ is a gaussian measure.

Assumption 5 Let µ be a probability measure on (X , E) such that E(||p||2) < ∞, with
E the expectation taken with respect to µ. µ is a Gaussian measure that defines a mean
element p0 ∈ X and a covariance operator Ω0 : X → X .

µ is gaussian if the probability distribution on the Borel sets of R induced from µ by
every bounded linear functional on X is gaussian. More clearly, µ gaussian means that
∀B ∈ B(R)

P(B) = µ{p; < p, ϕ >∈ B}

is gaussian for all ϕ ∈ X , see Baker (1973) [2]. The mean element p0 in X is defined by

< p0, ϕ >=
∫

X
< p, ϕ > dµ(p)

and the operator Ω0 by
3Note that the distribution µ has nothing to do with the stochastic character of pt. The latter only

depends on the state of the economy once a pricing functional has been drawn from µ

14



< Ω0ϕ1, ϕ2 >=
∫

X
< p− p0, ϕ1 >< p− p0, ϕ2 > dµ(p)

for every ϕ1, ϕ2 ∈ X . Let S(X ) denote the set of all linear, bounded, self-adjoint, positive
semi-definite and trace-class operators onto X . In particular, S(X ) is the set of all covari-
ance operators of Gaussian measure on X . On the basis of Assumption 5, Ω0 is correctly
specified as a covariance operator in the sense that it belongs to S(X ). A covariance oper-
ator needs to be trace-class in order the associated measure be able to generate trajectories
in the well suited space. Indeed, by Kolmogorov’s inequality a realization of the random
function p is in X if E(||p||2) is finite4. Since E(||p||2) =

∑
j λΩ0

j , this is guaranteed if Ω0

is trace-class, that is if
∑

j λΩ0
j < ∞, with {λΩ0

j } the eigenvalues associated to Ω0 and E(·)
the expectation taken with respect to µ.
Since the eigenvalues of Ω

1
2
0 are the square roots of the eigenvalues of Ω0 the fact to be

trace-class entails that Ω
1
2
0 is Hilbert-Schmidt. Hilbert-Schmidt operators are compact and

the adjoint is still Hilbert-Schmidt. Compacity of Ω
1
2
0 implies compacity of Ω0.

This specification for the prior measure is suitable in the sense that its support is the clo-
sure of the Reproducing Kernel Hilbert Space associated to Ω0, (H(Ω0) in the following),
that is dense in X if Ω0 is one to one. Let {λΩ0

j , ϕΩ0
j } be the eigensystem of Ω0. We define

the space H(Ω0) embedded in X as

H(Ω0) = {ϕ : ϕ ∈ X and
∞∑

j=1

| < ϕ, ϕΩ0
j > |2

λΩ0
j

< ∞} (10)

and, following Proposition 3.6 in Carrasco et al. (2007), we have the relation H(Ω0) =

R(Ω
1
2
0 ). It results evident how the choice of the covariance operator can modify the sup-

port of a gaussian measure. In particular, if Ω0 is injective then the support of µ is the
whole space X , otherwise, the support is any subset of X ; henceforth, a particular choice
of the covariance operator allows to incorporate in the prior distribution constraints on
the parameter of interest.
An other way to incorporate constraints on the functional form of p consists in specify-
ing a prior mean satisfying them. The trajectories drawn from the corresponding prior
distribution will almost surely satisfy the constraints. Let p∗ denote the true value of the
pricing functional having generated the data r̂, we assume that

Assumption 6 (p∗ − p0) ∈ H(Ω0), i.e. there exists δ∗ ∈ X such that (p∗ − p0) = Ω
1
2
0 δ∗.

In other words, we are supposing there exists a function δ∗ ∈ X such that the centered true
value of the pricing functional is the image of it through operator Ω

1
2
0 . This assumption is

only a regularity condition on p∗ and will be exploited for proving asymptotic results.

4Namely, following Kolmogorov’s inequality P(||p|| > εn) ∼ Op(1) if and only if E(||p||2) is finite.
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3.2.2 Sampling Distribution

In our model both the parameter and the sample space coincide with X . We denote with
Qp the sampling probability on X , namely the conditional probability of the observations
given p, and it can be inferred from the conditional distribution of the measurement error
process r̂−(I−K̂)p given p. An exact conditional distribution of this process is impossible,
or at least too complicate, to compute due to nonparametric estimation. Hence, we need
to compute its asymptotic distribution. However, the nonparametric estimator used for
obtaining K̂ and r̂ prevents us to find convergence of r̂ − (I − K̂)p to a well defined
process with continuous trajectories,like a gaussian process. In fact, it converges towards
a process with trajectories that are discontinuous. In order to obtain weak convergence of
this process it is necessary to smooth its trajectories. For this, we consider the projected
model (5) instead of the original one (4) and we redefine p as the solution of the estimated
integral equation of type one

K̂∗r̂ = K̂∗(I − K̂)p + U (11)

that is the estimated counterpart of (5). We introduce the notation R̂ for denoting K̂∗r̂
and Ĥ for denoting K̂∗(I − K̂) so that

R̂ = Ĥp + U (12)

and Ĥ is the estimator of H = K∗(I−K) that is a compact operator onto X . Hereinafter
we denote with H∗ the adjoint of H and H∗ = (I−K∗)K. In this new model the estimated
operator Ĥ becomes the true operator defining the functional equation for p and p is now
solution of an integral equation of first kind. The compacity of H makes this inverse
problem ill-posed.
The error term process can be rewritten as U = K̂∗((r̂+K̂p)−(r+Kp)) and the following
theorem shows that it is asymptotically gaussian.

Theorem 1 Under Assumptions 4 4, there exists a random element ϑ ∈ X such that√
TK̂∗((r̂ + K̂p)− (r + Kp)) is asymptotically equivalent to
√

T

T

∑

j

Mt+1(yj , Yt+1)[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)]
f(yj , Yt+1)

π(yj)π(Yt+1)
+ hρϑ.

Moreover,
√

TK̂∗((r̂ + K̂p) − (r + Kp)) ⇒ GP(0, σ2K∗K) (weak convergence in X ) and
K∗K is a trace-class operator.

It will be proved in the Appendix that the first term of the above equality and ϑ weakly
converge to a gaussian element in X , but that the second term becomes negligible after
having been scaled by h → 0.
Assumption 4, concerning the weakly stationarity of the sample, is only necessary for hav-
ing a speed of convergence of

√
T , but it does not matter for having weakly convergence

towards a gaussian process. Our guess is that without the weakly stationarity assumption
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we would get a slower speed of convergence equal to δ(T ), for some function δ(·).
The sampling distribution Qp of R̂ given p is characterized by the transition probability
P(·|p) that associates to each p a probability measure on (X ,F): Qp = P(R̂ ∈ B|p), for all
B ∈ F , where F is the σ-field associated to the sample space. This probability is deduced
from the above theorem, thus Qp is approximately gaussian with mean Ĥp and covariance
operator ΣT = σ2

T K∗K. Because K is unknown, operator ΣT is replaced by the estimator
Σ̂T = σ2

T K̂∗K̂ when we want to compute the posterior distribution (under the assumption
that σ2 is known, we consider in Section 6 the case with σ2 unknown).
After this clarification some remarks are in order. First, the fact that the sampling prob-
ability is only asymptotically gaussian does not affect properties of our estimator. Indeed,
we need normality only to construct the estimator of p and it is not used at all to prove
consistency (that is the argument that justifies the proposed estimator).
Second, in order to recover the sampling probability, we have considered the estimated
projected model (that is an ill-posed inverse problem) instead of the more natural one
r̂ = (I − K̂)p + U (that is a well-posed inverse problem). This is because such error term
does not weakly converge to any well-defined stochastic process since kernel estimation
produces an empirical process converging to a process with discontinuous trajectories.
Projecting the model through a further application of operator K∗ allows to smooth tra-
jectories and to increase the speed of convergence. We loose the well-posedness of the
initial inverse problem (4), but this is the price to pay in order to be bayesian.
Third, ΣT ∈ S(X ), thus it possesses all the properties that characterize a covariance op-
erator.
Fourth, the sampling model (12) is different than standard econometric models since there
is only one variable of infinite dimension that plays the role of the observation instead of
a sample of observations as usual. This variable R̂ is a mathematical object obtained
through a transformation of a sample of finite dimensional observations. We do inference
only with this process whose distribution (in particular its covariance operator) depends
on the way the data are generated.

3.2.3 Identification

A model, and the corresponding parameter of interest, is identified in a Bayesian sense
if the posterior distribution completely revises the prior distribution. For such a kind of
identification we do not have to introduce strong assumptions, see Florens et al. (1990)
Section 4.6 for an exhaustive explanation of this concept. Anyway, this paper is not
only concerned with the computation of the posterior distribution but mainly with the
frequentist consistency of it, i.e. convergence with respect to the sampling distribution.
We will give in Section 4 the definition of frequentist consistency, also called posterior
consistency or consistency in the sampling sense. For this type of consistency be verified
we need the following assumption for identification.

Assumption 7 The operator HΩ
1
2
0 := K∗(I −K)Ω

1
2
0 : X → X is one-to-one on X .
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This assumption guarantees continuity of the regularized posterior mean that we shall
define below, so that posterior consistency is satisfied.
Some comments about this hypothesis are in order. If we use the classical model r =
(I −K)p and a classical (non bayesian) procedure to recover p then no further identifica-
tion condition would be required since operator (I−K) is one-to-one (due to the fact that 1
is not an eigenvalue of K). In reality, we are using the projected model K∗r = K∗(I−K)p,
so that if a classical resolution method is used the identification of p would require injec-
tivity of K∗(I − K) that is not guaranteed by injectivity of (I − K). If we compare

Assumption 7 to this last one, we see that it is weaker in the sense that if Ω
1
2
0 is one-to-one

then K∗(I −K)Ω
1
2
0 injective does not imply K∗(I −K) injective while the reverse is true.

3.2.4 Joint Probability Distribution

With relevant space we refer to the product of the sample and parameter space, associated
to model (11), endowed with the associated σ-field E ⊗ F and with the joint measure
determined by recomposing the prior and sampling distributions. We define the product
space X × X as the set

X × X := {(φ, ψ);φ, ψ ∈ X}

with addition and scalar multiplication defined by (φ1, ψ1) + (φ2, ψ2) = (φ1 + φ2, ψ1 + ψ2)
and h(φ1, ψ1) = (hφ1, hψ1), ∀h ∈ R. X × X is a separable Hilbert space under the norm
induced by the scalar product defined as

< (φ1, ψ1), (φ2, ψ2) >:=< φ1, φ2 > + < (ψ1, ψ2) >, ∀(φi, ψi) ∈ X × X , i = 1, 2.

The joint probability measure on X×X , denoted with Λ, is constructed by recomposing
the prior µ and the sampling distribution Qp in the following way:

Λ(A×B) =
∫

A
Qp(B)µ(dp), A, B ∈ X .

After that, function Λ is extended to E ⊗ F . Following Florens and Simoni (2008), it is
trivial to prove that (R̂, p) are (asymptotically) jointly distributed as a gaussian process:

( R̂

p

)
∼ GP

(( Ĥp0

p0

)
,
( ΣT + ĤΩ0Ĥ

∗ ĤΩ0

Ω0Ĥ
∗ Ω0

))
(13)

The marginal distribution induced by R̂ on X , denoted with Q, is gaussian with mean
Ĥp0 and covariance CT := ΣT + ĤΩ0Ĥ

∗ that is trace class. We shall denote with ĈT =
Σ̂T + ĤΩ0Ĥ

∗ the estimated marginal covariance operator. It should be noted that Ĥ and
H are compact operators since they are the product of a bounded and a compact operator,
see Theorem 2.16 in Kress [27]. While Ĥ has a finite number of non-zero singular values,
H has a countable number of singular values only accumulating at 0.
Summarizing, the bayesian experiment associated to model (5) can be written as
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Ξ = (X × X , E ⊗ F , Λ = µ⊗Qp).

Bayesian inference consists in finding the inverse decomposition of Λ in the product of the
posterior distribution, denoted with µF , and the predictive measure Q.

