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Abstract

This paper studies an infinite-horizon bilateral bargaining model with alternating of-
fers and private correlated values. The paper characterizes frequent-offer limits of common
screening equilibria in which both parties make offers to screen the opponent’s type, and all
types of either party follow the same path of offers. Even in the limit when the correlation of
values is nearly perfect, common screening equilibria exhibit two-sided screening dynamics
and involve inefficient delay in contrast to the unique equilibrium outcome of the complete-
information bargaining game. Segmentation equilibria, in which types partially separate
themselves into segments by the initial offer, are also constructed. Most of the types in the
segments trade in the first rounds, while types near the boundaries of the segments delay
trade to convince the opponent that they belong to a segment with more favorable terms of
trade. Segmentation equilibria are efficient in the limit as the correlation of values becomes
nearly perfect, and establish the connection between the limit outcome of nearly perfect
correlation and the complete information outcome. The model sheds light on the relative
importance of various sources of inefficiency for different levels of correlation, the role of pub-
lic and private information in bargaining, and the robustness of the complete information
bargaining model to higher-order uncertainty about values.
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1 Introduction

Bargaining is an important feature of many economic transactions, and differences in information
about preferences are particularly important in determining bargaining efficiency and trade
dynamics. Existing work on the theory of bargaining provides a framework for addressing these
issues in the case of one-sided or independent private information, but lacks insights about the
case of correlated private information. The latter case is relevant in many settings where values
depend on both the unobserved “quality” of the good and on some idiosyncratic factors. For
example, in over-the-counter markets for corporate bonds, the price a trader is willing to pay
or accept for a particular bond depends on the default and liquidity risks associated with the
bond as well as on the trader’s portfolio strategy and hedging needs. Another example is the
inter-dealer market for used cars.1 The dealer’s value of a particular car is determined by the
condition of the car as well as the current state of the dealer’s inventory and the preferences
of the dealer’s customer base. In these examples, the unobserved quality of the good is the
common factor that drives the correlation of values, while the differences in values arise because
of the dealers’ business specifics. The differences in values can also arise because of discrepancies
in the subjective evaluation of the good by parties. Evaluating risks associated with the bond
or the condition of the used car is a complicated task, and the results of the expertise by the
experienced dealers, even though close on average, can be quite different in each particular case.

This paper studies an infinite-horizon bargaining model with private correlated values and
alternating offers. The correlation of values spans a variety of environments that are intermediate
between perfectly correlated and independent values. I study two classes of equilibria: (1)
common screening equilibria in which all types of either party follow the same path of offers,
and (2) segmentation equlibria in which types partially separate by their initial offers. The
analysis of these equilibrium classes allows one to answer several fundamental questions about
efficiency and trade dynamics with correlated values. Most important of them are as follows.

• How efficiency and trade dynamics change as the correlation of values varies?

• Are equilibria efficient, and if not, what are the sources of inefficiency?

• Is the efficiency guaranteed at least as the correlation of values becomes nearly perfect and
players are almost certain about each other’s values? If not, are all equilibria inefficient in
the limit of almost-perfect correlation?

• What is the role of public and private information in bargaining?

The important novel feature of the model is the correlation of values, and to stress the new
aspects of the model, I will frequently refer to the limit case as correlation becomes almost

1In the wholesale used-car market, every year 15 million cars are sold in the United States, and in about 20%
of the cases prices are determined by the over-the-phone alternating-offer bargaining (Larsen (2013)).
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perfect. However, it should be emphasized that all results in the paper are obtained for a
broad range of levels of correlation (including, for some specifications, independent values) which
significantly broadens the applicability of the theory.

To address these questions, I consider the standard alternating-offer bargaining model with
the following correlation of values. Players’ types are uniformly distributed on a “diagonal
stripe” inside the unit square, and players’ values are strictly increasing functions of their own
types (see Figure 1).2 In this specification, values are positively correlated: a buyer (seller) type
with a higher valuation (cost) assigns positive probability to an interval of seller (buyer) types
with higher costs (valuations). In the OTC example, the buyer of the bond with a high value
attributes part of it to low risks associated with the bond, and hence, knows that the seller’s
value of the bond should also be relatively high.3 Similarly, the buyer of a used car who discovers
during his or her inspection some engine defects, expects that the seller could also be aware of
them, and hence, is more willing to sell the car.
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Figure 1: Distribution of types. Types (s, b) are uniformly distributed on the diagonal stripe
of width 2η inside the unit square. The bold line depicts the support of optimistic beliefs of the
buyer.

The width of the diagonal stripe reflects the degree of correlation of types and the individual
2It is possible to match the empirical marginal distribution of values of both sides by varying the mappings

from types into values. In this respect, the assumption of the uniform distribution on the diagonal stripe is not as
restrictive as it might seem at first. However, this assumption does restrict the correlation of values. See Section
7 for further discussion of this assumption.

3To justify the assumption of private values in the OTC example, the model can be viewed as the model of
bargaining between two brokers that trade on behalf of their clients. The clients value the asset directly which
determines their willingness to pay or the lowest price they are willing to accept for the asset. The broker’s payoff
equals the difference between the value of his or her client and the actual price of trade. In this interpretation,
the value of the asset of each broker is not derived directly from the asset, but given exogenously, justifying the
private-values assumption. At the same time, brokers can still use the knowledge that the values of their clients
are correlated during the bargaining process.
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uncertainty of players about the type of the opponent. Players’ individual uncertainty about
the opponent’s type is determined by the correlation of types, and in what follows, it is implied
that the increase in the correlation is accompanied by the decrease in the individual uncertainty
and vice versa. The more narrow the stripe, the higher the correlation of values, and the lower
the individual uncertainty. In particular, in the limit when the stripe collapses into a diagonal
line, types are almost perfectly correlated, the individual uncertainty is vanishingly small, and
values are almost common knowledge. At the other extreme, values are independent when the
stripe coincides with the unit square. I assume that for any realization of types, the gains from
trade are positive. This assumption is realistic in secondary markets where participants trade
to manage their liquidity. Bond sellers can be forced to liquidate their positions because of the
urgent need to raise cash and so, other things equal, their value of the bond is lower than the
value of buyers that are not hit by the liquidity shock.

The distribution of types in this paper is similar to the information structure commonly used
in the global games literature (Morris and Shin (1998), Morris and Shin (2003)). To see the
parallel, one can think of the types generated as follows. A fundamental ω is drawn from [0, 1]
and players’ types are determined by b = ω+ηB and s = ω+ηS where ηb and ηs are independent
conditional on ω with bounded support

[
−η

2 ,
η
2
]
∩ [−ω, 1−ω]. Types are mapped into values by

strictly increasing functions which ensures the positive correlation of values.
The analysis of common screening equilibria (CSEs) reveals that for a wide range of cor-

relation levels including almost-perfect correlation, equilibria can exhibit two-sided screening
dynamics. Screening dynamics is common in bargaining models with incomplete information
about values. In CSEs, all types on either side follow the common screening policy. The buyer
(irrespective of type) follows an increasing sequence of price offers to screen seller types starting
from the bottom of the type distribution, and the seller (irrespective of type) follows a decreasing
sequence of counter-offers to screen buyer types starting from the top of the type distribution.
In other words, types pool on price offers and separate by the time they accept the opponent’s
price offer. I characterize the dynamics of acceptance and price paths in CSEs for various levels
of correlations of values in the limit as offers become frequent.4 The characterization implies
that such two-sided screening dynamics do not necessarily require players to be very uncertain
about each other’s values. In particular, the same paths of price offers of both sides can be a
part of equilibrium for both high and low correlation of values, and the equilibria will differ only
in the rate of acceptance.

Two-sided screening dynamics provide a realistic description of the bargaining process. In
CSEs, both parties begin bargaining by making extreme offers, even though, when the individual
uncertainty is small, both could know that such offers are not going to be accepted. As bargaining
continues, parties make concessions and moderate their demands to more reasonable levels. Over

4Most of the results in the literature as well as in this paper are obtained in the limit of frequent offers. The
qualifier “in the frequent-offer limit” is further omitted in the description of the results.

4



time the common screening policy narrows down the range of types possible in the game. In the
OTC markets for corporate bonds or the market for used cars, it seems reasonable to assume
that both sides have very precise information about each other’s values. However, if one turns
to the complete information game as in Rubinstein (1982) to describe the trade dynamics in this
examples, then one comes to the unrealistic conclusion that the agreement should be immediate.
In contrast, the model in this paper predicts that the two-sided screening dynamics can persist
even when individual uncertainty about the value of the opponent is small.

Because of the two-sided screening dynamics, trade in CSEs is spread-out over time,5 and
inefficient delay arises for types in the middle of the support of the distribution. To understand
the nature of this inefficiency and to see how the correlation of values affects the efficiency
of CSEs, it is useful to distinguish three sources of inefficiency in CSEs. First, the surplus is
dissipated through a channel analogous to the standard monopoly deadweight loss. In order
to efficiently screen player types, each offer is targeted at a particular group of types, and the
allocation is delayed for the rest of the types. The second source of inefficiency is signaling costs.
Higher seller types and lower buyer types prefer to reject the offer of the opponent and continue
screening to signal their value and convince the opponent to accept their screening offer. These
inefficiencies were already present in the model with independent private values.6

The third source of inefficiency is novel and arises from the common screening. Since players
use common screening policies, for buyer and seller types in the middle of the distribution
support, a significant amount of time could pass before the common screening policy starts
efficiently truncating the support of their beliefs about the opponent’s types. Nevertheless, in
CSEs, these types adhere to the offers in the common screening policy that are guaranteed to
be rejected by their opponent. This could result in a significant CSE inefficiency, even when
individual uncertainty is small.

The presence of the inefficiency due to the common screening brings me to a surprising dis-
continuity in equilibrium outcomes as the correlation becomes almost perfect. Both equilibrium
behavior and efficiency are quite different for the case when the correlation is almost perfect
analyzed in this paper and for the case of complete information studied in Rubinstein (1982).
In the former model, a variety of screening patterns is possible and equilibria are not necessarily
efficient due to the trade delay, while in the latter model, the unique equilibrium outcome is
efficient and features an immediate equal split of the surplus. While the complete information
bargaining model is known to be non-robust to the introduction of the incomplete information,
the previous literature assumed big differences in the support of players’ beliefs to obtain the
discontinuity in the equilibrium outcomes.7 In contrast, in this paper, as correlation becomes

5Unless the screening is trivial and price offers by both sides are equal from the onset.
6See Ausubel and Deneckere (1992b) for the analysis of these two sources of inefficiency in a model with

independent values.
7The literature on the Coase Conjecture (Fudenberg, Levine, and Tirole (1985), and Gul, Sonnenschein, and

Wilson (1986)) assumes a significant difference in the support of beliefs of the uninformed side, Abreu and Gul
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almost perfect, the supports of players’ beliefs become concentrated around the realized types.
It might be counter-intuitive at first that even in the case of vanishing individual uncertainty

it is possible that types in the middle of the distribution follow the common screening policy.
Indeed, with small individual uncertainty these types trade with a delay and can predict very
accurately the time and price at which they will trade in the future. Moreover, they know
that the opponent also is able to predict the terms of trade with great accuracy. The question
is then why is it not possible for one of the sides to deviate and offer an immediate trade at
the compromising price? The key to this is the Contagious Coasian Property of the punishing
equilibria used to support the equilibrium path. In punishing equilibria, the punishing side holds
the most optimistic beliefs consistent with the prior distribution over type of the opponent. For
example, in the seller-punishing equilibrium, any buyer type puts probability one on the lowest
seller type that she initially considered possible (in Figure 1 the support of optimistic beliefs
of the buyer is depicted by a bold line). The Contagious Coasian Property states that in the
frequent-offer limit, the utility of all types of the deviator in the punishing equilibrium is equal
to the lowest utility achievable in any equilibrium. Intuitively, in the punishing equilibrium,
even when individual uncertainty is very small and the switch to optimistic beliefs does not lead
to a drastic updating of beliefs, the fact that all types simultaneously switch their beliefs allows
the amplification of this effect and effectively punishes the deviator.

