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Abstract

We study convex preferences over lotteries and over menus of lotteries. We consider a set of

consequences C and we characterize complete, transitive, and convex binary relations over lotteries

on the set C. We prove that convex preferences correspond to a decision criterion in which the

Decision Maker reveals pessimism and a lack of con�dence in the evaluation of consequences or

his future tastes. We show in a context of choice over menus of lotteries how convex preferences

translate into Maxmin Expected Utility on a Subjective State Space. Finally, we show how convex

preferences can be interpreted as a cautious criterion of completion.
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Keywords: Convexity, Betweenness, Flexibility, Strategic Rationality, Subjective State Space,

Completion

1 Introduction

The object of our study are preferences over lotteries that exhibit a preference toward randomization

or diversi�cation. This is a classical topic in Decision Theory, partially overlooked by the literature of

choice under risk. We show that such feature is characterized by cautiousness and pessimism of the

Decision Maker (DM). Moreover, we argue and show that this pessimism can be interpreted as a lack

of con�dence about one or all of the following aspects: value of outcomes, future tastes, degree of risk

aversion.

In order to �x ideas, consider two probability distributions p and q over a set of consequences

C. For example, C could be monetary outcomes and p and q could be monetary lotteries. Assume

further that the DM expresses the following two rankings: he deems p and q indi¤erent and he strictly
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prefers the mixture 1
2p+

1
2q to any of the two lotteries. That is, this DM exhibits a preference toward

randomization or diversi�cation. Examples of this pattern of choice are not uncommon. For example,

Prelec [31] reports overwhelming evidence for preference toward randomization. Some of the most

prominent models in Decision Theory under risk cannot account for this behaviour (see, e.g., von

Neumann and Morgenstern [36], Fishburn [16], Dekel [9], Gul [22]). Actually, a preference toward

randomization constitutes a violation of these models. For example, the Expected Utility (EU) model

would imply that the mixture 1
2p+

1
2q is indi¤erent to any of the two lotteries p and q. Such violation

of EU is classical since it shares a common feature with most of the well known violations of EU.

Indeed, it is a violation of the Axiom of Independence on which the EU model rests. The Axiom of

Independence consists in assuming that

p % q ) �p+ (1� �) r % �q + (1� �) r 8� 2 [0; 1] ;8r:

It is not hard to check that Independence implies that randomization is neither detrimental nor

bene�cial, that is,

p � q ) p � �p+ (1� �) q � p 8� 2 [0; 1] : (1)

Assumption (1) is not violated by the Allais paradox and it is called Betweenness. For this reason, a

preference toward randomization is a stronger violation of EU whence compared to the Allais paradox,

since it constitutes a violation of Betweenness. The assumption of Betweenness was often considered

by the literature of choice under risk in order to provide models consistent with the Allais paradox.

Similarly, most of the recent literature of choice over menus of lotteries followed a similar path: by

assuming that randomization over lotteries carries no or little value.1

However, as we argue later, Betweenness (and a fortiori Independence) has been consistently

rejected experimentally, see Camerer and Ho [5]. That is, DMs in a situation of choice under risk are

not indi¤erent to randomization. Moreover, as we argue in Subsection 1.1, normatively a preference

toward randomization, even for a context of choice under risk, might be desirable. For this reason,

we study complete and transitive preferences that are suitably continuous and satisfy the following

assumption of Convexity or Mixing:

p � q ) �p+ (1� �) q % p 8� 2 [0; 1] :

This is very much in line with the path chosen by a consistent part of the literature of choice under

ambiguity. In a setting à la Anscombe and Aumann [3], this literature weakened the assumption of

Independence toward Uncertainty Aversion (see Gilboa and Schmeidler [21], Schmeidler [34]). Never-

theless, this path was consistently left unexplored for problems of choice under risk.

Convexity has been an important feature both in the theoretical and experimental literature on

preferences over lotteries.

In the theoretical literature of choice under risk, Convexity was often the consequence of some

stronger assumption, for example, Weak Independence (see Gul [22]), Betweenness (see, e.g., Dekel

[9], Fishburn [16]), or it was paired with some extra assumptions (see Maccheroni [27]).

Similarly, in the experimental literature, Convexity has been mainly the object of indirect study in

experiments that tested Betweenness. One of the most important contributions in this direction is the

paper of Camerer and Ho [5]. Camerer and Ho review nine di¤erent studies that tested Betweenness

and conduct their own experiments testing for this property. Almost all of the twenty experiments

reviewed report that Betweenness is consistently violated and, for half of them, most of the violations

observed are consistent with Convexity.2

1See Gul and Pesendorfer [23], Dekel, Lipman Rustichini [10], Epstein, Marinacci, and Seo [14].
2For a short review of these facts, see Chapter 8 of Camerer in [24].
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We study convex preferences under risk and propose a characterization for such preferences, with

the minimum extra structure required. We do this for two reasons. First, Convexity is a central feature

of the theory of choice under risk, but it has never been studied in its full generality. Second, Convexity

is a less stringent requirement than Betweenness and it is more consistent with the experimental

evidence. We study three main interpretations for Convexity as a hedging property for uncertainty

about: the value of outcomes, future tastes, and the degree of risk aversion. Although, these are

not mutually exclusive interpretations, each of them is better understood in a suitable and distinct

environment. As we argue in the rest of the Introduction, the �rst and the second type of uncertainty

arise naturally in problems of choice over, respectively, lotteries and menus of lotteries. The third

interpretation arises in a setting where preferences are incomplete and Convexity cautiously completes

them.

1.1 Convex Preferences over Lotteries

We assume that the DM�s preferences are represented by a complete and transitive binary relation

%. We adopt a classical de�nition of Convexity. That is, we assume that if a lottery p is deemed
equivalent to a lottery q then their mixture, �p+ (1� �) q, is at least as good as any of the two.3 ;4

In the context of choice under ambiguity of Anscombe and Aumann [3], Convexity takes the usual

interpretation of Uncertainty Aversion, or equivalently, of preference toward diversi�cation. Here, p

and q are simple random variables thus the mixture operation reduces the variability in the outcomes

received.5 Therefore, Convexity imposes that a DM prefers prospects with less uncertainty.

On the other hand, in the context of choice under risk, a (strict) preference toward randomization

seems to move toward the opposite direction. The DM appears to prefer more uncertain prospects.

At �rst sight, this appears to be in contrast with much of the (applied) literature where it is typically

assumed that the DM has von Neumann and Morgenstern EU preferences that further are risk averse.

Intuitively, such a DM prefers less uncertain lotteries. Thus, Convexity might seem a counterintuitive

assumption. In the next few lines, we argue this is not the case.

To �x ideas, consider a DM with preferences % over the set of lotteries �(C) where C is a �nite

set of consequences. Moreover, assume that the DM has EU preferences, that is,

p % q ,
X
x2C

v (x) p (x) �
X
x2C

v (x) q (x)

where v 2 RC . Here, v is uniquely determined (up to an a¢ ne transformation). Thus, it follows
that the DM is sure about the relative value of consequences. Similarly, if C � R, he is sure about
his tastes, for example, his degree of risk aversion. The �rst aspect is captured by the fact that v

represents the preferences over C, while the second is captured by the curvature of v.

Nevertheless, it is not hard to imagine situations where the consequences of di¤erent actions

(deterministic lotteries) are of unsure value or situations where there is uncertainty about risk aversion.

Here, we discuss the �rst case while the discussion of the second is postponed to Subsection 1.3.

3 It is not hard to show that under a minimal assumption of continuity this property is equivalent to assuming that
if p is weakly preferred to q then �p+ (1� �) q is weakly preferred to q. This is a weaker version of the assumption of
Convexity that the aforementioned experimental and theoretical works were referring to. There, weakly was replaced
with strictly. For this reason, patterns of choice consistent with the stronger form of Convexity are consistent with our
notion of Convexity.

4Concavity implies that the mixture, �p + (1� �) q, is at most as good as any of the two. As for Convexity, the
version of Concavity tested involved strict preferences. Betweenness is the assumption that implies that preferences
satisfy both Convexity and Concavity.

5See Debreu [8, p. 101] and Schmeidler [34].
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We start with a somewhat arti�cial but clear example. Consider a situation in which the DM can

choose between two degenerate lotteries that pay, respectively, x and y. The DM is uncertain about

his evaluation of consequences. Suppose that x is indi¤erent to y because, for instance, the evaluation

of x is high when the one of y is low and vice versa. If the DM is cautious or pessimistic then he

is more prone to consider the negative aspects of his choices. In pondering a deterministic choice

between x and y, he might overvalue the possibility of making the wrong choice, that is, of selecting

the element with lowest value. In other words, such a DM, being unsure of the value of outcomes,

always gives more weight to the worst of all possible evaluations. For this reason, it is then sensible

for him to opt for the lottery 1
2�x +

1
2�y. For sure, by �ipping a coin, the DM exposes himself to the

possibility of getting the ex post worst outcome. But, this occurrence was already something that

subjectively he perceived was going to happen, if he opted for a deterministic choice. By randomizing

instead, he leaves himself open to the possibility of getting the ex post best outcome.

The essence of this example is the uncertainty faced by the DM about his (future) evaluation of

consequences and the preference toward randomization or diversi�cation to cope with such uncertainty.

This is a pervasive economic fact. For instance, choosing a particular environmental policy might

lead to probabilistically very clear results but the economic value of such results can be unclear.

Similarly, present choices over future consumption must deal with possible uncertainty that the DM

faces today about his future preferences. Again, in both cases, the DM is unsure about his ranking

over consequences as well as he is unsure about his future tastes.

More precisely, we provide a representation result for convex preferences % on the set, �(C), of

simple lotteries over a generic set C of consequences. Studies about preferences on simple lotteries

are widely common in the literature (see, e.g., Dekel [9], Gilboa [19], Gul [22], and Maccheroni [27]).

We adopt minimal assumptions over %: completeness, transitivity, Convexity, and some form of

continuity.6 These assumptions imply the existence of a utility function u and we obtain the following

representation of %: there exist a set of normalized Bernoulli utility functions V and a function

U : R� V ! [�1;1] such that

u (p) = inf
v2V

U (Ev (p) ; v) 8p 2 �(C) : (2)

Our DM values a lottery p as if he is unsure about the relative value of outcomes or as if he has multiple

selves. The multiplicity of selves is captured by a normalized, closed, and convex family, V, of di¤erent
evaluation functions v of the outcomes.7 Given the family of evaluation functions, V, the DM can

compute for each v the expected utility of the lottery p. That is, the DM can compute the value

Ev (p) =
X
x2C

v (x) p (x) for all v 2 V. Since U is increasing in the �rst component, fU (Ev (p) ; v)gv2V

is a family of distorted EU evaluations. Of all possible distorted EU evaluations, the �worst�one is

the �nal value that the DM attaches to p. This re�ects a sort of pessimism in the DM behaviour, or,

in the words of Maccheroni [27], it implies that �the most pessimist of [his] selves gets the upper hand

over the others�.

Two objects are prominent in the decision criterion of (2): U and V. For this reason, we study
those two objects more in depth. First, U has the important feature of being essentially unique and

it satis�es several properties of regularity, quasiconvexity, and continuity. Second, in the particular

case of monetary lotteries, it can be shown that the function U is an index of risk aversion. Finally,

in order to better interpret V and U , we extend our analysis to preferences over menus of lotteries. In
this context and in light of the previous literature we argue that V can be interpreted as a Subjective

6The form of continuity assumed will depend on the properties of the set C.
7We �x an arbitrary consequence x 2 C and we de�ne V = V1 (x) =

�
v 2 RC : v (x) = 1

	
.
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State Space. V represents the DM�s future tastes and U (Ev (p) ; v) can be seen as the state dependent
utility of lottery p.

Our characterization generalizes the �ndings of Maccheroni [27] where (2) becomes

u (p) = min
v2W

Ev (p) 8p 2 �(C) ,

W is a closed and convex subset of V. In terms of our representation, U can be chosen to be such that

U (t; v) =

(
t v 2 W
1 v 62 W

:

Our main contributions (Theorems 1, 9, 13, and 20) show that under the assumption of Convexity

any model of choice under risk, representing complete, transitive, and continuous preferences, can be

viewed as adhering to the same kind of pessimistic decision rule found in [27].

1.2 Convex Preferences over Menus

One of our main motivations in introducing Convexity was the indecisiveness of the DM about his

future tastes. The latter has been extensively studied by the literature of choice over menus, partic-

ularly, by the literature of choice over menus of lotteries, where a menu is de�ned to be a (closed)

subset of lotteries. The seminal works of Dekel, Lipman, and Rustichini [10] and Gul and Pesendorfer

[23] exactly analyzed preferences over menus of lotteries.8 In such works, following the standard inter-

pretation of the literature, there are two periods: time 0 and time 1. The DM has ex ante preferences,

%, over menus. Then, he chooses a menu P at time 0, while consumption is chosen at time 1 from P .

To gain intuition, let us start by considering a DM who is sure about his preferences over lotteries

at time 1. Therefore, he can be represented by an EU function. Then, he should rank menus according

to the criterion

P % Q, max
p2P

Ev (p) � max
p2Q

Ev (p) : (3)

Dekel, Lipman, and Rustichini [10] and Kreps [25], argue that the lack of con�dence about tastes at

time 1 is what renders the previous criterion unfeasible for the DM. They address this concern by

exploring axiomatically decision criteria for a problem of choice over menus. In terms of assumptions,

the criterion of choice represented in (3) imposes that preferences other than being complete, tran-

sitive, and suitably continuous, satisfy the assumptions of Independence, Flexibility, and (Strategic)

Rationality. Independence for menus is an obvious generalization of the well known Independence for

lotteries, that is,

P % Q) �P + (1� �)R % �Q+ (1� �)R

where � 2 [0; 1] and R is a third menu.9 Flexibility states that if menu P contains menu Q then

P % Q while Rationality requires that if P % Q then P � P [ Q. Moreover, those assumptions are
known to be necessary and su¢ cient for the decision criterion represented in (3).10 In [10] and [25],

the assumption that comes under attack is the one of Rationality. This is the assumption that forces

the DM to rank menus in terms of the best element contained in each of them. Dekel, Lipman, and

8See also the seminal work in the literature of choice over generic menus: Kreps [25].
9The set �P + (1� �)R contains all the lotteries q such that q = �p + (1� �) r for some p in P and r in R. We

refer the reader to [10] and [23] for an interpretation of the Axiom of Independence in this context.
10See, for example, [23, pag. 1408].

5



Rustichini, in their most central model, drop Rationality and show that the DM�s preferences can be

represented in the following way

P % Q,
Z
W
max
p2P

Ev (p) d� (v) �
Z
W
max
p2Q

Ev (p) d� (v) (4)

where W is a set of Bernoulli utility functions and � is a probability over W. The lack of con�-
dence about future tastes translates into a family of (rational) evaluations fmaxp2P Ev (p)gv2W . Such
evaluations are then aggregated through a subjective average.

Our work starts from the observation that a cautious DM might deem the average a too optimistic

criterion to aggregate all these independent evaluations and he might want to declare

P % Q, inf
v2W

max
p2P

Ev (p) � inf
v2W

max
p2Q

Ev (p) : (5)

Proposition 4, Proposition 5, and Corollary 41 show that, when we retain Rationality but we weaken

Independence to Convexity of preferences, % admits a representation in the spirit of (5).

More precisely, we consider a binary relation % over the class of nonempty and closed subsets

(menus) of lotteries over a �nite set of consequences C. We assume that % represents the DM�s

preferences.11 We provide a representation result for convex preferences% that further satisfy standard
assumptions of continuity as well as Flexibility and Rationality. Theorem 3 shows that a binary

relation % satis�es the previous assumptions if and only if there exists an essentially unique function
U : R� V ! [�1;1] such that

P % Q, max
p2P

inf
v2V

U (Ev (p) ; v) � max
p2Q

inf
v2V

U (Ev (p) ; v) (6)

where V is a family of normalized Bernoulli utility functions. Following the current literature, the
set of ex post preferences, V, takes the interpretation of a Subjective State Space (see Subsection 3.2,
for a more detailed discussion). Proposition 4 and Proposition 5 show that whenever we consider

preferences % restricted or de�ned only on convex menus we obtain that

P % Q, inf
v2V

max
p2P

U (Ev (p) ; v) � inf
v2V

max
p2Q

U (Ev (p) ; v) ; (7)

or equivalently,

P % Q, inf
v2V

U

�
max
p2P

Ev (p) ; v
�
� inf

v2V
U

�
max
p2Q

Ev (p) ; v
�
: (8)

Proposition 5 is both economically and mathematically nontrivial. Economically, by looking just at

convex menus, we allow for the possibility that the DM can costlessly randomize without imposing,

a priori, any further behavioural assumption on the value of randomization. Mathematically, �nite

menus play an essential role in the construction of the utility function for % (see [23]). By restricting
% to convex menus, the only menus that are convex and �nite are the ones with one element. This

makes the construction of the utility function signi�cantly harder.12

Our main contribution is to show that uncertainty about future tastes can be introduced by

retaining Rationality but by weakening Independence. This is at odds with the reviewed literature

where weakening Rationality is the main road chosen to introduce uncertainty about future tastes. On

11This is basically the setting of Dekel, Lipman, Rustichini [10]. Indeed, they allow for non closed menus as well.
Nevertheless, their hypothesis of continuity renders them virtually irrelevant for the derivation of their results.
12On the other hand, for example Dekel, Lipman, and Rustichini [10] or Epstein, Marinacci, and Seo [14], construct

the utility function for % over convex menus and then they extend it to generic menus. Their techniques are neither
applicable nor natural to our setting. They are not applicable because our state space, V, is not compact. They are not
natural because they deliver a representation in terms of probabilities over the Subjective State Space.
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the other hand, we conform to the traditional and dominating theme of Decision Theory. We weaken

Independence (to Convexity) of preferences over lotteries. This leads to a foundation of the Maxmin

and Minmax decision criteria over a Subjective State Space and it allows to introduce uncertainty

about future tastes.13

1.3 Convex Preferences as a Criterion of Completion

The DM�s lack of con�dence about his future tastes, in particular, about risk aversion was an important

motivation for adopting the assumption of Convexity. For example, suppose that a DM has preferences

over monetary lotteries and that he evaluates such lotteries through their Certainty Equivalent. He is

sure he likes more money to less and, particularly, he does not want to violate First Order Stochastic

Dominance. However, he is unsure about his degree of risk aversion. We might therefore assume

that he has a family W of possible candidates for his Bernoulli utility function.14 Given such lack

of con�dence, the DM has a preliminary ranking on monetary lotteries. Indeed, he is certain that a

lottery p is better than a lottery q whenever the certainty equivalent of p is bigger than the certainty

equivalent of q for each element in W. We call such preliminary ranking %0 and we have that

p %0 q , Ev (p) � Ev (q), v�1 (Ev (p)) � v�1 (Ev (q)) 8v 2 W: (9)

Even though, the DM is certain about the ranking expressed by the criterion represented in (9), %0
might not be useful to make a decision. Indeed, %0 is highly incomplete and not all the prospects
can be ranked. If the DM is then pessimist or cautious, he might want to use a complete ranking %
where p is declared at least as good as q if and only if the certainty equivalent of p in the worst case

scenario is bigger than the certainty equivalent of q in the worst case scenario. This is equivalent to

saying that

p % q , min
v2W

v�1 (Ev (p)) � min
v2W

v�1 (Ev (q)) : (10)

Notice that the ranking % is complete and it preserves %0, that is, if p %0 q then p % q. Hence, % is a
completion of %0. Moreover, % satis�es Convexity. In particular, we can represents % in terms of our
representation in (2). It can be shown that

p % q , min
v2V

U (Ev (p) ; v) � min
v2V

U (Ev (q) ; v) (11)

where U is such that

U (t; v) =

(
v�1 (t) v 2 W
1 otherwise

8 (t; v) 2 R� V:

This example clari�es the meaning of the distortion function U in our representation result and the

role of Convexity as a criterion of completion. The function U has three roles. First, U transforms

the family of expected utility evaluations, fEv (p)gv2W , into the same units of account, for example,
dollars. Second, it makes certain Bernoulli utility functions more plausible than others. For example,

if v 62 W then the evaluation under v of p is U (Ev (p) ; v) =1 and it will never be considered in the

computation of the in�mum. Finally, by taking these distorted evaluations through U and opting for

13See also Epstein, Marinacci, and Seo [14] for an axiomatization toward weakening Independence. In their �rst
model, which is the only one sharing our setting, they weaken Independence just to Convexity over menus but they still
dispense with the assumption of Rationality. On the other hand, they mantain other assumptions that do not make
our and their model easily comparable.
14For technical reasons, we assume that W is a compact and convex set such that each element in v is a strictly

increasing function, v (1) = 1, and v (R) = R. See Example 17 for technical details.
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a �worst� case scenario approach, the DM forms a complete and convex ranking that preserves the

initial ranking %0. Notice that for each p

min
v2V

U (Ev (p) ; v) = min
v2W

U (Ev (p) ; v) (12)

that is, in completing cautiously his preferences the DM just considers the Bernoulli utility functions

that he deemed plausible since the beginning: the ones in W.

More precisely, given a binary relation %0 as in (9), Proposition 7 shows that all preferences,
%, represented as in (11) and (12) and arising as a completion of %0, are convex and preserve %0.
Proposition 8 and Proposition 22 show the opposite implication. That is, they show that each convex

binary relation % can be seen as a completion of an incomplete maximal binary relation %0 represented
as in (9).

Our main contribution is to show how the decision criterion in (2), therefore Convexity, provides a

cautious way to complete preferences %0 represented as in (9). More importantly, we are able to show
that all continuous and convex preferences over lotteries can be seen as arising through a process of

cautious completion.