3.3 Analysis of the Posterior Distribution

The infinite dimension of the Bayesian experiment makes application of Bayes theorem
not evident and in defining and computing the posterior distribution we should care about
three points: (i) existence of a regular version of the conditional probability on E given
F , (ii) the fact that it is a gaussian measure and (iii) its continuity. The conditional
probability µF , given R̂, is said regular if a transition probability characterizing it exists,
i.e. there exists a probability P(·|F) such that P(A|F) = µF (A), ∀A ∈ E . The next
theorem answers to the first two questions:

Theorem 2 (i) Let (X ×X , E ⊗F , Λ) be a probability space that is Polish 5, then there
exists at least one regular conditional probability P(·|F) such that P(A|F) = µF (A),
∀A ∈ E.

(ii) The probability µF is characterized by the characteristic function

E(ei<p,h>|Ŷ ) = ei<AR̂+b,h>− 1
2
<(Ω0−AĤΩ0)h,h>, h ∈ X ,

where i is the imaginary unit, A : X → X and b ∈ X . Then µF is gaussian with
mean AR̂ + b and covariance operator (Ω0 −AĤΩ0).

A proof of this theorem can be found in Florens et al. (2008), here we only stress some
remarks. The first point of the theorem is an application of Jirina theorem, see Neveu
(1965). We find that the space X we are considering , defined as the space L2

π(Y ) of square
integrable functions with respect to π, is Polish, see Hiroshi et al. (1975). Concerning the
second part of the theorem, the characteristic function takes the form of the characteristic
function of a gaussian random variable. The posterior mean is AR̂ + b and the posterior
variance is Ω0−AĤΩ0. The deterministic function b has the following form: b = (I−AĤ)p0

and operator A is determined through the equality between the two expressions for the
covariance operator:

∀φ, ψ ∈ X , Cov(< p, φ >, < R̂, ψ >) = Cov(< E(p|R̂), φ >, < R̂, ψ >)

= Cov(< AR̂, φ >, < R̂, ψ >)

= Cov(< R̂, A∗φ >, < R̂, ψ >)

= < (ΣT + ĤΩ0Ĥ
∗)A∗φ, ψ >),

5A Polish space is a separable completely metrizable topological space.
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where A∗ denotes the adjoint of A, and from (13)

Cov(< p, φ >,< R̂, ψ >) = < ĤΩ0φ, ψ > .

Therefore, by equating these two terms, A is defined as the solution of the functional
equation:

(ΣT + ĤΩ0Ĥ
∗)A∗φ = ĤΩ0φ ∀φ ∈ X . (14)

In reality, ΣT is unknown and replaced by its estimated version. Therefore, it is more
appropriate to define A as the solution of

(Σ̂T + ĤΩ0Ĥ
∗)A∗φ = ĤΩ0φ ∀φ ∈ X . (15)

With the transition distribution F replaced by the estimator F̂ , which is of finite rank, the
null set of operators Ĥ, Ĥ∗ and Σ̂T is not reduced to zero. Furthermore, Σ̂T , Ĥ and Ĥ∗ are
operators from X in X , so that they have an infinite number of eigenvalues equal to zero.
Hence, ĈT has not an inverse continuously defined on X and A∗ is unbounded. This causes
A to be unbounded and the posterior mean to not be continuous in R̂. This is a huge
problem because it entails that small measurement errors in R̂ will have a severe impact
on the posterior mean of p that consequently will be prevented from being a consistent
estimator (in the sampling sense). Then, the posterior distribution is not consistent in the
sampling sense when we are considering the whole space X . Nevertheless, the posterior
mean remain a consistent estimator in the Bayesian sense, i.e. with respect to the joint
distribution Λ.
In practice, the computation of the posterior distribution in infinite dimensional spaces
requires to solve the further inverse problem (15) that is ill-posed. Henceforth, the degree
of ill-posedness of the Bayesian problem is different than the degree of ill-posedness of the
classical problem. In the following two sections we propose two solutions to deal with this
lack of consistency. These solutions are based on two different regularization techniques
of the inverse of operator (Σ̂T + ĤΩ0Ĥ

∗) in (15); the first one uses a classical Tikhonov
regularization scheme and the second one uses a Tikhonov regularization in the Hilbert
scale induced by the inverse of the prior covariance operator.

3.4 Tikhonov Regularized Posterior Distribution

We solve the problem of unboundedness of operator A in the posterior mean function by
applying a Tikhonov regularization scheme, see Kress (1999), to the inverse of operator
(Σ̂T + ĤΩ0Ĥ

∗). We define the regularized operator Aα as:

Aαφ = Ω0Ĥ
∗(αI + Σ̂T + ĤΩ0Ĥ

∗)−1φ (16)

where α > 0 is a regularization parameter that is function of the sample size T , α = α(T ),
and it is such that α → 0 as T → ∞. This parameter must be chosen in order to
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balance the trade-off between the bias due to the regularization and the variance due
to the instability of the inversion. Operator (αI + Σ̂T + ĤΩ0Ĥ

∗) is surjective and then
injective and it has a bounded inverse.
The regularized operator Aα is used to construct a new posterior distribution that we
denote with µFα and that we guess is the solution of the projected Euler equation (12).
Asymptotic arguments will justify this choice as far as it is proved, in Section 4, that
µFα weakly converges, with respect to the sampling probability, to the Dirac measure
concentrated in p∗, where p∗ is the true value of the pricing functional.
The regularized posterior distribution µFα is a conditional gaussian measure on the σ-field
E given F , with mean and variance

Eα(p|R̂) = Aα(R̂− Ĥp0) + p0

Ωα,R = Ω0 −AαĤΩ0.

This probability measure is characterized by the estimated operator K̂, therefore it must
be meant as an estimation of the corresponding regularized posterior distribution with
true K. We select as punctual estimator of the equilibrium price function the regularized
posterior mean Eα(p|R̂), as it is suggested by a quadratic loss function. This estimator is
a continuous function of R̂ and then it is consistent.
Tikhonov regularization is a stabilization procedure and it is the equivalent, in inverse
problem theory, of shrinkage estimators in statistics and econometrics. These estimators
are defined through the addition of a bias in order to stabilize the inversion. One example
of shrinkage estimator is the well-known ridge regression. In particular, in finite dimen-
sional Bayesian inverse problem, for particular choices of the prior and sampling variance,
the posterior mean and the Tikhonov regularized solution coincides.
Tikhonov regularization is easy to implement but in certain situations the rate of conver-
gence of the regularized solution, toward the true value p∗, is not optimal. More properly,
when the true pricing functional p∗ is highly regular, Tikhonov regularization does not
permit to exploit all its regularity to reach a faster rate of convergence. This is what is
called saturation or qualification effect.

3.5 Tikhonov regularization in the Prior Variance Hilbert scale

Different methods for better exploiting the regularity of function p∗ have been proposed in
literature. Among these, we find the iterative methods, as the iterated Tikhonov regular-
ization, and the Tikhonov regularization in Hilbert Scale, see Engl et al.(2000) for general
theory of regularization in Hilbert scale.
In this subsection, we recover A by applying a Tikhonov regularization in the Hilbert scale
induced by the inverse of the prior covariance operator. Let L = Ω

− 1
2

0 be a densely de-
fined, unbounded, self-adjoint, strictly positive operator in the Hilbert space X 6. The

6More clearly, L = Ω
− 1

2
0 is a closed operator in X satisfying: D(L) = D(L∗) is dense in X , < Lx, y >=<

x, Ly > for all x, y ∈ D(L), and there exists γ > 0 such that < Lx, x >≥ γ||x||2 for all x ∈ D(L).
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norm || · ||s is defined as ||x||s := ||Lsx||. We define the Hilbert Scale Xs induced by L

as the completion of the domain of Ls, D(Ls), with respect to the norm || · ||s previously
defined; moreover Xs ⊆ Xs′ if s′ ≤ s, ∀s ∈ R. Usually, when a regularization scheme in
Hilbert Scale is adopted, the operator L, and consequently the Hilbert Scale, is created ad
hoc. The operator L is in general a differential operator. In the Bayesian case this regular-
ization scheme results to be very interesting since the Hilbert Scale is not created ad-hoc
but is suggested by the prior information we have and this represents a big difference
and advantage with respect to the standard methods. Hence, the regularization scheme
is strictly linked to the prior distribution. The following assumption is necessary in order
the theory of regularization in Hilbert scale works and gives suitable rates of convergence.

Assumption 8 (i) ||HΩ
1
2
0 x|| ∼ ||Ω

a
2
0 x||, ∀x ∈ X ;

(ii) (p∗ − p0) ∈ Xβ+1, i.e. ∃ ρ∗ ∈ X such that (p∗ − p0) = Ω
β+1

2
0 ρ∗

(iii) a, s, β ∈ R+ and a ≤ s ≤ β + 1 ≤ 2s + a.

Some remarks about this assumption are in order. Assumption 8 (i) is equivalent to say
that in specifying the prior distribution we take into account the sampling model, hence
the prior variance is linked to the sampling model (12) we are studying and, in particular,
to operator H. This kind of prior specification is not new in Bayesian literature since it
is similar to the idea behind Zellner’s g-prior, see Zellner (1986) or Agliari et al. (1988).

The link between the prior covariance Ω
1
2
0 and operator H is affected by parameter a that

can be interpreted as the degree of ill-posedness in the Bayesian problem. Therefore, the
prior is specified not only by taking into account the sampling model but also the degree
of ill-posedness of the problem.
Assumption 8 (ii) is known as source condition and is formulated in order to reach a
certain speed of convergence of the regularized posterior distribution. By definitionXβ+1 ≡
R(Ω

β+1
2

0 ) ≡ D(Lβ+1) and, if Assumption 6 is satisfied, Assumption 8 (ii) says that δ∗ ∈
R(Ω

β
2
0 ). The meaning of this assumption is that the prior distribution contains information

about the regularity of the true value of p. In fact, parameter β is interpreted as the
regularity parameter associated to p∗. These two remarks stress the fact that we are not
taking whatever Hilbert Scale, but the Hilbert Scale linked to the prior. Either we first
choose the Hilbert Scale and then we use the information contained in it to specify the
prior distribution or we use the information contained in the prior distribution to specify
the Hilbert Scale.
The restriction β + 1 ≥ s means that the centered value of the true p∗ has to be at least
an element of Xs and it guarantees that the norm ||Lsx|| exists ∀x ∈ Xβ+1.
Under Assumption 8 the regularized solution in Xs to equation (15) is:

As = Ω0Ĥ
∗(αL2s + Σ̂T + ĤΩ0Ĥ

∗)−1. (17)

The regularized posterior distribution is thus defined similarly as in Section 3.4 with Aα

substituted by As and is denoted with µFs . The regularized posterior mean and variance
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are

Es(p|R̂) = AsR̂ + (I −AsĤ)p0 (18)

Ωs,R = Ω0 −AsĤΩ0.

A classical Tikhonov regularization method allows to obtain a rate of convergence to zero
of the regularization bias that is at most of order 2; on the contrary with a Tikhonov
scheme in an Hilbert Scale the smoother the function p∗ is, the faster the rate of conver-
gence to zero of the regularization bias will be.

4 Asymptotic Analysis

A very important result, due to Doob (1949), see Doob (1949) and Florens et al. (1990),
states that for any prior, the posterior distribution is consistent in the sense that it con-
verges to a point mass at the unknown parameter that is outside a set of prior mass zero.
Actually, no one can be so certain about the prior, above all when the parameter is of
infinite dimension, and values of the parameter for which consistency is not verified may
be obtained. To move around this problem it is customary to use a frequentist notion of
consistency. The idea of this consistency lies in thinking the data as generated from a
distribution characterized by the true value of the parameter and in checking the accumu-
lation of the posterior distribution in a neighborhood of this true value.
This is the so-called ”classical bayesian” point of view and, in according to it, we assume
there exists a true value of the pricing functional, already denoted with p∗, and we check
that the regularized posterior distribution becomes more and more accurate and precise,
around p∗, as the number of observed data increases indefinitely. Thus, it is a convergence
in the sampling probability sense and it is known as consistency of the posterior distribu-
tion.
Following Diaconis et al. (1986) we give the following definition of posterior consistency
(or consistency in the sampling sense):

Definition 1 The pair (p, µF ) is consistent if µF converges weakly to δp as T →∞ under
Qp-probability or Qp-a.s., where δp is the Dirac measure in p.
The posterior probability µF is consistent if (p, µF ) is consistent for all p.