A natural next question is whether all equilibria of the model with correlated values are
bound to be inefficient and if there is a way to avoid the inefficiency of common screening. To
answer this question, I turn to the class of segmentation equilibria featuring drastically different
trade dynamics and efficiency properties. In segmentation equilibria, types partially separate
themselves into several segments by the initial price offer. After that, only types close to the
boundaries of the segments remain in the game. Such types build a reputation for belonging to a
segment with a more favorable price by delaying trade and insisting on that price. This process
is similar to the war-of-attrition bargaining game in Abreu and Gul (2000) where rational types
build reputation for being committed types.

As opposed to CSEs, in segmentation equilibria, there is no inefficiency of common screening,
and the efficiency loss is only due to the standard deadweight loss and signaling costs. As a result,
the efficiency properties of such equilibria are similar to that of the model with independent
values: as individual uncertainty vanishes (correlation of values becomes perfect), the ex-ante
probability of inefficient delay converges to zero. I use this result to construct a sequence
of segmentation equilibria with vanishing individual uncertainty and time between bargaining
rounds that approximates Rubinstein (1982)’s immediate equal split of the realized surplus.
Along this sequence, the number of segments increases and the definition of segments becomes
finer to guarantee the nearly equal split of the realized surplus.

(2000) assumes a significant difference in the behavior of committed and rational types, Feinberg and Skrzypacz
(2005) assumes a significant difference in the support of the beliefs of the uninformed party.
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The analysis of CSEs raises concerns about the applicability of the complete information bar-
gaining game in settings with small individual uncertainty but large common uncertainty. This
non-robustness is particularly relevant, as it is common in the economic literature to assume
that once agents meet, trade is immediate at a price that splits the surplus proportionately.8

The proportional split of the surplus is motivated by the Nash (1950) bargaining solution. Ru-
binstein (1982)’s complete-information game provides non-cooperative foundations for the Nash
bargaining solution and shows the immediate trade result.

The segmentation equilibria partially address this robustness concern by providing a se-
quence of equilibria outcomes that converges to the complete information outcome as individual
uncertainty vanishes. A more constructive approach is to study the implications of the two-
sided screening dynamics. For this purpose, I provide a characterization of limits of CSEs as
the individual uncertainty and time between offers vanish. The characterization is in terms of
relatively tractable static incentive compatibility and individual rationality constraints. In ap-
plications, one can address robustness concerns by using the characterization to determine terms
of trade instead of the Nash bargaining solution. In a companion paper, Tsoy (2014) applies
the characterization of double limits to study the effect of strategic bargaining delay on asset
prices and liquidity in OTC markets. The model with vanishing individual uncertainty also
gives a testable empirical implication about the dependence of the trade delay on the quality of
the good traded. Because of the two-sided screening dynamics, the delay is inverse U-shaped in
quality, a prediction which differs from both the prediction of the complete information model
and the bargaining models with one-sided private information.

The analysis of this paper stresses the role of public rather than private information in
guaranteeing efficiency, which has not been emphasized in the previous literature. The private
information of players is reflected in the individual uncertainty about the value of the opponent,
while public information is reflected in the common uncertainty, i.e. how much information about
values is common knowledge. The bargaining literature normally assumes that the information of
agents is independent conditional on public information. Therefore, the reduction in individual
uncertainty is equivalent to the reduction in public uncertainty about the values. This does not
always accurately capture the reality. For example, OTC markets are known to be opaque, and
only limited public information is available about assets. At the same time, professional traders
rely both on publicly available information, like credit ratings and asset characteristics, and on
their own information sources to evaluate the risks associated with the asset at hand. Therefore,
the information of the traders is more refined when compared to public information. This aspect
is captured in the present paper. There is a gap between the private and public information, as
players know that the value of the opponent belongs to a subset of the values possible in the game.

8For example, the Nash bargaining solution was used to study the relationship between unemployment and
search in the labor market (see Mortensen and Pissarides (1994)), liquidity in over-the-counter markets (see
Duffie, Gârleanu, and Pedersen (2005)), renegotiation in contract theory (see Tirole (1999)), equilibrium selection
in repeated games (see Miller and Watson (2013)).
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Because of that, it is possible to disentangle the importance of private and public information
to efficiency. As the individual uncertainty vanishes, the private information becomes infinitely
precise, while the public information still remains relatively crude. The inefficiency of CSE limits
demonstrates that even in the limit of vanishing individual uncertainty, the equilibria can have
inefficient screening as long as the common uncertainty remains in the game. At the same time,
I also show that letting common uncertainty vanish through more accurate public information
leads to the efficiency of all equilibria.

The structure of the paper is as follows. Section 2 describes the game. Section 3 characterizes
the limit equilibrium behavior in CSEs. Section 4 analyzes segmentation equilibria. Section 5
characterizes double limits of CSE outcomes as both the time between offers and individual
uncertainty vanish and constructs a sequence of segmentation equilibria that converges to the
complete-information outcome. Punishing equilibria that support equilibrium paths of CSEs and
segmentation equilibria are studied in Section 6. Section 7 discusses the assumptions and gives
directions for future research. To maintain continuity of the argument all proofs are relegated to
the Appendix. Before proceeding further I describe the contribution of the paper to the earlier
literature.

Related Literature The paper is most closely related to the literature on bargaining with
asymmetric information about preferences. The bargaining game with infinite horizon and one-
sided incomplete information has been extensively studied and by now is well understood. When
the seller’s cost is commonly known, the buyer’s valuation is private information, and the seller
cannot commit to a path of prices, the ability of the seller to earn profits beyond the competitive
level depends crucially on the support of the distribution of the buyer’s valuation. When there
is a gap between the seller’s cost and the lowest buyer’s valuation, the inability of the seller to
commit to future price offers drives seller offers down to the lowest buyer valuation. This result
is known as the Coase conjecture (See Fudenberg, Levine, and Tirole (1985), Gul, Sonnenschein,
and Wilson (1986), Grossman and Perry (1986), Gul and Sonnenschein (1988)). In the case of
no gap, the Coasian path can be used as a punishment to prove a folk-theorem type of result.
In this case, a variety of outcomes is sustainable in equilibrium including the outcome with the
seller’s profit close to the static monopoly profit (see Ausubel and Deneckere (1989a,b), Ausubel
and Deneckere (1992a)). As with the Coase conjecture, the Contagious Coasian Property of the
punishing equilibria proven in this paper shows that the punished side gets the lowest utility
possible in any equilibrium in the frequent-offer limit. The important distinction is that in this
paper, the assumption of bounded support restricts beliefs off the equilibrium path. In particular,
for high correlation of types, only marginal updating is possible after deviations. This does not
allow the application of earlier results and instead, I develop a contagion argument to prove the
Contagious Coasian Property of the punishing equilibria.

In a recent work, Deneckere and Liang (2006) explored the case of interdependent values
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in a model with one-sided incomplete information. In their model, a fundamental determines
values of both parties, but only one party is informed about the fundamental, while the other
party holds prior beliefs about it that are commonly known. The equilibrium efficiency depends
crucially on a static incentive constraint. When there is no efficient static mechanism, the trade
happens in bursts between prolonged periods of almost no trade. This model was further studied
in Gerardi, Hörner and Maestri (2013), and Fuchs and Skrzypacz (2013).9 This paper differs
from this literature in that both parties have private (correlated) information.

The literature on bargaining with two-sided incomplete information about values has thus far
focused exclusively on the case of independent private values and one-sided offers.10 Bargaining
models with two-sided incomplete information are known to be prone to a multiplicity of equi-
libria, and the literature studied certain classes of equilibria in such a model. Cramton (1984,
1992), Cho (1990), and Ausubel and Deneckere (1992b) investigated the relationship between
two-sided uncertainty and efficiency.11 In the equilibrium analyzed in Cramton (1984), seller
types initially pool on the same path of offers, but separate over time starting from the bottom
of the type distribution. After the seller reveals her type, she quickly screens the buyer types
as in the one-sided incomplete information game. Cho (1990) constructs a class of separating
equilibria in which all seller types separate by price offers in the first round and continue to
separate by offers in every round in the future. Ausubel and Deneckere (1992) shows that in the
no-gap case, an outcome of almost no trade is possible along with relatively efficient monopoly
equilibria. In the monopoly equilibria, all seller types, except a small subset at the bottom of
the distribution, reveal themselves by offering a monopoly sales price. Such types trade in the
first round and never trade after, since lowering the price would lead to the buyer switching to
optimistic beliefs and would imply no trade for such seller types. It should be noted that many
interesting equilibria in the model with one-sided offers are not guaranteed to have counterparts
in the model with two-sided offers. Cramton (1992) allows for both two-sided offers and the
strategic choice of delay by parties as in Admati and Perry (1987). Under intuitive-criterion-
style refinement both sides use strategic delay to credibly signal their private information. The
focus of this paper is on environments where players cannot commit to delay their offer.

The model in this paper is complementary to both the literature on bargaining with two-sided
independent private values and on bargaining with one-sided incomplete information. It covers
a wide range of environments in which values are correlated and private information exists, and
both parties make offers.12 The two equilibrium classes studied here offer drastically different

9An earlier analysis of this model is given in Vincent (1989).
10The exception is Ausubel and Deneckere (1993) which allowed offers by both sides and showed that the

restriction to one-sided offers is ex-ante efficient for a variety of welfare weights.
11See also Fudenberg and Tirole (1983) for the analysis of the model with two bargaining rounds, and Chatterjee

and Samuelson (1987) for a neat characterization of the bargaining dynamics under the additional restriction that
the type and action space consist of only two types and two offers. Watson (1998) analyzes uncertainty about
discount factors.

12In either market for corporate bonds of the inter-dealer car market, there is no a priori reason to assume
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equilibrium dynamics and efficiency properties. In terms of trade dynamics and efficiency, CSEs
are similar to equilibria constructed in Cramton (1984), where first the seller gradually reveals
her type and then buyer types are screened. In terms of trade dynamics, segmentation equilibria
are similar to the equilibria in Cho (1990) and Ausubel and Deneckere (1992), where the informed
side reveals its private information early in the game by price offers.

The dynamics of segmentation equilibria is similar to the war-of-attrition dynamics in rep-
utational bargaining of Abreu and Gul (2000) which is another two-sided offer and two-sided
incomplete-information bargaining model. In their model, commitment types require a particu-
lar share of the surplus, and rational types mimic the behavior of the commitment types. This
results in a war of attrition game in which the first side to reveal rationality accepts the terms of
the opponent. Similarly, in segmentation equilibria, types near boundaries of the segments delay
trade to convince their opponent that they belong to a segment with more favorable terms of
trade. However, there are important differences in the dynamics as well. Abreu and Gul (2000)
shows that in the unique frequent offer limit of equilibria in their model, rational players concede
with probability one by some finite time. Unlike in their model, in this paper bargaining between
rational types takes infinite time. The difference stems from the fact that without commitment
types, it is not possible for bargaining to end in finite time since the utility of a rational player
is discontinuous at this time, and a sufficiently patient player prefers to wait past this time.