1.4 Final Remarks and Organization

As known, the model of Maccheroni [27] can be seen as the dual counterpart of the model for prefer-

ences under ambiguity of Gilboa and Schmeidler [21]. Similarly, our model can be seen as the dual

counterpart of the model proposed by Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [6].

In the same vein, convex preferences as a criterion of completion share the same perspective of Gilboa,

Maccheroni, Marinacci, and Schmeidler [20]. Nevertheless, the economic setting and the mathematical

structure of these other contributions is radically di¤erent.

From a mathematical point of view, the representation result in (2) is based on the dual repre-

sentation theory for evenly quasiconcave functions on locally convex topological vector spaces. The

essential uniqueness of the function U is very much in line with the �ndings of Cerreia-Vioglio, Mac-

cheroni, Marinacci, and Montrucchio [7] and it is derived by extensively using some of the techniques

adopted in [7]. However, there are elements of novelty that make the results in this work nontrivial.

The results in [7] cannot be directly applied to our setting. Indeed, [7] develops a complete duality

theory for monotone and quasiconcave functions de�ned over an M -space. Here, we miss two key

assumptions that deliver the complete dualities discussed in [7]: monotonicity and the M -space do-

main. For similar reasons, we cannot apply the (complete) duality results developed by Diewert [11]

and Martinez-Legaz [28].

Section 2 introduces the notation and discusses the mathematical preliminaries. Section 3 states

all the main results for the case in which the set of consequences C is �nite. Subsection 3.2 and

Subsubsection 3.2.1 report our results on convex preferences over menus of lotteries. Section 4 extends

most of the results contained in Section 3 and discuss some examples. The analysis is carried over,

�rst, for countable C and then for arbitrary C. Finally, we consider the case of C compact metric space

and preferences over the set of all Borel probability measures �B (C). Subsubsection 4.1.1 analyzes the

impact of First Order Stochastic Dominance on the main representation result when C is countable.

Subsection 4.2.1 shows that U , under minimal assumptions, can be interpreted as an index of risk

aversion.
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The proofs are relegated to the Appendices. Appendix A provides the main duality results. Ap-

pendix B contains the proofs for Section 3 and Section 4. Appendix B.1 contains the proofs for

Subsection 3.2. Appendix B.2 contains the proofs for Subsubsection 3.2.1.

2 Notation and Mathematical Preliminaries

The object of our study is a binary relation, %, on the particular mixture space �(C).15 �(C) is the
set of all simple lotteries over a generic set C. We assume that % represents the DM�s preferences.

We call p; q; r; s; t elements of �(C). We call x; y; z elements of C. Given an element x 2 C, we call
�x the lottery that with probability 1 delivers x. Notice that whenever we consider a binary relation,

%, over �(C) we can restrict % to C since this set is embedded into �(C) by the map such that

x 7! �x. In light of this observation, we can justify the following abuses of notation: we often identify

�x with x and we write x % y instead of �x % �y. A function u : � (C)! R is said to represent % or
to be a utility function for % if and only if for each p; q 2 �(C)

p % q () u (p) � u (q) :

If C is equal to R then we say that u : � (C) ! R is a certainty equivalent utility function if

and only if u is a utility function and u (x) = x for all x 2 C. A function u : � (C) ! R is

said to be mixture continuous if and only if for each p; q 2 �(C) and for each � 2 R the sets

f� 2 [0; 1] : u (�p+ (1� �) q) � �g and f� 2 [0; 1] : � � u (�p+ (1� �) q)g are closed in [0; 1].

2.1 Duality Toolbox

For our representation result, we need to discuss di¤erent forms of continuity. This requires a topology

on the set �(C). We consider the same setting of Maccheroni [27]. For this purpose, notice that each

element p of �(C) is an element of RC0 . That is, p is a function from C to R such that the set

suppfpg = fx 2 C : p (x) 6= 0g is �nite. We call elements of RC0 : p; q; r; s; t. A generic element of RC

is called v.

Given such observation, we consider the duality


RC0 ;RC

�
where the evaluation duality, h�; �i :

RC0 � RC ! R, is de�ned by
hp; vi =

X
x2C

v (x) p (x) :

We endow RC0 with the weak topology induced by the evaluation duality and we endow RC with the
weak� topology. A net fp�g�2A � RC0 is said to converge to p (p� ! p) if and only if hp�; vi ! hp; vi
for all v 2 RC . Similarly, a net fv�g�2A � RC is said to converge to v (v� ! v) if and only if

hp; v�i ! hp; vi for all p 2 RC0 . It is well known that both topologies are linear, Hausdor¤, and
locally convex (see [1, Chapter 5]). The second topology is the topology of pointwise convergence and

the topological dual of RC0 is the algebraic dual. Both topologies coincide with the usual Euclidean
topology as soon as C is �nite.16 When we consider the image of a pair (p; v) 2 �(C)�RC under the
evaluation duality h�; �i we write, equivalently, Ev (p) in place of hp; vi. We consider �(C) endowed
with the relative topology.

We assume the convention that the supremum of the empty set is equal to �1. We �x a generic
element x 2 C. We de�ne V = V1 (x) =

�
v 2 RC : v (x) = 1

	
. We say that a subset D of RC0 is evenly

15We denote � and �, respectively, the asymmetric and the symmetric parts of %.
16 Indeed, if we call jCj the cardinality of C then both RC0 and RC can be identi�ed with RjCj where the latter is the

set of vectors with jCj components.
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convex if and only if for each �p =2 D there exists v 2 RC such that h�p; vi < hp; vi for all p 2 D.17 Set
R�

= Rn f0g. We say that a subset D of R � V is �-evenly convex if and only if for each
�
t; �v
�
62 D

there exists (s; p) 2 R� � RC0 such that hp; �vi + ts < hp; vi + ts for all (t; v) 2 D. In the sequel, we
deal extensively with functions U : R � V ! [�1;1]. Given U , we de�ne uU : RC0 ! [�1;1] by
p 7�! infv2V U (hp; vi ; v). We say that U is linearly continuous (resp., linearly mixture continuous) if
and only if the function uU is a real valued and continuous function on �(C) (resp., real valued and

mixture continuous). We say that U is �-evenly quasiconvex if and only if all its lower contour sets
are �-evenly convex.18 Finally, given U , we de�ne U+ by

U+ (t; v) = inf fU (t0; v) : t0 > tg 8 (t; v) 2 R� V:

A function from R� V to [�1;1] might have some of the following properties:

P.1 For each v 2 V the function U (�; v) : R! [�1;1] is increasing.

P.2 limt!1 U (t; v) = limt!1 U (t; v
0) for all v; v0 2 V.

P.3 U is �-evenly quasiconvex.

P.4 U is linearly continuous.

P.5 U is linearly mixture continuous.

P.6 U is such that uU = uU+ on �(C).

P.7 If C = R, infv2V U (v (y) ; v) = y for all y 2 R.

We de�ne Uc (R� V) to be the class of functions from R � V to [�1;1] that satisfy P.1-P.4
and Umc (R� V) to be the class of functions from R � V to [�1;1] that satisfy P.1-P.3 and P.5-
P.6. Similarly, if C = R we de�ne Ucn (R� V) (resp., Umcn (R� V)). U belongs to Ucn (R� V) (resp.,
Umcn (R� V)) if and only if U 2 Uc (R� V) and it satis�es P.7 (resp., U 2 Umc (R� V) and it satis�es
P.7). Finally, consider one of these four classes of functions and call it U . Consider a function

u : � (C)! R such that
u (p) = inf

v2V
U (Ev (p) ; v) 8p 2 �(C) (13)

for some U 2 U . U is said to be essentially unique (in U) if and only if given another function U 0 in U

uU = uU 0 ) U = U 0:

That is, whenever U and U 0 induce the same function on the entire set RC0 , not just on �(C), they
happen to coincide.

17 It can be shown that an evenly convex set D is convex. Indeed, a set D is evenly convex if and only if it is the
intersection of half open spaces. By usual separation arguments, closed and open convex sets of RC0 are evenly convex.
18Su¢ cient conditions for �-even quasiconvexity are provided in Lemma 38 in Appendix B.
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3 Convex Preferences over Lotteries

In this section we discuss the main results and contributions under the assumption that the set of

consequences C is �nite.

3.1 The Representation Result

We consider a binary relation %. We assume that % represents the preferences of the DM over the set

of simple lotteries over a generic �nite set C of consequences. Notice that, since C is assumed to be

�nite, �(C) can be identi�ed with the usual simplex in a �nite dimensional vector space. We require

% to satisfy the following two assumptions:

Axiom A. 1 (Weak Order) The binary relation % is complete and transitive.

Axiom A. 2 (Mixture Continuity) If p; q; r 2 �(C) then f� 2 [0; 1] : �p+ (1� �) q % rg and
f� 2 [0; 1] : r % �p+ (1� �) qg are closed sets.

Weak Order is a common assumption of rationality. Moreover, since we are after a (utility)

representation result, Weak Order is a necessary assumption. Mixture Continuity is a technical

assumption, needed to represent % through a utility function u. Next, we discuss the main axiom for

our result.

Axiom A. 3 (Mixing) For each p; q 2 �(C), p � q implies that

�p+ (1� �) q % p 8� 2 [0; 1] :

Mathematically, it is not hard to see that, given A.1 and A.2, % satis�es A.3 if and only if % is

convex. That is, for each q 2 �(C) the set fp 2 �(C) : p % qg is a convex set in �(C). Economically,
the Axiom of Mixing is an axiom of smoothening or cautiousness as discussed in the Introduction.

We are ready to state our main representation result.

Theorem 1 Let �(C) be the space of simple lotteries over a �nite set C and % a binary relation on
�(C). The following are equivalent facts:

(i) % satis�es A.1, A.2, and A.3;

(ii) there exists an essentially unique U 2 Umc (R� V) such that

p % q , inf
v2V

U (Ev (p) ; v) � inf
v2V

U (Ev (q) ; v) : (14)

Moreover, if u : � (C) ! R is a mixture continuous utility function for % then the function U? :

R� V ! [�1;1], de�ned by

U? (t; v) = sup fu (p) : Ev (p) � t and p 2 �(C)g 8 (t; v) 2 R� V,

belongs to Umc (R� V) and represents % as in (14).
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Remark 2 Recall that we �xed from the beginning a generic consequence x 2 C and we de�ned

V = V1 (x) =
�
v 2 RC : v (x) = 1

	
. Then, the statement contained in (ii) could be restated to be �for

each x 2 C there exists an essentially unique function U 2 Umc (R� V1 (x))...�. Hence, the role of
the consequence x is uniquely of normalization con�rming that x can be chosen arbitrarily. The same

Remark applies to all the other results in the paper with the exception of Propositions 11, 15, and 19.

In the �rst two cases, the choice of x could be arbitrary but we opted for speci�c and natural values.

In the last case, the choice of x is not free but forced by the premises.

It is worth observing that Theorem 1 is derived in the same exact setting of von Neumann and

Morgenstern result on Expected Utility (see, e.g., [26, Chapter 5] or [29, Chapter 6]). It is somewhat

surprising that the weakening of Independence to MixingnConvexity translates into a multiplicity of
distorted expected utility evaluations where for each lottery p the �worst� one constitutes the �nal

value attached to p. In particular, since U (�; v) is increasing for each v 2 V, we can see that the ranking
induced by p 7! U (Ev (p) ; v) does not revert the expected utility ordering induced by p 7! Ev (p).

3.2 Maxmin Criterion over a Subjective State Space

In this subsection, we extend preferences, %, to be over menus of lotteries. We consider two classes of
menus. More precisely, given C, we de�ne

M = fP � �(C) : ? 6= P is closedg and C = fP � �(C) : ? 6= P is closed and convexg :

Clearly, we have C �M. We call P;Q;R elements ofM. We refer to them as menus and we refer to

them as convex menus if they further belong to C. Given a menu P 2 M, we denote by co (P ) the

convex hull of P . Clearly, we have that co (P ) 2 M. Since C is �nite, we identify RC0 and RC with
RjCj. The weak and weak� topology induced by the evaluation duality are the Euclidean topology. We
endowM and C with the Hausdor¤ Metric and the Hausdor¤ Metric Topology. This makesM and

C Polish spaces. Notice that we can identify an element p of �(C) with the element fpg ofM or C.
With a small abuse of notation, we use fpg and p indi¤erently and we treat �(C) as a closed subclass
of elements ofM or C. In this subsection, object of our study is a binary relation % onM while in

the next subsubsection it is a binary relation % over the smaller class C. Call P one of these classes

of sets, we assume in this section and the next one that % satis�es the following axioms:

Axiom B. 1 (Weak Order) The binary relation % is complete and transitive.

Axiom B. 2 (Upper Semicontinuity) For each Q 2 P the set fP 2 P : P % Qg is a closed set.

Axiom B. 3 (Lower Singleton Semicontinuity) For each q 2 �(C) the set fp 2 �(C) : q % pg
is a closed set.

Axiom B. 4 (Flexibility) If P � Q then P % Q.

Axiom B. 5 (Rationality) If P % Q and P [Q 2 P then P � P [Q.19

19Notice that if P =M then the requirement P [Q 2 M in B.5 is redundant and it can be withdrawn.
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Before discussing the main axioms, we need to discuss the setting in which % is considered. We

adopt the standard interpretation in the literature of choice over menus of lotteries (see, e.g., [10],

[14], and [23]). % is interpreted as ex ante preferences over menus at time 0. Whenever a menu is

selected, an object from it will be chosen for consumption at time 1. In this setting, it is then possible

to discuss the possibility of uncertainty about ex post preferences, about future tastes. It is feasible

to introduce a Subjective State Space that sums up the possible di¤erent states of the world through

ex post preferences. Indeed, many events and states of the world might realize between time 0, the

time when a menu P is chosen, and time 1, the time when consumption is chosen from P . Many of

these events might not even be conceivable by the DM at time 0. In the most extreme case, he might

just know that something will happen between time 0 and time 1. Those events are not irrelevant

since they might have an e¤ect on his choice at time 1. Nevertheless, it will not be important what

these events are but what ex post preferences they induce, in other words, how these events will make

feel the DM at time 1 and therefore how they will in�uence his choice at time 1. For this reason, the

set of ex post preferences constitutes a natural summary of all the possible states of the world that

might realize and therefore a parsimonious Subjective State Space.20

We next discuss the axioms for the setting P =M since they can be better related to the literature.

Their interpretation stays unchanged for the case P = C. That said, since we are after a (utility)
representation result, Weak Order is a necessary assumption. As usual, we have some technical

assumptions of continuity: Upper Semicontinuity and Lower Singleton Semicontinuity. These two

assumptions are continuity assumptions that are standard in the theory of choice over menus (see,

e.g., [10, pag. 904] or [23, pag. 1412]). Flexibility is an hypothesis that exactly captures the fact that

the DM might be unsure about his ex post preferences. It imposes that the DM prefers bigger menus

to smaller ones, since in this way the possibilities of consumption at time 1 are wider and so they

can accommodate more easily di¤erent future preferences. Finally, (Strategic) Rationality is an axiom

that was �rst weakened by Kreps [25].21 This assumption apparently seems to be in contrast with

the possibility that the DM considers the fact that he is unsure about his future tastes. Indeed, given

the other axioms, it is not hard to show that the extra assumption of Rationality implies that P % Q
if and only if P and Q are evaluated according to their best element, with respect to the restriction

of % to �(C). A tension between Rationality and the possibility of di¤erent ex post preferences

over lotteries seems to arise by the previous equivalence, since it appears that there is no room for

uncertainty about the ranking of lotteries. However, this tension is only apparent. Indeed, it might

be that % restricted to lotteries already incorporates the uncertainty on future tastes. For example,

when % restricted to �(C) is represented by a criterion like the one in (14).

Before discussing the main representation result, we introduce the two main axioms of this sub-

section:

Axiom B. 6 (Mixing) For each p; q 2 �(C), p � q implies that �p+(1� �) q % p for all � 2 [0; 1].

Axiom B. 7 (Menu Mixing) For each P;Q 2 P, P � Q implies that �P + (1� �)Q % P for all

� 2 [0; 1].22

20For a similar discussion see also [10] and [14].
21See [26, pag. 184] for a textbook exposure.
22Given P;Q 2 P and � 2 (0; 1) ;

�P + (1� �)Q = fr 2 �(C) : 9p 2 P; 9q 2 Q such that r = �p+ (1� �) qg :

If � = 0 then �P + (1� �)Q = Q and if � = 1 then �P + (1� �)Q = P . It is immediate to see that, given our
setting, �P + (1� �)Q 2 P.
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Obviously, Menu Mixing implies Mixing. We will consider these two assumptions separately. The

appeal of B.6 is the same as the one of previous subsection and potentially, in this setting, might be

reinforced since there could be explicit uncertainty about future tastes or ex post preferences. The

interpretation of B.7 instead is of a preference toward diversi�cation of menus. Epstein, Marinacci,

and Seo, [14] justify B.7 exactly along these lines and we refer the interest reader to their paper.

Mathematically, B.7 is a weakening of the usual Independence assumption that can be found in the

literature of preferences over menus of lotteries (see, e.g., [10] and [23]).

Theorem 3 Let C be a �nite set and let % be a binary relation onM. The following are equivalent

facts:

(i) % satis�es B.1-B.5 and B.7;

(ii) % satis�es B.1-B.6;

(iii) there exists an essentially unique and upper semicontinuous U 2 Uc (R� V) such that the func-
tion V :M! R, de�ned by

V (P ) = max
p2P

inf
v2V

U (Ev (p) ; p) 8P 2M; (15)

represents %.

Moreover, if we de�ne u : � (C) ! R such that u (p) = V (p) for all p 2 �(C) then U? : R � V !
[�1;1], de�ned by

U? (t; v) = sup fu (p) : Ev (p) � t and p 2 �(C)g 8 (t; v) 2 R� V;

is upper semicontinuous, belongs to Uc (R� V), and represents % as in (15).

Proof Sketch. (i) implies (ii) is immediate as well as (iii) implies (i) is routine. If we assume B.1-
B.6 and we consider % restricted to menus of one lottery, % is a complete, transitive, and continuous
binary relation on �(C). Moreover, it satis�es A.3. Therefore, it can be represented as in Theorem

1. If we de�ne u : � (C)! R to be such that

u (p) = inf
v2V

U (Ev (p) ; v) 8p 2 �(C) (16)

then B.1-B.5 allow us to extend the utility function u from the set of single lotteries toM, by imposing,

V (P ) = maxp2P u (p) for all P 2M. By (16), the statement follows. �

Next proposition suggests that V is a Subjective State Space. It is arguable that if the DM can

freely and costlessly randomize then the only menus of interests for his ranking are the convex ones.

Moreover, there are two extra forces that justify the restriction to convex menus. Indeed, assume the

DM is presented with a menu P and he can freely randomize among the elements of P . Since he

satis�es B.4 and B.6, he will prefer co (P ) to P and act as if he is evaluating co (P ) instead of P . This

is not to impose that co (P ) is indi¤erent to P . Indeed, if the DM is forbidden to randomize then

when he is facing P he will evaluate it just for the elements contained in P . Furthermore, if he has a

strict preference for randomization, he will say that co (P ) is strictly preferred to P .

Proposition 4 Let C be a �nite set and let % be a binary relation onM that satis�es B.1-B.6. If U

and V are as in Theorem 3 then it follows that

V (P ) = inf
v2V

max
p2P

U (Ev (p) ; v) = inf
v2V

U

�
max
p2P

Ev (p) ; v
�

for all convex P 2M.
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In other words, we can interpret each element v in V as a future possible subjective state of the
world for the DM, that is, as a future possible ex post ranking over lotteries in �(C). Indeed, in

evaluating a menu P , depending on his future tastes v in V, the DM evaluates it by looking at the best

lottery in P with respect to expected utility. In fact, since U is increasing in the �rst component, we

have that maxp2P U (Ev (p) ; v) = U (maxp2P (Ev (p) ; v)). However, the novelty is exactly how all the
evaluations fmaxp2P U (Ev (p) ; v)gv2V are condensed to provide the �nal evaluation V (P ). Instead
of being averaged as in [10], the �worst� of such distorted evaluations delivers V (P ). Therefore,

Theorem 3 is characterizing a DM that in evaluating a menu P values it according to its best ex

ante element p but under the assumption that the ex post value of p will be the �worst� possible.

That is, the DM maximinizes over his Subjective State Space V. Moreover, Proposition 4 proves the
equivalence of these two approaches when the menus considered are convex. Notice that this result is

obtained by retaining B.5 but by weakening Independence.

Proposition 4 is partially unsatisfactory. Indeed, its interpretation is based on the claim that since

the DM can costlessly randomize then the only menus of interests are the convex ones but it requires

the DM to have preferences over allM. A standard assumption in the literature (see, e.g., [10] and

[14]) that guarantees that the DM only cares about convex menus is the following one:

Axiom B. 8 (Indi¤erence to Randomization) For each P 2M we have that P � co (P ).

Corollary 41 in the Appendix extends the result of Proposition 4 to all menus P inM. That is, it

shows that the Maxmin decision criterion and the Minmax decision criterion coincide for each menu

P if and only if % further satis�es B.8. Nevertheless, even in this case, we might have reached a result
that is partially unsatisfactory. Axiom B.8 re�ects more than asking that the DM can randomize

costlessly. In the words of Dekel, Lipman, and Rustichini [10], it implies that randomization �has no

value or cost to�the DM. But it is exactly the motivation that randomization can be of strict value

to the DM that gives normative and descriptive interest to the assumption of Mixing. For this reason,

in the next subsubsection we consider preferences that are just de�ned over convex menus.