If (p, µF ) is consistent in the previous sense, the Bayes estimate for p, for instance the
posterior mean for a quadratic loss function, is consistent too.
The meaning of this definition is that, for any neighborhood U of the true parameter p∗,
the posterior probability of the complement of U converges toward zero when T → ∞:
µF (Uc) → 0 in Qp-probability, or Qp-a.s. Therefore, since distribution expresses one’s
knowledge about the parameter, consistency stands for convergence of knowledge towards
the perfect knowledge with increasing amount of data.
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It is appropriate to separate Bayesians into two groups: ”classical” and ”subjectivist”.
Classical bayesians believe there exists a true value of the parameter that has generated
the data, therefore they care for the posterior converges to a point mass at the true
parameter, as data set becomes large. In point of fact, consistency is interesting also for
subjective Bayesian for different reasons (e.g. ”intersubjective agreement” or to check if
the posterior is a correct representation of the updated prior, see Florens et al. (1990)).
Having a posterior distribution, and hence a bayesian estimator, that is consistent in the
sampling sense justifies, also from a classical non-bayesian point of view, our estimator
obtained with a bayesian approach.
On the basis of all these arguments we are persuaded about the importance of studying
posterior consistency and in this section we study this concept of consistency for the
regularized posterior distribution. By Chebyshev’s Inequality in L2 spaces we have, for
any sequence Mn →∞:

µFα {p : ||p− p∗|| ≥ Mnεn} ≤ Eα(||p− p∗||2|R̂)
(Mnεn)2

=
1

(Mnεn)2
[< Ωα,R1, 1 > +||Eα(p|R̂)− p∗||2]

≤ ||Ωα,R||+ ||Eα(p|R̂)− p∗||2
(Mnεn)2

. (19)

The same inequality is valid for µFs .

4.1 Speed of convergence with classical Tikhonov regularization

We begins by checking posterior consistency of the regularized posterior µFα computed
with the classical Tikhonov, namely we check accumulation of µFα to the point mass δp∗ .
The main results are contained in the following theorem.

Theorem 3 Let p∗ be the true value of the asset pricing functional and µFα a gaussian
measure on X with mean Aα(R̂ − Ĥp0) + p0 and covariance operator Ωα,R. Under As-
sumptions 6 and 7, and if α → 0, α2T →∞,

(i) µFα weakly converges towards a point mass δp∗ in p∗;

(ii) if moreover δ∗ ∈ R(Ω
1
2
0 H∗HΩ

1
2
0 )

β
2 for some β > 0, then for ρ ≥ 2

µFα {p : ||p− p∗|| ≥ εT } ∼ Op(α
β
2 +

1
αT T

+
1
α

( 1
T

+ h2ρ
) 1

2
α

β
2 +

1
α2T

1
α

( 1
Thn

+ h2ρ
) 1

2

+
1

α2T
α

(β+1)
2

∧1).

The parameter ρ is the minimum between the order of the kernel and the order of differ-
entiability of the density function f .
It should be noted that the condition for the second part of the theorem is only a regularity
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condition that is necessary for having convergence at a certain speed. The condition that
really matters is the fact that the centered true parameter must belong to the Reproducing
Kernel Hilbert Space associated to Ω0, i.e. (p∗ − p0) ∈ H(Ω0).
The support of a centered gaussian process, taking its value in an Hilbert space X , is
the closure in X of the Reproducing Kernel Hilbert Space associated with the covariance
operator of this process, see VanDerVaart et al. (2000). Then, for p drawn from the prior
distribution µ, (p − p0) ∈ H(Ω0) with µ-probability 1, but with µ-probability 1, (p − p0)
is not in H(Ω0). Hence, the prior distribution is not able to generate trajectories that
satisfy Assumption 6 or, in other words, the true value of the price functional p∗. This
concept is known in literature as prior inconsistency and it refers to a prior that is unable
to generate the true parameter characterizing the data generating process. This problem
is present only for infinite dimensional parameter sets and it is due to the fact that it is
difficult to be sure about a prior on an infinite dimensional parameter space so that it can
happen that the true value of the parameter is not in the support of the prior, see e.g.
Freedman (1965) or Ghoshal (1998).
Anyway, if Ω0 is one-to-one, H(Ω0) is dense in X and since the support of µ is the closure
H(Ω0), this measure is able to generate trajectories as close as possible to the true one.
The next corollary states consistency of the regularized posterior mean and convergence
to zero of the regularized posterior variance; it provides the necessary results for having
Theorem 3.

Corollary 1 Under Assumptions 6 and 7, and if α → 0, α2T →∞, ρ ≥ 2 then:

(i) ||Êα(p|R̂) − p∗|| → 0 in Qp∗-probability and if Ω
− 1

2
0 (p∗ − p0) ∈ R(Ω

1
2
0 H∗HΩ

1
2
0 )

β
2 for

some β > 0,

||Êα(p|R̂)− p∗||2 ∼ Op(αβ +
1

(α2T )2
α(β+1)∧2 +

1
αT

+

1
α2

( 1
T

+ h2ρ
)
αβ +

1
α2T

1
T

1
α2

( 1
Thn

+ h2ρ
)
).

(ii) ||Ωα,R|| → 0 in P p∗-probability and ∀φ ∈ X such that Ω
1
2
0 φ ∈ R(Ω

1
2
0 H∗HΩ

1
2
0 )

β
2 for

some β > 0,

||Ωα,Rφ||2 ∼ Op

(
αβ +

1
α2

( 1
T

+h2ρ
)
αβ +

1
(α2T )2

1
α2

( 1
Thn

+h2ρ
)

+
1

(α2T )2
α(β+1)∧2

)
.

It should be clear that the superscript β for the regularization parameter must be meant as
β∧2 since 2 is the qualification for Tikhonov regularization. Then, the rate of convergence
cannot exceed α2.
The rate of convergence to zero of the posterior variance is negligible with respect to the
rate in the bias, so that the optimal parameter of regularization will be chosen by taking
into account the rate of the squared norm of the bias. Concerning this rate, only the first
and third terms matter, being the other three terms negligible for particular choices of
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β and of the bandwidth h. While the first rate αβ requires a regularization parameter
α going to zero as fast as possible, the third one requires an α going to zero as slow as
possible. In choosing the regularization parameter we should take into account this trade-
off, hence, the optimal regularization parameter α∗ will be obtained when the two rates
are made equal: αβ = 1

αT , so that

α∗ ∝ T
− 1

β+1 .

The optimal rate of convergence of the squared norm of the regularized posterior mean
and variance is T

− β
β+1 , while the optimal rate of the regularized posterior distribution is

T
− β

2(β+1) since, when the optimal α is used, α
β
2 dominates all the other rates.

Let us analyze conditions on β and h to guarantee convergence to zero of the other rates in
the bias. A sufficient condition for 1

(α2T )2
α(β+1)∧2 converging to zero is that 1

(α2T )
∼ Op(1),

i.e. α2 ∼ Op

(
1
T

)
. With α replaced by its optimal value, this condition is met for β ≥ 1.

For 1
α2

T

(
1
T +h2ρ

)
αβ

T being negligible we have to choose h in such a way that h2ρ ∼ Op( 1
T ),

i.e.

h ∝
( 1

T

) 1
2ρ

For the last rate 1
α4T 2 ( 1

Thn +h2ρ) converging to zero we simply have to check that 1
α2Thn ∼

Op(1) since the second term is op(1) due to the choice of h and to the fact that 1
(α2T )2

∼
op(1). Then, 1

α2
1

Thn = ( 1
T )−

2
β+1

+1− n
2ρ and it goes to zero if β > 2ρ+n

2ρ−n when 2ρ−n > 0 and
if β < 2ρ+n

2ρ−n when 2ρ − n < 0. This constraint is binding with respect to the constraint
β ≥ 1 when 2ρ − n > 0. Summarizing, if 2ρ − n > 0 the only constraint is β > 2ρ+n

2ρ−n ;
otherwise, we have two constraints: 1 ≤ β < 2ρ+n

2ρ−n .
Lastly, it should be noted that the second, third and fourth rates of the squared norm
of the regularized variance operator goes to zero if conditions for ensuring convergence to
zero of the terms in the bias are satisfied.

4.2 Speed of convergence with Tikhonov regularization in the Prior

Variance Hilbert Scale

We compute in this subsection the speed of convergence for µFs . The speed obtained in
this case is faster than that one obtained with a simple Tikhonov regularization scheme.
In this section we suppose Assumption 8 holds, the attainable speed of convergence is
given in the following theorem, the proof of which can be found in Appendix 8.4.

Theorem 4 Let Es(x|Ŷ ) and Vs be as in (18). Under Assumptions 6, 7 and 8

||Es(p|R̂)− p∗||2 ∼ Op

(
α

β+1
a+s + α

1−a
a+s

1
T

+
1
α4

1
T 2

α
a+β+2s

a+s + α
β+1
a+s

1
α2

( 1
T

+ h2ρ
)

+
1
α3

1
T 2

)
.

Moreover, if the covariance operator Ωs,R is applied to any element ϕ ∈ X such that

Ω
1
2
0 ϕ ∈ R(Ω

β
2
0 ), then

26



||Ωs,Rϕ||2 ∼ Op

(
α

β+1
a+s +

1
α4T 2

α
2s+a+β

a+s + α
β+1
a+s

1
α2

( 1
T

+ h2ρ
)

+
1

α3T 2

)
.

The optimal α is obtained by equating the first two rates of convergence of the posterior
mean: α

β+1
a+s = α

1−a
a+s 1

T and is proportional to

α∗ ∝
( 1

T

) a+s
a+β

.

The optimal bandwidth is determined in the same way as before, hence h = c1( 1
T )

1
2ρ , for

some given constant c1. With this optimal choice of the regularization parameter, in order
to guarantee the other rates in the bias and variance are of order op(1), we have to restrict
the values of β. In particular, if 2a + s > 1 then the regularity parameter must satisfy
2s+a−1

2 < β < 2s + a − 1; otherwise s−a
2 < β < 2s + a − 1. The corresponding optimal

speed of the squared bias and variance is proportional to ( 1
T )

β+1
a+β , while the regularized

posterior distribution µFs is of order Op(( 1
T )

β+1
2(a+β) ). It should be noted that parameter s

characterizing the norm in the Hilbert scale does not play any role on the speed of con-
vergence.
An advantage of the Tikhonov regularization in Hilbert Scale is that we can even obtain a
rate of convergence for other norms, namely || · ||r for −a ≤ r ≤ β + 1 ≤ a + 2s. Actually,
the speed of convergence of these norms gives the speed of convergence of the estimate of
the r-th derivative of the parameter of interest p.

Tikhonov regularization in Hilbert scale improves the speed of convergence of the
regularized posterior distribution with respect to the classical Tikhonov regularization.
Let us call γ, instead of β, the regularity parameter of function (p∗ − p0) used in the

source condition of subsection 4.1, namely δ∗ ∈ R(Ω
1
2
0 H∗HΩ

1
2
0 )

γ
2 . This is for differen-

tiating with respect to the regularity parameter in the Hilbert scale regularization that
will continue to be denoted with β. If Assumption 8 (i) holds, it implies the equivalence

||(Ω
1
2
0 H∗HΩ

1
2
0 )

γ
2 v|| ∼ ||Ω

aγ
2

0 v||, for some v ∈ X . Then, equivalence of the source conditions

in the two regularized solutions implies ||Ω
β
2
0 v|| ∼ ||Ω

aγ
2

0 v|| that is verified if β = aγ. In
terms of γ, the optimal bayesian speed of convergence with an Hilbert scale regulariza-

tion is
(

1
T

) aγ+1
a(1+γ) that is fastest than the bayesian speed of convergence with a classical

Tikhonov:
(

1
T

) γ
γ+1 , ∀γ > 0.

4.3 Comparison with the classical estimation of the pricing functional

We develop in this paragraph a comparison between the bayesian method we have proposed
in this paper for recovering the asset pricing functional and the classical solution to the
integral equation (7) computed in Carrasco et al. (2007). The classical solution does not
require the use of any regularization scheme since the operator (I − K) is continuously
invertible. Since K is unknown it is substituted by K̂ as defined in subsection 3.1, the
estimated pricing functional p̂ is
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p̂ = (I − K̂)−1r̂,

with r̂ defined in subsection 3.1. By applying Theorem 7.2 in Carrasco et al. the squared
norm of the asymptotic bias is of order

||p̂− p∗||2 ∼ Op

( 1
Thn

+ h2ρ
)
.