The paper contributes to the literature exploring the effect of higher-order uncertainty on
bargaining outcomes. Feinberg and Skrzypacz (2005) shows that the Coase conjecture is not
robust to the introduction of second-order uncertainty. In particular, in the standard model
with the buyer privately informed about his valuation, if the seller with some probability can
know for sure that the valuation of the buyer is high, then under an “intuitive” refinement,
the equilibrium outcome is necessarily inefficient. In this paper, I explore the robustness of the
complete information game to the introduction of higher-order uncertainty. As the correlation
of values becomes nearly perfect, the types of players converge (in the product topology) to the
types in the complete-information game, however, the equilibrium behavior can be very different.
Weinstein and Yildiz (2013) also shows that the complete-information game is not robust to the
perturbations of higher-order beliefs. For this result, they construct artificial types, while in this
paper, the type space of the model has a natural interpretation.

2 The Model

This section formally describes the model. A buyer and a seller meet to trade one unit of
a good.13 The seller’s type s and the buyer’s type b are jointly uniformly distributed on the
diagonal stripe inside the unit square, SB ≡

{
(s, b) ∈ [0, 1]2 : s− η ≤ b ≤ s+ η

}
. The individual

that one side is better informed or has more commitment power in the negotiation, so symmetry is a natural
assumption.

13Female pronouns are used to refer to the seller and male pronouns are used to refer to the buyer.
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uncertainty parameter η ∈ (0, 1) controls the degree of correlation of types.14 By varying η, the
model spans a variety of environments. In applications where players have precise information
about each other’s values, η could be thought of as small so types are highly correlated, while in
applications where there is a great degree of heterogeneity in values due to idiosyncratic factors,
η could be close to one, so types are almost independent.

Given their types, players hold prior beliefs about their opponent’s type. The prior beliefs
of a seller of type s are uniform on the interval Bs ≡ [bαs , bωs ] where bαs ≡ max{0, s − η} and
bωs ≡ min{1, s+η}. Analogously, the prior beliefs of a buyer of type b are uniform on the interval
Sb ≡ [sαb , sωb ] where sαb ≡ max{0, b− η} and sωb ≡ min{1, b+ η}. Players’ types and their priors
are illustrated in Figure 1.

The valuation of the good of a type b buyer is v(b), and the cost of selling the good for a
type s seller is c(s), where v : [0, 1]→ R and c : [0, 1]→ R are strictly increasing, differentiable
functions with derivatives bounded from below by some positive constant and bounded from
above by ` > 0.15 Let ξ ≡ min

(s,b)∈SB
{v(b)− c(s)} be the minimal gains from trade possible in the

game. I assume the gains from trade are positive for any buyer and seller type (ξ > 0), but note
that this does not preclude the possibility that c(1) > v(0), and hence, there does not in general
exist a single price that gives non-negative utility to all types. Note also that gains from trade
are not common knowledge due to the imperfect correlation of types. As a result, players have
incentives to pretend that the gains from trade are small to get a better price. For η < 1, the
opponent may detect that certain low gains are not possible.

Additionally, I impose the following mild technical condition on valuation and cost functions.
A function f on a compact set X is regular if it is smooth and there exists D > 0 such that
1
l!
dlf(x)
dxl

< D for all l ∈ N . This condition is slightly stronger than analyticity, but many
functions used in applications are regular (for example, all polynomial functions are regular).16

I assume that v and c are regular.
Bargaining occurs in rounds n ∈ N, and the length of the time interval between bargaining

rounds is ∆ > 0. Players discount the future at the common discount rate r > 0. The seller
is active in odd rounds, and the buyer is active in even rounds. An active player can either
accept the last offer of the opponent or make a counter-offer. Once a price offer is accepted,
the game ends and payoffs are determined. An outcome (N∆, p) consists of the time of trade

14To focus on the novel features of the model, the extreme cases η = 0 and η = 1 are left out from the analysis.
The case η = 0 has been studied in Rubinstein (1982). The analysis of the case η = 1 is simpler than the case
η ∈ (0, 1), but requires a separate treatment in proofs. All results of the paper carry to this case.

15When types are independent, it is a standard result that types can be taken to be uniformly distributed on the
unit interval without loss of generality. For any distribution of values, there is a transformation of the valuation
and cost functions that preserves the distribution of values and changes the distribution of types into uniform on
the unit interval. With correlated types this result is no longer true as no such transformation is guaranteed to
preserves the correlation structure. In this paper, I consider a general class of valuation and cost functions, but
restrict the distribution of types to be uniform. Relaxing this assumption is left for future research.

16For analytic function f on a compact set X, there exists D > 0 such that 1
l!
dlf(x)
dxl

< Dl for all l ∈ N and all
x ∈ X.
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N∆ ≤ ∞ (where N is the round of trade) and the price of trade p. The utility of type b buyer
is e−r(N−1)∆(v(b)− p) and the utility of type s seller is e−r(N−1)∆(p− c(s)).17

In any round n by the beginning of which trade has not happened, a history hn is a sequence
of rejected price offers up to round n − 1. A (pure) strategy of the buyer σnb is a measurable
function that maps any buyer type b and history hn into the acceptance decision or a counter-
offer. The posterior beliefs of the buyer µnb is a measurable function that maps any buyer type
b and any history hn into a probability distribution over seller types. The strategy σns and the
posterior beliefs µns are defined analogously for the seller.18

A Perfect Bayesian equilibrium, which I further refer to simply as equilibrium, consists of a
pair of strategy profiles (σnb , σns ) and beliefs (µnb , µns ) that satisfy sequential rationality and the
following conditions on the updating of beliefs:

1. for any (i, j) ∈ {(b, s), (s, b)}, offer pn, history hn, if
´ 1

0 1{σnj = pn}dµni (j) > 0 µn+1
i (Θ) =´

Θ 1{σnj =pn}dµni (j)´ 1
0 1{σnj =pn}dµni (j)

for measurable Θ;

2. µnb and µns do not change in even and odd rounds, respectively;

3. for any history hn, µnb ∈ ∆(Sb) and µns ∈ ∆(Bs).

This is a natural adaptation of the Perfect Bayesian equilibrium (Fudenberg and Tirole (1991))
to the environment with correlated values analyzed in this paper. Sequential rationality requires
that after any history, players best respond to the strategy of the opponent given their posterior
beliefs. The first condition on beliefs requires that beliefs be updated by Bayes’ rule whenever
possible, and the second is the standard “no signaling what you don’t know” condition. The
latter requirement implies that the correlation structure is common knowledge. Both on and off
the equilibrium path, players put positive probability only on types of the opponent that lie in
the support of their priors, players are certain that their opponent also puts positive probability
only on a subset of the support of his/her prior beliefs, and the regress continues indefinitely.

3 Common Screening Equilibria

This section characterizes the dynamics of CSE frequent-offer limits and studies their efficiency.
The approach is to temporarily turn to a related concession game analyzed in the next subsec-
tion. The concession game is a continuous-time counterpart of the described bargaining game
except that players take price-offer paths as given and only choose the time at which they accept

17By convention, if trade does not occur in a finite number of rounds, N =∞ and both players get a payoff of
zero.

18It is standard in the bargaining literature to restrict attention to equilibria in pure strategies with the reser-
vation that mixing is possible off the equilibrium path (see Gul, Sonnenschein and Wilson (1986), and Fudenberg,
Levine, and Tirole (1985) for a discussion of mixing off the equilibrium path). In this paper mixing could be
necessary only for seller type 0 and buyer type 1 off the equilibrium path of the punishing equilibrium analyzed in
Section 6. With minor adjustments the results in this paper could be formulated to incorporate this possibility.
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the opponent’s offer. Equilibria of the concession game have a convenient analytic characteriza-
tion presented in Theorem 1.

The main result of this section (Theorem 2) relates CSE frequent-offer limits to equilibria of
the concession game. In general, the ability to choose price-offer paths puts additional restric-
tions on price paths and acceptance strategies in CSEs. However, as Theorem 2 shows, in the
frequent-offer limit such restrictions on the CSE’s equilibrium behavior are minimal and boil
down to modified individual rationality constraints. Subsection 3.2 describes the new source of
inefficiency associated with positive correlation of values, as well as the distinction between the
public and private information that can be made in the present model. Subsection 3.3 highlights
main steps of the proof of the Theorem 2. In particular, Lemma 2 is at the heart of all equilibria
constructions in this paper.

3.1 Concession game

The concession game is defined as follows. Types of the buyer and the seller are drawn uniformly
from SB as in Section 2. There are continuously differentiable paths of buyer price offers
qBt : t 7→ qBt and seller price offers qSt : t 7→ qSt such that qSt ≥ qBt for all t ≥ 0. Players take
as given paths of price offers and choose the time at which they accept their opponent’s offer.
Outcome (T c, qc) consists of the time T c ∈ R̄+ and the price qc at which trade happens.19 Given
outcome (T c, qc), the utility of buyer type b is e−rT c(v(b)− qc), and the utility of seller type s is
e−rT

c(qc− c(s)). Strategies are acceptance times t∗B(b) and t∗S(s) for each type b buyer and type
s seller, respectively. For any types b, s and strategies t∗B(b), t∗S(s), the outcome is determined
by T c = min {t∗B(b), t∗S(s)}, and qc = qBt∗B(b) if t∗B(b) ≤ t∗S(s) and qc = qSt∗S(s) if t∗S(s) < t∗B(b).20

I make three assumptions about the price paths. First, no player gets negative utility from
his/her offer being accepted, i.e. qS∞ ≥ c(1) and qB∞ ≤ v(0). Second,

c−1(qB∞)− v−1(qS∞) ≥ η, (1)

where qB∞ ≡ lim
t→∞

qBt and qS∞ ≡ lim
t→∞

qSt are the limits of price paths as t → ∞.21 Condition
(1) guarantees that all gains from trade can eventually be realized through one of the players
accepting the opponent’s offer.22 Third, there exists T̂ ∈ R̄+ such that seller price path qSt is
strictly decreasing on [0, T̂ ], buyer price path qBt is strictly increasing on [0, T̂ ], and price paths
are constant after T̂ . The monotonicity of offers is fairly natural, and it reflects the fact that
over time parties converge in their demands. Observe that the concession game is static, even

19I use notation R+ ≡ [0,∞) for a set of positive reals, and R̄+ ≡ R+ ∪ {∞}.
20In equilibria that I analyze, players assign probability zero to ties, and the tie-breaking rule can be specified

arbitrarily.
21In what follows, I define x∞ ≡ limt→∞ xt whenever the limit exists.
22To see this, notice that the set of types that get negative payoffs from accepting any opponent’s offer is

a subset of [0, v−1(qS∞)] for the buyer and a subset of [c−1(qB∞), 1] for the seller. By c−1(qB∞) − v−1(qS∞) ≥ η,[
c−1(qB∞), 1]× [0, v−1(qS∞)]

)
∩ SB = ∅ giving the desired conclusion.
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though payoffs are determined by a dynamic procedure. I define an equilibrium of the game as
follows.

Definition 1. An equilibrium of the concession game is a tuple (t∗B(b), t∗S(s), qBt , qSt ) such that
given price paths qSt and qBt and the strategy of the opponent (given by t∗S(s) or t∗B(b)), and
acceptance times t∗B(b) and t∗S(s) are optimal.

I restrict the analysis of equilibria to monotone strategies as defined next.23

Definition 2. Acceptance strategies t∗B(b) and t∗S(s) are monotone if there exist processes b∗t :
t 7→ b∗t and s∗t : t 7→ s∗t such that

1. t∗B(b) ≡ inf{t : b∗t = b} and t∗S(s) ≡ inf{t : s∗t = s},24

2. for some TB, TS ∈ R̄+, b∗t is strictly decreasing for 0 ≤ t ≤ TB and constant for t ≥ TB,
and s∗t is strictly increasing for 0 ≤ t ≤ TS and constant for t ≥ TS.