3.2.1 Convex Menus

In the previous subsection we argued that if the DM can costlessly randomize then the only menus

of interest are the convex ones and we derived the result (Proposition 4) that suggested that a DM

with convex preferences over menus could be seen as a DM that minimaxizes over his Subjective

State Space. Corollary 41 con�rms that this decision criterion can apply to all menus, provided that

% further satis�es Axiom B.8. The shortcoming of Proposition 4 is that while it only applies to

convex menus it requires the DM to have preferences even over nonconvex menus. On the other hand,

Corollary 41 can account for all menus but by imposing that randomization is of no cost and no value

either. For this reason in this subsubsection, we restrict preferences % to be over nonempty, closed,

and convex subsets of lotteries. In this way, we naturally make convex menus the unique object of

choice by not imposing, a priori, any assumption on the value of randomization.

Proposition 5 Let C be a �nite set and let % be a binary relation on C. The following are equivalent
facts:

(i) % satis�es B.1-B.6;
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(ii) there exists an essentially unique and upper semicontinuous U 2 Uc (R� V) such that the func-
tion V : C ! R, de�ned by

V (P ) = inf
v2V

max
p2P

U (Ev (p) ; v) = inf
v2V

U

�
max
p2P

Ev (p) ; v
�

8P 2 C; (17)

represents %.

Moreover, if we de�ne u : � (C) ! R such that u (p) = V (p) for all p 2 �(C) then U? : R � V !
[�1;1], de�ned by

U? (t; v) = sup fu (p) : Ev (p) � t and p 2 �(C)g 8 (t; v) 2 R� V;

is upper semicontinuous, belongs to Uc (R� V), and represents % as in (17).

We already discussed the economic relevance of restricting preferences to convex menus. Math-

ematically, it is important to notice that this result is not a corollary of Proposition 4. Indeed, in

Theorem 3 and Proposition 4, the construction of the utility function V is �rst done over single menus,

then, by induction and B.5, it is extended to �nite menus, and �nally, by continuity, it is extended to

all menus. By considering preferences over C, we rule out the possibility of using �nite menus. The
techniques used by Dekel, Lipman, and Rustichini [10] and Epstein, Marinacci, and Seo [14] seem to be

not applicable. [10] and [14] construct the utility function V just over convex menus and then extend

it to other nonconvex menus. Nevertheless, their techniques seem to rely heavily on the compactness

of the Subjective State Space and they obtain representations in terms of subjective probabilities over

the Subjective State Space, which is not our case or goal.

3.3 Convex Preferences Under Risk as a Criterion of Completion

One way in which the DM might show multiple selves or a lack of con�dence in the evaluation of

consequences or in his future tastes might arise in the incompleteness of his preferences (see Dubra,

Maccheroni, and Ok [12]). That is, the DM might be sure that his future tastes or the relative ranking

of consequences lie in a closed and convex set W of V. But he might not be sure which exact element
is. Therefore, his original preferences can be represented by an a priori incomplete binary relation,

%0, such that
p %0 q , Ev (p) � Ev (q) 8v 2 W: (18)

The fact that %0 is typically incomplete could not help him in making a choice. For this reason, the

DM might need to complete his preferences. That is why he needs to form a complete ranking % over
elements of �(C). Reasonably, the DM will choose a complete ranking % such that

p %0 q ) p % q: (19)

Indeed, if p %0 q the DM knows that no matter what his future tastes will be he will prefer p to q and

for this reason he will feel compelled to declare p % q.

De�nition 6 Let % and %0 be two binary relations on �(C). % is a completion of %0 if and only if
% is complete and % and %0 satisfy (19). Equivalently, we say that % preserves %0.

If the DM is cautious then one way in which he can choose % is to take a function U 2 Uc (R� V)
and de�ne his new complete preferences to be such that

p % q , inf
v2W

U (Ev (p) ; v) � inf
v2W

U (Ev (q) ; v) : (20)
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Notice that just the elements inW are considered in computing the in�mum in (19) and not the entire

set V. The example in the Introduction, formally discussed in Example 17, shows a very important
case of this instance when C = R. Next proposition shows that preferences, %, arising from (18) and

(20) are convex preferences over lotteries where % is actually a completion of %0. Before discussing
the results of this subsection, we need to strengthen our continuity assumption into the following one.

Axiom A. 4 (Continuity) For each q 2 �(C) the sets fp 2 �(C) : p % qg and fp 2 �(C) : q % pg
are closed sets in �(C).

Notice that A.4 is a standard assumption of continuity (see Debreu [8, pag. 56]). We then have:

Proposition 7 Let �(C) be the space of simple lotteries over a �nite set C and % and %0 two binary
relations on �(C). If %0 is represented as in (18), % is represented as in (20) and

u (p) = inf
v2W

U (Ev (p) ; v) = inf
v2V

U (Ev (p) ; v) 8p 2 �(C) (21)

then % satis�es A.1, A.3, and A.4 and % is a completion of %0.

The rest of the subsection is devoted to prove the opposite implication. In other words, we prove

that if C is �nite then each convex binary relation can be interpreted as a completion, of the kind

represented in (20), of a binary relation %0 represented as in (18). In order to do that we need to
introduce few notions. If %00 is a binary relation on �(C), we say that %00 is a stochastic order if and
only if %00 satisfy (18) for a closed and convex subset W 00 � V and W 00 is maximal in representing

%00. That is, if there exists �W �W 00 such that V � �W and

p %00 q , Ev (p) � Ev (q) 8v 2 �W

then �W =W 00.

Given a binary relation %, we can construct an auxiliary binary relation %0 de�ned by

p %0 q , �p+ (1� �) r % �q + (1� �) r 8� 2 (0; 1] ;8r 2 �(C) : (22)

Intuitively, %0 captures the (largest) part of the ranking % for which randomizing does not carry any
bene�t.23

Proposition 8 Let �(C) be the space of simple lotteries over a �nite set C and % a binary relation
on �(C). The following facts are equivalent:

(i) % satis�es A.1, A.3, and A.4;

(ii) there exist a closed and convex set W � V and an essentially unique U 2 Uc (R� V) such that

p %0 q , Ev (p) � Ev (q) 8v 2 W; (23)

% is a completion of %0, and u : � (C)! R such that

u (p) = inf
v2W

U (Ev (p) ; v) = inf
v2V

U (Ev (p) ; v) 8p 2 �(C) (24)

represents %.
23Notice that %0, de�ned as in (22), can be seen as the dual counterpart of the revealed unambiguous preference of

Ghirardato, Maccheroni, and Marinacci [18].
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Moreover, if % preserves a stochastic order %00 then W 00 � W and

u (p) = inf
v2W00

U (Ev (p) ; v) 8p 2 �(C) :

Given the previous discussion, we can interpret the DM as endowed with two binary relations,

%0 and %. %0 represents the part of the ranking that to the DM seems uncontroversial while %
represents the completion of %0, that is, it represents the preferences of the DM if he is forced to

choose. The last part of Proposition 8 con�rms that %0 captures the largest part of the ranking %
that appears to him indisputable. In other words, Proposition 8 shows that each DM with continuous

and convex preferences, %, acts as if he has an original ranking %0 that can be represented through
a multi-expected utility criterion. %0 captures through W the Bernoulli utility functions, the tastes,

of the DM that are deemed plausible. Finally, he completes his preferences with a cautious decision

criterion and just by considering his tastes in W.

4 Extensions and Special Cases

In this section we extend most of the results previously presented. There are two possible ways of

proceeding: by generalizing C in terms of cardinality or by generalizing it in terms of topological

structure. We explore both paths. Notice that the assumptions of Weak Order, Mixture Continuity,

Continuity, and Mixing do not rely on any of the properties of C therefore, they do not need to be

restated here. Similar discussion applies for the de�nition of %0 in (10), the notion of completion in
De�nition 6, and the notion of stochastic order.

4.1 The Case of Countable C

We return to the study of convex preferences, %, over the set of simple lotteries �(C) but now we
allow the set C to be in�nite, particularly, we allow it to be at most countable. The characterization

result is identical to the one reported for the �nite case, although the proof is signi�cantly more

di¢ cult.

Theorem 9 Let �(C) be the space of simple lotteries over an at most countable set C and % a binary
relation on �(C). The following are equivalent facts:

(i) % satis�es A.1, A.2, and A.3;

(ii) there exists an essentially unique U 2 Umc (R� V) such that

p % q , inf
v2V

U (Ev (p) ; v) � inf
v2V

U (Ev (q) ; v) : (25)

Moreover, if u : � (C) ! R is a mixture continuous utility function for % then the function U? :

R� V ! [�1;1], de�ned by

U? (t; v) = sup fu (p) : Ev (p) � t and p 2 �(C)g 8 (t; v) 2 R� V;

belongs to Umc (R� V) and represents % as in (25).

Similarly, we can partially extend the results of Convexity as a criterion of completion. In the

Appendix, we prove Proposition 7 for the case C at most countable while next proposition constitutes

a generalization of Proposition 8.
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Proposition 10 Let �(C) be the space of simple lotteries over an at most countable set C, % a

binary relation on �(C) that satis�es A.1, A.3, and A.4, and %0 a binary relation de�ned as in (22).
The following facts are true:

(a) There exists a closed and convex set W � V such that p %0 q if and only if Ev (p) � Ev (q) for
all v 2 W.

(b) For each p; q 2 �(C) if p %0 q then p % q.

(c) If %00 is another binary relation that satis�es (a) and (b) then p %00 q implies p %0 q.24

(d) If %00 is a stochastic order and % preserves %00 then W 00 � W.

Again, we can interpret the DM as endowed with two binary relations, %0 and %. %0 represents
the part of the ranking that to the DM seems uncontroversial while % represents the completion of

%0, that is, it represents the preferences of the DM if he is forced to choose. Point (c) (and (d))

of Proposition 10 con�rms that %0 captures the largest part of the ranking % that appears to him

indisputable.

4.1.1 First Order Stochastic Dominance

In this subsubsection, we study First Order Stochastic Dominance and preferences % that preserve it.

Axiom A. 5 (First Order Stochastic Dominance) If p; q 2 �(C) are such thatX
y%x

p (y) �
X
y%x

q (y) 8x 2 C (26)

then p % q.

Observe that (26) is the obvious translation in a somewhat more generic setting of the usual

assumption of First Order Stochastic Dominance. For the purpose of this subsubsection, we specialize

the set of consequences C. We require that C is ordered with a maximum element. That is, we require

that % is an order with maximum element and that C is listed accordingly to %. Notice that we do
not just require that C is countable, that is C = fxngn2N, but we also require that xn � xn+1 for all
n 2 N. This requirement is pretty mild. Indeed, if we assume that a DM prefers strictly more money

to less money and we assume that C are discrete monetary outcomes in dollars bounded from above,

then C is ordered with a maximum element. Given an ordered set C with maximum element and an

element v 2 RC , we say that v is increasing if and only if v (xn) � v (xn+1) for all n 2 N. We de�ne
Vinc =

�
v 2 RC : v (x1) = 1 and v is increasing

	
. We �x x to be equal to x1, that is, V = V1 (x1).

Proposition 11 Let �(C) be the space of simple lotteries over C, % a binary relation on �(C), and
C an ordered set with maximum element. The following are equivalent facts:

(i) % satis�es A.1, A.2, A.3, and A.5;

(ii) there exists an essentially unique U 2 Umc (R� V) such that the function u : � (C)! R

u (p) = inf
v2Vinc

U (Ev (p) ; v) = inf
v2V

U (Ev (p) ; v) 8p 2 �(C) (27)

represents %.
24More generally, in Appendix B we show that %0 is the maximal binary relation that satis�es Independence and for

which % is a completion.
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Remark 12 It is not hard to check that p and q satisfy (26) if and only if Ev (p) � Ev (q) for all
v 2 Vinc. Therefore, intuitively, Proposition 11 can be interpreted as a particular extension to the
countable case of the result provided in Proposition 8.

4.2 The Case of Generic C

We next consider the case of a generic set C of consequences. As before, we assume that % satis�es

A.1, A.2, and A.3. Moreover, in order to have an existence result for an upper semicontinuous utility

function u : � (C)! R we need to introduce two extra assumptions:

Axiom A. 6 (Countable Boundedness) There exists fpkgk2Z � �(C) such that for each p 2
�(C) there exist k; k0 2 Z such that pk % p % pk0 .

Axiom A. 7 (Upper Semicontinuity) For each q 2 �(C) the set fp 2 �(C) : p % qg is a closed
set in �(C).

Although A.6 might appear an unusual assumption, it is easily veri�ed that any binary relation,

%, that satis�es Weak Order, Mixture Continuity, and is represented by a mixture continuous utility
function must satisfy this axiom. Moreover, if the set of consequences are monetary outcomes, it is

immediate to see that % satis�es Countable Boundedness as soon as % satis�es the usual First Order
Stochastic Dominance.25 On the other hand, A.7 is a standard technical assumption of continuity

that allows us to derive the existence of an upper semicontinuous utility function for %. We are ready
to state our most general representation result.

Theorem 13 Let �(C) be the space of simple lotteries over a set C and % a binary relation on

�(C). The following are equivalent facts:

(i) % satis�es A.1, A.2, A.3, A.6, and A.7;

(ii) there exists an essentially unique U 2 Umc (R� V) such that

p % q , inf
v2V

U (Ev (p) ; v) � inf
v2V

U (Ev (q) ; v) : (28)

Moreover, if u : � (C) ! R is a mixture continuous utility function for % then the function U? :

R� V ! [�1;1], de�ned by

U? (t; v) = sup fu (p) : Ev (p) � t and p 2 �(C)g 8 (t; v) 2 R� V;

belongs to Umc (R� V) and represents % as in (28).

4.2.1 Risk Aversion

In this subsubsection, we specialize the previous setting and show that U? can be interpreted as an

index of risk aversion and it can be derived just using certainty equivalents. We assume that C = R
and we �x x to be equal to 1, that is, V = V1 (1). We consider a binary relation % on �(C) that

satis�es A.1, A.2, A.3, and A.7. We replace A.6 with the following two axioms:

25Furthermore, it should be noticed that Fishburn [17] (see also Monteiro [30, pag. 151]) provides an example of an
uncountable set C and a binary relation % on �(C) that cannot be represented by any utility function u. Surprisingly,
% satis�es A.1, A.2, and A.3 but it violates A.6.
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Axiom A. 8 (Monotonicity) Given x; y 2 R, x % y if and only if x � y.

Axiom A. 9 (Certainty Equivalent) For each p 2 �(R) there exists a unique xp 2 R such that
xp � p.

The notion of comparative risk aversion that we use is standard in the theory of choice under

risk (see [29, Chapter 6]). We declare DM 1 more risk averse than DM 2 if and only if the certainty

equivalent of 1 is smaller or equal than the one of 2 for each simple lottery.

De�nition 14 Let %1 and %2 be two binary relations on �(R) that satisfy A.9. %1 is more risk
averse than %2 if and only if x2p � x1p for all p 2 �(R).

We can then specialize our existence result and provide a characterization of risk aversion in terms

of U?.

Proposition 15 Let �(R) be the set of simple lotteries over R and % a binary relation on �(R).
The following are equivalent facts:

(i) % satis�es A.1, A.2, A.3, A.7, A.8, and A.9;

(ii) there exists an essentially unique U 2 Umcn (R� V) such that u : � (C)! R, de�ned by

u (p) = inf
v2V

U (Ev (p) ; v) 8p 2 �(R) ; (29)

is a (certainty equivalent) utility function for %.

Moreover, U? : R� V ! [�1;1], de�ned by

U? (t; v) = sup fxp : Ev (p) � t and p 2 �(C)g 8 (t; v) 2 R� V;

belongs to Umcn (R� V) and represents % as in (29).

As a consequence, we can characterize attitudes toward risk aversion in terms of U?.

Proposition 16 Let �(R) be the set of simple lotteries over R and %1 and %2 two binary relations
on �(R) that satisfy (i) of Proposition 15. The following are equivalent facts:

(i) %1 is more risk averse than %2;

(ii) U?1 � U?2 .

In the context of monetary simple lotteries, the next example shows an instance of preferences

satisfying A.1, A.2, A.3, A.7, A.8, and A.9 and arising as a criterion of completion.

Example 17 Consider �(R). Assume that the DM is unsure about his (future) attitudes on risk

aversion therefore his original preferences, %0, are represented by the decision criterion

p %0 q , Ev (p) � Ev (q) 8v 2 W (30)

where, W � V is a nonempty, compact, and convex set,26 and each element v 2 W is a strictly

increasing function over the real line such that v (R) = R. This last fact translates into saying that
26That is, for each x 2 R there exist ax; bx 2 R such that v (x) 2 [ax; bx] for all v 2 W.
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the DM always prefers more money to less money and he does not violate First Order Stochastic

Dominance. Given the assumptions on W, it is immediate to see that

p %0 q , v�1 (Ev (p)) � v�1 (Ev (q)) 8v 2 W: (31)

This translates into saying that the DM prefers surely lottery p to lottery q if and only if the certainty

equivalent of lottery p is higher than the one for lottery q for all his possible attitudes. Although

mathematically equivalent, economically, the criterion in (31) looks more reasonable than the one in

(30). Indeed, the representation in (31) allows to compare the di¤erent evaluations in monetary terms,

that is, in a cardinal way. If the DM has to make a �nal choice whenever he faces two lotteries then it

is sensible to think that he has to complete his preferences with a complete binary relation %. If he is
prudent he might want to complete them in a cautious way, that is, in evaluating a lottery p he might

want to trust the worst of his selves, the worst of his evaluations. This implies that

p % q , min
v2W

v�1 (Ev (p)) � min
v2W

v�1 (Ev (q)) :

It is not hard to prove, as we show in Appendix B, that % satis�es A.1, A.2, A.3, A.7, A.8, and A.9.
Moreover, the function U , de�ned by

U (t; v) =

(
v�1 (t) v 2 W
1 otherwise

8 (t; v) 2 R� V;

belongs to Umcn (R� V) and represents % as in (29) of Proposition 15.

4.2.2 Some Example

In this subsubsection, we study how our representation result specialize for two models in the literature.

The �rst model we study is the well known Expected Utility model of von Neumann and Morgenstern.

The key assumption behind such model is Independence:

Axiom A. 10 (Independence) For each p; q; r 2 �(C) we have that

p % q ) 1

2
p+

1

2
r % 1

2
q +

1

2
r:

Proposition 18 Let �(C) be the set of simple lotteries over a set C and % a binary relation on�(C).
The following are equivalent facts:

(i) % satis�es A.1, A.2, and A.10;

(ii) there exists �v 2 V such that U : R� V ! [�1;1], de�ned by

U (t; v) =

(
t v = �v

1 v 6= �v
8 (t; v) 2 R� V;

belongs to Uc (R� V) (and Umc (R� V)) and represents % as in (28) of Theorem 13.

The second model we characterize in terms of our representation is the one proposed by Maccheroni

[27, Theorem 1]. His assumptions are richer than ours. Indeed, other than having A.1, A.3, and A.4,

he considers the following two assumptions:
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Axiom A. 11 (Best Outcome) There exists �x 2 C such that ��x � p for all p 2 �(C).

Axiom A. 12 (Best Outcome Independence) For each p; q 2 �(C) and � 2 (0; 1) we have that

p � q , �p+ (1� �) ��x � �q + (1� �) ��x:

We �x x to be equal to �x, that is, V = V1 (�x).

Proposition 19 Let �(C) be the set of simple lotteries over a set C and % a binary relation on

�(C) that satis�es A.11. The following are equivalent facts:

(i) % satis�es A.1, A.3, A.4, and A.12;

(ii) there exists a closed and convex set W � V such that U : R� V ! [�1;1], de�ned by

U (t; v) =

(
t v 2 W
1 v 62 W

8 (t; v) 2 R� V;

belongs to Uc (R� V) (and Umc (R� V)) and represents % as in (28) of Theorem 13.

4.3 The Case of Compact C

In this subsection, we consider another familiar set of lotteries (see, e.g., Dekel [9], Dubra, Maccheroni,

and Ok [12], and Gul and Pesendorfer [23]). We assume that the set of consequences is a compact

metric space and we consider a binary relation % over �B (C) where �B (C) is the set of all Borel

probability measures (lotteries) over C. The mathematical setting and terminology is partially di¤erent

from the one discussed in Section 2. In the next short subsubsection, we just discuss the major

departures. The results reported here rely on a di¤erent dual pair but they can easily be proven by

adjusting the arguments reported in the Appendices. For this reason, we simply state them.27

4.3.1 Notation and Mathematical Preliminaries: the Compact Case

The object of our study is a binary relation, %, on the mixture space �B (C). We call elements of
�B (C): p; q; r. We call x an element of C. We de�ne RCcont to be the set of all continuous functions
from C to R endowed with the supnorm. It follows that the space of all signed and �nite Borel

measures, endowed with the total variation norm, ca (C), is isometrically isomorphic to the norm dual

of RCcont. We call p; q; r the elements of ca (C).We call v a generic element of RCcont. The evaluation
duality, h�; �i : ca (C)� RCcont ! R, is de�ned to be such that

hp; vi =
Z
vdp

where the latter is a standard Lebesgue integral. A net fp�g�2A � ca (C) is said to converge to p

(p� ! p) if and only if
R
vdp� !

R
vdp for all v 2 RCcont. We consider �B (C) endowed with the

relative topology. Notice that the relative topology is metrizable and it coincides with the topology

of weak convergence. When we consider a pair (p; v) 2 �B (C) � RCcont we write Ev (p) instead ofR
vdp or hp; vi. Fix a generic element x 2 C. Then, we de�ne Vc = V1 (x) =

�
v 2 RCcont : v (x) = 1

	
.