The optimal speed of convergence is obtained when 1
Thn = h2ρ, that is when h = c1( 1

T )
1

2ρ+n .
With this optimal choice of bandwidth the classical estimator p̂ converges at the rate of
( 1

T )
2ρ

2ρ+n : ||p̂− p∗||2 ∼ Op(( 1
T )

2ρ
2ρ+n ).

We compare this rate of convergence with the rate of the estimated regularized posterior
mean obtained when a classical Tikhonov scheme and the optimal α are used: ||Êα(p|R̂)−
p∗||2 ∼ Op(( 1

T )
β

β+1 ). Our solution converges faster if β > 2ρ
n . This condition is more likely

to be satisfied when the parameter ρ (that is a measure of regularity of the transition
density function) is small or equivalently, for a given value of ρ, when the dimension of Yt,
i.e. the number of conditioning variables in the transition probability, increases.
Anyway, with Tikhonov regularization the qualification matters so that we can only exploit
a regularity β of the function p that is less or equal than 2. Therefore, in order condition
β > 2ρ

n is satisfied, it must be 2ρ
n ≤ 2, that holds when ρ ≤ n.

Let us consider the regularized posterior mean obtained through a Tikhonov scheme in
Hilbert scale. In this case and with the optimal regularization parameter α∗ the rate of
convergence is ||Es(p|R̂)−p∗||2 ∼ Op(( 1

T )
β+1
a+β ) and it is faster than the rate of convergence

with classical solution if β > 2ρ(a−1)
n − 1. When a > 2 and ρ < n

2(a−2) , this condition is
less stringent than condition β > 2ρ

n , demanded for Tikhonov regularized posterior mean
converging faster than the classical estimator p̂. When the degree of ill-posedness a is
less than 2, then the condition β > 2ρ(a−1)

n − 1 is less stringent than condition β > 2ρ
n if

ρ > n
2(a−2) .

Summarizing, under some condition on the regularity of the function p∗, in particular if
the price function is highly smooth, or if n is high or ρ is small, our Bayesian estimator
converges faster than the classical one. The price to pay for having this fastest speed of
convergence is to impose a regularity assumption on the price functional that we do not
impose with the classical resolution method.

5 A g-prior with Regularizing Power

We have shown in preceding sections that, in general, the prior distribution does not
regularize and we need to artificially introduce a regularization scheme in order to obtain
consistency of the posterior distribution.
Nevertheless, there exists a particular specification of the prior distribution that has a
regularizing power in the sense that the prior-to-posterior transformation has the same
effect as the application of a regularization scheme so that the recovered posterior mean
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is consistent. This type of prior distribution is suggested by the Zellner’ (1986) g-prior
but it extends the latter because it is linked to a slightly modified sampling mechanism.
More precisely, it is linked to the sampling mechanism of the non-projected model r̂ =
(I − K̂)p + error. This extended g-prior was introduced by Florens and Simoni (2008)
and they showed its regularizing power.
Let suppose that the prior measure specified in 3.2.1 is replaced by the extended g-prior
with a covariance operator related to operator K in the sampling mechanism:

p ∼ GP
(
p0,

σ2

g
(K∗K)s

)
, for some s > 0 (20)

with g = g(T ) a function of the sample size T such that g → ∞ with T . We use the
notation Ω0 = (K∗K)s. Let α = 1

T g be the parameter playing the role of regularization
parameter. For that, it must go to zero with T and it must be that α2T →∞, that implies
that g must go to infinity faster than

√
T and slower than T .

Equation (14) implies an operator A = (K∗K)sĤ∗(α(K∗K) + Ĥ(K∗K)sĤ∗)−1 that, as
T →∞, is well-defined if it is applied to (R̂− Ĥp0). The fact that (K∗K) multiplying α

can be factorized out allows to directly obtain a regularization of the inverse of the limit
of (K∗K)−

1
2 Ĥ(K∗K)sĤ∗(K∗K)

1
2 . Using equation (15) for defining A we have

A =
σ2

g
(K∗K)sĤ∗(Σ̂T +

σ2

g
Ĥ(K∗K)sĤ∗)−1

= ((K̂∗K̂)−
1
2 Ĥ(K∗K)s)∗(αI + (K̂∗K̂)−

1
2 Ĥ(K∗K)sĤ∗(K̂∗K̂)−

1
2 )−1(K̂∗K̂)−

1
2

that is a continuous operator. This is due to the fact thatR(K∗K) ⊂ R(K) = D((K∗)−1) ⊂
D((K∗K)−

1
2 ), so that (K∗K)−

1
2 H is well defined. The posterior mean and variance are

Eg(p|R̂) = A(R̂− Ĥp0) + p0 and V arg(p|R̂) = (K∗K)s −AĤ(K∗K)s. Because operators
K and K∗ are unknown, it follows that they must be substituted by their consistent esti-
mators in the prior covariance. We denote with Êg(p|R̂) and V̂ ar

g
(p|R̂) the corresponding

estimated mean and variance.
Study of asymptotic behavior of the posterior distribution is based on the decompositions:

Êg(p|R̂)− p∗ = [Êg(p|R̂)− Ẽg(p|R̂)] + [Ẽg(p|R̂)− Eg(p|R̂)] + [Eg(p|R̂)− p∗]

V̂ ar
g
(p|R̂) = [V̂ ar

g
(p|R̂)− Ṽ ar

g
(p|R̂)] + [Ṽ ar

g
(p|R̂)− V arg(p|R̂)] + V arg(p|R̂).

The only difference between Êg(p|R̂) and Ẽg(p|R̂) is that in the first one the prior covari-
ance operator is estimated while in the latter it is known. The same difference characterizes
V̂ ar

g
(p|R̂) and Ṽ ar

g
(p|R̂). Hence, the first square brackets term of both the two decom-

positions above is due to estimation of Ω0, the second error is due to estimation of all
the other operators and the last one is the bias and the variance, respectively, for known
operators.
We show in the following theorems that the posterior distribution corresponding to the g-
prior is consistent. This is guaranteed by convergence to zero of the bias and the posterior
variance.
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Theorem 5 Let (20) be the prior distribution for the functional p in the sampling equation

(12). If, for some γ > 0, (K∗K)sγ is trace class and if (p∗−p0) ∈ R(Ω
β
2s
0 ) then ||Eg(p|R̂)−

p∗||2 converges to zero with respect to the sampling probability at the speed

||Êg(p|R̂)− p∗||2 ∼ Op

(
α

β
s +

1
T

α−γ +
1
α2

( 1
Thn

+ h2ρ
)
(α

3s−β
β+s +

1
T

α−γ)

+
1
α2

( 1
T

+ h2ρ
) 1

T
α1−γ

)
.

Furthermore, if α = c1( 1
T )

s
(β+γs) , h = c2( 1

T )
1
2ρ for some constants c1 and c2,

T
β

β+γs ||E(p|R̂)− p∗||2 ∼ Op(1)

if s ≥ 2, n
2ρ ≤ β+γs−2s

β+γs , (2− γ)s ≤ β ≤ 3s.

It should be noted that the condition (p∗−p0) ∈ R(Ω
β
2s
0 ) in the theorem implies Assumption

6 if β ≥ 1.
The fastest speed of convergence of the posterior mean is of order T

− β
β+γs . It is faster

than the rate in the classical resolution method (illustrated in subsection 4.3) if β > 2ρ
n γs.

Theorem 6 Let (20) be the prior distribution for the functional p in the sampling equation
(12). If s ≥ 2 then ||V̂ ar

g
(p|R̂)||2 converges to zero with respect to the sampling probability.

Moreover, ∀φ ∈ X such that Ω
1
2
0 φ ∈ R(Ω

β−s
2s

0 ), the posterior variance converges at the speed

||V̂ ar
g
(p|R̂)||2 ∼ Op

(
α

β
s +

1
α2

( 1
Thn

+ h2ρ
)
α

β
s

)
.

When α is set equal to the optimal one, α = c1( 1
T )

s
β+γs , the posterior variance converges

to zero if n
2ρ ≤ β+γs−2s

β+γs .

The value of g corresponding to the optimal α is: g = ( 1
T )−

β+γs−s
β+γs . It converges at infinite

faster than
√

T and slower than T if β > (2− γ)s. In particular, convergence at a slower
rate than T is always guaranteed.

6 Prior on the Variance Parameter

Until now we have considered the variance parameter σ2 in the covariance operator of
the sampling measure as known. This parameter is the variance of the white noise in the
regression model (6) defined by the Lucas’ equilibrium model. In reality this parameter is
often unknown and needs to be estimated. In this section, we redefine the Bayesian exper-
iment in order to incorporate the parameter space of definition of the variance parameter
σ2: (R+,B, ν), with B the Borel σ-field and ν a measure on it.
There exist two possibilities to specify the probability measure on the parameter space.
The traditional approach calls for a conjugate model with a joint distributions on the
parameter space that is separable in a marginal on R+ and a conditional µσ, given B,
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on X . New developments in Bayesian literature propose more and more models in which
the prior distribution on the parameter space is the product of two marginal independent
distributions. In this paper we only consider the traditional approach since in this case
it is possible to define a closed form for the marginal posterior distribution of both the
parameters.

6.1 Conjugate model

The traditional approach, that states a joint distribution on the parameter space, is more
advisable for numerical implementations since it provides explicit forms for posterior dis-
tributions without demanding the implementation of some MCMC procedure as a Gibbs
sampling. The modified Bayesian experiment is

Ξσ = (R+ ×X × X , B ⊗ E ⊗ F , Π = ν × µσ ×Qσ,p).

µσ represents the conditional prior distribution for p conditioned on σ2: µσ ∼ GP(p0, σ
2Ω0).

Qσ,p denotes the sampling distribution conditional on both the parameters and it is char-
acterized by the covariance operator σ2

T K̂∗K̂.
We take, as prior distribution for the variance parameter σ2, an Inverse Gamma distribu-
tion: σ2 ∼ Γ−1(v0, s

2
0), with v0 and s2

0 two known parameters.
A conjugate model allows to easily integrate out p from the sampling distribution by using
the prior µσ so that we obtain a sampling measure Qσ depending only on σ2:

σ2 ∼ Γ−1(v0, s
2
0)

R̂|σ2 ∼ GP(Ĥp0, σ
2(

1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)).

Anyway, computation of the posterior of σ2 is not trivial due to the fact that, because R̂

is finite dimensional, we do not have a likelihood function. We make up for this lack by
using the projected observations R̂ projected by using the eigenfunctions associated to the
covariance operator ( 1

T K̂∗K̂ + ĤΩ0Ĥ
∗). Let {λ̂j , ϕ̂j}J

j=1 be the eigensystem associated
to this operator; this eigensystem is actually an estimation of the eigensystem associated
to the true covariance operator ( 1

T K∗K + HΩ0H
∗) that we would have if K was known.

Moreover, the convergence ||( 1
T K̂∗K̂ + ĤΩ0Ĥ

∗)− ( 1
T K∗K + HΩ0H

∗)|| → 0 implies that
the eigensystem {λ̂j , ϕ̂j} converges uniformly to the {λj , ϕj}. Thus, when the sample size
is finite, we only have a finite number of eigenvalues λ̂j different than 0. The projected
observation < R̂, ϕ̂j > is normally distributed with mean and variance

E(< R̂, ϕ̂j > |σ2) = < E(R̂|σ2), ϕ̂j >

= < Ĥp0, ϕ̂j >

V ar(< R̂, ϕ̂j > |σ2) = < V ar(R̂|σ2), ϕ̂j >

= σ2 < (
1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)ϕ̂j , ϕ̂j >

= σ2λ̂j ,
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and < R̂, ϕ̂j > is independent of < R̂, ϕ̂i >, ∀j 6= i due to orthogonality between eigenfunc-
tions. It should be noted that if operator K was known we would know all its eigensystem
and then we would know the variance parameter σ2, in fact <R̂−Hp0,ϕj>2

λj
|σ2 ∼ σ2χ2

1 with

mean equal to σ2. Then, 1
J

∑J
j=1

<R̂−Hp0,ϕj>2

λj
→ σ2 and we know the limit since we know

all the eigenvalues.
From classical computations we obtain the posterior distribution νF of σ2 given the sample
< R̂, ϕ̂1 >, . . . , < R̂, ϕ̂J >:

ν(σ2|{< R̂, ϕ̂j >}J
j=1) ∝

( 1
σ2

) v0+J
2

+1
exp

{
− 1

2σ2
[s2

0 +
J∑

j=1

1

λ̂j

(< R̂− Ĥp0, ϕ̂j >)2]
}

then

σ2|{< R̂, ϕ̂j >}J
j=1 ∼ Γ−1(v∗, s2

∗),

v∗ = v0 + J, s2
∗ = s2

0 +
J∑

j=1

1

λ̂j

(< R̂− Ĥp0, ϕ̂j >)2

E(σ2|{< R̂, ϕ̂j >}J
j=1) =

s2∗
v0 + J − 2

, V ar(σ2|{< R̂, ϕ̂j >}J
j=1) =

s4∗
4

(v∗
2 − 1)2(v∗

2 − 2)
.