Say that b∗t and s∗t are smooth monotone strategies if, additionally, b∗t and s∗t are continuous
and a.e.-continuously differentiable on [0, T ).

Monotone strategies specify the highest type b∗t of the buyer and the lowest type s∗t of the
seller remaining in the game at time t. I use t∗B(b) and b∗t interchangeably to refer to the monotone
strategy of the buyer, and analogously, I use both t∗S(s) and s∗t for the monotone strategy of the
seller. The strict monotonicity of b∗t and s∗t implies that there are no periods with no acceptance
until times TB and TS , respectively, when players stop accepting their opponent’s offers. During
“quiet” periods, price offers that are not accepted can be specified arbitrarily, as long as no types
choose to accept them. The focus of this section is on the relationship between the dynamics of
price paths and acceptance strategies and so the strict monotonicity is necessary to pin down
such a relationship. The next theorem characterizes equilibria in smooth monotone strategies.

Theorem 1. Suppose (b∗t , s∗t , qBt , qSt ) is an equilibrium of the concession game in smooth mono-
tone strategies. Then the following conditions hold

1. There exists a time T ∈ R̄+ such that

b∗T = bαs∗T
and qBT ≤ qST with equality if T <∞. (2)

2. For all t ∈ [0, T ),

r
(
v(b∗t )− qSt

)
= λSt

(
qSt − qBt

)
− q̇St , (3)

r
(
qBt − c(s∗t )

)
= λBt

(
qSt − qBt

)
+ q̇Bt ; (4)

23The restriction to monotone strategies is common in Bayesian games with a continuum of types. Pure-strategy
equilibria in monotone strategies has been studied by Athey (2001), McAdams (2003), Reny (2011) in the context
of auctions and by Van Zandt and Vives (2007) in the context of games with strategic complementarities.

24By convention, inf ∅ =∞.
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where λBt ≡ −
ḃ∗t

b∗t−bαs∗
t

1
{
bωs∗t
≥ b∗t

}
and λSt ≡

ṡ∗t
sω
b∗
t
−s∗t

1
{
sαb∗t
≤ s∗t

}
.

Conversely, if a tuple (b∗t , s∗t , qBt , qSt ) of smooth monotone strategies and price paths satisfies
conditions (2), (3), (4), then (b∗t , s∗t , qBt , qSt ) is an equilibrium of the concession game.

Theorem 1 justifies the validity of the first-order approach for the analysis of equilibria in
smooth monotone strategies. To see this, consider the problem of a type b buyer. Suppose
that the seller uses smooth monotone strategy s∗t and price paths are qBt and qSt . Let FSt (b) ≡
max{min{s∗t ,sωb }−sαb ,0}

sω
b
−sα

b
be the CDF of the seller’s acceptance time evaluated by type b buyer and

fSt (b) be the corresponding density function. Type b buyer chooses t ∈ R̄+ to maximize his
expected utility,

uB(t, b) =
ˆ t

0
e−ru

(
v(b)− qBu

)
fSu (b)du+ (1− FSt (b))e−rt

(
v(b)− qSt

)
,

and the first-order condition for his problem is

r(v(b)− qSt ) = fSt (b)
1− FSt (b)

(
qSt − qBt

)
− q̇St . (5)

Function uS(t, s) and the problem of the type s seller are defined and analyzed analogously.
Condition (3) is the first-order condition (5) evaluated at b = b∗t . It describes the incentives
of the threshold type of the buyer. The buyer balances the cost due to discounting (left-hand
side), and the benefit from the possible concession of the seller (the first term on the right-hand
side) and from the change in the seller price offer (the second term on the right-hand side). The
first-order condition in (5) is only a necessary condition for optimality of the monotone strategy
b∗t , and one is still left to prove sufficiency.

Notice that η enters into conditions (3) − (4) through terms λSt and λBt , and there are two
opposite effects of η on the acceptance strategies. First, λSt and λBt are positive only when
the threshold types are closer than distance η to each other. For fixed paths of price offers, a
higher η implies that the intensity of the acceptance becomes positive earlier for both players.
This gives players additional incentives to delay trade and slows down the acceptance. Second,
denominators in λSt and λBt are increasing in η, and so, for higher η, the acceptance by a certain
mass of opponent types has a smaller effect on the expected payoff of the player. Hence, to make
threshold types indifferent between immediate acceptance and marginal delay, the acceptance
strategy of the opponent should be more rapid for higher η.

Conditions similar to (3) arise in the dynamic screening models. When intensities of accep-
tance are equal to zero, the single crossing property of payoffs immediately implies the global
optimality of the threshold acceptance strategy. This is the case for example in the Coasian
literature. In this paper, the global optimality of the buyer’s threshold acceptance strategy is
more intricate and is guaranteed by the monotonicity of the seller’s strategy and the structure
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of the correlation of types. In particular, they imply that uB(t, b) satisfies the smooth strict
single-crossing difference property in (−t, b) on the relevant set of types and times (Lemma 6
in the Appendix).25 By Theorem 4.2 in Milgrom (2004), this together with the monotonicity
of b∗t and the fact that it satisfies (3) implies that global optimality is guaranteed (Lemma 7 in
Appendix). Intuitively, higher types of the buyer are more impatient both because of the higher
valuation and the fact that they assign lower probability to their offer being accepted.26

Theorem 1 reduces the analysis of equilibria of the concession game to the problem of finding
a solution to a system of differential equations. In general, one should expect that there are
many equilibria in the concession game. By Picard-Lindelöf theorem, if price paths qSt and qBt

have uniformly (over t) bounded derivatives and qS∞ > qB∞ , then there exist b∗t and s∗t that solve
the system (3)-(4). To guarantee that they constitute an equilibrium, we need to check that
processes b∗t and s∗t are monotone.27 For this, it is sufficient that prices do not change too fast:
q̈St ≥ 0 and q̈Bt ≤ 0 before the time when intensity of acceptance for threshold types becomes
positive, and after this time r(v(b∗t )− qSt ) + q̇St ≥ 0 and r(qBt − c(s∗t ))− q̇Bt ≥ 0.28

Before moving on to the analysis of the bargaining game, I illustrate via example the equi-
librium behavior in the concession game.

Example To illustrate the effect of individual uncertainty and price paths on the trade dynam-
ics and efficiency, consider the following model. Utilities are linear in types given by v(b) = b+ξ,
c(s) = s. Let r = 10% and ξ = 2

3 . Consider price paths

qSt = 1 + 1
3e
−rt and qBt = 2

3 −
1
3e
−rt. (6)

By the requirement that qSt > c(1) and qBt < v(0), η ∈ (0, 1). In Figure 2, I depict equilibrium
strategies and expected trade delay for the seller for η = .3 and η = .01. Notice that there is a
kink in the acceptance strategy around time 7.4 for η = .3 and 13.6 for η = .01. At this point,
the intensities of λSt and λBt become positive for threshold types and give additional benefits
for delaying the acceptance. As a result, both sides slow down the concession after this time.

25Function uB(t, b) satisfies the smooth strict single-crossing difference property in (−t, b) if for t < t′ and b < b′,
uB(t, b) > uB(t′, b) implies that uB(t, b′) > uB(t′, b′), and uB(t, b) ≥ uB(t′, b) implies that uB(t, b′) > uB(t′, b′),
and in addition, whenever d

dt
uB(t, b) = 0 for any d > 0, d

dt
uB(t, b + d) ≤ 0 and d

dt
uB(t, b − d) ≥ 0 (see Milgrom

and Shannon (2004)).
26A condition similar to (3) also arises in Fuchs and Skrzypacz (2010) that studies the screening model with

the possibility of arrival of another buyer. The uninformed seller makes screening offers to a privately informed
buyer, and after the arrival of the second buyer, the seller runs an English auction. In Fuchs and Skrzypacz’s
model, the condition reflecting the incentives of the buyer is given by the condition (3) with the term λSt (qSt − qBt )
replaced by the constant arrival rate multiplied by the type-dependent drop in the utility of the buyer from the
arrival. In contrast, in this paper the likelihood of the acceptance is type-dependent. Fuchs and Skrzypacz (2010)
makes assumptions about the exogenously-defined buyer’s utility upon arrival to guarantee that the first-order
conditions are sufficient.

27The transversality condition b∗T = bαs∗
T

follows again from the Picard-Lindelöf theorem.
28A simple condition on price paths that ensures it is that price paths stop changing after the time when

intensities of acceptance becomes positive.
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Figure 2: Equilibrium strategies for η = .3 and η = .01. Left panels depict price paths and
values of threshold types in the acceptance strategy. Right panels depict expected trade delay
for the seller as a function of seller type.
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Figure 3: Expected discount on the surplus (X) and expected discounted surplus from trade
(W ) as a function of η in the equilibrium of the concession game.
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Since for lower η, the bandwidth of opponent types whose acceptance affects the incentives of the
player is smaller, the time when λSt and λBt become positive is larger for smaller η. The expected
delay is inverse U-shaped. For low seller types, the expected delay is low because they accept
the buyer offer early in the game. For the high seller types, the expected delay is low because
they put probability one on high buyer types that accept early in the game. The expected delay
is highest in the middle of the type distribution, as for these types the opponent can accept the
their price offer with positive probability and this gives additional incentives to them to delay the
acceptance. In Figure 3, I present two efficiency measures: the expected discount on the surplus
X = E

[
e−rT

c
]

and the expected discounted surplus from trade W = E
[
e−rT

c(v(b)− c(s))
]
.

Clearly, X ≤ 1 and W ≤ E [v(b)− c(s)] = 1
2 . We can see that the efficiency is decreasing in η,

however, equilibria are not fully efficient as η vanishes. In particular, even as η → 0, around
37% of the surplus is dissipated due to inefficient trade delay.

3.2 Characterization of CSEs

Equilibria in the concession game are appealing because of their analytic tractability. However,
the assumption that price paths are fixed seems far from innocuous at first sight. Next, I present
the central result of this section justifying this assumption. Even if different types of the same
player are allowed to offer different price offers, there are equilibria in the bargaining game, in
which they choose not to do so, and all types follow a given path of offers. I first define the class
of CSEs.

Definition 3. Common screening equilibria (CSEs) are equilibria of the bargaining game in
which on-path equilibrium strategies are described by the tuple (bn, sn, pBn , pSn) which satisfies the
following properties.

1. A path of seller offers pSn changes only in odd rounds, and in any odd round n, all seller
types that do not accept the buyer’s offer make counter-offer pSn.29 All buyer types follow
a sequence of offers pBn , which changes only in even rounds.

2. Sequence pSn is (weakly) decreasing, sequence pBn is (weakly) increasing, and pBn < v(0),
pSn > c(1) for all n.

3. There is a non-increasing sequence of threshold buyer types bn and a non-decreasing se-
quence of threshold seller types sn. In even rounds, all remaining buyer types above bn

accept the seller’s offer pSn−1, and in odd rounds all remaining seller types below sn accept
buyer’s offer pBn−1, so long as there have been no deviations from price paths pSn and pBn in
the past.

4. c−1(pB∞)− v−1(pS∞) ≥ η.
29In the text, I refer to a sequence {xn}∞n=1 by its member xn and to a continuous time process {xt}t≥0 by its

member xt.
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A CSE is active if on the equilibrium path a positive mass of remaining buyer or seller types
accepts the opponent’s offer in every round up to some N̄ ≤ ∞ and no types remain after N̄ .