Set R�
= Rn f0g. We say that a subset D of R � Vc is �-evenly convex if for each

�
t; �v
�
62 D there

exists (s; p) 2 R� � ca (C), such that hp; �vi+ ts < hp; vi+ ts for all (t; v) 2 D. In the sequel, we deal
27Proofs are available upon request.
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with functions U : R � Vc ! [�1;1]. Given U , we de�ne uU : ca (C) ! [�1;1] to be such that
p 7�! infv2V U (hp; vi ; v). We say that U is linearly continuous if and only if the function uU is a real
valued and continuous function on �B (C). We say that U is �-evenly quasiconvex if and only if all
its lower contour sets are �-evenly convex. We de�ne Uc (R� Vc) to be the class of functions from
R� V to [�1;1] that satisfy P.1-P.4 adjusted to the new setting. We de�ne essential uniqueness in
the same way we de�ned it in Section 2.

4.3.2 The Results

We consider a binary relation %. We assume that % represents the preferences of the DM over the

set of lotteries over a generic compact metric space C of consequences. We require % to satisfy the

assumptions A.1, A.3, and A.4. The translation of these axioms to this setting is straightforward as

well as their interpretation stays unchanged.

Theorem 20 Let �B (C) be the set of lotteries over a compact metric space C and % a binary relation
on �B (C). The following are equivalent facts:

(i) % satis�es A.1, A.3, and A.4;

(ii) there exists an essentially unique U 2 Uc (R� Vc) such that

p % q , inf
v2Vc

U (Ev (p) ; v) � inf
v2Vc

U (Ev (q) ; v) : (32)

Moreover, if u : �B (C) ! R is a continuous utility function for % then the function U? : R � Vc !
[�1;1], de�ned by

U? (t; v) = sup fu (p) : Ev (p) � t and p 2 �(C)g 8 (t; v) 2 R� Vc;

belongs to Uc (R� Vc) and represents % as in (32).

Remark 21 Notice that one major di¤erence with the result contained in Theorem 13 is that the

Bernoulli utility functions considered in the representation are continuous functions on C.

Even, for the case of C compact metric space, we can interpret each convex binary relation as

a completion of a maximal incomplete preorder that admits a multi-expected utility representation.

Recall that for this purpose, given a binary relation %, we can construct an auxiliary binary relation
%0 de�ned by

p %0 q , �p+ (1� �) r % �q + (1� �) r 8� 2 (0; 1] ;8r 2 �B (C) : (33)

Again, we obtain that if % satis�es A.1, A.3, and A.4 then %0 is the maximal binary relation that
admits a multi-expected utility representation and for which % is a completion. More importantly,

we obtain that:

Proposition 22 Let �B (C) be the space of lotteries over a compact metric space C and % a binary

relation on �B (C). The following facts are equivalent:

(i) % satis�es A.1, A.3, and A.4;
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(ii) there exist a closed and convex set W � Vc and an essentially unique U 2 Uc (R� Vc) such that

p %0 q , Ev (p) � Ev (q) 8v 2 W; (34)

% is a completion of %0, and u : �B (C)! R such that

u (p) = inf
v2W

U (Ev (p) ; v) = inf
v2Vc

U (Ev (p) ; v) 8p 2 �B (C) (35)

represents %.

Moreover, if % preserves a stochastic order %00 then W 00 � W and

u (p) = inf
v2W00

U (Ev (p) ; v) 8p 2 �(C) :

5 Conclusions

We have characterized preferences over lotteries and over menus of lotteries that exhibit a propensity

for randomization. The Axiom of Mixing, or equivalently Convexity of preferences, formally captures

an inclination toward randomization. We argued that this feature is able to accommodate for more

patterns of choice than most of the existing models can. Moreover, this property of preferences is

appealing as soon as the DM is unsure about: value of outcomes, his future tastes, or the degree

of risk aversion. We showed that Convexity is equivalent to cautiousness about any of these three

kinds of uncertainty. More precisely, we proved that a DM has convex preferences if and only if his

preferences are represented by a utility function u, de�ned by

u (p) = inf
v2V

U (Ev (p) ; v) 8p 2 �(C) : (36)

This is equivalent to say that a DM with convex preferences in evaluating a lottery p takes a �min-

imum�of quasi-EU evaluations. That is, he takes a minimum of monotonic transformations of EU

evaluations. Moreover, the transformation function U is essentially unique. In a context of monetary

lotteries, the function U can be interpreted as an index of risk aversion. We argued and showed that

the set V has three di¤erent interpretations: set of outcomes evaluations, set of future tastes of the
DM, Subjective State Space. In a context of choice over menus of lotteries, we provided a founda-

tion of the Maxmin EU and Minmax EU criteria over a Subjective State Space. Finally, we proved

Convexity being a cautious criterion of completion thereby showing that our representation is well

behaved with respect to stochastic orders. Indeed, a DM that has convex preferences and preserves

�rst or second order stochastic dominance, in computing the in�mum, will consider just elements in

V that are increasing or increasing and concave.

A Quasiconcave Duality

In this appendix we provide the basic mathematical results behind our representation. Most of the

facts found here heavily rely on the techniques developed in [7]. The essential uniqueness of the

function U is very much in line with the �ndings of Cerreia-Vioglio, Maccheroni, Marinacci, and

Montrucchio [7] and it is derived by extensively using some of the techniques adopted in [7]. However,

there are elements of novelty that make the results in this work nontrivial. Two assumptions are

crucial for the arguments of [7]. First, the quasiconcave functions studied are monotone. Second, the

underlying domain is an M -space with unit. The existence of a unit element in the domain plays

a key role in deriving results of complete duality. On the contrary, in our case the domain of our
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utility function u is �(C) as subset of RC0 . We consider the latter set endowed with the topology
induced by the algebraic dual. Therefore, not only our domain is not a vector space but, as soon

as C is not �nite, RC0 is not even a normed vector space. Moreover, neither RC0 has a unit element
with respect to the usual pointwise order nor u is monotone with respect to such order. For similar

reasons, we cannot apply the usual duality results stemming from the research on direct and indirect

utility functions (see, e.g., Diewert [11] and Martinez-Legaz [28]), since again we miss at least a key

assumption: monotonicity.

Before discussing the main results of this section we introduce some notation, given a function

û : RC0 ! [�1;1] (resp., û : � (C)! R), we say that

1. û is upper semicontinuous if and only if fû � �g =
�
p 2 RC0 : û (p) � �

	
is closed for all � 2 R

(resp., fû � �g = fp 2 �(C) : û (p) � �g is closed for all � 2 R)

2. û is (evenly) quasiconcave if and only if fû � �g is (evenly) convex for all � 2 R.

It is important to notice that an evenly quasiconcave function is quasiconcave. Conversely, we

have that an upper semicontinuous quasiconcave function is evenly quasiconcave. Given an element

v 2 RC and t 2 R, we denote fv � tg =
�
p 2 RC0 : hp; vi � t

	
and fv = tg =

�
p 2 RC0 : hp; vi = t

	
.

Given � 2 R, we denote with � both the real number � as well as the element of RC that is equal to
� for each x 2 C: no confusion should arise.

Object of our study in this appendix is a function u : � (C) ! R. We de�ne �u : RC0 ! [�1;1)
to be such that

p 7�!
(
u (p) p 2 �(C)
�1 p 62 �(C)

: (37)

We �x an arbitrary x 2 C. Recall that we de�ned V = V1 (x) =
�
v 2 RC : v (x) = 1

	
. Given

û : RC0 ! [�1;1), we de�ne an auxiliary map from R� V1 (x) to [�1;1] to be such that

(t; v) 7�! Uv (t) = sup fû (p) : hp; vi � tg : (38)

Lemma 23 Let u be a function from �(C) to R. The following facts are true:

(a) u is quasiconcave (resp., evenly quasiconcave) if and only if �u is quasiconcave (resp., evenly

quasiconcave);

(b) u is upper semicontinuous if and only if �u is upper semicontinuous.

Proof.
Before proving (a) and (b), notice that �(C) is a closed and convex set.28 It follows that �(C)

is evenly convex. Pick a generic � 2 R and notice that�
p 2 RC0 : �u (p) � �

	
=
�
p 2 RC0 : �u (p) � �

	
\�(C) = fp 2 �(C) : u (p) � �g : (39)

28Convexity is obvious. Consider a net fp�g�2A � �(C) and suppose that p� ! p 2 RC0 . This is equivalent to say
that hp�; vi ! hp; vi for all v 2 RC . Pick a generic x 2 C and consider �x 2 RC . Then,

0 � p� (x) = hp�; �xi ! hp; �xi = p (x) :

Finally, if we de�ne v 2 RC to be such that v (x) = 1 for all x 2 C then it follows that

1 = hp�; vi ! hp; vi :

This proves that �(C) is closed.
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From (39), (a) and (b) follow. �

We next show that the map (t; v) 7�! Uv (t) satis�es P.1-P.3.

Lemma 24 Let û be a function from RC0 to [�1;1). The map (t; v) 7�! Uv (t) satis�es P.1-P.3.

Proof.
P.1 follows by de�nition. P.2 follows from the fact that for each v 2 V1 (x) we have that

limt!1 Uv (t) = supp2RC0 û (p). Indeed, by de�nition, it follows that for each (t; v) 2 R�V1 (x) we have
that Uv (t) � supp2RC0 û (p). If we �x v then we have that limt!1 Uv (t) � supp2RC0 û (p). Conversely,
consider fpngn2N � RC0 such that û (pn) " supp2RC0 û (p). Since û (pn) � Uv (hpn; vi) � limt!1 Uv (t)

for all n 2 N and for all v 2 V1 (x), if we �x v then we have that limt!1 Uv (t) � supp2RC0 û (p).

Finally, we show that P.3 is satis�ed. Fix � 2 R and de�ne L� = f(t; v) 2 R� V1 (x) : Uv (t) � �g.
Suppose that L� is neither empty nor R � V1 (x). Pick (�t; �v) 2 R � V1 (x) such that (�t; �v) =2 L�. It
follows that U�v (�t) > �. This implies that there exists a point �p such that h�p; �vi � �t and û (�p) > �.

But Uv (t) � � for all (t; v) 2 L�, which implies that h�p; vi > t for all (t; v) 2 L�. This, in turn,
implies that

h�p; vi � t > 0 � h�p; �vi � �t 8 (t; v) 2 L�:

�

The next result tell us that given an evenly quasiconcave function, u : � (C)! R, we can use the
mapping (t; v) 7�! Uv (t) to reconstruct u.

Theorem 25 A function u : � (C) ! R is evenly quasiconcave if and only if there exists U : R �
V1 (x)! [�1;1] that satis�es P.1 and P.2 such that

u (p) = inf
v2V1(x)

U (hp; vi ; v) 2 R 8p 2 �(C) : (40)

Moreover:

(i) U can be chosen to be such that U (t; v) = Uv (t) for all (t; v) 2 R� V1 (x), where û = �u.

(ii) u is upper semicontinuous if (resp., only if) in (40) we can replace U with U+ (resp., Uv with

U+v ).

Proof.
�Only if.�Recall x 2 C is �xed. Suppose u is evenly quasiconcave. De�ne �u as in (37), and choose

U to be de�ned as in (38) with û = �u. Then, by Lemma 23, �u is evenly quasiconcave. By construction,

�u 6= �1, �u (p) = u (p) 2 R for all p 2 �(C), and �u (p) = �1 otherwise. By de�nition of Uv (t), it

follows that

�u (p) � Uv (hp; vi) 8p 2 �(C) ;8v 2 V1 (x) (41)

and so

�u (p) � inf
v2V1(x)

Uv (hp; vi) 8p 2 �(C) : (42)

Pick �p 2 �(C). If �p is a global maximum for �u on �(C) (hence for u) then equality holds in (41)

and equality holds in (42). Next, assume that �p 2 �(C) and it is not a global maximum. Since
�p belongs to �(C), then �u (�p) 2 R. Since �p is not a global maximum, there is �" > 0 such that

f�u � �u (�p) + "g 6= ? for all " 2 (0; �"]. Moreover, for each " 2 (0; �"], �p =2 f�u � �u (�p) + "g � �(C).

Since this upper contour set is evenly convex, there is �v 2 RCn f0g such that h�p; �vi < hp; �vi for all
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p 2 f�u � �u (�p) + "g. We can consider �v 2 V1 (x).29 That is, f�u � �u (�p) + "g � f�v > h�p; �vig. Namely,
f�v � h�p; �vig � f�u < �u (�p) + "g. Thus, U�v (h�p; �vi) � �u (�p) + " and

�u (�p) � inf
v2V1(x)

Uv (h�p; vi) � U�v (h�p; �vi) � �u (�p) + " (43)

for all " 2 (0; "]. This implies equality in (42). By construction and Lemma 24, it follows that U
satis�es P.1 and P.2.

�If.�Suppose (40) holds. De�ne �u as in (37). Then, �u (p) = u (p) = infv2V1(x) U (hp; vi ; v) 2 R for
all p 2 �(C) and �u (p) = �1 otherwise. Pick � 2 R. We prove that f�u � �g is evenly convex. By
construction, �(C) � f�u � �g 6= RC0 . If f�u � �g = ? then there is nothing to prove. Otherwise, let
�p =2 f�u � �g. We have two cases �p 2 �(C) or �p 62 �(C). In the �rst case, we have that � > u (�p) 2 R.
Then, there exists �v 2 V1 (x) for which U (h�p; �vi ; �v) < �. Let p 2 f�u � �g. By contradiction, suppose
that hp; �vi � h�p; �vi. Then, since U is increasing in the �rst argument, �u (p) = u (p) � U (hp; �vi ; �v) �
U (h�p; �vi ; �v) < �, a contradiction. In the second case, �p 62 �(C) and the latter set is closed and
convex. By construction, it follows that f�u � �g � �(C). By [33, Theorem 3.4], we have that there

exists �v 2 RCn f0g for which hp; �vi > h�p; �vi for all p 2 �(C). Therefore, we can conclude that if
�p 62 f�u � �g then there exists �v 2 RCn f0g such that h�p; �vi < hp; �vi for all p 2 f�u � �g and f�u � �g
is evenly convex. By Lemma 23, it follows that u is evenly quasiconcave.

(i) The statement follows by the necessity part of previous proof.

(ii) Suppose that further u : � (C) ! R is upper semicontinuous. By Lemma 23, �u is upper

semicontinuous and �u is evenly quasiconcave. By the previous part of the proof, (40) holds for the

map (t; v) 7! Uv (t). Let �p 2 �(C). If �p is a global maximum for �u on �(C), then, by (41) and the

de�nition of upper semicontinuous envelope,

�u (�p) � Uv (h�p; vi) � U+v (h�p; vi) � Uv (h�p; vi+ 1) � �u (�p) 8v 2 V1 (x) ;

and u (p) = �u (�p) = infv2V1(x) U
+
v (h�p; vi).

If �p is not a global maximum for �u on �(C), then, �u (�p) 2 R and there exists a sequence f�ngn2N �
R such that �n # u (�p) and �p =2 f�u � �ng 6= ? for all n 2 N. Since each set f�u � �ng is nonempty,
closed, and convex, by [33, Theorem 3.4], there is a sequence fvngn2N � RC n f0g such that h�p; vni+
"n < hp; vni for all p 2 f�u � �ng, where "n > 0. As argued in the previous part of the proof, we

can consider fvngn2N � V1 (x). Hence, f�u � �ng � fvn > h�p; vni+ "ng for all n 2 N. That is,

fvn � h�p; vni+ "ng � f�u < �ng for all n 2 N. This implies that Uvn (h�p; vni+ "n) � �n for all n 2 N.
Therefore, for each n 2 N

u (�p) � inf
v2V1(x)

U+v (h�p; vi) � U+vn (h�p; vni)

� Uvn (h�p; vni+ "n) � �n
29 Indeed, if �v was not, de�ne

�
v = �v + (1� �v (x)). Then, �v 2 V1 (x). Since f�u � �u (�p) + "g � �(C) and �p 2 �(C), it

follows that for each p 2 f�u � �u (�p) + "g

h�p; �vi < hp; �vi () h�p; �vi+ (1� �v (x)) < hp; �vi + (1� �v (x))

() h�p; �v + (1� �v (x))i < hp; �v + (1� �v (x))i

()
D
�p;
�
v
E
<
D
p;
�
v
E
.
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which yields the result. Conversely, if in (40) we can replace U with U+, we have that u is the

lower envelope of a family of upper semicontinuous and quasiconcave functions on �(C), that is,

p 7! U+ (hp; vi ; v) for all v 2 V1 (x). Therefore, u is upper semicontinuous and quasiconcave on
�(C). �

We next proceed by proving two ancillary lemmas that will deliver the uniqueness part in our main

representation results.

Lemma 26 If U : R� V1 (x)! [�1;1] satis�es P.1 and P.2 and (�t; �v) 2 R� V1 (x) then

U (�t; �v) = min
v2V1(x)

 
sup

p2f�v��tg
U (hp; vi ; v)

!
:

Proof.
Consider the program

�
�
v; �v; t

�
= sup

p2f�v��tg
U (hp; vi ; v) :

It is su¢ cient to show that � (v; �v; �t) � � (�v; �v; �t) = U (�t; �v) for all v 2 V1 (x). For the second equality,
just notice that, by P.1, � (�v; �v; �t) = supp2f�v��tg U (hp; �vi ; �v) � U (�t; �v). Furthermore, since �v 6= 0, there
exists �p 2 RC0 such that h�p; �vi = �t. This implies the inverse inequality. To prove the �rst inequality,
�x v 2 V1 (x). We have two cases:

(i) Suppose v 2 span (�v). Then, v = ��v for some � 2 R. Since v; �v 2 V1 (x), we have that
1 = v (x) = ��v (x) = �. Then, it follows that v = �v and � (v; �v; �t) = � (�v; �v; �t) = U (�t; �v).

(ii) Suppose v 62 span (�v). By the Fundamental Theorem of Duality (see, e.g., [1, Theorem 5.91]),

ker (�v) * ker (v). That is, there exists p 2 RC0 such that hp; �vi = 0 and hp; vi 6= 0. Choose �p 2 RC0
such that h�p; �vi = �t, then the straight line �p + �p is thus included into the hyperplane f�v = �tg. By
P.1 and P.2, it follows that

� (v; �v; �t) � lim
t!1

U (t; v) = lim
t!1

U (t; �v) � U (�t; �v) :

In sum, � (v; �v; �t) � U (�t; �v) for all v 2 V1 (x) and � (�v; �v; �t) = U (�t; �v). �

Lemma 27 If U : R� V1 (x)! [�1;1] satis�es P.1-P.3 then

sup fû (p) : hp; vi � tg = U (t; v) 8 (t; v) 2 R� V1 (x) (44)

where û (p) = infv2V1(x) U (hp; vi ; v) for all p 2 RC0 .

Proof.
Fix (�t; �v) 2 R� V1 (x). Observe that

sup fû (p) : hp; �vi � �tg = sup
p2f�v��tg

inf
v2V1(x)

U (hp; vi ; v) :

By Lemma 26, we have that

inf
v2V1(x)

sup
p2f�v��tg

U (hp; vi ; v) = U (�t; �v) :

Since it is well known that
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sup
p2f�v��tg

inf
v2V1(x)

U (hp; vi ; v) � inf
v2V1(x)

sup
p2f�v��tg

U (hp; vi ; v) = U (�t; �v) ; (45)

it remains to prove the converse inequality. If U (�t; �v) = inf(t;v)2R�V1(x) U (t; v) then equality in (45) is

easily checked. Otherwise, set � = U (�t; �v). We have that � > �1. Moreover, for each scalar � < �,
L� = f(t; v) 2 R� V1 (x) : U (t; v) � �g is �-evenly convex and (�t; �v) 62 L� . If � is large enough, L�
is neither empty nor R� V1 (x). Therefore, there is �p 2 RC0 and �s 6= 0 such that,

h�p; vi+ �st > h�p; �vi+ �s�t 8 (t; v) 2 L� : (46)

Since U is increasing in the �rst component, it is easy to see that �s < 0.30 De�ne � = �t�
D
�p
j�sj ; �v

E
and

p̂ = �p
j�sj + ��x. It follows that hp̂; �vi =

D
�p
j�sj + ��x; �v

E
=
D
�p
j�sj ; �v

E
+ � h�x; �vi =

D
�p
j�sj ; �v

E
+ � = �t and for

all (t; v) 2 L�

h�p; vi+ �st > h�p; �vi+ �s�t =)
�
�p

j�sj + ��x; v
�
� t >

�
�p

j�sj + ��x; �v
�
� �t

=) hp̂; vi � t > hp̂; �vi � �t
=) hp̂; vi � t > 0:

This implies that if hp̂; vi � t � 0 then (t; v) 62 L� . If for each v 2 V1 (x) we pick tv = hp̂; vi then
hp̂; vi � tv = 0. Therefore, (tv; v) = (hp̂; vi ; v) 62 L� for all v 2 V1 (x). It follows that U (hp̂; vi ; v) > �
for all v 2 V1 (x). Since p̂ 2 f�v � �tg, we have that

� � sup
p2f�v��tg

inf
v2V1(x)

U (hp; vi ; v) � inf
v2V1(x)

U (hp̂; vi ; v) � �:

This is true for each � in a left neighborhood of � and close enough to �, thus

sup
p2f�v��tg

inf
v2V1(x)

U (hp; vi ; v) = �;

as desired. �

B Proofs

In this Appendix, we prove all the results of the paper. The results contained in Subsection 3.2 are

proven in Subsection B.1 and the result contained in Subsubsection 3.2.1 is proven in Subsection B.2.

We start by providing the main existence result for a utility function on which our representation

result rests.