In order to compute the posterior distribution for p we first need to compute the con-
ditional posterior distribution of p given σ2, denoted with µF ,σ and then to integrate out
σ2 by using its posterior distribution.
Also in this case, problems of continuity of µF ,σ require some technique of regularization.
For simplicity, we consider only a classical Tikhonov regularization scheme. Extension to
other regularization schemes is immediate. The regularized conditional posterior distribu-
tion, denoted with µF ,σ

α is a gaussian process with mean function and covariance operator
given by:

Eα(p|R̂, σ2) = Ω0Ĥ
∗(αI +

1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)−1(R̂− Ĥp0) + p0

V arα(p|R̂, σ2) = σ2[Ω0 − Ω0Ĥ
∗(αI +

1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)−1ĤΩ0],

where α still denotes the regularization parameter. While the regularized conditional
posterior mean does not depend on σ2, so that Eα(p|R̂, σ2) = Eα(p|R̂), the regularized
conditional posterior variance does and then we need to integrate out σ2 with respect to
νF . With analogy to the finite dimensional case, this integration transform the posterior
of p in a Student process. We refer to Florens and Simoni (2007) for a definition of this
process. Thus the marginal regularized posterior distribution µFα for p is Student with
parameters v∗, Eα(p|R̂) and s2∗

v0+J [Ω0 −AαĤΩ0]:

p|R̂ ∼ StP(Eα(p|R̂),
s2∗
v∗

[Ω0 −AαĤΩ0], v∗)
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Eα(p|R̂) = Ω0Ĥ
∗(αI +

1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)−1(R̂− Ĥp0) + p0

V arα(p|R̂) =
s2∗

v∗ − 2
[Ω0 − Ω0Ĥ

∗(αI +
1
T

K̂∗K̂ + ĤΩ0Ĥ
∗)−1ĤΩ0].

Analysis of posterior consistency of the regularized posterior distribution for p is
equal to analysis performed in Section 4.1 and Corollary 1 holds with Ωα,R replaced by
V arα(p|R̂, σ2).
Concerning the posterior distribution of σ2, its posterior mean E(σ2|{< R̂, ϕ̂j >}J

j=1)
is asymptotically equivalent to 1

J

∑J
j=1

1
λ̂j

(< R̂ − Ĥp0, ϕ̂j >)2 and its posterior vari-

ance is asymptotically equivalent to 1
J ( s2∗

J )2. As T → ∞, K̂ → K and the number
J of eigenfunctions becomes large. Then, V ar(σ2|{< R̂, ϕ̂j >}J

j=1) converges to 0 and
1
J

∑J
j=1

1
λ̂j

(< R̂ − Ĥp0, ϕ̂j >)2 → E( 1
λ̂j

(< R̂ − Ĥp0, ϕ̂j >)2) = σ2 at the parametric rate.

Chebyshev’s inequality implies consistency of νF .
Computation of eigenvalues and eigenfunction is not an easy task but computations can
be considerably simplified by noting that for computing posterior distribution we need to
know the quantities < R̂, ϕ̂j >, j = 1, . . . , J instead of the eigenfunctions {ϕ̂j}. Kernel
estimation provide us with the following approximations:

R̂ ≈
∑

i

∑

j

M(yi, Yt+1)M(yi, yj+1)yj+1
Lh(yi − yj)Lh(Yt+1 − yi+1)∑

l Lh(yi − yl)
∑

l Lh(Yt+1 − yl+1)

Ĥp0 ≈
∑

i

M(yi, Yt+1)p0(yi)
Lh(Yt+1 − yi+1)∑
l Lh(Yt+1 − yl+1)

−
∑

i

∑

j

M(yi, Yt+1)M(yi, yj+1)p0(yj+1)
Lh(yi − yj)Lh(Yt+1 − yi+1)∑

l Lh(yi − yl)
∑

l Lh(Yt+1 − yl+1)
,

where, for simplicity, we have eliminated the index t + 1 in function M . Then,

< R̂− Ĥp0, ϕ̂j > =
∫

(R̂− Ĥp0)(Yt+1)ϕ̂j(Yt+1)π(Yt+1)dYt+1

≈
∑

i

∑

j

[M(yi, yj+1)(yj+1 + p0(yj+1))
Lh(yi − yj)∑
l Lh(yi − yl)

− p0(yi)]

∫
M(yi, Yt+1)

Lh(Yt+1 − yi+1)∑
l Lh(Yt+1 − yl+1)

ϕ̂j(Yt+1)π(Yt+1)dYt+1

=
∑

i

∑

j

φj(yi, yi+1)[M(yi, yj+1)(yj+1 + p0(yj+1))
Lh(yi − yj)∑
l Lh(yi − yl)

− p0(yi)]

with φj(yi, yi+1) =
∫

M(yi, Yt+1)
Lh(Yt+1−yi+1)∑
l Lh(Yt+1−yl+1)

ϕ̂j(Yt+1)π(Yt+1)dYt+1. Finally, by explic-
iting the stochastic discount function we get

φj(yi, yi+1) = β
1

U ′(yi)
φ̄j(yi+1),

φ̄j(yi+1) =
∫

U ′(Yt+1)
Lh(Yt+1 − yi+1)∑
l Lh(Yt+1 − yl+1)

ϕ̂j(Yt+1)π(Yt+1)dYt+1.
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Henceforth, we only need to compute (λj , φ̄j), j = 1, . . . , J that is an easier task. φ̄j is
a T dimensional vector and it is the jth eigenvector of the T × T matrix A with (k, t)th
element

A(k, t) =
∑

i

β

U ′(yi)

[
T

∫
M(yi, Y )g(Y, yk+1)L(xi, xt, Y, yi+1)π(Y )dY +

∑

i′
(
∫

b̄(yi′ , Y, yi)g(Y, yk+1)L(yi, yt, Y, yi′+1)π(Y )dY ) +

∑

l

∑

l′

∫
c(yl′ , yl+1, Y )L̄(yl′ , yt, Y, yl′+1)g(Y, yk+1)π(Y )dY W (yi, yt, yi+1, yl+1)−

∑
m

∑

m′
b̄(ym′ , ym+1, yi)

Lh(yi − yt)∑
m Lh(yi − ym)

∫
M(ym′ , Y )g(Y, yk+1)L̄(ym′ , yt, Y, ym′+1)π(Y )dY −

T
∑

k′
W (yi, yt, yi+1, yk′+1)

∫
M(yk′+1, Y )g(Y, yk+1)

Lh(Y − yk′+1)∑
l Lh(Y − yl+1)

π(Y )dY
]
,

with b̄(yi′ , Y, yi) = M(yi′ , Y )ω(Y, yi), ω(·, ·) is the kernel of the prior covariance operator,
c(yl′ , yl+1, Y ) = M(yl′ , yl+1)M(yl′ , Y ), g(Y, yl) = U ′(Y ) Lh(Y−yl)∑

t Lh(Y−yt+1)
, L̄(yi, yt, Y, yi+1) =

Lh(yi−yt)Lh(Y−yi+1)∑
t Lh(yi−yt)

∑
t Lh(Y−yt+1)

and

W (yi, yt, yi+1, yl+1) =
∫

b̄(yi, Y, yl+1)L̄(yi, yt, Y, yi+1)π(Y )dY.

Proof for obtaining this matrix are provided in the Appendix.

7 Conclusions

In this paper we have proposed a new bayesian nonparametric approach for estimating
the solution of Euler equations. We consider the consumption-based asset pricing model
in the style of the Lucas’(1978) tree model. The aim was to estimate the equilibrium
asset pricing functional and the dynamic of the state of the economy. Then, by combining
these estimation, it is possible to infer the stochastic character of the equilibrium price
process of a financial asset. The bayesian procedure is suitable since it offers a tractable
way to introduce structural economic constraints and prior information on the estimation
procedure by staying at the same time nonparametric. Moreover, it provides us with
the whole posterior distribution of the pricing function. This distribution has good finite
sample properties and then it can be used to construct whatever quantity, like quantiles,
confidence intervals and tests.
An asset pricing model provides a characterization of the pricing functional as the solution
of an integral equation of second kind that is well-posed. The bayesian approach allows
to exploit the prior information on the price that we have and allows to obtain faster
speed of convergence. The price to pay is the increasing of the degree of ill-posedness and
the necessity of applying a regularization scheme. Substantially, the bayesian technique
transforms a problem that is well-posed in a new one that is ill-posed. This is due to the
compacity of the prior covariance operator.
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Nevertheless, we have shown that there exists a class of prior distribution, in particular,
a class of prior covariance operators, that preserves the well-posedness of the problem. In
this case no further regularization technique is required and the speed of convergence of
the posterior distribution towards the true value p∗ is faster if p∗ is highly smooth.
In order to be as general as possible, our study is based on the Lucas’(1978) model,
but it can be extended to other dynamic rational expectation models with some minor
modifications. Indeed, our bayesian methodology can easily treat every type of preferences
as Epstein- Zin or habit preferences.

8 Appendix A: Proofs

8.1 Proof of Theorem 1

Let T (F̂ ) denote the functional in the estimated transition distribution function F (yt+1|yt) of the
Markov process {Yt}:

T (F̂ ) =
∫

Mt+1(yt, Yt+1)[Mt+1(yt, yt+1)(b(yt+1) + p(yt+1))− p(yt)]dF̂ (yt+1|yt)dF̂ (yt|Yt+1).

Note that T (F̂ ) coincides with the error term U since r + Kp = p and that T (F ) = 0. We make a
first order Taylor expansion of T (F̂ ) around the true value F : T (F̂ )−T (F ) = d1T (F ; F̂−F )+R1T ,
where d1 denotes the Gâteaux differential of T at F in the direction of F̂ and R1T is the rest. Let
λ be a scalar and ξ(yt, yt+1, Yt+1) = Mt+1(yt, Yt+1)[Mt+1(yt, yt+1)(b(yt+1)+p(yt+1))−p(yt)], then

d1T (F ; F̂ − F ) =
d

dλ
T (F + λ(F̂ − F ))

∣∣∣
λ=0

=
∫

ξ(yt, yt+1, Yt+1)F̂ (dYt+1|Yt)F (dYt|yt+1) +
∫

ξ(yt, yt+1, Yt+1)F (dYt+1|Yt)F̂ (dYt|yt+1)

−2
∫

ξ(yt, yt+1, Yt+1)F (dYt+1|Yt)F (dYt|yt+1).

Since the last two terms are null and T (F ) = 0, we obtain that T (F̂ ), and then U , is asymptotically
equivalent to

∫
Mt+1(yt, Yt+1)

∫
[Mt+1(yt, yt+1)(b(yt+1)+p(yt+1))−p(yt)]f̂(yt+1|yt)dyt+1f(yt|Yt+1)dyt.