On-path equilibrium strategies in CSEs are the discrete-time analogues of the strategies and
price paths in concession game. In a CSE, both sides screen the opponent’s type and all types
on either side use a common screening policy, i.e. they follow the same sequence of offers.
The restriction that all price offers of the seller are above the highest costs of the seller (and
a symmetric restriction on buyer price offers) guarantees that types never get negative utility
from pooling on offers. On the equilibrium path, the seller makes decreasing price offers and
screens buyer types starting from the top of the distribution, and the buyer screens the seller
types via an increasing sequence of price offers starting from the bottom of the distribution.
The property that higher buyer types accept the seller’s offer earlier than lower types (and the
reverse for the seller) is referred to in the bargaining literature as a skimming property. The
skimming property greatly simplifies the Bayesian updating of beliefs. In any round n, the
posterior beliefs of any remaining type b buyer is a truncation of the uniform distribution on Sb
at the bottom at sn, and symmetrically, the beliefs of any remaining type s seller is a truncation
of the uniform distribution on Bs at the top at bn.30

Subsequently, I define the limit of CSEs as the round length ∆ converges to zero. First,
I extend strategies in the discrete-time game to continuous time. For any sequence of real
numbers {fn}n∈N, say that a function ft is an extension of {fn}n∈N to a continuous domain if
ft|t=n∆ = fn for all n ∈ N, and ft is linear on each interval [(n − 1)∆, n∆].31 The following
definition formalizes the notion of convergence.

Definition 4. A sequence (b∆t , s∆
t , p

B∆
t , pS∆

t ) of CSEs indexed by ∆→ 0 has a smooth limit if

1. processes b∆t , s
∆
t , p

B∆
t , pS∆

t converge pointwise to continuous, a.e.-continuously differen-
tiable limit processes b∗t , s∗t , qBt , qSt , respectively;

2. T = lim sup
∆→0

T∆, where T ≡ inf{t ≥ 0 : b∗t′ = b∗t and s∗t′ = s∗t for all t′ ≥ t} and T∆ ≡

inf{t ≥ 0 : b∆t′ = b∆t and s∆
t′ = s∆

t for all t′ ≥ t};

3. b∗T = lim
∆→0

b∆T∆
and s∗T = lim

∆→0
s∆
T∆

.

The tuple (b∗t , s∗t , qBt , qSt ) is called the smooth limit of the sequence.
30As in the analysis of the concession game, the monotonicity restrictions in CSEs guarantee global optimality

of the on-path strategies. I additionally require that in CSEs an analogue of condition (1) holds. This way I focus
on the inefficiencies that arise due to the timing of the acceptance, but not due to unrealized gains from trade.

31To distinguish CSE on-path strategies bn, sn, pBn , pSn from their extensions bt, st, pBt , pSt , respectively, I use
time index t instead of round index n, whenever I refer to the extensions. Additionally, since the characterization
of CSE limits is in terms of equilibria of the concession game, with a slight abuse of notation, I use the same
notation for the CSE limit as for strategies in the concession game.
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Condition 1 in Definition 4 implies that in the limit, no positive mass of types accepts the
opponent’s price offer in any arbitrarily short interval of time, and moreover prices do not change
drastically. Condition 2 guarantees that the limit preserves information about when the trade
ends with certainty. Condition 3 ensures that the sets of accepting types (b∆T∆

, 1] and [0, s∆
T∆

)
do not collapse in the limit.32

In contrast to the concession game, in the bargaining game players choose price offers that
they make instead of following a given price path. This places additional restrictions on price
paths and acceptance strategies. These restrictions are formulated in terms of continuation
utilities of players in the concession game, and it is useful to denote by UBt (b) and USt (s) the
continuation utilities at time t of buyer type b and seller type s, respectively, in an equilibrium of
the concession game. More precisely, for t ≤ t∗B(b), let UBt (b) ≡ ert

1−FSt (b)

(
uB(t∗B(b), b)− uB(t, b)

)
,

and for t ≤ t∗S(s), let USt (s) ≡ ert

1−FBt (s)

(
uS(t∗S(s), s)− uS(t, s)

)
.

The next lemma gives weak restrictions on equilibrium price offers in the bargaining game
that arise from the fact that it is common knowledge among players that valuations belong to
the interval [v(0), v(1)] and costs belong to the interval [c(0), c(1)].

Lemma 1. In any equilibrium and after any history,

1. any buyer’s offer above c(1)+e−r∆v(1)
1+e−r∆ is accepted by the seller, and the buyer never accepts

any offer higher than v(1)+e−r∆c(1)
1+e−r∆ ;

2. any seller’s offer below v(0)+e−r∆c(0)
1+e−r∆ is accepted by the buyer, and the seller never accepts

any offer lower than c(0)+e−r∆v(0)
1+e−r∆ .

The interpretation of Lemma 1 is as follows. Suppose that the seller manages to convince
the buyer that she has the highest possible costs, c(1), and the buyer’s valuation turns out to
be v(1), thus maximizing the size of the surplus. Then the outcome would be as in the unique
subgame perfect equilibrium of the complete information game with valuation v(1) and cost
c(1) analyzed by Rubinstein (1982). In such an equilibrium, the seller makes offer v(1)+e−r∆c(1)

1+e−r∆

and rejects any offer below c(1)+e−r∆v(1)
1+e−r∆ , and the buyer makes offer c(1)+e−r∆v(1)

1+e−r∆ and rejects any
offer above v(1)+e−r∆c(1)

1+e−r∆ . By Lemma 1, the seller cannot get a higher payoff than in the scenario
described. Moreover, the buyer always has the option to trade immediately at price v(1)+e−r∆c(1)

1+e−r∆

by admitting that he has the highest valuation v(1) and by recognizing that the seller has the
highest costs c(1).

Observe that Lemma 1 implies that when the range of v and c is getting smaller, the ex-
pected delay in any equilibrium decreases.33 Hence, reducing the common uncertainty increases

32The Appendix provides examples that show that conditions 2 and 3 differ.
33Indeed, for any b it holds that

v(0)− c(1) + e−r∆v(1)
1 + e−r∆

≤ v(b)− c(1) + e−r∆v(1)
1 + e−r∆

≤ Eb
[
e−rT (v(b)− p)

]
≤
(
v(1)− c(0) + e−r∆v(0)

1 + e−r∆

)
Eb
[
e−rT

]
,
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the efficiency of any equilibrium. However, as will be shown in this section, the reduction in
individual uncertainty does not necessarily have the same effect.

Lemma 1 together with the fact that players can always reject any offer implies that in the
frequent-offer limit, seller type s gets at least her reservation utility max

{
v(0)+c(0)

2 − c(s), 0
}

,

and reservation utility of buyer type b is max
{
v(b)− v(1)+c(1)

2 , 0
}

. This translates into the
following restriction on the utilities that players get in equilibrium in the concession game. For
all t ∈ [0, T ) and all b and s,

UBt (b) ≥ max
{
v(b)− v(1) + c(1)

2 , 0
}
, (7)

USt (s) ≥ max
{
v(0) + c(0)

2 − c(s), 0
}
. (8)

The next theorem shows that in the limit of frequent offers, conditions (7) and (8) are the
only restrictions that the ability to choose price offers puts on the equilibrium price paths and
acceptance strategies. In particular, it establishes that under additional generic conditions on
equilibrium strategies, the sets of active CSE smooth limits and equilibria in smooth monotone
strategies of the concession game coincide.

Theorem 2 (Characterization of CSEs). Suppose a sequence of active CSEs indexed by ∆→ 0
has a smooth limit. Then the smooth limit of the sequence constitutes an equilibrium in the
concession game, and in addition, satisfies conditions (7) and (8).

Conversely, suppose an equilibrium of the concession game in smooth monotone strategies
(b∗t , s∗t , qBt , qSt ) and date T specified in condition (2) are such that b∗∞ ∈ (0, 1), s∗∞ ∈ (0, 1),
c(s∗T ) < qBT ≤ qST < v(b∗T ), and strict versions of inequalities (7) and (8) hold for all t ∈ [0, T ),b,s.
Then there exists a sequence of active CSEs indexed by ∆→ 0 with a smooth limit (b∗t , s∗t , qBt , qSt ).

Theorem 2 sheds light on the limit dynamics of trade and sources of inefficiency in CSEs. In
CSEs, players simultaneously screen each other’s types and this two-sided screening dynamics is
possible for a variety of η. Importantly, for a given price path, there can be a variety of individual
uncertainty levels η that are consistent with the given price path, and one can determine η only
by observing the frequency of acceptance at each price.

Since all types on each side make use of a common screening policy, there is a tension between
interests of different types. In particular, higher types of the seller would like the screening policy
to go more thoroughly through the higher buyer types, while lower types of the seller would prefer
that the higher types be skipped altogether (as they assign zero probability to such types) and
that the screening focus on lower buyer types. One would expect that the common screening
policy reaches a compromise between interests of different types. As will be shown later, very
harsh punishment is available even in the limit as η vanishes and so there is no need for such

and so, Eb
[
e−rT

]
converges to one as the range of values decreases.
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compromise. In fact, there is a “pecking order” of types with higher types of the seller and lower
types of the buyer receiving priority. That is, at the beginning of bargaining, high types of the
buyer are screened, which is in the interest of the high seller types. Over time, the screening
policy reaches buyer types in the middle of the type distribution, which gives positive profit to
the seller types in the middle of the distribution. However, because they spend a certain amount
of time making screening offers to high types that are rejected with certainty, the profit from
the screening includes the discount due to a delayed start of the effective screening. Since it may
take a significant amount of time until the common screening policy becomes efficient for the
lower seller types, they might prefer to accept the less favorable buyer offer instead of waiting
for their “turn to screen”. In fact, the common screening policy may never reach the seller types
at the bottom, as they all have accepted earlier some offer of the buyer. The ordering of buyer
types is reversed with lower buyer types screening first, and higher buyer types accepting some
seller offer.

The equilibrium conditions help us understand the sources of inefficiency in the model. Two
standard sources of inefficiency are reflected in conditions (3) and (4). For example, consider
equation (3), which describes the evolution of threshold buyer types. A more rapid decrease
in seller price offers qSt leads to higher b∗t and creates an inefficient delay. This is the standard
deadweight loss from screening. If the seller were not discriminating, then qSt would not change
and this would lead to a lower b∗t , and hence, more rapid trade.

To see the second inefficiency due to signaling, consider the likelihood λSt that the buyer’s
offer is accepted. In equation (3), an increase in λSt results in higher threshold buyer type b∗t .
By delaying trade, the buyer signals the seller that his valuation is low and further delay could
be costly to the seller. The stronger the impact of such a signal on the seller’s behavior (higher
λSt ), the greater the incentives of the buyer to signal by inefficiently delaying trade.

The model also has a third new source of bargaining inefficiency created by the fact that
there is a pecking order of types and it could take a long time until the common screening
policy becomes efficient for the types in the middle of the type range. To see this effect, observe
that a seller of type s expects positive profit from her screening offers only after time t when
b∗t ≤ bωs , and buyer types in the support of her beliefs start accepting the seller’s screening offers.
Suppose type s is such that the first time t when b∗t ≤ bωs is finite. Until this time, seller type s
follows the common screening path qSt , even though she knows that such offers are rejected with
certainty. As a result, the delay for seller type s is increased by the amount of time it takes to
screen buyer types above bωs .