Theorem 28 (Monteiro, 1987, Theorem 3) Let % be a binary relation on �(C). The following

are equivalent facts:

(i) % satis�es A.1, A.2, and A.6 (resp., A.1, A.4, and A.6);

(ii) there exists a mixture continuous (resp., continuous) function u : � (C) ! R such that for all
p; q 2 �(C)

p % q () u (p) � u (q) :
30By contradiction, assume that �s > 0. Take (t0; v0) 2 L� , then, by monotonicity of U , (t0 � n; v0) 2 L� for all n 2 N.

Therefore, it would follow that h�p; v0i+ �st0 � �sn > h�p; �vi+ �st for all n 2 N, which is a contradiction.
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Notice that this result di¤ers from Eilenberg [13] (see also Debreu [8, (1) pag. 56]) for the reason

that no assumption is made on the topology of �(C) in terms of separability of the set over which

the binary relation is taken. Particularly, if C is uncountable then such usual existence result cannot

be applied. Corollary 29 shows that u can be assumed to be upper semicontinuous and quasiconcave

too as soon as the binary relation is assumed to satisfy A.3 and A.7. The natural existence result to

look at, in presence of upper semicontinuity, is the one proposed by Rader [32] and correctly proven

by Bosi and Mehta [4, Corollary 5]. But, again in the case C is uncountable, �(C) is not separable

and the result of [32] cannot be applied. Our concern regarding properties of upper semicontinuity is

deeply connected to the dual theory we use to represent the utility function. Furthermore, we would

like to retain the assumption of mixture continuity, instead of A.4, as much as we could, since it is

pretty weak and more in the spirit of the literature of choice under risk.

Corollary 29 Let % be a binary relation on �(C). The following are equivalent facts:

(i) % satis�es A.1, A.2, A.3, A.6, and A.7;

(ii) there exists a mixture continuous, upper semicontinuous, and quasiconcave function u : � (C)!
R such that for all p; q 2 �(C)

p % q () u (p) � u (q) :

Remark 30 It is immediate to see that if we replace in (i) the Axioms A.2 and A.7 with Axiom A.4

then we can replace in (ii) mixture continuous and upper semicontinuous with continuous.

In order to prove Corollary 29, we need an ancillary fact.

Lemma 31 Let % be a binary relation on �(C). If % satis�es A.1, A.2, and A.3 then for each

q 2 �(C) we have that
fp 2 �(C) : p % qg

is a convex set.

Proof.
The proof follows by using the same techniques of [6, Lemma 66]. �

Proof of Corollary 29.
(ii) implies (i). The proof is standard and therefore left to the reader.

(i) implies (ii). Assume that A.1, A.2, A.3, A.6, and A.7 are satis�ed by %. By Theorem 28, there

exists a mixture continuous function u that represents %. Since u is mixture continuous and �(C) is
convex, the set u (� (C)) is connected, that is, u (� (C)) is an interval. This implies that for a generic

� 2 R the set fp 2 �(C) : u (p) � �g 2 f?; fp 2 �(C) : u (p) � u (q)g ;�(C)g where q 2 �(C) and
u (q) = �. In all three cases, by Lemma 31 and since u represents % and % satis�es A.7, it follows

that the upper contour set of u is closed and convex, proving that u is upper semicontinuous and

quasiconcave. �

Proof of Theorem 13.
(ii) implies (i). Since U 2 Umc (R� V1 (x)) then U is linearly mixture continuous and, by assump-

tion, u = uU represents % on �(C). It follows that u on �(C) is real valued, mixture continuous,
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and it represents %. Since U 2 Umc (R� V1 (x)), it follows that u = uU+ = uU on �(C). Therefore,

by Theorem 25, u is upper semicontinuous and quasiconcave on �(C) as well. By Corollary 29, it

follows that % satis�es A.1, A.2, A.3, A.6, and A.7.
(i) implies (ii). Assume that % satis�es A.1, A.2, A.3, A.6, and A.7. By Corollary 29, there exists

a mixture continuous, upper semicontinuous, and (evenly) quasiconcave function u : � (C)! R that
represents %. De�ne �u as in (37). By Theorem 25 part (i), it follows that U : R�V1 (x)! [�1;1],
de�ned by

U (t; v) = sup f�u (p) : hp; vi � tg = Uv (t) 8 (t; v) 2 R� V1 (x) ; (47)

satis�es (28) and it belongs to Umc (R� V1 (x)). Indeed, by Theorem 25, U is such that

u (p) = inf
v2V1(x)

U (Ev (p) ; v) 8p 2 �(C) :

Hence, (28) is satis�ed. By (47) and Lemma 24, it follows that U satis�es P.1-P.3. By (47), Theorem

25, and since u is real valued and mixture continuous, it follows that U satis�es P.5. By (47) and

Theorem 25 point (ii), it follows that U satis�es P.6.

Next, assume that two generic functions U;U 0 2 Umc (R� V1 (x)) are such that U;U 0 represent
% as in (28). Moreover, assume that uU = û = uU 0 . Then, by Lemma 27, it follows that U (t; v) =

sup fû (p) : hp; vi � tg = U 0 (t; v) for all (t; v) 2 R� V1 (x), proving that U is essentially unique.
Finally, assume that (i) or equivalently (ii) is satis�ed and that u : � (C)! R is mixture continuous

and it represents%. By the �rst assumption, it follows that% satis�es A.3 and A.7. By A.7 and Lemma
31 and since u is mixture continuous, it follows that u is upper semicontinuous and quasiconcave.

Hence, u is mixture continuous, upper semicontinuous, and quasiconcave function that represents %.
By the proof of (i) implies (ii) and (47), we have that u = uU on �(C) where U 2 Umc (R� V1 (x)).
Moreover, by (47), it follows that U? = U . Hence, U? belongs to Umc (R� V1 (x)) and it represents
% as in (28). �

We next prove Theorem 1 and Theorem 9. It is enough to notice that the only axioms missing

with respect to Theorem 13 are A.6 and A.7. However, the assumption that C is at most count-

able is su¢ cient to obtain from the other axioms the upper semicontinuity of % and its countable

boundedness.

Lemma 32 Let �(C) be the space of simple lotteries over a set C and % a binary relation on �(C)
that satis�es A.1, A.2, and A.3. The following statements are true:

(i) If C is �nite then % satis�es A.7.

(ii) If C is countable then % satis�es A.7.

Proof.
If C is �nite recall that we can identify RC0 and RC with RjCj and the topology we consider on RC0

coincides with the usual Euclidean topology. Conversely, if C is countable then C = fxkgk2N and,
for the purpose of this proof, we consider a di¤erent topology on RC0 : the inductive limit topology E
generated by the family of all �nite dimensional vector subspaces of RC0 . This topology is the �nest
locally convex topology on RC0 . It turns out that RC is the topological dual of

�
RC0 ; E

�
(for further

details on E see [2]). The proof of part (i) follows from an adaptation of the arguments contained in

Dubra, Maccheroni, and Ok [12, Proof of Proposition 1]. We report just the parts of the proof where

our arguments are di¤erent from the ones of the aforementioned authors.
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(i). Fix q 2 �(C). By Lemma 31 and since % satis�es A.1, A.2, and A.3, it follows that

fp 2 �(C) : p % qg is a convex set. By using the same techniques contained in [12, Proof of Proposition
1], it follows that

fp 2 �(C) : p % qg

is closed in �(C).

(ii). Fix an upper contour set, fp 2 �(C) : p % qg, and consider C = fxkgk2N. Since C is

countable, it is immediate to see that f�xkgk2N is a countable Hamel basis for RC0 . De�ne Fn =
span f�xkg

n
k=1 for all n 2 N. Notice that the family fFngn2N is increasing, with respect to set

inclusion, and given any �nite dimensional vector space F in RC0 there exists an n big enough such
that Fn � F .
Next, �x n 2 N. Fn is a �nite dimensional vector space endowed with the relative topology

induced by E . It follows that Fn is isomorphic, algebraically and topologically, to Rn. Let us call
in : Fn ! Rn such isomorphism. It is immediate to see that we can choose it to be such that

i�1n (� (fxkgnk=1)) � �(C). In light of such fact, we can consider the binary relation %n on the set
�(fxkgnk=1) de�ned by

p0 %n q0 () i�1n (p0) % i�1n (q0) 8p0; q0 2 �(fxkgnk=1) :

Since i�1n is a bijection, %n is a well de�ned, complete, and transitive binary relation. Similarly, since
i�1n is an isomorphism of topological vector spaces, %n turns out to satisfy A.2 and A.3. Therefore, by
(i), it follows that fp0 2 �(fxkgnk=1) : p0 %n q0g is closed. If we de�ne q0 = in (q) for each q 2 �(C)\Fn
then

fp 2 �(C) : p % qg \ Fn = i�1n (fp0 2 �(fxkgnk=1) : p
0 %n q0g)

is closed. Finally, since n was picked to be generic, we have that fp 2 �(C) : p % qg \ Fn is a closed
subset of Fn for all n 2 N. By [2, Corollary 2.1], we can conclude that fp 2 �(C) : p % qg is closed
in RC0 with respect to E . By Lemma 31, fp 2 �(C) : p % qg is convex. By [33, Theorem 3.12], it

follows that fp 2 �(C) : p % qg is closed even with respect to the weak topology induced by RC and
the statement follows. �

Lemma 33 Let �(C) be the space of simple lotteries over a set C and % a binary relation on �(C)
that satis�es A.1, A.2, and A.3. The following statements are true:

(i) If C is �nite then % satis�es A.6.

(ii) If C is countable then % satis�es A.6.

Proof.
We use the notation of Lemma 32.

(i). By assumption, % satis�es A.1, A.2, and A.3 and C is �nite. By Lemma 32, it follows that %
satis�es A.7. Since C is �nite, it follows that �(C) is compact. Therefore, since % satis�es A.1 and

A.7, there exists �q such that �q % p for all p 2 �(C). Since C is �nite and % satis�es A.1, it follows

that there exists x
_
such that y % x

_
for all y 2 C. By Lemma 31, the set

�
p 2 �(C) : p % �x

_

�
is

convex. Since the latter set contains C, it follows that p % �x
_
for all p 2 �(C). If we de�ne fpkgk2Z

such that pk = �x
_
for all k � 0 and pk = �q for all k > 0 then it is immediate to see that % satis�es

A.6.
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(ii). By assumption, % satis�es A.1, A.2, and A.3 and C is countable. Fix n 2 N and consider %
restricted to �(C) \ Fn. By the same arguments of point (i), it follows that there exist �qn and �zn
such that �qn % p and p % �zn for all p 2 �(C) \ Fn. De�ne fpkgk2Z such that

pk =

8><>:
�z�k k < 0

�x1 k = 0

�qk k > 0

:

Pick p 2 �(C) and de�ne �n = max fn 2 N : xn 2 supp fpgg. By construction, it follows that p�n %
p % p��n. That is, % satis�es A.6. �

Proof of Theorem 1.
(i) implies (ii). By assumption, % satis�es A.1, A.2, A.3. By Lemma 33 part (i), it follows that %

satis�es A.6. By Lemma 32 part (i), it follows that % satis�es A.7. Hence, the statement follows by

Theorem 13.

(ii) implies (i). The statement follows by Theorem 13.

Same argument of Theorem 13 applies for U?. �

Proof of Theorem 9.
We need just to prove the equivalence of (i) and (ii) under the case C is countable, since if C is

�nite then it descends from Theorem 1.

(i) implies (ii). By assumption, % satis�es A.1, A.2, A.3. By Lemma 33 part (ii), it follows that

% satis�es A.6. By Lemma 32 part (ii), it follows that % satis�es A.7. Hence, the statement follows

by Theorem 13.

(ii) implies (i). The statement follows by Theorem 13.

Same argument of Theorem 13 applies for U?. �

Remark 34 It is immediate to see that if in (i) of Theorem 1, Theorem 9, and Theorem 13 we replace
Axiom A.2 (and A.7) with Axiom A.4 then we can require in (ii) that U 2 Uc (R� V1 (x)) (resp., u
continuous and U? 2 Uc (R� V1 (x))).

Proof of Proposition 7.
Since % is represented by the utility function de�ned in (21) and U 2 Uc (R� V1 (x)), by Theorem

9 and Remark 34, % satis�es A.1, A.3, and A.4. Finally, suppose that p %0 q. By assumption and
(18), this is equivalent to say that Ev (p) � Ev (q) for all v 2 W. Since U 2 Uc (R� V1 (x)), this
implies that U (Ev (p) ; v) � U (Ev (q) ; v) for all v 2 W. By (21), this implies that u (p) � u (q), hence
that p % q.
Finally, notice that the arguments used above do not rely on C being �nite. Therefore, the

statement of Proposition 7 holds true even for C countable, as claimed in the main text. �

In order to prove Proposition 8 and Proposition 10, we prove a pair of ancillary lemmas.

Lemma 35 Let �(C) be the space of simple lotteries over an at most countable set C and % a binary
relation on �(C). If % satis�es A.1, A.3, and A.4 then %0, de�ned as in (22), is a preorder such that

(a) for each p; q; r; s 2 �(C) the set f� 2 [0; 1] : �p+ (1� �) r %0 �q + (1� �) sg is closed;

(b) for each p; q; r 2 �(C) and for each � 2 [0; 1] if p %0 q then �p+ (1� �) r %0 �q + (1� �) r;
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(c) for each p; q 2 �(C) if p %0 q then p % q;

(d) if %00 is a binary relation that satis�es (b) and (c) then p %00 q implies p %0 q.

Proof.
It is immediate to verify that %0 is a preorder, that is, %0 is a re�exive and transitive binary

relation.

(a). We consider four generic elements p; q; r; s 2 �(C). Notice that the set

f� 2 [0; 1] : �p+ (1� �) r %0 �q + (1� �) sg

is equal to the set\
t2�(C)
�2(0;1]

f� 2 [0; 1] : � (�p+ (1� �) t) + (1� �) (�r + (1� �) t) % � (�q + (1� �) t) + (1� �) (�s+ (1� �) t)g :

Since % satis�es A.1 and A.4, this is an intersection over closed sets proving that

f� 2 [0; 1] : �p+ (1� �) r %0 �q + (1� �) sg

is closed.31

(b). Consider p; q; r 2 �(C) and � 2 [0; 1] such that p %0 q. If � = 0; 1 then it follows trivially

that �p + (1� �) r %0 �q + (1� �) r. Otherwise, since p %0 q, observe that for each s 2 �(C) and
� 2 (0; 1] we have that

� (�p+ (1� �) r) + (1� �) s =

= (��) p+ (1� ��)
�
� (1� �)
1� �� r +

1� �
1� ��s

�
% (��) q + (1� ��)

�
� (1� �)
1� �� r +

1� �
1� ��s

�
= � (�q + (1� �) r) + (1� �) s:

The statement then follows by de�nition of %0.
(c). The statement follows trivially by de�nition of %0 and by choosing in such de�nition � = 1.
(d). Suppose that p %00 q. Since %00 satis�es (b), we have that

�p+ (1� �) r %00 �q + (1� �) r 8� 2 (0; 1] ;8r 2 �(C) :

Since %00 satis�es (c), it follows that �p + (1� �) r % �q + (1� �) r for all � 2 (0; 1] and for all

r 2 �(C), implying the statement. �

We next show that a generic preorder %0 on �(C) that satis�es the properties (a) and (b) of
Lemma 35 can be represented by a multi-utility representation as in (18). Such result is very much

related and close to [12]. When C is �nite, it is exactly [12, Proposition 1]. On the other hand, when

C is countable, the result is novel and it provides an alternative answer to an open question contained

in [12, Remark 1] (see also [15]).32

31Recall that if % satis�es A.1 and A.4, it follows that if fp�g�2A and fq�g�2A are such that p� ! p; q� ! q; and
p� % q� for all � 2 A then p % q.
32 In the case C is countable the result of Evren [15, Theorem 2] cannot be invoked. Indeed, altough we can make C a

�-compact metric space, by endowing it with the discrete metric, our requirement of continuity is signi�cantly weaker.
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Lemma 36 Let �(C) be the space of simple lotteries over an at most countable set C and %0 a
preorder on �(C) that satis�es (a) and (b) of Lemma 35. If we de�ne

C (%0) = f� (p� q) : � > 0 and p %0 qg

then C (%0) is a closed and convex cone.

Proof.
We use the notation of Lemma 32.

It is a routine argument to verify that the arguments contained in [12, Lemma 1 and Lemma 2]

work in our setting as well. Therefore, it follows that C (%0) is a convex cone, p � q 2 C (%0) if and
only if p %0 q, and if �p+ (1� �) r %0 �q + (1� �) r where � 2 (0; 1] and r 2 �(C) then p %0 q.
Next, we show that C (%0) is closed. If C is �nite then the statement follows from the proof of

[12, Proposition 1]. If C is countable then C = fxkgk2N. Since C is countable, it is immediate to see
that f�xkgk2N is a countable Hamel basis for RC0 . De�ne Fn = span f�xkg

n
k=1 for all n 2 N. Notice

that the family fFngn2N is increasing, with respect to set inclusion, and given any �nite dimensional
vector space F in RC0 there exists an n big enough such that Fn � F . Next, �x n 2 N. Fn is a
�nite dimensional vector space and it is isomorphic, algebraically and topologically, to Rn. Let us
call in : Fn ! Rn such isomorphism. It is immediate to see that we can choose it to be such that
i�1n (� (fxkgnk=1)) � �(C). In light of such fact, we can consider the binary relation %n on the set
�(fxkgnk=1) de�ned by

p0 %n q0 () i�1n (p0) %0 i�1n (q0) 8p0; q0 2 �(fxkgnk=1) :

Since i�1n is a bijection and %0 is a preorder, %n is a well de�ned preorder. Similarly, since i�1n is an

isomorphism of topological vector spaces, %n turns out to satisfy (a) and (b) of Lemma 35. It follows
that

C (%0) \ Fn = f� (p� q) : � > 0; p %0 q; and p� q 2 Fng (48)

= f� (p� q) : � > 0; p %0 q; and p; q 2 Fng
= i�1n (C (%n)) :

The �rst and third equality follow by de�nition. For the second one, it is immediate to see that

f� (p� q) : � > 0; p %0 q; and p; q 2 Fng � f� (p� q) : � > 0; p %0 q; and p� q 2 Fng. For the op-
posite inclusion, suppose that � > 0, p %0 q, and p � q 2 Fn. If p; q 2 Fn then there is nothing
to prove. If p or q do not belong to Fn then we have two cases: � (p� q) = 0 or � (p� q) 6= 0.

In the �rst case, it is obvious that � (p� q) belongs to f� (p� q) : � > 0; p %0 q; and p; q 2 Fng. In
the second case, we have that there exists �n 2 N such that suppfpg ;suppfqg � fxkg�nk=1. Since
suppfpg ;suppfqg � fxkg�nk=1 and p � q 2 Fn, it follows that p (xk) = q (xk) = 0 for all k > �n,

p (xk) = q (xk) for all n < k � �n, and p (xk0) = q (xk0) > 0 for some n < k0 � �n. De�ne

c =
X

n<k��n
p (xk) =

X
n<k��n

q (xk). Since 0 6= p � q 2 Fn and p; q 62 Fn, it is immediate to see that

0 < c < 1 and 0 < 1� c < 1. Given c, de�ne p̂ and q̂ to be such that

p̂ (xk) =

(
p(xk)
1�c 1 � k � n
0 otherwise

and q̂ (xk) =

(
q(xk)
1�c 1 � k � n
0 otherwise

:

Similarly, de�ne r̂ to be such that

r̂ (xk) =

(
p(xk)
c = q(xk)

c n < k � �n
0 otherwise

:
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It is immediate to see that p̂; q̂ 2 Fn \�(C) and similarly that r̂ 2 �(C). By construction, we have
that p̂; q̂ 2 Fn, p̂� q̂ = 1

1�c (p� q), and

(1� c) p̂+ cr̂ = p %0 q = (1� c) q̂ + cr̂:

By the initial part of the proof, this implies that p̂ %0 q̂. It follows that

� (p� q) = [� (1� c)] (p̂� q̂) 2 f� (p� q) : � > 0; p %0 q; and p; q 2 Fng ;

proving the second inequality.

By the proof of [12, Proposition 1] and since %n is a preorder that satis�es (a) and (b) of Lemma
35, we have that C (%n) is a closed set for all n 2 N. By (48), this implies that for each n 2 N
the set C (%0) \ Fn is closed. By [2, Corollary 2.1], we have that C (%0) is closed in the inductive
limit topology E . By [33, Theorem 3.12] and since C (%0) is convex, it follows that it is closed in the
topology induced by the topological dual, RC , proving the statement. �

The proof of next Proposition follows from the same argument used in [12] and [15, Lemma 2].

For completeness and since we recur to a di¤erent normalization used later, we report it here. Recall

that the key step and contribution in our result consists in the fact that, by Lemma 36, even if the

set of consequences is in�nite but countable, C (%0) is closed.

Proposition 37 Let �(C) be the space of simple lotteries over an at most countable set C and %0 a
preorder on �(C). The following facts are equivalent:

(i) %0 satis�es (a) and (b) of Lemma 35;

(ii) there exists a closed and convex set W � V1 (x) such that p %0 q if and only if Ev (p) � Ev (q)
for all v 2 W.

Proof.
(ii) implies (i). It follows from a routine argument.