The central integral can be approximated through a first order Taylor expansion around the true
value of F as: 1

π(yt)
[
∫

Mt+1(yt, yt+1)(b(yt+1) + p(yt+1))f̂(yt+1, yt)dyt+1 − p(yt)
∫

π̂(yt)dyt]. Then,

by substituting f̂ and π̂ with the expression for their kernel estimations we obtain:

U ≈
∫

Mt+1(yt, Yt+1)
1

Tht

T∑

j=1

[Mt+1(yt, yj+1)(b(yj+1) + p(yj+1))− p(yt)]Lh(yt − yj)
f(yt|Yt+1)

π(yt)
dyt

≈ 1
T

T∑

j=1

Mt+1(yj , Yt+1)[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)]
f(yj |Yt+1)

π(yj)
+

1
T

T∑

j=1

∫ ρ∑

i=1

[ ∂i

∂Y i
t

Mt+1(Yt, Yt+1)Mt+1(Yt, yj+1)
f(Yt|Yt+1)

π(Yt)

∣∣∣
Yt=yj

(b(yj+1) + p(yj+1))

− ∂i

∂Y i
t

Mt+1(Yt, Yt+1)p(Yt)
f(Yy|Yt+1)

π(Yt)

∣∣∣
Yt=yj

]
hiu.
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The second equality is obtained by making the change of variable yt−yj

hT
= u and a Taylor expan-

sion at order ρ around yt, where ρ is the minimum among the order of the kernel, the order of
differentiability of the utility function, of the transition and of the stationary density. By denoting
with ϑ the second term in the previous expressio, we get

√
TU(Yt+1) ≈

√
T

T

T∑

j=1

Mt+1(yj , Yt+1)[Mt+1(yj , yj+1)(b(yj+1)+p(yj+1))−p(yj)]
f(yj |Yt+1)

π(yj)
+hρ

T ϑ,

that is the expression in the theorem. Note that all the terms corresponding to hi, with i < ρ are
null since they integrate to 0. When T →∞, h → 0 then we can neglect the second term in

√
TU

and rewrite the scaled error term as
√

TU = T−
1
2

∑T
j=1 θj(Yt+1), with

θj(Yt+1) = Mt+1(yj , Yt+1)[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)]
f(yj |Yt+1)

π(yj)
.

where θj(Yt+1) is a sequence of stationary Hilbert random element such that ||θj(Yt+1)|| is bounded
with probability 1 since

E||θj(Yt+1)|| = σ2

∫
M2

t+1(yj , Yt+1)
f2(Yt+1|yj)
π2(Yt+1)

π(Yt+1)π(yj)dYt+1dyj < ∞.

This guarantees that
√

TU weakly converges toward a Gaussian process, see Theorem 2.46 in [5].
Its expectation is equal to 0 since

√
TE(U(Yt+1)) =

∫
Mt+1(yj , Yt+1)[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)]

f(yj |Yt+1)
π(yj)

f(yj , yj+1)dyjdyj+1

=
∫

Mt+1(yj , Yt+1)E[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)|yj ]
f(yj |Yt+1)

d
yj

= 0

and the kernel $(Yt+1, Ỹt+1) of its covariance operator is computed as

$(Yt+1, Ỹt+1) =
1
T

Cov(
T∑

j=1

θj(Yt+1),
T∑

j=1

θj(Ỹt+1))

= Cov(θj(Yt+1), θj(Ỹt+1)) +
2
T

∑

l>j

Cov(θj(Yt+1), θl(Ỹt+1)).

By exploiting equality (7), the second term is null. Then,

$(Yt+1, Ỹt+1) =
∫

Mt+1(yj , Yt+1)Mt+1(yj , Ỹt+1)[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)]2

f(yj |Yt+1)f(yj |Ỹt+1)
π2(yj)

f(yj , yj+1)dyjdyj+1

=
∫

Mt+1(yj , Yt+1)Mt+1(yj , Ỹt+1)V ar[Mt+1(yj , yj+1)(b(yj+1) + p(yj+1))− p(yj)|yj ]

f(yj |Yt+1)f(yj |Ỹt+1)
π(yj)

f(yj , yj+1)dyj

= σ2

∫
Mt+1(yj , Yt+1)Mt+1(yj , Ỹt+1)

f(yj |Yt+1)f(yj |Ỹt+1)
π(yj)

f(yj , yj+1)dyj .

The factor scaled by σ2 is the kernel of the operator K∗K. Then, the asymptotic covariance
operator associated to

√
TU is asymptotically equal to σ2K∗K. Then,

√
TU ⇒ GP(0, σ2K∗K).
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8.2 Proof of Corollary 1

The bias associated to µFα can be decomposed in two terms:

Êα(p|R̂)− p∗ = (Êα(p|R̂)− Eα(p|R̃)) + (Eα(p|R̃)− p∗),

where Eα(p|R̃) = Ω0H
∗(αT I + ΣT + HΩ0H

∗)−1(R̃ − Hp0) + p0 and R̃ = Hp∗ + U . The first
term represent the estimation error of the operators and the second one stands for the error due
to approximate the true value p∗ of the asset price with the regularized posterior mean. We begin
the analysis from the second term that we rewrite as:

Eα(p|R̃)− p∗ = −
I︷ ︸︸ ︷

[I − Ω0H
∗(αT I + ΣT + HΩ0H

∗)−1H](p∗ − p0)

+ Ω0H
∗(αT I + ΣT + HΩ0H

∗)−1U︸ ︷︷ ︸
II

.

The first term can still be decomposed into two terms, in order to isolate the effect of the covariance
operator ΣT :

I =

IA︷ ︸︸ ︷
[I − Ω0H

∗(αI + HΩ0H
∗)−1H](p∗ − p0)

+ [Ω0H
∗(αI + ΣT + HΩ0H

∗)−1H − Ω0H
∗(αI + HΩ0H

∗)−1H](p∗ − p0)︸ ︷︷ ︸
IB

and term IA looks very similar to the regularization bias of the solution of a functional equation.
More properly, to obtain such a kind of object we use the assumption that (p∗ − p0) ∈ H(Ω0),
i.e. there exists a δ∗ belonging to the domain of Ω

1
2
0 such that we can write (p∗ − p0) = Ω

1
2
0 δ∗.

Therefore,

IA = [I − Ω0H
∗(αI + HΩ0H

∗)−1H]Ω
1
2
0 δ∗

= [Ω
1
2
0 − Ω0H

∗(αI + HΩ0H
∗)−1HΩ

1
2
0 ]δ∗

= Ω
1
2
0 [I − Ω

1
2
0 H∗(αI + HΩ0H

∗)−1HΩ
1
2
0 ]δ∗,

where in the last equality we have used the fact that, since Ω0 is positive definite and self-adjoint,
it can be rewritten as Ω0 = Ω

1
2
0 Ω

1
2
0 . Let B = HΩ

1
2
0 we take the norm in X of IA and after

commutation of operators:

||IA||2 ≤ ||Ω
1
2
0 ||2||(I − (αI + B∗B)−1B∗B)δ∗||2.

The second norm in the right hand side of the previous expression is equal to ||α(αI +B∗B)−1δ∗||2
and it appears as the regularization bias associated to the regularized solution of the ill-posed
inverse problem Bδ∗ = v computed using Tikhonov regularization scheme. It converges to zero
when the regularization parameter α goes to zero and therefore also ||IA||2 converges to zero. This
way to rewrite the above operator justifies the identification condition. Injectivity of HΩ

1
2
0 ensures

that the solution of Bδ∗ = v is identified and therefore, if Ω
1
2
0 is injective, that (p∗−p0) is identified

and that the convergence of the regularized posterior mean is towards the right true value.
The speed of convergence to zero of ||(I − (αI + B∗B)−1B∗B)||2 depends on the regularity of
δ∗, and consequently of (p∗ − p0). If the true solution δ∗ lies in the β-regularity space Φβ of the
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operator B, i.e. δ∗ ∈ R(Ω
1
2
0 H∗HΩ

1
2
0 )

β
2 , the squared regularization bias is at most of order αβ and

then ||IA||2 = Op(αβ). We refer to Carrasco et al. (2007) and Kress (1999) for a proof of it.
The larger β is, the smoother the function δ∗ ∈ Φβ will be and the faster the regularization bias
will converge to zero. However, since for Tikhonov regularization scheme, β cannot be grater than
2 we implicitly assume that δ∗ ∈ Φβ for β ≤ 2.
Now, let us consider term IB :

||IB||2 ≤ ||Ω0H
∗||2(αI + ΣT + HΩ0H

∗)−1||2||ΣT ||2||(αI + HΩ0H
∗)−1H(p∗ − p0)||2

∼ Op

( 1
α2
||ΣT ||2||(αI + HΩ0H

∗)−1H(p∗ − p0)||2
)
.

Since ΣT = σ2

T K∗K, its squared norm is ||ΣT ||2 ∼ Op( 1
T 2 ). Moreover, by using the regularity

condition δ∗ ∈ R((Ω
1
2
0 H∗HΩ

1
2
0 )

β
2 ) ≡ R((B∗B)

β
2 )

||(αI + HΩ0H
∗)−1H(p∗ − p0)||2 ∼ ||(αI + B∗B)−1Bδ∗||2

∼ ||(αI + B∗B)−1(B∗B)
β+1
2 ρ∗||2

∼ 1
α2
||α(αI + B∗B)−1(B∗B)

β+1
2 ρ∗||2

∼ Op

( 1
α2

α(β+1)∧2
)
,

since ||B|| = ||(B∗B)
1
2 ||. Thus ||IB||2 ∼ Op

(
1

α4T 2 α(β+1)∧2
)
.

To find speed of convergence of term II we decompose it in the following equivalent way:

II =

IIA︷ ︸︸ ︷
Ω

1
2
0 B∗(αI + BB∗)−1U

+Ω0H
∗[(αI + ΣT + HΩ0H

∗)−1 − (αI + HΩ0H
∗)−1]U︸ ︷︷ ︸

IIB

||IIA||2 ≤ ||Ω
1
2
0 ||2||(αI + B∗B)−1B∗||2||U ||2

||IIB||2 ≤ ||Ω
1
2
0 ||2||B∗(αI + BB∗)−1||2||ΣT ||2||(αI + ΣT + BB∗)−1||2||U ||2.

By Kolmogorov theorem, ||U ||2 is bounded in probability if E||U ||2 < ∞ and E||U ||2 = trΣT .
Then, ||IIA||2 ∼ Op( 1

α trΣT ) and ||IIB||2 ∼ Op( 1
α3 ||ΣT ||2trΣT ). Since trΣT ∼ Op( 1

T ) and
||ΣT ||2 ∼ Op( 1

T 2 ) we conclude that ||II||2 ∼ Op( 1
αT + 1

α3T 3 ) ∼ Op( 1
αT ) because the second rate is

negligible with respect to the first one.

Let consider now the term (Êα(p|R̂) − Eα(p|R̃)) due to the estimation error. We make a
decomposition similar to that done before:

Êα(p|R̂)− Eα(p|R̃) =

A︷ ︸︸ ︷
Ω0[Ĥ∗(αI + ΣT + ĤΩ0Ĥ

∗)−1Ĥ −H∗(αI + ΣT + HΩ0H
∗)−1H](p∗ − p0)

+ Ω0[Ĥ∗(αI + ΣT + ĤΩ0Ĥ
∗)−1 −H∗(αI + ΣT + HΩ0H

∗)−1]U︸ ︷︷ ︸
B

,

A =

A1︷ ︸︸ ︷
Ω

1
2
0 [B̂∗(αI + B̂B̂∗)−1B̂ −B∗(αI + BB∗)−1B]δ∗
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+Ω
1
2
0 [B̂∗(αI + ΣT + B̂B̂∗)−1B̂ − [B̂∗(αI + B̂B̂∗)−1B̂]δ∗︸ ︷︷ ︸

A2

−Ω
1
2
0 [B∗(αI + ΣT + BB∗)−1B −B∗(αI + BB∗)−1B]δ∗︸ ︷︷ ︸

A3

,

B = Ω
1
2
0 [B̂∗(αI + B̂B̂∗)−1 −B∗(αI + BB∗)−1]U

+Ω
1
2
0 [B̂∗(αI + ΣT + B̂B̂∗)−1 − [B̂∗(αI + B̂B̂∗)−1]U

−Ω
1
2
0 [B∗(αI + ΣT + BB∗)−1 −B∗(αI + BB∗)−1]U.