Theorem 2 has an important empirical implication. It is possible that for a wide range of η,
bargaining may start from offers that are far from the equal division of the realized surplus and
that feature the two-sided screening dynamics. In this case, trade can be significantly delayed.
As one decreases individual uncertainty (for fixed price paths), the sources of inefficiency shift
from the standard deadweight loss and signaling costs to the inefficiency of common screening.
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As a result, even in the limit as η is vanishingly small, the equilibria are far from efficient.
The distinction between private and public information allows the interpretation of the model

in this paper to be the description of the trade within segments determined by the public
information. In the OTC example, credit ratings divide the bond market into several segments:
prime, investment grade, and non-investment grade bonds. Traders can evaluate risks more
accurately associated with a particular bond and use credit ratings as a starting point to trade
a finer distinctions of risk within each bond segment. The model implies that the transparency,
as opposed to the sophistication of traders, is crucial for the efficient functioning of the market.

The analysis of CSEs reveals the non-robustness of the model with independent private
information to higher-order uncertainty. Suppose that one tries to predict the outcome of a
particular trade and only observes the scope of private information of players (beliefs of players).
Then the application of the model with independent private information can be misleading as
it ignores the inefficiency of common screening. In the context of the model, observing only b

and s as well as beliefs µ0
b ∈ ∆(Sb) and µ0

s ∈ ∆(Bs) may not be sufficient to make the prediction
about the equilibrium outcome. A correct approach would be to start with all pairings of the
buyers and sellers in the market. Then one finds the smallest sets B̂ and Ŝ of buyer and seller
types such that for any type b′ ∈ B̂, Sb′ intersects with Bs′ for some seller types s′ ∈ Ŝ, and
the analogous condition for the seller. This will give the proxy for the common uncertainty in
the market, and one can proceed from that to study possible CSEs. By similar logic, the model
with perfect information is not robust to higher-order uncertainty if one admits that both sides
can have some small amount of private information.

3.3 Proof Sketch of Theorem 2

I next describe the main methodological contribution of this paper. To show that an equilibrium
(b∗t , s∗t , qBt , qSt ) satisfying the conditions of Theorem 2 can be obtained as a smooth limit of the
sequence of CSEs, I construct a sequence of CSEs in grim trigger strategies. Equilibria in
grim trigger strategies consist of two ingredients: the main path and the punishment path.
Players start the game by following the main path and continue to follow it unless a detectable
deviation occurs. Detectable deviations from the CSE equilibrium path trigger the punishment,
and players switch to the punishing path for the deviating side given by punishing equilibria
analyzed in detail in Section 6. By the Contagious Coasian Property of punishing equilibria
(Theorem 6), as ∆ → 0, the utility of any type of the deviator in the punishing equilibrium
converges uniformly to the lowest utility possible in the equilibrium which, in conjunction with
the strict versions of inequalities (7) and (8), allows us to support the main path. In this
subsection, I focus on the steps in the construction of the main path.

The construction of the main path is based on the approximation of differential equations
(3) and (4) by difference equations. For T <∞, there is an approximating sequence of strategies
(b∆t , s∆

t , p
B∆
t , pS∆

t ) that converges uniformly to (b∗t , s∗t , qBt , qSt ) as ∆ → 0. By uniform conver-
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gence, deviations from the main path can be deterred by the threat of switching to the punishing
path. Extending the construction to the case T = ∞ is important for two reasons. First, it
allows one to cover the screening dynamics in which price offers of the buyer and the seller
never converge (qS∞ > qB∞). More importantly, it is key in the construction of a different class of
segmentation equilibria analyzed in Section 4. The difficulty in the case T =∞ is that it is no
longer possible to construct a uniform approximation of equilibrium strategies as was the case
for T < ∞. I circumvent this difficulty as follows. Consider an on-equilibrium-path history of
the CSE in which it is revealed that buyer types are below some b0 and seller types are above
s0. Define the continuation CSE as the continuation equilibrium after such a history in which
the strategies in the continuation equilibrium are described as in the definition of CSE. Lemma
2 constructs particular continuation CSEs with T =∞ in which, on the equilibrium path, price
offers are constant over time, and the mass of the remaining types can be arbitrarily small.
Given this result, an equilibrium in which negotiation continues indefinitely is approximated
with an equilibrium in which after a certain time T ′ price offers become constant. For times
before T ′, a uniform approximation of (b∗t , s∗t , qBt , qSt ) is available, and I can proceed as in the
case T <∞.

Lemma 2. Suppose b0 ∈ (0, 1− η], s0 ∈ [b0 − η, b0 + η) ∩ [η, 1), PB, PS satisfy

max
{
c
(
sωb0
)
,
v(0) + c(0)

2

}
< PB < PS < min

{
v
(
bαs0
)
,
v(1) + c(1)

2

}
, . (9)

Then for all ∆ sufficiently small, there exists an active continuation CSE such that

1. b0 and s0 are the highest buyer type and the lowest seller type, respectively, remaining in
the game,

2. pBn = PB and pSn = PS for all n ∈ N,

3. max{bn−1 − bn, sn − sn−1} < ∆C for all n ∈ N, where C is a constant independent of ∆.

Lemma 2 constructs a continuation CSE that starts from the moment that only buyer types
below b0 and seller types above s0 remain in the game. There are two price offers PB and
PS that are made on the equilibrium path, and each player decides whether to accept the less
favorable offer of the opponent, or to delay acceptance in the hope that the opponent will accept
earlier.34 In every round, a positive mass of types of the active player accepts. Condition (9)
ensures that for all types remaining in the game the utility from accepting the opponent’s offer

34The equilibrium constructed in Lemma 2 is similar to equilibria in war of attrition game. See Fudenberg
and Tirole (1991) for a survey of the literature on the war of attrition. Abreu and Gul (2000) establishes a
connection between reputational bargaining and the war of attrition. Krishna and Morgan (1997) analyzes the
war of attrition with affiliated values as an auction form in which the winning bidder pays the highest losing bid
and losing bidders pay their bids. The literature on the war of attrition has a different payoff structure and is
mostly formulated in continuous time, so I was not able to build on the techniques used in this literature.
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exceeds their reservation utility.35 Given that there is a positive difference in players’ payoffs
from trading at PB or PS , bargaining necessarily continues indefinitely.36 The last property of
the continuation equilibrium constructed in Lemma 2 guarantees that in the limit concession
happens continuously.37

It should be mentioned that the equilibrium construction in Lemma 2 is significantly harder
for the case of correlated values when compared to the case of independent values (η = 1).
For the intuition of differences in the analysis, compare the incentives of the threshold types
in the case η = 1 and η < 1. To keep the threshold buyer type indifferent between accepting
and rejecting the current offer, the probability of seller acceptance in the next round should be
sufficiently high. When types are independent (η = 1), it is possible to vary this probability
from 0 to 1 by varying the threshold seller type in the next round. In this case, for any initial
choice of b2, it is possible to recursively construct the subsequent thresholds. However, when
types are correlated (η < 1), there is an upper bound on the probability of seller acceptance
evaluated by buyer type b. This comes from the fact that for the buyer type b, all seller types in
the interval [s∞, sωb ] never accept the buyer’s price offer. In this case, if the construction begins
from an arbitrary choice of the first threshold types b2 and proceeds recursively, it can happen
that in some round n there is no threshold type of the active player in round n+ 1 that makes
the threshold type of the active player in round n indifferent between acceptance and delay.
Nevertheless, Lemma 2 establishes that it is possible to find an initial threshold type b2 so that
the recursive construction of thresholds is possible.

4 Segmentation Equilibria

In CSEs, as individual uncertainty vanishes, common-screening inefficiency becomes a dominant
source of the surplus dissipation. In this section, I analyze a very different class of equilibria
which I call segmentation equilibria. In this class of equilibria, common-screening inefficiency
is eliminated shortly after bargaining begins and a positive mass of types trades in the first
instance, and after that, trade is gradual for the remaining types. This contrasts with the trade
dynamics and efficiency properties of CSEs.

35To understand the requirement on b0 and s0 in Lemma 2, observe that in the sufficiency part of Theorem 2, it
holds b∗∞ ∈ (0, 1) and s∗∞ ∈ (0, 1), and together with condition (2), this implies b∗∞ ∈ (0, 1− η) and s∗∞ ∈ (η, 1). I
use Lemma 2 to construct a continuation CSE in which the remaining buyer types are below b0 and the remaining
seller types are above s0, and b0 and s0 are close to b∗∞ and s∗∞, respectively. Therefore, I place the restriction
b0 ∈ (0, 1− η] and s0 ∈ [η, 1). The requirement s0 ∈ [b0 − η, b0 + η) guarantees that starting from the first round
in the continuation equilibrium both sides assign positive probability to the acceptance of their offer in the next
round. This makes the concession continuous in the limit ∆→ 0 with no positive mass of types accepting in any
instant of time, and in particular, implies that the bound on max{bn−1 − bn, sn − sn−1} in Lemma 2 holds.

36Otherwise, for sufficiently small ∆, players would prefer to marginally delay acceptance before the final
date. This would give a discontinuous gain in the payoff, making the acceptance at times close to the final date
suboptimal.

37Indeed, in an interval of length ∆ at most mass ∆C of types concedes and so the speed of acceptance is
bounded above by C.
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The idea behind segmentation equilibria is to construct equilibria such that with their initial
offers, players establish common knowledge of a relatively narrow range of players’ types which
eliminates the inefficiency of common screening. As a result, the efficiency of segmentation equi-
libria resembles the efficiency of the model with independent values: as individual uncertainty
decreases, efficiency increases. I also require that offers on the equilibrium path can come only
from a particular set. This enables the interpretation that types endogenously self-select into
segments associated with a particular price. This motivates the following definition.

Definition 5. Segmentation equilibria satisfy the following two conditions on the equilibrium
path.

• After the first two rounds, every remaining type assigns positive probability to his/her offers
being accepted.

• Only offers from finite sets QSZ = {qS1 , . . . , qSZ} and QBZ = {qB1 , . . . , qBZ } are made, where
qSz ∈

(
v(0)+c(0)

2 , v(1)+c(1)
2

)
and qBz ∈

(
v(0)+c(0)

2 , v(1)+c(1)
2

)
for all z.

The next theorem constructs segmentation equilibria in which each segment is associated
with a particular price offer of the seller qSz and the buyer qBz , and segments are ordered by the
level of price offers.

Theorem 3. Fix an integer Z, an increasing sequence of offers {qBz }Zz=1, and increasing se-
quences {bz}Zz=1 and {sz}Zz=1 of buyer and seller types such that b0 = s0 = 0, bZ = sZ = 1
and

1. sz = bz + η and c(sz) < qBz < v(bz−1) for z = 1, Z − 1,

2. bz+1 − bz > 4η for z = 1, Z − 2.

Then for sufficiently small ∆, there exists a segmentation equilibrium with Z segments and buyer
price offers {qB1 , . . . , qBZ } such that

• there is no almost sure upper bound on the delay on the equilibrium path, i.e. for any
positive t, P(N∆ > t) > 0;38

• ex-ante probability of delay longer than two rounds is bounded above by 4η(Z−1)
2−η .

In segmentation equilibria, a positive mass of types trades in the first instant followed by the
gradual acceptance of the remaining types, and the mass of the remaining types becomes small
as η decreases. Therefore, unlike CSEs, segmentation equilibria are relatively efficient and have
a burst of trade in the beginning of bargaining.