(i) implies (ii). Consider the set

Z =
�
v 2 RC : hr; vi � 0 for all r 2 C (%0)

	
:

We next show that p %0 q if and only if Ev (p) � Ev (q) for all v 2 Z. By de�nition, if p %0 q then
p� q 2 C (%0) and so hp� q; vi � 0 for all v 2 Z. That is, Ev (p) � Ev (q) for all v 2 Z. Conversely,
by contradiction, assume that there exist p̂; q̂ 2 �(C) such that p̂ 6%0 q̂ and that Ev (p̂) � Ev (q̂)
for all v 2 Z. By the �rst part of the proof of Lemma 36, it follows that p̂ � q̂ 62 C (%0). By

Lemma 36, C (%0) is a closed and convex cone in a locally convex topological vector space. By

[33, Theorem 3.4], it follows that there exists �v 2 RCn f0g such that hp̂� q̂; �vi < 
 � hr; �vi for all
r 2 C (%0). Since C (%0) is a cone and 0 2 C (%0), it follows that we can choose 
 = 0. This implies
that �v 2 Z and E�v (p̂) < E�v (q̂), a contradiction. Finally, we are left to prove that we can replace
Z with a closed and convex set W � V1 (x). Recall that x is �xed and arbitrary. De�ne the set
W =

�
v 2 RC : v 2 Z and v (x) = 1

	
. It is immediate to see that, by construction, W � V1 (x),

W � Z, and W is closed and convex. In turn, this implies that p %0 q only if Ev (p) � Ev (q) for all
v 2 W. Conversely, suppose that Ev (p) � Ev (q) for all v 2 W and consider a generic v0 2 Z. It
follows that v0 + (1 � v0 (x)) 2 W. By assumption, we have that Ev0+(1�v0(x)) (p) � Ev0+(1�v0(x)) (q).
This implies that Ev0 (p)+1�v0 (x) � Ev0 (q)+1�v0 (x), which in turn implies that Ev0 (p) � Ev0 (q).
Since v0 was chosen to be generic, we have that p %0 q if Ev (p) � Ev (q) for all v 2 W, proving the
statement. �
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Proof of Proposition 10.
We use the notation of Proposition 37.

(a). By Lemma 35 and Proposition 37, the statement follows.

(b). It follows from Lemma 35 point (c).

(c). It follows from Proposition 37 and Lemma 35 point (d).

(d). Consider the stochastic order %00 such that

p %00 q , Ev (p) � Ev (q) 8v 2 W 00; (49)

W 00 � V1 (x) is maximal, and % is a completion of %00. By Proposition 37 and its proof, we have that
the set

Z 00 =
�
v 2 RC : hr; vi � 0 for all r 2 C (%00)

	
represents %00 as in (49). By Proposition 37 and its proof, we have that the set

V 00 =
�
v 2 RC : v 2 Z 00 and v (x) = 1

	
represents %00 as in (49). Notice that, by construction, W 00 � Z 00. By assumption, we have that
v (x) = 1 for all v 2 W 00. Therefore, we have that W 00 � V 00. Since, by assumption, W 00 is maximal

then it follows that W 00 = V 00. Finally, notice that by point (c) of this proposition, we have that
C (%00) � C (%0). This implies that Z � Z 00. That is, this implies that W �W 00. �

Proof of Proposition 8.
(ii) implies (i). It follows from Theorem 1 and Remark 34.

(i) implies (ii). We proceed by Steps.

Step 1: There exists a closed and convex set W � V1 (x) such that %0 is represented as in (23)
and % is a completion of %0.
Proof of the Step.

By Proposition 10 point (a) and (b), it follows that there exists a closed and convex setW � V1 (x)
such that %0 is represented as in (23) and % is a completion of %0. Choose W as in the proof of

Proposition 37 �
De�ne O =

�
r 2 RC0 : hr; vi � 0 for all v 2 Z

	
where Z is chosen as in the proof of Proposition

37. Recall that W =
�
v 2 RC : v 2 Z and v (x) = 1

	
and that p %0 q if and only if Ev (p) � Ev (q)

for all v 2 Z if and only if Ev (p) � Ev (q) for all v 2 W. It is easy to see that O = C (%0). We next
show an ancillary fact.

Step 2: Given q 2 �(C), the set fp 2 �(C) : p % qg+O is closed and convex.
Proof of the Step.

Since % satis�es A.4 and C is �nite, it follows that the set fp 2 �(C) : p % qg is compact. By
Lemma 31, the latter set is convex. On the other hand, it is immediate to check that O is a convex

and closed cone. Therefore, the algebraic sum of these two sets is closed and convex. �
Step 3: Let q be an element of �(C). If p̂ 62 fp 2 �(C) : p % qg then there exists v 2 W such

that hp̂; vi < hp; vi for all p % q.
Proof of the Step.

First observe that p̂ 62 fp 2 �(C) : p % qg + O. Otherwise, by contradiction, there would exist
p % q and r 2 O such that p̂ = p+ r. This would imply that hp̂� p; vi = hr; vi � 0 for all v 2 Z. By
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Step 1 and since % satis�es A.1, this would imply that p̂ %0 p, hence that p̂ % q, a contradiction. By
Step 2 and [33, Theorem 3.4], it follows that there exists v 2 RCn f0g such that

hp̂; vi < hr0; vi 8r0 2 fp 2 �(C) : p % qg+O: (50)

We next show that v can be chosen to belong to Z and thenW. Fix p0 2 fp 2 �(C) : p % qg. Consider
a generic r 2 O. By (50), for each n 2 N it follows that

hp̂; vi < hp0 + nr; vi ) hr; vi > hp̂; vi � hp0; vi
n

! 0:

Therefore, for each r 2 O = C (%0) we have that hr; vi � 0. This implies that v 2 Z. By (50) and
since 0 2 O, if we de�ne �v = v+ (1� v (x)) then it follows that �v 2 W and hp̂; �vi < hp; �vi for all p % q
�

Step 4: There exists U 2 Uc (R� V1 (x)) such that the function u : � (C)! R

u (p) = inf
v2V1(x)

U (Ev (p) ; v) = inf
v2W

U (Ev (p) ; v) 8p 2 �(C)

represents %.
Proof of the Step.

By Lemma 33 and since % satis�es A.1, A.3, and A.4, it follows that % satis�es A.6. By Corollary
29 and Remark 30, it follows that there exists a continuous and quasiconcave utility function u :

� (C) ! R such that u (p) � u (q) if and only if p % q. This implies that u is evenly quasiconcave.
Choose then U : R� V1 (x)! [�1;1] such that

U (t; v) = sup f�u (p) : hp; vi � tg 8 (t; v) 2 R� V1 (x)

where �u is de�ned as in (37). Since u is continuous and quasiconcave, by Lemma 24 and Theorem 25,

we have that U 2 Uc (R� V1 (x)) and

u (p) = inf
v2V1(x)

U (Ev (p) ; v) 8p 2 �(C) :

Fix p 2 �(C). By a careful inspection of the proof of Theorem 25 (�Only if�part), it follows that

if p is a global maximum then u (p) = infv2W U (Ev (p) ; v). Otherwise, by Step 3, we can choose the
separating functional �v in (43) to belong to W. This proves that

u (p) = inf
v2W

U (Ev (p) ; v) 8p 2 �(C)

and it concludes the proof, since essential uniqueness follows from the same argument provided in the

proof of Theorem 13.

Finally, assume that (i) or equivalently (ii) is satis�ed and % preserves a stochastic order %00. By
the proof of (i) implies (ii), it follows that there exist U 2 Uc (R� V1 (x)) and a closed and convex
subset, W, of V1 (x) such that the function u : � (C)! R, de�ned by

u (p) = inf
v2W

U (Ev (p) ; v) = inf
v2V1(x)

U (Ev (p) ; v) 8p 2 �(C) ;

represents % and W represents %0 as in (23). By Proposition 10 point (d), it follows that W �W 00 �
V1 (x). Therefore, we have that for each p 2 �(C)

u (p) = inf
v2W

U (Ev (p) ; v) � inf
v2W00

U (Ev (p) ; v) � inf
v2V1(x)

U (Ev (p) ; v) = u (p) ;
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proving the statement. �

Proof of Proposition 11.
We use the notation of Lemma 32. Fix x = x1.

(i) implies (ii). We proceed by Steps. By assumption, C = fxngn2N where xn � xn+1 for all

n 2 N. Consider F : RC0 ! RC0 de�ned by

F (p) (x) =
X
x%y

p (y) 8x 2 C:

Step 1: F is well de�ned.

Proof of the Step.

De�ne �n = max fn 2 N : xn 2 supp fpgg if supp fpg 6= ? and �n = 1, otherwise. Since p 2 RC0 , it
turns out that �n is well de�ned. Indeed, pick n > �n. Then, F (p) (xn) =

X
xn%y

p (y) = 0. �

Step 2: F is linear.

Proof of the Step.

Pick p; q 2 RC0 and �; � 2 R. Then,

F (�p+ �q) (x) =
X
x%y

(�p+ �q) (y) =
X
x%y

(�p (y) + �q (y))

= �
X
x%y

p (y) + �
X
x%y

q (y) = �F (p) (x) + �F (q) (x) :

�

For each v 2 RC de�ne v0 2 RC such that v0 (xn) =
nX
k=1

v (xk) for all n 2 N. Notice that

v (xn) =

(
v0 (xn)� v0 (xn�1) n � 2

v0 (xn) n = 1
:

Step 3: hF (p) ; vi = hp; v0i for all v 2 RC and for all p 2 RC0 .
Proof of the Step.

First, notice that

F (p) (xn)� F (p) (xn+1) =
X
xn%y

p (y)�
X

xn+1%y
p (y)

=
X

xn%y�xn+1

p (y) +
X

xn+1%y
p (y)�

X
xn+1%y

p (y) = p (xn) 8n 2 N:
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Then, we have that

hF (p) ; vi =
1X
n=1

F (p) (xn) v (xn) =
1X
n=2

F (p) (xn) v (xn) + F (p) (x1) v (x1)

=
1X
n=2

F (p) (xn) [v
0 (xn)� v0 (xn�1)] + F (p) (x1) v0 (x1)

=
1X
n=2

F (p) (xn) v
0 (xn)�

1X
n=2

F (p) (xn) v
0 (xn�1) + F (p) (x1) v

0 (x1)

=
1X
n=1

F (p) (xn) v
0 (xn)�

1X
n=1

F (p) (xn+1) v
0 (xn)

=
1X
n=1

[F (p) (xn)� F (p) (xn+1)] v0 (xn) =
1X
n=1

p (xn) v
0 (xn) = hp; v0i :

�

Step 4: F is continuous.

Proof of the Step.

Pick fp�g�2A � RC0 and p 2 RC0 such that p� ! p. By Step 3, for each v 2 RC we have that

hF (p�) ; vi = hp�; v0i ! hp; v0i = hF (p) ; vi ;

proving the statement. �

Step 5: F is a bijection.

Proof of the Step.

We �rst show that F is injective. Pick p1; p2 2 RC0 and assume that F (p1) = F (p2). By the proof
of Step 3, it follows that

p1 (xn) = F (p1) (xn)� F (p1) (xn+1) = F (p2) (xn)� F (p2) (xn+1) = p2 (xn) 8n 2 N:

By routine arguments, we can show that F is surjective. �

Step 6: F�1 is a well de�ned, linear, and continuous function.

Proof of the Step.

By Step 5 and Step 2, it follows that F�1 is well de�ned and linear. Next consider, fr�g�2A �
RC0 and r 2 RC0 such that r� ! r. It follows that for each � 2 A there exists a unique p� 2 RC0
such that F (p�) = r� and there exists a unique p 2 RC0 such that F (p) = r. Fix v 2 RC and de�ne
v00 2 RC such that

v00 (xn) =

(
v (xn)� v (xn�1) n � 2

v (xn) n = 1
:

Then, it follows that v (xn) =
nX
k=1

v00 (xk) for all n 2 N. By Step 3, it follows that



F�1 (r�) ; v

�
= hp�; vi = hr�; v00i ! hr; v00i = hp; vi =



F�1 (r) ; v

�
:

�

De�ne F = F (� (C)). By Step 6, observe that F is closed and convex. Fix s 2 F . De�ne
U =

�
r 2 F : F�1 (r) % F�1 (s)

	
. By Lemma 31, Lemma 32, Step 5, Step 6, and since % satis�es

A.1, A.2, and A.3, it follows that U is convex and closed.
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Step 7: Given m 2 N; F (p) 2 Fm if and only if p 2 Fm.
Proof of the Step.

First, we prove su¢ ciency. F (p) (xn) =
X
xn%y

p (y) = 0 if n > m, since p (y) = 0 if xn % y and

n > m. We prove necessity. By assumption, F (p) (xn) = F (p) (xn+1) = 0 if n > m. By the proof of

Step 3, we have that p (xn) = F (p) (xn)� F (p) (xn+1) = 0 if n > m. �

Step 8: Given m 2 N;
�
U �

�
RC0
�
+

�
\ Fm = U \ Fm �

�
RC0
�
+
\ Fm.

Proof of the Step.

The inclusion
�
U �

�
RC0
�
+

�
\Fm � U \Fm�

�
RC0
�
+
\Fm is obvious. For the opposite inclusion,

pick F (p) 2
�
U �

�
RC0
�
+

�
\ Fm. Then, F (p) = F (p1) � r1 where F (p1) 2 U; r1 2

�
RC0
�
+
;

F (p1)� r1 2 Fm; p1 % F�1 (s). We have two cases.
1) F (p1) 2 Fm and r1 2 Fm then F (p) 2 U \ Fm �

�
RC0
�
+
\ Fm.

2) F (p1) or r1 do not belong to Fm. In such case, since F (p) 2 Fm, we have that

F (p1) (xn) = r1 (xn) � 0 8n > m
F (p1) (xn) = r1 (xn) > 0 for some n > m:

Notice that, by de�nition, p1 % F�1 (s). If m � 2 de�ne p2 2 �(C) to be such that

p2 (xn) =

8>>>><>>>>:
p1 (xn) +

1X
k=m+1

p1 (xk) n = m

p1 (xn) n 2 f1; :::;m� 1g
0 otherwise

:

Otherwise, de�ne p2 to be such that

p2 (xn) =

8><>: p1 (xn) +
1X

k=m+1

p1 (xk) n = m = 1

0 otherwise

:

Since C is ordered with a maximum element and by A.5, it follows that p2 % p1. Hence, by de�nition
and Step 7, F (p2) 2 U \ Fm. Next, notice that

F (p1) (xn) = F (p2) (xn) n 2 f1; :::;mg
F (p2) (xn) = 0 8n > m:

De�ne r2 2
�
RC0
�
+
to be such that

r2 (xn) =

(
r1 (xn) n 2 f1; :::;mg
0 otherwise

:

It is immediate to see that r2 2
�
RC0
�
+
\ Fm. Therefore, it follows that

(F (p2)� r2) (xn) = F (p2) (xn)� r2 (xn) = F (p1) (xn)� r1 (xn) = F (p) (xn) n 2 f1; :::;mg
(F (p2)� r2) (xn) = F (p2) (xn)� r2 (xn) = 0� 0 = F (p) (xn) n > m:

�

Step 9: The set U �
�
RC0
�
+
is closed and convex.
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Proof of the Step.

Fix m 2 N. Since
�
RC0
�
+
is E-closed, it is immediate to see that �

�
RC0
�
+
is E-closed. By [2,

Corollary 2.1], it follows that �
�
RC0
�
+
\Fm is closed. By Step 6 and the proof of Lemma 32, we have

that U \ Fm is closed as well. We next show that U \ Fm is compact. Pick fr�g�2A � U \ Fm. By
Step 6 and Step 7, there exists fp�g�2A � �(C) \ Fm such that F (p�) = r� for all � 2 A. Since
�(C) \ Fm is compact, there exists

�
p��
	
�2B � fp�g�2A such that p�� ! p 2 �(C) \ Fm. By

construction and Lemma 32, it follows that p�� % F�1 (s) for all � 2 B, hence p % F�1 (s). By

Step 4 and Step 7, we can conclude that r�� = F
�
p��
�
! F (p) 2 U \ Fm. By Step 8, it follows

that
�
U �

�
RC0
�
+

�
\ Fm = U \ Fm �

�
RC0
�
+
\ Fm is closed and convex, being the algebraic sum of a

compact and convex set with a closed and convex set. By [2, Corollary 2.1], U �
�
RC0
�
+
is closed with

respect to the inductive limit topology E of Lemma 32. By [33, Theorem 3.12] and since U �
�
RC0
�
+

is convex, it follows that U �
�
RC0
�
+
is closed. �

Step 10: If p̂ 62
�
p 2 �(C) : p % F�1 (s)

	
then F (p̂) 62 U �

�
RC0
�
+
.

Proof of the Step.

We argue by contradiction. First, notice that for each q 2 �(C) we have that

X
y%xn

q (y) = 1�
X
xn�y

q (y) = 1�
X

xn+1%y
q (y) = 1� F (q) (xn+1) 8n 2 N:

By contradiction, if p̂ 62
�
p 2 �(C) : p % F�1 (s)

	
and F (p̂) 2 U �

�
RC0
�
+
then there would exist

p % F�1 (s) such that F (p̂) = F (p)�r where r 2
�
RC0
�
+
. This implies that F (p̂) � F (p). Therefore,

for each n 2 N X
y%xn

p̂ (y) = 1� F (p̂) (xn+1) � 1� F (p) (xn+1) =
X
y%xn

p (y) :

Since % satis�es A.1 and A.5, this implies that p̂ % p % F�1 (s), a contradiction. �

Step 11: If q 2 �(C) and p̂ 62 fp 2 �(C) : p % qg then there exists v0 2 Vinc such that

hp̂; v0i < hp; v0i 8p 2 fp 2 �(C) : p % qg :

Proof of the Step.

De�ne s = F (q). By Step 9 and Step 10, it follows that F (p̂) 62 U �
�
RC0
�
+
where the latter

set is a closed and convex set in a locally convex topological vector space. By [33, Theorem 3.4], it

follows that there exists a function v 2 RCn f0g such that hF (p̂) ; vi < hr; vi for all r 2 U �
�
RC0
�
+
.

Therefore, if we �x a generic y 2 C, �r 2 U we have that hF (p̂) ; vi < h�r � n�y; vi for all n 2 N. This
implies that v (y) � 0 for all y 2 C. By Step 3 and since 0 2

�
RC0
�
+
, it follows that for each p % q we

have that

hp̂; v0i = hF (p̂) ; vi < hF (p) ; vi = hp; v0i :

By de�nition of v0 and since C is ordered with a maximum element, it follows that v0 is increasing.

After a normalization, v0 can be chosen to belong to Vinc. �

Step 12: There exists U 2 Umc (R� V1 (x1)) such that the function u : � (C)! R

u (p) = inf
v2V1(x1)

U (Ev (p) ; v) = inf
v2Vinc

U (Ev (p) ; v) 8p 2 �(C)

represents %.
Proof of the Step.
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Since % satis�es A.5 and C is ordered with a maximum element, it follows that % satis�es A.6.

It is enough to consider f�xkgk2N and notice that, given A.5, for each p 2 �(C) we have that there
exists k and k0 such that �xk % p % �xk0 . By Lemma 32 and Corollary 29, it follows that there exists
a mixture continuous, upper semicontinuous, and quasiconcave utility function u : � (C) ! R such
that u (p) � u (q) if and only if p % q. Since u is mixture continuous, upper semicontinuous, and

quasiconcave, this implies that u is evenly quasiconcave. Choose then U : R � V1 (x1) ! [�1;1]
such that

U (t; v) = sup f�u (p) : hp; vi � tg 8 (t; v) 2 R� V1 (x1)

where �u is de�ned as in (37). Since u is mixture continuous, upper semicontinuous, and quasiconcave,

by Lemma 24 and Theorem 25 we have that U 2 Umc (R� V1 (x1)) and

u (p) = inf
v2V1(x1)

U (Ev (p) ; v) 8p 2 �(C) :

Fix p 2 �(C). By a careful inspection of the proof of Theorem 25 (�Only if�part), it follows that if

p is a global maximum then u (p) = infv2Vinc U (Ev (p) ; v). Otherwise, by Step 11, we can choose the
separating functional �v in (43) to belong to Vinc. This proves that

u (p) = inf
v2Vinc

U (Ev (p) ; v)

and it concludes the proof, since essential uniqueness follows from the same argument provided in the

proof of Theorem 13. �

(ii) implies (i). By Theorem 9, we have that % satis�es A.1, A.2, and A.3. Next, observe that if

p and q satisfy (26) then Ev (p) � Ev (q) for all v 2 Vinc. Since U 2 Umc (R� V1 (x1)), this implies
that U (Ev (p) ; v) � U (Ev (q) ; v) for all v 2 Vinc. Since u satis�es (27), it follows that p % q, proving
that % satis�es A.5. �

Proof of Proposition 15.
Fix x = 1.

(i) implies (ii). It is immediate to see that since %, among the others, satis�es A.8 and A.9 then
it satis�es A.6. It is enough to consider f�kgk2Z to see that for each p 2 �(R) there exist k; k0

such that �k % p % �k0 . By Corollary 29, it follows that there exists a mixture continuous, upper

semicontinuous, and quasiconcave function, u : � (R) ! R, representing %. By A.9, it follows that
u (R) = u (� (R)) where the latter set turns out to be an interval.33 By A.8, it follows that x � y

if and only if u (x) � u (y). Therefore, there exists a strictly increasing function f : u (R) ! R such
that f � ujC = idR. Since u (R) = u (� (R)), we can de�ne û = f � u. This implies that û represents
% and that R � û (� (R)) � û (R) = R. Since u is mixture continuous, upper semicontinuous,

and quasiconcave, this latest fact implies that û is a mixture continuous, upper semicontinuous, and

quasiconcave utility function. Moreover, by construction, it is a certainty equivalent utility function

for %. Without loss of generality, then we can assume that u was already chosen to be û. De�ne �u as
in (38). Moreover, choose U : R� V1 (x)! [�1;1] de�ned by

U (t; v) = sup f�u (p) : hp; vi � tg = Uv (t) 8 (t; v) 2 R� V1 (x) : (51)

It is immediate to see that U 2 Umcn (R� V1 (x)) and it satis�es (29). Indeed, by Theorem 25 part (i),
U satis�es (29). By (51) and Lemma 24, it follows that U satis�es P.1-P.3. By (51), Theorem 25, and

33Recall that we embed C in �(C) given the injective map x 7! �x and that u is mixture continuous over the
connected set �(C).
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since u is real valued and mixture continuous, it follows that U satis�es P.5. By (51) and Theorem 25

point (ii), it follows that U satis�es P.6. Finally, by (29) and since u is a certainty equivalent utility

function, it follows that for each y 2 R we have that

y = u (y) = inf
v2V1(x)

U (h�y; vi ; v) = inf
v2V1(x)

U (v (y) ; v) :

The essential uniqueness follows from the same argument used in Theorem 13.