The norm ||A3||2 is equal to ||IB||2. Note that ||B̂∗B̂−B∗B||2 ∼ Op( 1
T +h2ρ) and ||B̂B̂∗−BB∗||2 ∼

Op( 1
Thn + h2ρ), see Darolles et al. (2007). By using methods similar to those one used before and

a Taylor expansion of (αI + B̂∗B̂) around the true operator B, we get

||A1||2 ∼ Op

(
(

1
α2

+
1
α4

( 1
T

+ h2ρ
)
)
( 1

T
+ h2ρ

)
αβ

)

||A2||2 ∼ Op

( 1
T 2α4

(1 +
1

α2(
(

1
Thn + h2ρ

)
)
)(α(β+1)∧2 +

( 1
Thn

+ h2ρ
)
)(1 +

1
α2

( 1
Thn

+ h2ρ
)
)
)
.

In a similar way we obtain

||B||2 ∼ Op(
1

α4T 3
(1+

1
α2

( 1
Thn

+h2ρ
)
)(1+

( 1
Thn

+h2ρ
)
)+

1
αT

( 1
Thn

+h2ρ
)
(
1
α

+
1
α3

( 1
Thn

+h2ρ
)
)+

1
α3T 3

).

Elimination of the negligible terms allows to conclude.
The procedure to obtain the rate of convergence of Ωα,R is equivalent, hence in this proof we only
show the fundamental decomposition that we have to perform:

Ωα,R = −Ω
1
2
0 [B̂∗(αI + Σ̂T + B̂B̂∗)−1B̂ −B∗(αI + ΣT + BB∗)−1B]Ω

1
2
0

−Ω
1
2
0 B∗(αI + ΣT + BB∗)−1B]Ω

1
2
0 .

8.3 Proof of Theorem 3

Point (i) follows from Chebyshev’s Inequality (19) and results in Corollary 1.
Point (ii) can be obtained by Chebishev’s Inequality (19) and by keeping the non negligible rates
in ||Êα(p|R̂)− p∗||2 and in ||Ωα,R||.

8.4 Proof of Theorem 4

Write the bias (Es(p|R̂)− p∗) as

Es(p|R̂)− p∗ = (Es(p|R̂)− Es(p|R̃)) + (Es(p|R̃)− p∗),

Es(p|R̂)− Es(p|R̃) = [Ω0Ĥ
∗(αL2s + Σ̂T + ĤΩ0Ĥ

∗)−1Ĥ − Ω0H
∗(αL2s + Σ + HΩ0H

∗)−1H](p∗ − p0)

+[Ω0Ĥ
∗(αL2s + Σ̂T + ĤΩ0Ĥ

∗)−1 − Ω0H
∗(αL2s + Σ + HΩ0H

∗)−1]U,

Es(p|R̃)− p∗ = −[I − Ω0H
∗(αL2s + Σ + HΩ0H

∗)−1H](p∗ − p0)

+Ω0H
∗(αL2s + Σ + HΩ0H

∗)−1U.

We omit computation of the rate of convergence of (Es(p|R̃)− p∗) since it is given in the proof of
Theorem 5 in Florens and Simoni (2008). The obtained rate is:
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||Es(p|R̃)− p∗||2 ∼ Op(α
β+1
a+s + α

1−a
a+s trΣT +

1
α4
||ΣT ||2α

a+β+2s
a+s +

1
α2
||Σ||2α 1−a

a+s trΣT ).

Consider the estimation error (Es(p|R̂) − Es(p|R̃)), denote HΩ
1
2
0 = T , the first term in it can be

rewritten as:

A1︷ ︸︸ ︷
Ω

1
2
0

(
[T̂ ∗(αΩ−s

0 + T̂ T̂ ∗)−1T̂ − T ∗(αΩ−s
0 + TT ∗)−1T ]δ∗

+ [T̂ ∗(αΩ−s
0 + Σ̂T + T̂ T̂ ∗)−1T̂ − T̂ ∗(αΩ−s

0 + T̂ T̂ ∗)−1T̂ ]δ∗︸ ︷︷ ︸
A2

− [T ∗(αΩ−s
0 + ΣT + TT ∗)−1T − T ∗(αΩ−s

0 + TT ∗)−1T ]δ∗
)

︸ ︷︷ ︸
A3

.

Let B = TΩ
s
2
0 = HΩ

s+1
2

0 By commuting operators and factorizing Ω
s
2
0 we get

||A1|| = ||Ω
s+1
2

0 [(αI + B̂∗B̂)−1B̂∗B̂ − (αI + B∗B)−1B∗B]Ω
β−s

2
0 ρ∗||

= ||Ω
s+1
2

0

(
− [I − (αI + B̂∗B̂)−1B̂∗B̂] + [I − (αI + B∗B)−1B∗B]

)
Ω

β−s
2

0 ρ∗||

= ||Ω
s+1
2

0

(
− α(αI + B̂∗B̂)−1 + α(αI + B∗B)−1

)
Ω

β−s
2

0 ρ∗||

= ||Ω
s+1
2

0 α(αI + B̂∗B̂)−1(B̂∗B̂ −B∗B)(αI + B∗B)−1Ω
β−s

2
0 ρ∗||

≤ ||(αI + B̂∗B̂)−1||−(s+1)||B̂∗B̂ −B∗B)||||(αI + B∗B)−1Ω
β−s

2
0 ρ∗||.

The last norm is an Op(α
β−s

2(a+s) ); moreover (αI + B̂∗B̂)−1 = (αI +B∗B)−1− (αI +B∗B)−1(B̂∗B̂−
B∗B)(αI + B̂∗B̂)−1. Then, by using the Corollary 8.22 in Engl et al. (2000)

||(αI + B̂∗B̂)−1||−(s+1) ≤ ||(B∗B)
s+1

2(a+s) (αI + B∗B)−1||+ ||(B∗B)
s+1

2(a+s) (αI + B∗B)−1(B̂∗B̂ −B∗B)(αI + B̂∗B̂)−1||
∼ Op(α

1−2a−s
2(a+s) ).

since the second norm is negligible once multiplied by the remaining terms of ||A1||. It follows that
||A1||2 ∼ Op(α

β+1
a+s 1

α2 ||B̂∗B̂ −B∗B||2). Following the same logic, term A2 is rewritten

Ω
1
2
0 B̂∗(αI + Ω

s
2
0 (Σ̂T + T̂ T̂ ∗)Ω

s
2
0 )−1ΣT (αI + B̂B̂∗)−1B̂]δ∗

that has norm of order Op( 1
α3 ||ΣT ||2). Lastly,

||A3|| ≤ ||Ω
1
2
0 B∗(αI + Ω

s
2
0 (ΣT + TT ∗)Ω

s
2
0 )−1Ω

s
2
0 ||||ΣT ||||(αΩ−s

0 + TT ∗)−1Tδ∗||,
||(αΩ−s

0 + TT ∗)−1Tδ∗|| = ||T (αΩ−s
0 + T ∗T )−1Ω

β
2
0 ρ∗||

= ||TΩ
s
2
0 (αI + Ω

s
2
0 T ∗TΩ

s
2
0 )−1Ω

β+s
2

0 ρ∗||
= ||(B∗B)

1
2 (αI + B∗B)−1Ω

β+s
2

0 ρ∗||
= ||(B∗B)

1
2 (αI + B∗B)−1(B∗B)

β+s
2(a+s) v||

∼ Op(α
β−a

2(a+s) ),
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for some v such that Ω
β+s
2

0 ρ∗ = (B∗B)
β+s

2(a+s) v. Such v exists since, under Assumption 8, R(Ωa+s
0 ) =

R(B∗B). Then, ||A3||2 ∼ Op( 1
α4 ||ΣT ||2α

a+β+2s
a+s ).

The second term of (Es(p|R̂)− Es(p|R̃)) is rewritten

A4︷ ︸︸ ︷
Ω

1
2
0

(
[T̂ ∗(αΩ−s

0 + T̂ T̂ ∗)−1 − T ∗(αΩ−s
0 + TT ∗)−1]U

+ [T̂ ∗(αΩ−s
0 + Σ̂T + T̂ T̂ ∗)−1 − T̂ ∗(αΩ−s

0 + T̂ T̂ ∗)−1]U︸ ︷︷ ︸
A5

− [T ∗(αΩ−s
0 + ΣT + TT ∗)−1 − T ∗(αΩ−s

0 + TT ∗)−1]U
)

︸ ︷︷ ︸
A6

.

Then,

||A4||2 = ||Ω
1
2
0 (αΩ−s

0 + T̂ ∗T̂ )−1T̂ ∗ − (αΩ−s
0 + T ∗T )−1T ∗]U ||2

≤ ||Ω
s+1
2

0 (αI + B∗B)−1||2
(
||B̂∗B̂ −B∗B||2||(αI + B̂∗B̂)−1B̂∗||2 + ||B̂∗ −B∗||2

)
||U ||2

∼ Op(α
1−2a−s
2(a+s) ||B̂∗B̂ −B∗B||2 1

α
trΣT + α

1−2a−s
2(a+s) ||B̂∗ −B∗||2trΣT )

||A5||2 ≤ ||Ω
1
2
0 ||2||(αI + B̂∗B̂)−1B̂∗Ω

s
2
0 ||2||Σ̂T ||2||Ω

s
2
0 (αI + Ω

s
2
0 (Σ̂T + T̂ T̂ ∗)Ω

s
2
0 )−1||2||U ||2

∼ (
1
α3
||Σ̂T ||2trΣT )

||A6||2 ≤ ||Ω
1
2
0 T ∗(αΩ−s

0 + TT ∗)||2||ΣT ||2||(αΩ−s
0 + ΣT + TT ∗)||||U ||2

∼ Op(
1
α2
||ΣT ||2trΣT α

1−a
a+s ).

Elimination of negligible terms allows to get the result.
The rate of convergence of ||Ωs,R||2 is based on specular methods and on the decomposition

Ωs,R = −Ω0[Ĥ∗(αL2s + Σ̂T + ĤΩ0Ĥ
∗)−1Ĥ −H∗(αI + ΣT + HΩ0H

∗)−1H]Ω0

−Ω0H
∗(αI + ΣT + HΩ0H

∗)−1H]Ω0.

8.5 Proof of Theorem 5

Consider the decomposition

Êg(p|R̂)− p∗ =

I︷ ︸︸ ︷
[Êg(p|R̂)− Ẽg(p|R̂)]+

II︷ ︸︸ ︷
[Ẽg(p|R̂)− Eg(p|R̂)]+

III︷ ︸︸ ︷
[Eg(p|R̂)− p∗] .

Let W = (K̂∗K̂)−
1
2 Ĥ(K∗K)

s
2 and Ŵ = (K̂∗K̂)−

1
2 Ĥ(K̂∗K̂)

s
2 . Then,

||I||2 ≤
IA︷ ︸︸ ︷

||[(K̂∗K̂)
s
2 Ŵ ∗(αI + ŴŴ ∗)−1(K̂∗K̂)−

1
2 − (K∗K)

s
2 W ∗(αI + WW ∗)−1W (K̂∗K̂)−

1
2 ]Ĥ(p∗ − p0)||2

+ ||[(K̂∗K̂)
s
2 Ŵ ∗(αI + ŴŴ ∗)−1(K̂∗K̂)−

1
2 − (K∗K)

s
2 W ∗(αI + WW ∗)−1W (K̂∗K̂)−

1
2 ]U︸ ︷︷ ︸

IB

||IA||2 ≤ ||(K̂∗K̂)
s
2 (αI + ŴŴ ∗)−1||2

(
||α(Ŵ ∗ −W ∗)||2 + ||Ŵ∗||2||Ŵ −W ||2||W ∗||2

)

||W (αI + W ∗W )−1(K∗K)
β−s

2 ρ∗||2 + ||(K̂∗K̂)
s
2 − (K∗K)

s
2 ||2||W ∗(αI + WW ∗)−1W (K∗K)

β−s
2 ρ∗||2
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∼ Op

(
(

1
Thn

+ h2ρ)(
1
α

α
2(s−β)

β+s +
1
α

α
4s
β + α

2(s−β)
β+s )

)

∼ Op

( 1
α2

(
1

Thn
+ h2ρ)α

3s−β
β+s

)
,

since the second and third rates are negligible with respect to the first one. To get this result we

have used the assumption (p∗ − p0) ∈ R(Ω
β
2s
0 ), i.e. ∃ρ∗ ∈ X such that (p∗ − p0) = (K∗K)

β
2 ρ∗.

||IB||2 ≤ ||(K̂∗K̂)
s
2 [Ŵ ∗(αI + ŴŴ ∗)−1 −W ∗(αI + WW ∗)−1](K∗K)−

1
2 U ||2

+||(K̂∗K̂)
s
2 − (K∗K)

s
2 ||2||W ∗(αI + WW ∗)−1(K̂∗K̂)−

1
2 U ||2

∼ Op

( 1
α2

(
1

Thn
+ h2ρ)

1
T

α−γ
)
.