I first describe informally how trade happens in the limiting case of low individual uncertainty
and then give the outline of the construction of segmentation equilibria. When η ≈ 0 and

38Recall that N is the round when trade happens in equilibrium.
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∆ ≈ 0, then bz ≈ sz and qSz ≈ qBz . Types bz are the boundaries of segments, and buyer/seller
types in (bz−1, bz) belong to segment z. All of those types, except for an η−neighborhood
around boundaries, trade almost immediately at the price qBz corresponding to the segment.
The inefficiency of the segmentation equilibria stems from the types in the η-neighborhood of
the segment boundaries. Such types have incentives to delay trade and form reputations for
belonging to a segment with more favorable terms of trade. Hence, these types could continue
bargaining for an arbitrarily long time. Because, the inefficient delay happens only for types in
the η-neighborhood of segment boundaries, inefficiency decreases with η and increases with the
number of segments Z, which is reflected in the upper bound 4η(Z−1)

2−η on the probability that
the delay is longer than two rounds.

v(b), c(s)
v(b)

b, s

c(s)

q1

q2

q3

0 1
š1

b̂1b1 b2

š1ŝ1 s1

b̂2

b2 − b1 > 4η

ŝ2 s2

Figure 4: Segmentation equilibrium. The dashed line depicts offers of each seller type in
the first round, the solid line depicts counter-offers that each buyer type makes in the second
round if he rejects the seller price offer. Straight arrows depict gradual acceptance and arched
arrows depict a positive mass of seller types accepting in the third round.

More formally, I construct the following segmentation equilibria illustrated in Figure 4. The
dashed line depicts the first offer of the seller, and the bold line depicts the counter-offer of the
buyer if he does not accept the offer of the seller. While price offers qSz and qBz are different
for ∆ > 0, when ∆ → 0, the difference vanishes, and one can interpret that each segment is
associated with a particular price offer. The price offers are such that if either of the first two
offers is accepted, both sides get positive utility (conditions 1 in Theorem 3). The intervals of
types that make the same offer are sufficiently big (condition 2 in Theorem 3) so that on the
equilibrium path, any type either knows what offer the opponent will make or expects that the
opponent will make one of two offers. Notice that the two conditions place restrictions on the
number of segments for a given η. On the one hand, there should be enough segments to ensure
that trade is individually rational for every realization of types. On the other hand, the segments
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should not be too close to each other. Given the assumption of strict gains from trade (recall
ξ > 0), for η sufficiently small, it is possible to construct the segments that satisfy conditions 1
and 2 of Theorem 3.

The acceptance strategies are described as follows. In the second round, buyer types above
b̂z accept any equilibrium offer of the seller, and in the third round seller types below šz accept
any equilibrium offer of the buyer. When offers are frequent, this initial trade happens almost
immediately. If the game has not ended during this initial period, and the first two offers were
qSz and qBz−1, then remaining types are playing the war-of-attrition game described in Lemma 2
with b0 = b̂z and s0 = šz and price offers PS = qSz and PB = qBz−1. In the limit of frequent offers,
the gradual acceptance is described by a decreasing bzt ∈ [bz, b̂z, ] and an increasing szt ∈ [šz, sz].
Acceptance strategies bzt and szt are described by the following pair of differential equations:

r
(
v(bzt )− qSz

)
= ṡzt
bzt − szt + η

(
qSz − qBz−1

)
, (10)

r
(
qBz−1 − c(szt )

)
= − ḃzt

bzt − szt + η

(
qSz − qBz−1

)
; (11)

with transversality conditions bz = limt→∞ b
z
t and sz = limt→∞ s

z
t . Equations (10) and (11)

are analogous to those in the characterization of the equilibria for the concession game under
constant price paths and when both players assign positive probability to their offer being
accepted in the next round.

Notice that a segmentation equilibrium with just two segments is the common screening
equilibrium with constant price paths. Hence, Theorem 3 gives both conditions for existence
of common screening and segmentation equilibria. For the common screening equilibria, they
boil down to c−1(v(0))− v−1(c(1)) > η.39 However, segmentation equilibria with more than two
segments exist for a wider range of parameters. In particular, for any specification of v and c,
if η is sufficiently small, one can construct corresponding prices and segment boundaries that
satisfy conditions Theorem 3.

Theorem 3 could be reformulated to allow for segmentation to happen over time rather than
all at once in the first two rounds. Together with Theorem 2, this suggests a rich description of
possible equilibrium behavior. Intervals of gradual trade and (common) screening, as in CSEs,
are interrupted by rounds in which remaining types split into endogenous segments, trade bursts,
and common uncertainty is drastically reduced.

Example (continued) Finally, continuing the example in Section 3 with η = .08, I illustrate
numerically the efficiency and trade dynamics of segmentation equilibria. I first construct a

39To see this, for ε > 0 sufficiently small, let qB1 = v(0) − ε and qB2 = c(1) + ε. By the condition, for
sufficiently small ε, it is possible to choose some b1 ∈ (v−1(c(1)), c−1(v(0)) − η) and s1 = b1 + η such that
c(s1) < v(0) − 2ε < qB1 < v(0) and c(1) < qB2 < c(1) + 2ε < v(b1), and so, by Theorem 3, there exists a
segmentation equilibrium with two segments.
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Figure 5: Expected delay for the seller in segmentation equilibria with two (left panel) and
three segments (right panel).

segmentation equilibrium with just two segments and price offers qB1 = 1
2 and qB2 = 7

6 . Price
offers qB1 and qB2 are the mid-points between the first and the last price offer of the buyer and
the seller, respectively. The first panel in Figure 5 depicts the expected delay as a function
of the seller type. Compared to the converging price paths (panel b in Figure 2), there is an
atom of trade in the first instance of time which decreases to zero the expected delay for high
and low types of the seller. For types in the middle, however, the expected delay may increase,
because of the higher difference in price offers between segments compared to the difference in
price offers qSt and qBt in the common screening equilibria.

Next, consider the segmentation equilibrium with three segments. Let b1 = 1
3 −

η
2 and

b2 = 2
3 −

η
2 (correspondingly, s1 = 1

3 + η
2 and s2 = 2

3 + η
2 ), and qB1 = 1

2 , qB2 = 5
6 , qB3 = 7

6
(see Figure 4 for an illustration of strategies in such an equilibrium). The expected delay in
this equilibrium is depicted on the second panel in Figure 5. The figure illustrates that most
of types trade in the first instance of time, while the types near boundaries of segments delay
trade. Notice that while the increase in the number of segments decreases the efficiency, as
there are more types that are involved in the inefficient war-of-attrition type of game near
segment boundaries, the decrease in the difference in price offers between segments reduces the
inefficiency. As a result, in the example, there is only a small difference in the efficiency between
the segmentation equilibrium with two segments (W = .61) and three segments (W = .63).

Figure 6 presents the expected discount on the surplus and the expected discounted surplus
as a function of η for the segmentation equilibrium with three segments. Given the restrictions
of Theorem 3, the range of η for which this segmentation equilibrium exists is (0, 1

12). Figure 6
shows that the equilibria become more efficient with the decrease in individual uncertainty.
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Figure 6: Efficiency of segmentation equilibria with three segments.

5 Vanishing Individual Uncertainty

Section 3 shows the remarkable discontinuity of the complete-information model which raises a
concern about its applicability in environments with a big difference between private and public
information. Because of the common screening inefficiency, a variety of equilibria with two-sided
screening dynamics is possible even in the limit of vanishing individual uncertainty. In this sec-
tion, I offer two ways to address this concern. First, in a different class of segmentation equilibria
the gap between private and public information is eliminated endogenously. This property of
segmentation equilibria allows me to restore the convergence to the complete-information out-
come in the next subsection. Second, in Subsection 5.2, limits of CSEs as both ∆ and η converge
to zero are characterized in terms of familiar incentive compatibility constraints, that are im-
posed on high buyer types and low seller types, and individual rationality constraints. This
way, one can address the non-robustness concern directly by studying implications of two-sided
screening dynamics. In a related paper (Tsoy (2014)), I take this route and study the effect of
trade delay on the liquidity of OTC markets.

5.1 Approximation of the Complete-Information Outcome

Segmentation equilibria allow me to restore the connection between the complete-information
bargaining game (Rubinstein (1982)) and the limit of the model in this paper as the correlation
of values becomes perfect. Define the complete-information outcome to be

(
0, v(b)+c(s)

2

)
. The

next theorem constructs a sequence of segmentation equilibria with increasingly fine definition of
segments such that outcomes of these equilibria approximate the complete-information outcome.

Theorem 4. There exists a sequence of segmentation equilibria indexed by (∆, η) → (0, 0)
such that outcomes (N∆, p) of segmentation equilibria converge in probability to the complete-
information outcome

(
0, v(b)+c(s)

2

)
, i.e. for any ε > 0 there exists a segmentation equilibrium in
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the sequence such that

P
(
N∆ > ε and

∣∣∣∣p− v(b) + c(s)
2

∣∣∣∣ > ε

)
< ε.

To prove Theorem 4, I apply Theorem 3 to construct segmentation equilibria with Z ∼ 1√
η

segments and prices qBz = v(bz−1)+c(sz)
2 . As η → 0, the probability of any given delay is bounded

from above by 4η(Z−1)
2−η ∼ √η and converges to zero. The length of each segment √η also

converges to zero and so qBz is close to the equal division for types in each segment z.

5.2 Double Limits of Common Screening Equilibria

I start by defining interim CSE outcomes. Recall that the outcome consists of the time N∆
and price p at which trade occurs. For any CSE and buyer type b, define the discounted
probability of allocation by PB(b) ≡ E

[
e−r∆N |Sb, σb

]
and the discounted transfer by XB(b) ≡

E
[
e−r∆Np|Sb, σb

]
.40 Define functions PS and XS for the seller analogously. The interim out-

come (PB, XB, PS , XS) is the expected outcome of each player after the type of the player is
realized but before the type of the opponent is known.

Theorem 5. Suppose a sequence of CSEs is indexed by (∆, η) → (0, 0). Then CSE interim
outcomes (PB, XB, PS , XS) converge over subsequence for almost all types to (P̄B, X̄B, P̄S , X̄S)
that satisfies the following conditions:

1. P̄B(ω) = P̄S(ω) = P̄ (ω) and X̄B(ω) = X̄S(ω) = X̄(ω) for ω ∈ [0, 1].

2. For all ω, ω′ > ω∗,

P̄ (ω)v(ω)− X̄(ω) ≥ P̄ (ω′)v(ω)− X̄(ω′) ≥ 0, (12)

P̄ (ω)v(ω)− X̄(ω) ≥ max
{

0, v(ω)− v(1) + c(1)
2

}
. (13)

3. For all ω, ω′ < ω∗,

X̄(ω)− P̄ (ω)c(ω) ≥ X̄(ω′)− P̄ (ω′)c(ω) ≥ 0, (14)

X̄(ω)− P̄ (ω)c(ω) ≥ max
{

0, v(0) + c(0)
2 − c(ω)

}
. (15)

4. Left and right limits of X̄(ω) exist at ω∗ and X̄(ω∗+) ≥ X̄(ω∗−).41

40The expectations are taken conditional on the event that buyer type b follows the equilibrium strategy σb, a
seller type is drawn from a uniform distribution on Sb and the seller follows the equilibrium strategy σs.

41For a monotone function f , I use notationf(x+) ≡ limx′→x+ f(x′) for the right limit of f at point x and
f(x−) ≡ limx′→x− f(x′) for the left limit of f at point x (which exists by monotonicity of f).
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Conversely, for any (P̄B, X̄B, P̄S , X̄S) that satisfies conditions 1-4 and, in addition, satisfies

P̄ (ω) > 0 for all ω 6= ω∗ and P̄ (ω∗+) = P̄ (ω∗−), (16)

there is a sequence of (∆, η) → (0, 0) and a corresponding sequence of CSEs such that CSE
interim outcomes converge to (P̄B, X̄B, P̄S , X̄S) for almost all types.