(ii) implies (i). Consider U 2 Umcn (R� V1 (x)) and u de�ned as in (29). Since U 2 Umcn (R� V1 (x)),
it follows that U 2 Umc (R� V1 (x)). By Theorem 13, this implies that % satis�es A.1, A.2, A.3, and
A.7. By P.7, u is a certainty equivalent utility function for %. It follows that for any two x; y 2 R we
have that

x � y () u (x) � u (y)() x % y: (52)

Therefore, % satis�es A.8. Since u is a certainty equivalent utility function, we have that u (R) = R.
This implies that for each p 2 �(R) there exists xp 2 R such that xp � p and, by (52), we have that
such xp is unique.

Finally, assume that (i) or equivalently (ii) is satis�ed. By the proof of (i) implies (ii), there

exists a certainty equivalent utility function u that represent % and is mixture continuous, upper

semicontinuous, and quasiconcave. Consider U as in (51). By the previous part of the proof we have

that u = uU on �(R) and U 2 Umcn (R� V1 (x)). Since u is a certainty equivalent utility function, it
follows that U = U?. �

Proof of Proposition 16.
Recall that x = 1.

%1 and %2 satisfy (i) of Proposition 15 and consider U?1 ; U?2 as in Proposition 15. Recall that
u1 = uU?

1
and u2 = uU?

2
, de�ned as in (29) on �(R), are two certainty equivalent utility functions,

respectively, for %1 and %2.
(i) implies (ii). Since %1 is more risk averse than %2, it follows that x1p � x2p for all p 2 �(R).

Therefore, if we �x (t; v) 2 R� V1 (x), it follows that

U?1 (t; v) = sup
�
x1p : Ev (p) � t and p 2 �(R)

	
� sup

�
x2p : Ev (p) � t and p 2 �(R)

	
= U?2 (t; v) :

(ii) implies (i). Since U?1 � U?2 , it follows that U?1 (Ev (p) ; v) � U?2 (Ev (p) ; v) for all v 2 V1 (x) and
for all p 2 �(R). Since u1 and u2 satisfy (29), respectively, for U?1 and U?2 , we have that u1 (p) � u2 (p)
for all p 2 �(R). Finally, since u1 and u2 are two certainty equivalent utility functions, it follows that

x1p = u1 (p) � u2 (p) = x2p 8p 2 �(R) ;

proving the statement. �

Next lemma gives su¢ cient conditions for a function U : R�V1 (x)! [�1;1] to satisfy P.3. This
will turn out to be extremely useful in proving the statements contained in Example 17, Proposition

18, and Proposition 19.

Lemma 38 Let U : R � V1 (x) ! [�1;1] be a function that satis�es P.1 and P.2. If U is lower

semicontinuous, quasiconvex, and such that limt!1
�
infv2V1(x) U (t; v)

�
= limt!1 U (t; v

0) for some

v0 2 V1 (x) then U satis�es P.3.
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Proof.
First, observe that since U satis�es P.2 there exists � 2 [�1;1] such that � = limt!1 U (t; v) for

all v 2 V1 (x). Next, consider � 2 R. De�ne L� = f(t; v) 2 R� V1 (x) : U (t; v) � �g. If L� is empty
then it is vacuously �-evenly convex. Since U satis�es P.1 and P.2, if � � � then L� = R � V1 (x)
and again L� is vacuously �-evenly convex. Finally, suppose that L� 6= ? and � < �. Consider

(�t; �v) 62 L�. Since limt!1
�
infv2V1(x) U (t; v)

�
= �, we have that there exists �� such that

t > ��) U (t; v) > � 8v 2 V1 (x) : (53)

Moreover, since U is lower semicontinuous and quasiconvex, we have that L� is nonempty, closed in

the product topology, and convex.34 Pick (�t; �v) 62 L�. By [33, Theorem 3.4], there exist " > 0, �p 2 RC0 ,
and �s 2 R such that

h�p; �vi+ �s�t+ " < h�p; vi+ �st 8 (t; v) 2 L�: (54)

We next show that we can choose �s to be di¤erent from zero. If �s 6= 0 to start with then there is

nothing to prove. Otherwise, (54) becomes h�p; �vi + " < h�p; vi for all (t; v) 2 L�. Or equivalently,
h�p; vi � h�p; �vi > " > 0 for all (t; v) 2 L�. Notice that, by (53), we have that (t; v) 2 L� only if
t � �� <1. Therefore, �t� t � �t� �� for all (t; v) 2 L�. Choose �s such that

�s =

8><>:
"

2(�t����1) if �t� �� = 0
"

2(�t���) if �t� �� < 0
� "
2(�t���) if �t� �� > 0

:

Notice that, in any case, �s < 0. Then, it follows that for each (t; v) 2 L�

�s (�t� t) � �s (�t� ��) =

8><>:
"

2(�t����1) (
�t� ��) = 0 if �t� �� = 0

"
2(�t���) (

�t� ��) = "
2 if �t� �� < 0

� "
2(�t���) (

�t� ��) = � "
2 if �t� �� > 0

:

This implies that

�s (�t� t) < " < h�p; vi � h�p; �vi 8 (t; v) 2 L�:

Since � and (�t; �v) were chosen to be generic, it follows that for each � 2 R and for each (�t; �v) 62 L�
there exist �s 2 Rn f0g and �p 2 RC0 such that h�p; �vi + �s�t < h�p; vi + �st for all (t; v) 2 L�. This implies
that U satis�es P.3. �

Proof of Example 17.
Recall that x was assumed to be equal to 1. Consider a binary relation %0 over �(R), de�ned by

p %0 q , Ev (p) � Ev (q) 8v 2 W; (55)

where the set W � V1 (x) is nonempty, compact, and convex, and each element v 2 W is a strictly

increasing function over the real line such that v (R) = R. Given the properties of W, equivalently,
we have that

p %0 q , v�1 (Ev (p)) � v�1 (Ev (q)) 8v 2 W:

De�ne the function u : � (R)! [�1;1) to be such that

u (p) = inf
v2W

v�1 (Ev (p)) 8p 2 �(R) :

34f(t; v) 2 R� V1 (x) : U (t; v) � �g is a subset of the vector space R � RC . This latest set, endowed with the usual
operations and the product topology, is a locally convex topological vector space.
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Further, de�ne % on �(R) to be such that p % q if and only if u (p) � u (q). We �rst show that we can
replace, in the previous equation, in�mum with minimum, proving that u is real valued as well. Fix

p 2 �(R) and consider the real valued mapping with domain W such that v 7! v�1 (Ev (p)). Notice
that for each � 2 R �

v 2 W : v�1 (Ev (p)) � �
	
= fv 2 W : Ev (p) � v (�)g :

Given the last equality, it is immediate to see that
�
v 2 W : v�1 (Ev (p)) � �

	
is closed. This implies

that the map v 7! v�1 (Ev (p)) is lower semicontinuous. Since W is compact, it follows that

u (p) = min
v2W

v�1 (Ev (p)) 8p 2 �(R) : (56)

Next, �x v 2 W and consider the real valued mapping with domain �(R) such that p 7! v�1 (Ev (p)).
Notice that for each � 2 R�

p 2 �(R) : v�1 (Ev (p)) � �
	
= fp 2 �(R) : Ev (p) � v (�)g :

Given the last equality, it is immediate to see that
�
p 2 �(R) : v�1 (Ev (p)) � �

	
is closed and convex.

By construction, this implies that u is the lower envelope of a family of upper semicontinuous and

quasiconcave functions. It follows that u is upper semicontinuous and quasiconcave as well. Next,

observe that for each x 2 R and for each v 2 W we have that v�1 (Ev (�x)) = x. This implies that

u (�x) = x for all x 2 R. By de�nition, this implies that u is a certainty equivalent utility function
and that u is not constant. Next, consider p; q 2 �(R), 
 2 R, and a converging sequence f�ngn2N
to �� contained in

f� 2 [0; 1] : 
 � u (�p+ (1� �) q)g =

=
[
v2W

�
� 2 [0; 1] : 
 � v�1 (Ev (�p+ (1� �) q))

	
=
[
v2W

f� 2 [0; 1] : v (
) � Ev (�p+ (1� �) q)g :

By (56), it follows that for each n 2 N there exists vn 2 W such that vn (
) � �nEvn (p) +
(1� �n)Evn (q). Since W is compact, it follows that there exists a converging subnet fvn�g�2A �
fvngn2N such that vn� ! v 2 W. We can then conclude that

v (
) = lim
�
vn� (
) � lim� �n�Evn� (p) + lim� (1� �n�)Evn� (q)

= ��Ev (p) +
�
1� ��

�
Ev (q) = Ev

�
��p+

�
1� ��

�
q
�
:

This implies that �� 2
[
v2W

f� 2 [0; 1] : v (
) � Ev (�p+ (1� �) q)g. Hence, it follows that

f� 2 [0; 1] : 
 � u (�p+ (1� �) q)g

is closed. Since u is upper semicontinuous, we have that f� 2 [0; 1] : u (�p+ (1� �) q) � 
g is closed
as well. It follows that u is a mixture continuous, upper semicontinuous, and quasiconcave (certainty

equivalent) utility function for %. By Corollary 29, this implies that % satis�es A.1, A.2, A.3, A.7.

Since u is a certainty equivalent utility function for %, it follows that % satis�es A.8 and A.9.
Finally, we show that U : R� V1 (x)! [�1;1], de�ned by

U (t; v) =

(
v�1 (t) v 2 W
1 otherwise

8 (t; v) 2 R� V1 (x) ;
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represents % as in (ii) of Proposition 15. Notice that each function v 2 W is strictly increasing and

surjective. This implies that v is continuous and it follows that v�1 is strictly increasing, surjective,

and continuous. It follows that U is well de�ned. By de�nition, it is immediate to see that u (p) =

minv2V1(x) U (Ev (p) ; v) for all p 2 �(R). We next show that U 2 Umcn (R� V1 (x)). Since each v in
W is strictly increasing so is v�1. This implies that U (�; v) is increasing for each v 2 V1 (x). That
is, U satis�es P.1. Since each function in W is strictly increasing and such that v (R) = R so is v�1,
this implies that limt!1 v

�1 (t) = 1 for all v 2 W. In turn, this implies that U satis�es P.2. Next,

consider � 2 R and the lower contour set L� = f(t; v) 2 R� V1 (x) : U (t; v) � �g. It is immediate to
see that

L� =
�
(t; v) 2 R�W : v�1 (t) � �

	
= f(t; v) 2 R�W : t � v (�)g :

This implies that L� is a closed set with respect to the product topology and that L� is convex.

Therefore, U satis�es P.1, P.2, it is lower semicontinuous and quasiconvex. Moreover, it is not hard

to check that

lim
t!1

�
inf

v2V1(x)
U (t; v)

�
=1 = lim

t!1
U (t; v) 8v 2 V1 (x) :

By Lemma 38, this implies that U satis�es P.3. Since u is mixture continuous and real valued, it

follows that U satis�es P.5. Since v�1 is continuous for all v 2 W, it follows that U+ = U , hence U
satis�es P.6. P.7 is easily veri�ed to be satis�ed by U . �

Proof of Proposition 18.
(ii) implies (i). It follows from a routine argument.

(i) implies (ii). Since % satis�es A.1, A.2, and A.10, there exists �v 2 RC such that the function
u : � (C)! R, de�ned by

u (p) = E�v (p) 8p 2 �(C) ;

represents %. Without loss of generality, we can assume that �v 2 V1 (x). Consider U : R � V1 (x) !
[�1;1], de�ned by

U (t; v) =

(
t v = �v

1 v 6= �v
8 (t; v) 2 R� V1 (x) .

It is immediate to check that U satis�es P.1 as well as P.2. Next, consider � 2 R and the lower contour
set L� = f(t; v) 2 R� V1 (x) : U (t; v) � �g. It follows that L� = (�1; �] � f�vg. This implies that
L� is a closed set with respect to the product topology and that L� is convex. Therefore, U satis�es

P.1, P.2, it is lower semicontinuous and quasiconvex. Moreover, it is immediate to see that

lim
t!1

�
inf

v2V1(x)
U (t; v)

�
=1 = lim

t!1
U (t; v) 8v 2 V1 (x) :

By Lemma 38, this implies that U satis�es P.3. Since u is real valued, continuous (resp., mixture

continuous), and such that u = uU on �(C), it follows that U satis�es P.4 (resp., P.5). It is immediate

to check that U = U+, hence U satis�es P.6. Given these facts, we have that U 2 Uc (R� V1 (x)) \
Umc (R� V1 (x)) and U represents % as in (28) of Theorem 13. �

Proof of Proposition 19.
(ii) implies (i). It follows from a routine argument.
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(i) implies (ii). Since % satis�es A.1, A.3, A.4, A.11, A.12, by Lemma 31 and [27, Theorem 1],

there exists a closed and convex setW � RC such that v (�x) = v0 (�x) for all v; v0 2 W and the function

u : � (C)! R, de�ned by
u (p) = min

v2W
Ev (p) 8p 2 �(C) ;

is continuous and represents %. Without loss of generality, we can assume that W � V1 (�x). Then,
consider U : R� V1 (�x)! [�1;1], de�ned by

U (t; v) =

(
t v 2 W
1 v 62 W

8 (t; v) 2 R� V1 (�x) .

It is immediate to check that U satis�es P.1 as well as P.2. Next, consider � 2 R and the lower contour
set L� = f(t; v) 2 R� V1 (x) : U (t; v) � �g. It follows that L� = (�1; �]�W. This implies that L�
is a closed set with respect to the product topology and that L� is convex. Therefore, U satis�es P.1,

P.2, it is lower semicontinuous and quasiconvex. Moreover, it is immediate to see that

lim
t!1

�
inf

v2V1(�x)
U (t; v)

�
=1 = lim

t!1
U (t; v) 8v 2 V1 (�x) :

By Lemma 38, this implies that U satis�es P.3. Since u is real valued, continuous (resp., mixture

continuous), and such that u = uU on �(C), it follows that U satis�es P.4 (resp., P.5). It is immediate

to check that U = U+, hence U satis�es P.6. Given these facts, we have that U 2 Uc (R� V1 (�x)) \
Umc (R� V1 (�x)) and U represents % as in (28) of Theorem 13. �

B.1 Proofs of Subsection 3.2

In this subsection, we prove Theorem 3, Proposition 4, and Corollary 41. We proceed by steps.

Lemma 39 Let C be a �nite set and let % be a binary relation on M. If % satis�es B.1-B.6 then

there exists a continuous and quasiconcave function u : � (C) ! R that represents % restricted to

�(C). Furthermore, given any continuous and quasiconcave utility function u for %, there exists an
essentially unique and upper semicontinuous U 2 Uc (R� V1 (x)) such that

u (p) = inf
v2V1(x)

U (Ev (p) ; v) 8p 2 �(C) : (57)

Moreover, U? : R� V1 (x)! [�1;1], de�ned by

U? (t; v) = sup fu (p) : Ev (p) � t and p 2 �(C)g 8 (t; v) 2 R� V1 (x) ; (58)

is upper semicontinuous, belongs to Uc (R� V1 (x)), and represents u as in (57).

Proof.
Since % satis�es B.1 and B.6, it follows that % restricted to �(C) satis�es A.1 and A.3. Since

% satis�es B.2 and B.3, we can conclude that % restricted to �(C) satis�es A.4. Since C is �nite

and by Lemma 33 part (i), it follows that % satis�es A.6. By Corollary 29 and Remark 30, it follows
that there exists a continuous and quasiconcave utility function, u : � (C) ! R, that represents %
restricted to �(C). Recall that x is �xed and de�ne U = U?, by Lemma 24, Theorem 25 part (i), and

Lemma 27, it follows that U belongs to Uc (R� V1 (x)), it is essentially unique, and it is such that

u (p) = inf
v2V1(x)

U (Ev (p) ; v) 8p 2 �(C) :

Next, we show that U? is upper semicontinuous, proving that U can be chosen to be upper semicon-

tinuous. Consider a sequence f(tn; vn)gn2N � R�V1 (x) such that (tn; vn)! (t; v). This implies that
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tn ! t and vn ! v and that (t; v) 2 R� V1 (x). Next, consider the subsequence f(tnk ; vnk)gk2N such
that

lim sup
n
U? (tn; vn) = lim

k
U? (tnk ; vnk) .

We have two cases:

- for k large enough the set
n
p 2 �(C) : Evnk (p) � tnk

o
= ?;

- there exists
��
tnk(l) ; vnk(l)

�	
l2N such that

n
p 2 �(C) : Evnk(l) (p) � tnk(l)

o
6= ?.

In the �rst case, we have that

lim sup
n
U? (tn; vn) = lim

k
U? (tnk ; vnk) = �1 � U? (t; v) : (59)

In the second case, since �(C) is compact and u is continuous, we have that there exists pl 2 �(C)
such that Evnk(l) (pl) � tnk(l) and u (pl) = U

?
�
tnk(l) ; vnk(l)

�
for all l 2 N. Since fplgl2N is a sequence

in a compact set, without loss of generality, we can assume that pl ! p 2 �(C). This implies that
Ev (p) = liml Evnk(l) (pl) � liml tnk(l) = t. Since u is continuous, we can conclude that

lim sup
n
U? (tn; vn) = lim

k
U? (tnk ; vnk) = lim

l
U?
�
tnk(l) ; vnk(l)

�
= lim

l
u (pl) = u (p) � U? (t; v) :

By this last inequality, (59), and [1, Lemma 2.42], it follows that U? is upper semicontinuous. �

Next, Lemma 40 shows that there exists a utility function V : M ! R that represents %. The
proof relies by �rst deriving V by �extending�u to �nite menus and then, by upper semicontinuity,

to all closed menus. This is based on the results developed by Gul and Pesendorfer [23]. The proof is

available upon request.

Lemma 40 (Gul-Pesendorfer, 2001, Lemma 2 and Lemma 8) Let C be a �nite set and let %
be a binary relation onM. The following are equivalent facts:

(i) % satis�es B.1-B.5 and B.7;

(ii) % satis�es B.1-B.6;

(iii) there exist a continuous and quasiconcave function u : � (C) ! R (as in Lemma 39) that

represents % restricted to �(C) and a function V :M! R that represents % such that

V (P ) = max
p2P

u (p) 8P 2M: (60)

Proof of Theorem 3.
(i) implies (ii). It follows trivially.

(ii) implies (iii). It follows by applying Lemma 39 and Lemma 40.

(iii) implies (i). By construction, the function u = uU is real valued, continuous, quasiconcave on

�(C), and it represents %. Moreover, V (P ) = maxp2P u (p). By Lemma 40, the statement follows.
Assume (i) or, equivalently, (ii) or (iii) and de�ne u : � (C) ! R to be such that p 7! V (p).

It follows that u is real valued, continuous, quasiconcave, and it represents % on �(C). Moreover,
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V (P ) = maxp2P u (p) for all P 2 M. By Lemma 39, it follows that U? is upper semicontinuous,

belongs to Uc (R� V1 (x)), and represents % as in (15). �

Proof of Proposition 4.
Assume that % is a binary relation onM that satis�es B.1-B.6. Furthermore, assume that U and

V are as in Theorem 3. Fix a convex menu P .

Claim. Let U belong to Uc (R� V1 (x)) and let U be upper semicontinuous. The function � :

P � V1 (x)! [�1;1], de�ned by

� (p; v) = U (Ev (p) ; v) 8 (p; v) 2 P � V1 (x) ;

is quasiconvex with respect to v, quasiconcave with respect to p, and upper semicontinuous.

Proof of the Claim.

We �rst prove that � is quasiconvex with respect to v. Fix p 2 P . Consider v1; v2 2 V1 (x) and � 2
(0; 1). De�ne v� = �v1+(1� �) v2. It follows that (Ev� (p) ; v�) = � (Ev1 (p) ; v1)+(1� �) (Ev2 (p) ; v2).
Since U satis�es P.3, it follows that

� (p; v�) = U (Ev� (p) ; v�) � max fU (Ev1 (p) ; v1) ; U (Ev2 (p) ; v2)g = max f� (p; v1) ;� (p; v2)g :

Next, we show that � is quasiconcave with respect to p. Fix v 2 V1 (x). Consider p1; p2 2 P and

� 2 (0; 1). De�ne p� = �p1 + (1� �) p2. Without loss of generality, assume that Ev (p1) � Ev (p2).
Since U satis�es P.1, it follows that Ev (p1) � Ev (p�) � Ev (p2) and U (Ev (p1) ; v) � U (Ev (p�) ; v) �
U (Ev (p2) ; v). We can conclude that

� (p�; v) = U (Ev (p�) ; v) � U (Ev (p2) ; v)
= min fU (Ev (p1) ; v1) ; U (Ev (p2) ; v)g = min f� (p1; v) ;� (p2; v)g :

Finally, we show that � is upper semicontinuous. Consider a sequence f(pn; vn)gn2N � P � V1 (x)
such that (pn; vn) ! (p; v) 2 P � V1 (x). Particularly, it follows that Evn (pn) ! Ev (p) and vn ! v.