Hence,

||[Êg(p|R̂)− Ẽg(p|R̂)]||2 ∼ Op

( 1
α2

(
1

Thn
+ h2ρ)(α

3s−β
β+s ) +

1
T

α−γ
)
.

Let B = (K∗K)−
1
2 H(K∗K)

s
2 and B̂ = (K̂∗K̂)−

1
2 H(K∗K)

s
2 , the second error is rewritten as:

||II||2 ≤
IIA︷ ︸︸ ︷

||(K∗K)
s
2 [B̂∗(αI + B̂B̂∗)−1B̂ −B∗(αI + BB∗)−1B](K∗K)

β−s
2 ρ∗||2

+ ||(K∗K)
s
2 [B̂∗(αI + B̂B̂∗)−1 −B∗(αI + BB∗)−1](K∗K)−

1
2 U ||2︸ ︷︷ ︸

IIB

||IIA||2 = ||(K∗K)
s
2 (αI + B̂∗B̂)−1(B̂B̂∗ −BB∗)α(αI + B∗B)−1(K∗K)

β−s
2 ρ∗||2

∼ Op(
1
α

(
1
T

+ h2ρ)α
2s
β ).

||IIB||2 ≤ ||(K∗K)
s
2 [B̂∗(αI + B̂B̂∗)−1 −B∗(αI + BB∗)−1](K̂∗K̂)−

1
2 U ||2

+||(K∗K)
s
2 B̂∗(αI + B̂B̂∗)−1[(K∗K)−

1
2 − (K̂∗K̂)−

1
2 ]U ||2

∼ Op

( 1
α

(
1
T

+ h2ρ)
1
T

α−γ +
1
T

α−γ +
1
T

)
.

Then, ||Ẽg(p|R̂) − Eg(p|R̂)||2 ∼ Op( 1
α2 ( 1

T + h2ρ)(α
2s+β

β + 1
T α1−γ)) that is of the same order as

Op( 1
α2 ( 1

T + h2ρ) 1
T α1−γ). Lastly,

||Eg(p|R̂)− p∗||2 ≤
IIIA︷ ︸︸ ︷

||[I − (K∗K)sH∗(α(K∗K) + H(K∗K)sH∗)−1H(p∗ − p0)]||2

+ ||(K∗K)sH∗(α(K∗K) + H(K∗K)sH∗)−1U ||2︸ ︷︷ ︸
IIIB

||IIIA||2 =
(

sup
j

(λj −
λ2s+β

j (1− λj)2

α + (1− λj)(λ2s
j − λ2s+1

j )
)
)2

≤
(

sup
j

αλβ
j

α + λ2s
j

)2

∼ Op

(
α

β
s

)

||IIIB||2 ≤ tr(V ar((K∗K)sH∗(α(K∗K) + H(K∗K)sH∗)−1U))

=
σ2

T

∑

j

λ4s
j (1− λj)2

(α + (1− λj)2λ2s
j )2

=
σ2

T

∑

j

λ
2(2s−γs)
j

(α + (1− λj)2λ2s
j )2

λ2γs
j
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≤ σ2

T

(
sup

j

λ
(2s−γs)
j

α + λ2s
j

)2 ∑

j

λ2γs
j

∼ Op

( 1
T

α−γ
)
.

The optimal α is obtaining by equating the two rates of ||Eg(p|R̂) − p∗||2. Then, α
β
s = 1

T α−γ if

α ∝ ( 1
T )

s
(β+γs) . The corresponding optimal speed of convergence is proportional to ( 1

T )
β

β+γs .
When α is set equal to the optimal one, the terms I and II go to zero if β < 3s, β ≥ (2− γ)s and
n
2ρ ≤ β+γs−2s

β+γs .
Moreover, ||(K̂∗K̂)

s
2 − (K∗K)

s
2 ||2 ∼ Op( 1

Thn+h2ρ ) if s ≥ 2.

8.6 Proof of Theorem 6

We consider the posterior variance applied to an element φ ∈ X and its decomposition

V̂ ar
g
(p|R̂)φ =

I︷ ︸︸ ︷
[V̂ ar

g
(p|R̂)− Ṽ ar

g
(p|R̂)]φ+

II︷ ︸︸ ︷
[Ṽ ar

g
(p|R̂)− V arg(p|R̂)]φ +

III︷ ︸︸ ︷
V arg(p|R̂)φ .

Let W = (K̂∗K̂)−
1
2 Ĥ(K∗K)

s
2 and Ŵ = (K̂∗K̂)−

1
2 Ĥ(K̂∗K̂)

s
2 . Then, for any v ∈ X such that

(K∗K)
s
2 φ = (K∗K)

β−s
2 v

||I||2 = ||(K̂∗K̂)sφ− (K̂∗K̂)
s
2 Ŵ ∗(αI + ŴŴ ∗)−1Ŵ (K̂∗K̂)

s
2 φ

−(K∗K)sφ + (K∗K)
s
2 W ∗(αi + WW ∗)−1W (K∗K)

β−s
2 v||2

= ||(K̂∗K̂)
s
2 [I − Ŵ ∗(αI + ŴŴ ∗)−1Ŵ ](K̂∗K̂)

s
2 φ

−(K∗K)
s
2 [I −W ∗(αI + WW ∗)−1W ](K∗K)

s
2 φ||2

≤ ||(K̂∗K̂)
s
2 α(αI + ŴŴ ∗)−1[(K̂∗K̂)

s
2 − (K∗K)

s
2 ]φ||2

+||(K̂∗K̂)
s
2 [α(αI + Ŵ ∗Ŵ )−1 − α(αI + W ∗W )−1](K∗K)

β−s
2 v||2

+||[(K̂∗K̂)
s
2 − (K∗K)

s
2 ]α(αI + W ∗W )−1(K∗K)

β−s
2 v||2

∼ Op

(
(

1
Thn

+ h2ρ)(1 + α
β−s
2s )

)

∼ Op

(
(

1
Th∗

+ h2ρ)(α
2s

2s+1 + α
2(β−2s−1)

2s+1 )
)
.

Let B = (K∗K)−
1
2 H(K∗K)

s
2 and B̂ = (K̂∗K̂)−

1
2 H(K∗K)

s
2 , term II is:

||II||2 ≤ ||(K∗K)sφ− (K∗K)
s
2 B̂(αI + B̂B̂∗)−1B̂(K∗K)

s
2 φ||2

+||(K∗K)sφ− (K∗K)
s
2 B(αI + BB∗)−1B(K∗K)

s
2 φ||2

∼ Op

( 1
α

( 1
T

+ h2ρ
)
α

β−s
s

)
.

Lastly, ||III||2 = ||(K∗K)
s
2 α(αI + B∗B)−1(K∗K)

β−s
2 v||2 that is of order Op(α

β
s ).

8.7 Computation of the Eigensystem for Section 6

In this appendix we prove that the eigensystem {λj , φ̄j}, necessary for obtaining the poste-
rior distribution in Section 6, can be computed as the eigensystem associated to matrix A.
We start by explicitating the estimated elements of ( 1

T K̂K̂∗ + ĤΩ0Ĥ
∗). Note that K̂ϕ̂j ≈∫

M(yi, Y )ϕ̂j
f̂(yi,Y )
ˆπ(yi), ˆπ(Y )

π(Y )dY . By remembering the definition of φj , we have:
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K̂ϕ̂j = T
∑

t

φj(yi, yt+1)
Lh(yi − yt)∑
t Lh(yi − yt)

K̂∗K̂ϕ̂j = T
∑

t

∑

i

M(yi, Y )φj(yi, yt+1)L̄(yi, yt, Y, yi+1)

ĤΩ0Ĥ
∗ = K̂∗Ω0K̂ + K̂∗K̂Ω0K̂

∗K̂ − K̂∗K̂Ω0K̂ − K̂∗Ω0K̂
∗K̂

K̂∗Ω0K̂ϕ̂j = T
∑

t

∑

i

∑

i′
M(yi′ , Y )ω(yi, Y )φj(yi, yt+1)L̄(yi, yt, Y, yi′+1)π(y)dy

K̂∗K̂Ω0K̂
∗K̂ =

∑
t

∑

i

∑

l

∑

l′
M(yl′ , yl+1)M(yl′ , Y )L̄(yl′ , yt, Y, yl′+1)φj(yi, yt+1)

∫
M(yi, y)ω(y, yl+1)L̄(yi, yt, y, yi+1)π(y)dy

K̂∗K̂Ω0K̂ =
∑

t

∑

i

∑
m

∑

m′
M(ym′ , ym+1)ω(ym+1, yi)

Lh(yi − yt)∑
m Lh(yi − ym)

M(ym′ , Y )

L̄(ym′ , yt, Y, ym′+1)φj(yi, yt+1)

K̂∗Ω0K̂
∗K̂ =

∑
t

∑

i

∑

k′
M(yk′+1, Y )

Lh(Y − yk′+1)∑
l Lh(Y − yl+1)

∫
M(yi, y)ω(y, yk′+1)

L̄(yi, yt, y, yi+1)π(y)dyφj(yi, yt+1).

Then, ( 1
T K̂K̂∗+ĤΩ0Ĥ

∗)ϕ̂j = λ̂jϕ̂j . By taking the integral
∫

U ′(Y ) Lh(Y−yk+1)∑
k Lh(Y−yk+1)

π(Y )dY on both

sides of this equality, and developing φj(yi, yy+1) = β 1
U ′(yi)

φ̄j(yt+1), we get Akϕj = λ̂j φ̄j(yk+1),
where Ak denotes the (k + 1)-th row of A, for k = 0, . . . , T − 1.

9 Appendix B: Numerical Implementation

We present in this subsection a numerical simulation able to show the good properties of
our estimator. For simplicity, we take n = 1, so that only 1 consumption good is present
in the economy. The law of motion for the relevant state variable Yt is

lnYt = a + b ln Yt−1 + ε,

where ε is a normal random variable with variance 0.01. The agent’s per-period utility

function is of CRR type: U(Yt) = Y
(1−γ)
t
1−γ , with γ = 0.30. We chose the agent’s subjective

discount factor β = 0.97.
The true value of the pricing functional is taken as the function satisfying equation (8)
and it is obtained through the classical method described in subsection 4.3. This choice
is motivated by the small dimension n. In this situation the classical solution is likely to
converge faster than the bayesian solution.
The transition density of the state variable is estimated through a kernel smoothing with
a gaussian kernel function and a bandwidth h = 0.1. The prior distribution is specified as
a gaussian measure with mean set alternatively equal to p0 = 525Y 2

t − 857.5Yt + 373 or
to p0 = 160Yt − 108. The prior covariance operator is Ω0 =

∫
exp{−|Ỹ − ∧Yt|}π(Ỹ )dỸ .

We show the results of the simulation in Figure 1 for two values of the regularization
parameter α: α = 0.3 and α = 1. The magenta curve is the prior mean. The blue
curve is the classical solution p̂ = (I − K̂)r̂, the red one is the regularized posterior mean,
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regularized through the classical Tikhonov scheme. The difference between this two curves
gives a measure of how the bayesian method fit well.
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(a) α = 0.3, N = 1000
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(b) α = 1, N = 1000
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(c) α = 0.3, N = 1000
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(d) α = 1, N = 1000

Figure 1: Asset Pricing functional estimation.

In Figure 2 we have used the extended g-prior distribution with g = Tα, T = 1000 and
different values of α are alternatively specified. The covariance operator is Ω0 = (K∗K)s,
with s = 1.
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(a) α = 0.3, N = 1000,

p0 = 525Y 2
t − 857.5Yt + 373
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(b) α = 0.2, N = 1000,

p0 = 525Y 2
t − 857.5Yt + 373

Figure 2: Asset Pricing functional estimation with an extended g-prior specification.
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