Since U is upper semicontinuous, it follows that

lim sup
n
� (pn; vn) = lim sup

n
U (Evn (pn) ; vn) � U (Ev (p) ; v) = � (p; v) ;

proving the statement. �
By previous Claim, [35, Corollary 2] and since U satis�es P.1., it follows that

V (P ) = max
p2P

inf
v2V1(x)

� (p; v) = inf
v2V1(x)

max
p2P

� (p; v)

= inf
v2V1(x)

max
p2P

U (Ev (p) ; v) = inf
v2V1(x)

U

�
max
p2P

Ev (p) ; v
�
:

�

Corollary 41 Let C be a �nite set and let % be a binary relation onM. The following are equivalent

facts:

(i) % satis�es B.1-B.6 and B.8;

(ii) there exists an essentially unique and upper semicontinuous U 2 Uc (R� V1 (x)) such that the
function V :M! R, de�ned by

V (P ) = max
p2P

inf
v2V1(x)

U (Ev (p) ; v) = inf
v2V1(x)

U

�
max
p2P

Ev (p) ; v
�

8P 2M; (61)

represents %.
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Proof of Corollary 41.
Before starting observe that maxp2P Ev (p) = maxp2co(P ) Ev (p) for all P 2 M and for all v 2

V1 (x).
(i) implies (ii). By Theorem 3 and since % satis�es B.1-B.6, it follows that there exists an essentially

unique and upper semicontinuous function U 2 Uc (R� V1 (x)) such that the function V :M ! R,
de�ned by

V (P ) = max
p2P

inf
v2V1(x)

U (Ev (p) ; v) 8P 2M;

represents %. Fix P 2M. By B.8 and by Proposition 4, it follows that

V (P ) = V (co (P )) = max
p2co(P )

inf
v2V1(x)

U (Ev (p) ; v) = inf
v2V1(x)

max
p2co(P )

U (Ev (p) ; v)

= inf
v2V1(x)

U

�
max

p2co(P )
Ev (p) ; v

�
= inf

v2V1(x)
U

�
max
p2P

Ev (p) ; v
�
:

(ii) implies (i). By assumption there exists an essentially unique and upper semicontinuous function

U 2 Uc (R� V1 (x)) such that the function V :M! R, de�ned by,

V (P ) = inf
v2V1(x)

U

�
max
p2P

Ev (p) ; v
�

8P 2M; (62)

represents %. Given (62), this implies that

V (P ) = inf
v2V1(x)

U

�
max
p2P

Ev (p) ; v
�

= inf
v2V1(x)

U

�
max

p2co(P )
Ev (p) ; v

�
= V (co (P )) 8P 2M;

that is, % satis�es B.8. On the other hand, by assumption, we have that

V (P ) = max
p2P

inf
v2V1(x)

U (Ev (p) ; v) 8P 2M:

By Theorem 3, it follows that % satis�es B.1-B.6, proving the statement. �

B.2 Proofs of Subsubsection 3.2.1

In this subsection, we prove Proposition 5. We proceed by steps. Recall that we denote

C = fP � �(C) : ? 6= P closed and convexg :

Recall that the Hausdor¤ metric dh :M�M! [0;1) is such that

dh (P;Q) = max

�
sup
p2P

inf
q2Q

d (p; q) ; sup
q2Q

inf
p2P

d (q; p)

�
where we consider d to be the distance induced by the supnorm.

Lemma 42 Let C be a �nite set and let % be a binary relation on C. If % satis�es B.1-B.6 then

there exists a continuous and quasiconcave function u : � (C) ! R that represents % restricted to

�(C). Furthermore, given any continuous and quasiconcave utility function u for %, there exists an
essentially unique and upper semicontinuous U 2 Uc (R� V1 (x)) such that

u (p) = inf
v2V1(x)

U (Ev (p) ; v) 8p 2 �(C) : (63)
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Moreover, U? : R� V1 (x)! [�1;1], de�ned by

U? (t; v) = sup fu (p) : Ev (p) � t and p 2 �(C)g 8 (t; v) 2 R� V1 (x) ; (64)

is upper semicontinuous, belongs to Uc (R� V1 (x)), and represents u as in (63).

Proof.
Since % satis�es B.1 and B.6, it follows that % restricted to �(C) satis�es A.1 and A.3. Since %

satis�es B.2 and B.3, we can conclude that % restricted to �(C) satis�es A.4. Since C is �nite and

by Lemma 33 part (i), it follows that % restricted to �(C) satis�es A.6. By Corollary 29 and Remark
30, it follows that there exists a continuous and quasiconcave utility function, u : � (C) ! R, that
represents % restricted to �(C). The statement then follows by using the same arguments contained
in the proof of Lemma 39. �

Lemma 43 Let C be a �nite set and let % be a binary relation on C that satis�es B.1-B.6. If P 2 C
then there exists �p 2 P such that �p % P .

Proof.
We proceed by Steps. Before starting we have to introduce quite a bit of notation. We denote

with p an element of RC0 . Since C is �nite, we can identify it with a vector of jCj components. We
de�ne p with a superscript, pi or �pi, to be a real number and we de�ne with p (i) the i-th component

of a vector p. Consider l 2 N where l is the cardinality of C. We de�ne B = [0; 1]
l � RC0 and �x

k 2 N. Finally, we de�ne

K =
�
0;
1

k
; :::;

k � 1
k

; 1

�
and Kl = fp 2 B : p (i) 2 K for all i 2 f1; :::; lgg .

If l0 2 N is such that 1 � l0 � l and
n
�p1; :::; �pl

0
o
� K then we de�ne

Bk

�
�p1; :::; �pl

0
�
=

8><>:
�li=1

�
�pi � 1

k ; �p
i + 1

k

�
if l0 = l[

pl0+1;:::;pi;:::;pl2K

Bk

�
�p1; :::; �pl

0
; pl

0+1; :::; pl
�

if l0 < l :

Notice that if l0 = l then Bk
�
�p1; :::; �pl

0
�
is nothing else than the closed ball of radius 1

k and

center
�
�p1; :::; �pl

0
�
= �p 2 Kl, with respect to the supnorm. Therefore, equivalently, we denote

Bk

�
�p1; :::; �pl

0
�
= Bk (�p). If l0 < l then

Bk

�
�p1; :::; �pl

0
�
=

�
�p1 � 1

k
; �p1 +

1

k

�
� :::�

�
�pl
0
� 1

k
; �pl

0
+
1

k

�
��li=l0+1

�
�1
k
; 1 +

1

k

�
: (65)

Next, �x P 2 C and de�ne
B̂k

�
�p1; :::; �pl

0
�
= Bk

�
�p1; :::; �pl

0
�
\ P:

Given l0 2 N0 such that 0 � l0 < l, a subset H � N, and if l0 > 0 a subset
n
�p1; :::; �pl

0
o
� K, we say

that a family
n
B̂k

�
�p1; :::; �pl

0
; pl

0+1
h

�o
h2H

is a family of adjacent sets if and only if each of them is

nonempty and given B̂k
�
�p1; :::; �pl

0
; pl

0+1
h1

�
and B̂k

�
�p1; :::; �pl

0
; pl

0+1
h2

�
in such family with pl

0+1
h1

< pl
0+1
h2

,

it follows that for each pl
0+1 2 K such that pl

0+1
h1

< pl
0+1 < pl

0+1
h2

the set B̂k
�
�p1; :::; �pl

0
; pl

0+1
�
belongs

to
n
B̂k

�
�p1; :::; �pl

0
; pl

0+1
h

�o
h2H

.

53



Step 1. Let l0 2 N0 be such that 0 � l0 < l and if l0 > 0 let
n
�p1; :::; �pl

0
o
� K. Then,n

B̂k

�
�p1; :::; �pl

0
; pl

0+1
�
: pl

0+1 2 K and B̂k
�
�p1; :::; �pl

0
; pl

0+1
�
6= ?

o
if nonempty is a family of adjacent sets.

Proof of the Step.

If the family
n
B̂k

�
�p1; :::; �pl

0
; pl

0+1
�
: pl

0+1 2 K and B̂k
�
�p1; :::; �pl

0
; pl

0+1
�
6= ?

o
contains at most

two elements then the statement is vacuously true. Otherwise, pick a �nite index set H and pick two

points in K, pl
0+1
h1

and pl
0+1
h2

such that pl
0+1
h1

< pl
0+1
h2

and

B̂k

�
�p1; :::; �pl

0
; pl

0+1
h1

�
6= ? 6= B̂k

�
�p1; :::; �pl

0
; pl

0+1
h2

�
:

Consider pl
0+1 2 K such that pl

0+1
h1

< pl
0+1 < pl

0+1
h2

and de�ne p1; p2 2 P to be such that p1 2
B̂k

�
�p1; :::; �pl

0
; pl

0+1
h1

�
and p2 2 B̂k

�
�p1; :::; �pl

0
; pl

0+1
h2

�
. By (65), it follows that:

- For i � l0 and for each � 2 [0; 1] we have that35

�p1 (i) + (1� �) p2 (i) 2
�
�pi � 1

k
; �pi +

1

k

�
:

- For i > l0 + 1 and for each � 2 [0; 1] we have that36

�p1 (i) + (1� �) p2 (i) 2
�
�1
k
; 1 +

1

k

�
:

- For i = l0 + 1 we have that

p1 (i) � pl
0+1
h1

+
1

k
� pl

0+1 � pl
0+1
h2

� 1

k
� p2 (i) :

This implies that there exists a �� 2 [0; 1] such that

��p1 (i) +
�
1� ��

�
p2 (i) = p

l0+1:

Since P is convex, this implies that ��p1+
�
1� ��

�
p2 2 B̂k

�
�p1; :::; �pl

0
; pl

0+1
�
. Therefore, B̂k

�
�p1; :::; �pl

0
; pl

0+1
�

is nonempty, hence it belongs to the collection. �

Consider l0 2 N0 such that 0 � l0 < l and if l0 > 0 consider
n
�p1; :::; �pl

0
o
� K. If the classn

B̂k

�
�p1; :::; �pl

0
; pl

0+1
�
: pl

0+1 2 K and B̂k
�
�p1; :::; �pl

0
; pl

0+1
�
6= ?

o
is nonempty then we denote

n
pl

0+1
h

o
h2H

� K the ordered maximal family such that B̂k
�
�p1; :::; �pl

0
; pl

0+1
h

�
6=

? and H � N. In light of Step 1, without loss of generality, we assume that
n
pl

0+1
h

o
h2H

is ordered,

that is, pl
0+1
h < pl

0+1
h+1 . We de�ne �h as the maximum element and h

_
the minimum element of H.

Step 2. Let l0 2 N0 be such that 0 � l0 < l and if l0 > 0 let
n
�p1; :::; �pl

0
o
� K. If the classn

B̂k

�
�p1; :::; �pl

0
; pl

0+1
�
: pl

0+1 2 K and B̂k
�
�p1; :::; �pl

0
; pl

0+1
�
6= ?

o
35 If l0 = 0 this case is vacuous.
36 If l0 = l � 1 this case is vacuous.
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is nonempty, ĥ;
�
h 2 H, and

�
h � ĥ then

[
j2H:

�
h�j�ĥ

B̂k

�
�p1; :::; �pl

0
; pl

0+1
j

�
2 C and is equal to

��
�p1 � 1

k
; �p1 +

1

k

�
� ::�

�
�pl
0
� 1

k
; �pl

0
+
1

k

�
�
�
pl

0+1

ĥ
� 1

k
; pl

0+1
�
h

+
1

k

�
��li=l0+2

�
�1
k
; 1 +

1

k

��
\ P:

Proof of the Step.

The proof follows from standard arguments and Step 1. �
Step 3. Let l0 2 N be such that 1 � l0 < l and

n
�p1; :::; �pl

0
o
� K. If B̂k

�
�p1; :::; �pl

0
�
6= ? then there

exists p̂ 2 Kl such that B̂k (p̂) % B̂k
�
�p1; :::; �pl

0
�
and p̂ does not depend on

n
�p1; :::; �pl

0
o
.

Proof of the Step.

We prove the statement by induction. First, we consider the family of sets such that B̂k (p) 6= ?
where p 2 Kl. Since P is nonempty, this family is nonempty and �nite. We consider the best element,
according to the ranking, %. Call such element B̂k (p̂). We argue by backward induction.
Assume l0 = l � 1. Since B̂k

�
�p1; :::; �pl

0
�
is nonempty, the familyn

B̂k

�
�p1; :::; �pl

0
; pl

0+1
�
: pl

0+1 2 K and B̂k
�
�p1; :::; �pl

0
; pl

0+1
�
6= ?

o
is nonempty and �nite. Call B̂k

�
�p1; :::; �pl

0
; pl

0+1

ĥ

�
the best element with respect to % of such family. By

Step 2, B.1, B.5, and induction it follows that B̂k
�
�p1; :::; �pl

0
; pl

0+1

ĥ

�
�

[
j2H:

�
h�j�ĥ

B̂k

�
�p1; :::; �pl

0
; pl

0+1
j

�
for each

�
h 2 H such that

�
h � ĥ. Therefore, B̂k

�
�p1; :::; �pl

0
; pl

0+1

ĥ

�
�

[
j2H:�h�j�ĥ

B̂k

�
�p1; :::; �pl

0
; pl

0+1
j

�
.

By the same argument, it follows that B̂k
�
�p1; :::; �pl

0
; pl

0+1

ĥ

�
%

[
j2H:�h�j�h

�

B̂k

�
�p1; :::; �pl

0
; pl

0+1
j

�
=

B̂k

�
�p1; :::; �pl

0
�
. By construction, we have that B̂k (p̂) % B̂k

�
�p1; :::; �pl

0
; pl

0+1

ĥ

�
, this implies that

B̂k (p̂) % B̂k
�
�p1; :::; �pl

0
�
.

Assume that 1 � l0 < l � 1 and that the statement is true for each l00 strictly greater than l0 and
smaller than l. Since B̂k

�
�p1; :::; �pl

0
�
is nonempty, the familyn

B̂k

�
�p1; :::; �pl

0
; pl

0+1
�
: pl

0+1 2 K and B̂k
�
�p1; :::; �pl

0
; pl

0+1
�
6= ?

o
is nonempty. Call B̂k

�
�p1; :::; �pl

0
; pl

0+1

ĥ

�
the best element with respect to % of such family. By Step

2, B.1, B.5, and induction it follows that B̂k
�
�p1; :::; �pl

0
; pl

0+1

ĥ

�
�

[
j2H:

�
h�j�ĥ

B̂k

�
�p1; :::; �pl

0
; pl

0+1
j

�
for

each
�
h 2 H such that

�
h � ĥ. Therefore, B̂k

�
�p1; :::; �pl

0
; pl

0+1

ĥ

�
�

[
j2H:�h�j�ĥ

B̂k

�
�p1; :::; �pl

0
; pl

0+1
j

�
.

By the same argument, it follows that B̂k
�
�p1; :::; �pl

0
; pl

0+1

ĥ

�
%

[
j2H:�h�j�h

�

B̂k

�
�p1; :::; �pl

0
; pl

0+1
j

�
=

B̂k

�
�p1; :::; �pl

0
�
. By inductive hypothesis, we have that B̂k (p̂) % B̂k

�
�p1; :::; �pl

0
; pl

0+1

ĥ

�
. This implies

that B̂k (p̂) % B̂k
�
�p1; :::; �pl

0
�
. �

Step 4. For each k 2 N there exists p̂k 2 Kl such that B̂k (p̂k) % P .
Proof of the Step.
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Fix k 2 N. The family
n
B̂k
�
p1
�
: p1 2 K and B̂k

�
p1
�
6= ?

o
is obviously nonempty. By Step 3,

there exists p̂k 2 Kl such that B̂k (p̂k) % B̂k
�
p1
�
for each element in the previous family. By Step

2, Step 3, B.1, B.5, and induction, it follows that B̂k (p̂k) %
[

j2H:�h�j�h
_

B̂k
�
p1j
�
. This implies that

B̂k (p̂k) %
[

�h�j�h
_

B̂k
�
p1j
�
= P . Since k was chosen to be generic, the statement follows. �

Step 5. There exists �p 2 P such that �p % P .
Proof of the Step.

By Step 4, there exists a sequence
n
B̂k (p̂k)

o
k2N

such that B̂k (p̂k) % P and p̂k 2 Kl for all k 2 N.
Then, for each k 2 N there exists pk 2 Bk (p̂k) \ P . Since P is compact there exists a converging

subsequence fpkngn2N such that pkn ! �p 2 P . Notice that for each n 2 N and for each p 2 B̂kn (p̂kn)
we have that

d (�p; p) � d (�p; pkn) + d (pkn ; p) � d (�p; pkn) +
2

kn
:

This implies that

dh

�
f�pg ; B̂kn (p̂kn)

�
= max

(
sup

p2B̂kn (p̂kn )

d (�p; p) ; inf
p2B̂kn (p̂kn )

d (�p; p)

)
� sup

p2B̂kn (p̂kn )

d (�p; p)

� d (�p; pkn) +
2

kn
! 0:

Since for each n 2 N we have that B̂kn (p̂kn) % P , by B.2, it follows that �p % P . �

Lemma 44 Let C be a �nite set and let % be a binary relation on C. The following are equivalent
facts:

(i) % satis�es B.1-B.6;

(ii) there exists a continuous and quasiconcave function u : � (C) ! R (as in Lemma 42) that

represents % restricted to �(C) and such that the function V : C ! R, de�ned by

V (P ) = max
p2P

u (p) 8P 2 C; (66)

represents %.

Proof.
(i) implies (ii). Since % satis�es B.1-B.6, by Lemma 42, it follows that there exists a utility function

u : � (C) ! R with the aforementioned properties. Fix P 2 C. By Lemma 43, we have that there
exists �p 2 P such that �p % P . By B.1 and B.4, it follows that �p � P . By B.1 and B.4, this latter fact
implies that �p % q for all q 2 P . Since u represents % restricted to �(C), if we de�ne V as in (66)

then it follows that V is well de�ned and such that V (P ) = u (�p). We can conclude that

P1 % P2 () �p1 % �p2 () u (�p1) � u (�p2)() V (P1) � V (P2) ;

proving that V represents % on C.
(ii) implies (i). Assume there exists a continuous and quasiconcave function u : � (C) ! R

that represents % restricted to �(C). Moreover, assume there exists a function V : C ! R as in

(66) that represents % on C. Since V represents %, it follows that B.1 is satis�ed. Pick a sequence
fPngn2N � C such that Pn ! P 2 C and consider the subsequence fPnkgk2N such that limk V (Pnk) =
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lim supn V (Pn). Since u is continuous, there exists a sequence f�pnkgk2N � �(C) such that u (�pnk) =
V (Pnk) and �pnk 2 Pnk for all k 2 N. Since C is �nite, we have that �(C) is compact. Hence, there

exists a subsequence
�
�pnk(l)

	
l2N of f�pnkgk2N such that �pnk(l) ! �p. It is easy to see that �p 2 P . Then,

since u is continuous, it follows that

lim sup
n
V (Pn) = lim

k
V (Pnk) = lim

l
V
�
Pnk(l)

�
= lim

l
u
�
�pnk(l)

�
= u (�p) � max

p2P
u (P ) = V (P ) :

By previous inequality, [1, Lemma 2.42], and since V represents %, it follows that % satis�es B.2. By
[1, Lemma 3.78] and since u is continuous, B.3 is satis�ed. Since u is quasiconcave, B.6 is satis�ed.

Finally, since V satis�es (60), it follows immediately that B.4 and B.5 are satis�ed. �

Proof of Proposition 5.
(i) implies (ii). By applying Lemma 42 and then Lemma 44, it follows that there exists an

essentially unique and upper semicontinuous function U 2 Uc (R� V1 (x)) such that the function
V : C ! R, de�ned by

V (P ) = max
p2P

inf
v2V1(x)

U (Ev (p) ; v) 8P 2 C;

represents %. Fix P 2 C. By the Claim contained in the proof of Proposition 4, the function

� : P � V1 (x)! [�1;1], de�ned by

� (p; v) = U (Ev (p) ; v) 8 (t; v) 2 R� V1 (x) ;

is quasiconvex with respect to v, quasiconcave with respect to p, upper semicontinuous, and such that

V (P ) = max
p2P

inf
v2V1(x)

� (p; v) :

By [35, Corollary 2] and since U satis�es P.1, it follows that

V (P ) = max
p2P

inf
v2V1(x)

� (p; v) = inf
v2V1(x)

max
p2P

� (p; v)

= inf
v2V1(x)

max
p2P

U (Ev (p) ; v) = inf
v2V1(x)

U

�
max
p2P

Ev (p) ; v
�
:

(ii) implies (i). By construction, the function u = uU is real valued, continuous, and quasiconcave

on �(C) and it represents % on �(C). Moreover, since U satis�es P.1, we have that

V (P ) = inf
v2V1(x)

max
p2P

U (Ev (p) ; v) 8P 2 C:

By using the same notation of previous part, �x P 2 C. By the Claim contained in the proof of

Proposition 4 and [35, Corollary 2], it follows that

V (P ) = inf
v2V1(x)

max
p2P

U (Ev (p) ; v) = inf
v2V1(x)

max
p2P

� (p; v)

= max
p2P

inf
v2V1(x)

� (p; v) = max
p2P

inf
v2V1(x)

U (Ev (p) ; v) :

Since P was chosen to be generic, it follows that the previous equality holds for each P in C. This
implies that V (P ) = maxp2P u (p). By Lemma 44, it follows that % satis�es B.1-B.6.

Finally, assume that equivalently (i) or (ii) are satis�ed, by Lemma 42, Lemma 44, and (i) implies

(ii), it follows that U can be chosen to be U?. �
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