The characterization in Theorem 5 describes limit interim outcomes of CSEs in terms of
incentive and individual rationality constraints used in the mechanism design literature.42 The
first condition gives the following interpretation. There is a quality of the good ω which com-
pletely determines the time and price at which trade happens. Conditions (12) and (14) are
standard incentive compatibility constraints required to hold only for the high buyer types (above
ω∗) and low seller types (below ω∗). These conditions reflect the fact that in CSEs for small η
the time of trade is determined by the buyer’s acceptance if realized types are sufficiently high,
and by the seller’s acceptance if realized types are sufficiently low. Conditions (13) and (15)
are individual rationality constraints, adjusted for the fact that by Lemma 1, in the bargaining
game the equilibrium price of trade should lie within the interval

[
v(0)+c(0)

2 , v(1)+c(1)
2

]
in the limit

of frequent offers. Condition 3 reflects the fact that in CSEs seller price offers are always greater
than buyer price offers.

Theorem 5 has two important implications. First, it gives the relationship between the trade
delay and the quality of the good. By the standard argument from mechanism design literature
(see Myerson (1981)), the incentive compatibility constraints (12) and (14) imply that P̄ (ω)
is decreasing for ω > ω∗ and increasing for ω < ω∗. Therefore, by Theorem 5, trade delay is
inverse U-shaped in quality. Goods with quality closer to the extremes of the quality range are
traded faster, as their quality is revealed quickly in the two-sided screening process. On the
contrary, for goods with quality in the middle of the quality range, trade can be significantly
delayed because of the inefficiency of common screening. This provides a testable empirical
implication of the model with vanishing individual uncertainty. It differs from the implications
of the standard models of one-sided screening where the relationship between delay and quality
is monotone, and the complete information model which has immediate agreement.

Second, the analysis of the double limits of CSEs provides a modeling tool for studying the
implications of trade delay. In applied work, a non-trivial trade delay can be a realistic and
desirable feature of the model. A natural way to incorporate trade delay into the model is by
introducing incomplete information. However, in many cases, this considerably complicates the
analysis and could turn out to be intractable in the context of a more general framework. The-
orem 5 suggests an approach that combines the tractability of the complete-information model

42This approach of describing limit bargaining outcomes in terms of mechanism-design constraints was previ-
ously used in Ausubel and Deneckere (1989a) and Ausubel, Cramton and Deneckere (2001) to study the model
with one-sided incomplete information, and in Gerardi, Hörner, and Maestri (2013) to study the model with
interdependent values.
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and the realistic trade dynamics of incomplete-information models. Specifically, if one assumes
that the individual uncertainty about values is negligible but there is large common uncertainty,
then one can use the characterization in Theorem 5 to describe the trade dynamics in such an
environment. The benefit of this approach is that it combines realistic two-sided screening dy-
namics and at the same time allows for a relatively simple expression for terms of trade through
the quality of good. Tsoy (2014) takes this approach to incorporate bargaining delay into a
standard search model. While introducing two-sided private information in this setting would
lead to a complicated functional fixed-point problem, the characterization in Theorem 5 allows
me to avoid this complication and leads to a tractable model which I use to study the difference
in the effect of bargaining delay and search delay on liquidity and asset prices.

6 Punishing Equilibria

This section introduces and analyzes punishing equilibria. Punishing equilibria successfully deter
deviations from equilibrium paths of CSEs and segmentation equilibria because of the Contagious
Coasian Property: in the limit of frequent offers, in the punishing equilibrium the utility of the
deviator converges uniformly (over all types of the deviator) to the lowest utility possible in any
equilibrium. In this section, I focus on the seller-punishing equilibrium43, and I further refer
to it as simply the punishing equilibrium. The description and construction of the punishing
equilibria is a bit cumbersome, and in Subsection 6.1 I state the main result of the section,
describe informally the equilibrium behavior in the punishing equilibria and give the intuition
for why the Contagious Coasian Property obtains. I then proceed in Subsections 6.2 and 6.3 to
carefully describe strategies in the punishing equilibrium and to show the existence in Theorem
7. Finally, in Subsection 6.4, I sketch the proof of the result that punishing equilibria possess
Contagious Coasian Property.

6.1 Contagious Coasian Property

The seller punishing equilibrium is an equilibrium of the game in which seller types hold their
original beliefs, while buyer types hold optimistic beliefs and put probability one on the lowest
seller type in the support of his beliefs Sb. More precisely, buyer types put probability one on
the lowest seller type in the support of their prior beliefs, i.e.

µnb (sαb ) = 1 (17)
43The buyer-punishing equilibrium is analyzed analogously.
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for all histories hn with some seller-detectable deviation.44 Beliefs described in (17) are a natural
counterpart of optimistic beliefs commonly used in the bargaining literature (see Rubinstein
(1985)). In the punishing equilibrium, all buyer types pool on the lowest price offer possible
in the game and accept seller offers according to endogenously-determined willingness to pay.
Seller types make price offers to screen buyer types. Since offers do not affect the beliefs of
the buyer, each seller type chooses her offers optimally given the buyer’s willingness to pay.
However, a buyer’s willingness to pay depends on the buyer’s expectations about the seller’s
future offers and so, both willingness to pay and the seller screening policy are determined in
equilibrium simultaneously. The main result is the following property of the seller punishing
equilibrium.

Theorem 6 (Contagious Coasian Property). For any ε > 0, there exists ∆̄ such that for all
∆ ≤ ∆̄, the continuation utility of any seller type s in the seller punishing equilibrium is at most
max

{
v(0)+c(0)

2 − c(s), 0
}

+ ε for all s.

For η = 1, all types of the buyer put probability one on the seller type 0 and Theorem 6
states the Coasian property of the punishing equilibrium. As ∆ → 0, seller type 0 loses all
monopoly power and allocates to all buyer types at the lowest price. Surprisingly, even for small
η, in the punishing equilibrium the seller gets her reservation utility in the frequent-offer limit.45

Even though the buyer types become only marginally optimistic, the coordination of all buyer
types on the optimistic beliefs creates the connection between the screening policies of different
seller types. Low screening offers of seller type 0 force seller types slightly above 0 to make low
price offers, as the big fraction of the buyer types that they face belongs to [0, η] and expects
almost immediate allocation at the price close to v(0)+c(0)

2 from seller type 0. This leads buyer
types slightly above η to expect a low price offer and, in turn, forces a larger set of seller types
to make price offers close to v(0)+c(0)

2 . This way even the seller types that are significantly far
from seller type 0 are forced to make low price offers.

The intuitive contagion mechanism described above is more delicate than it might seem at
first glance. As offers become more frequent, the seller screens more thoroughly in the sense
that cut-offs of the seller screening strategy become closer together. Hence, seller types slightly
above seller type 0 spend an increasing number of rounds selling to buyer types above η. If
such time is positive in the limit, then it is possible that the limit of willingness to pay of the

44Such beliefs could be justified by the following trembles in the model with a finite number of types and
finite grid of price offers. Seller’s and buyer’s types come from {k/K}Kk=1 for some integer K. Suppose price
offers come from a discrete set P. Seller type s trembles with probability (1 − s)m/2 for some integer m and
conditional on trembling chooses a price offer uniformly from P. As m→∞, the probability of tremble converges
to zero. Yet, conditional on the buyer type b, the probability that the tremble comes from seller type sαb is

(1−sα
b

)n

(1−sα
b

)m+
∑

s∈Sb\s
α
b

(1−s)m
→ 1 as m→∞, since 1−s

1−sα
b
< 1.

45Observe that unlike on the CSE equilibrium path, in the punishing equilibrium all types on the punishing
side benefit from coordinating on optimistic beliefs. Every type of punishing player (subjectively) gets the highest
possible utility in the frequent-offer limit.
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buyer types would be higher than v(0)+c(0)
2 . In fact, this happens for the buyer types that put

probability one on the seller types with costs above v(0)+c(0)
2 . However, as Theorem 6 shows

that even though the limit of willingness to pay increases for such buyer types, it does not go
above c(sαb ). Given that the buyer’s willingness to pay is at its lowest possible level in the limit
of frequent offers, the seller’s utility approaches the reservation utility as ∆→ 0.

6.2 Description of strategies

Since the optimistic beliefs of the buyer might exclude the realized seller’s type, the buyer and
the seller may have different expectations regarding the path of play.46 I refer to the path of
play expected by the seller in the punishing equilibrium as the equilibrium path of the punishing
equilibrium.

Buyer on-path strategy. All buyer types pool on the lowest acceptable price offer
c(0)+e−r∆v(0)

1+e−r∆ (cf. Lemma 1). Buyer type b accepts any price offer less than or equal to his
willingness to pay P (b) which is left-continuous and strictly increasing in b. Since P (b) is strictly
increasing, for any history hn without buyer deviations, there exists a buyer type β ∈ [0, 1] such
that only buyer types in the interval [0, β] remain in the game. Whenever β ≥ bαs , posterior
beliefs of seller type s are uniform on Bs ∩ [0, β].

Seller on-path strategy. The seller faces the static demand function given by P (b) and
makes price offers to screen buyer types based on their willingness to pay. Notice that it is never
optimal for the seller to offer a price in [P (b), P (b+)), if b is point of discontinuity of P (b).47

Let P̂ (b) be a right-continuous function that is equal to P (b) in all continuity points of P (b).
Then the strategy of the seller could be equivalently represented as follows. Given the highest
remaining buyer type β, seller type s > 0 chooses a cut-off buyer type tβ(s) and allocates to all
remaining buyer types above tβ(s). To reach this goal, the seller should make offer P̂ (tβ(s)).48

The strategy of seller type 0 differs from the rest of the seller types, due to the fact that
a positive mass of buyer types in [0, η] puts probability one on seller type 0. Seller type 0
(and only this seller type) accepts buyer price offer c(0)+e−r∆v(0)

1+e−r∆ , whenever the highest buyer

46For example, suppose that buyer type b and seller type s ∈ Sb\sαb are realized. In the punishing equilibrium,
beliefs of buyer type b assign probability one to type sαb . If the punishing equilibrium strategies prescribe different
actions for seller types s and sαb , then buyer type b will observe seller’s deviations from the expected path of play.
In turn, the seller takes into account the fact that the buyer could perceive her action as a deviation from the
equilibrium strategy.

47Indeed, alternatively the seller could offer price P (b+) and still sell the good to all buyer types above b, but
at a higher price.

48It might be tempting to define P (b) as a right-continuous function and this way avoid the necessity to introduce
auxiliary function P̂ (b). This, however, is not possible. To see this, suppose that every seller type does not screen
and allocates to buyer type bαs in the first round. Then

P (b) =

{
(1− e−r∆)v(b) + e−r∆ c(0)+e−r∆v(0)

1+e−r∆ , for b ∈ [0, η],
(1− e−2r∆)v(b) + e−2r∆P (max{b− 2η, 0}), for b ∈ (η, 1].

It is easy to see that such a function is not right-continuous (e.g. at point b = η).
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type remaining in the game is below some β̄ ∈ (0, η]. Given the highest remaining buyer type
β ∈ (β̄, η], seller type 0 allocates to buyer types above tβ(0).

Before moving on to the description of strategies off-path, I state the optimality conditions
that on-path strategies of the punishing equilibrium should satisfy. The problem of seller type
s could be formulated recursively. Let bounded function Rβ(s) for β ∈ [bαs , 1] be the profit of
seller type s > 1 from selling to buyer types in [bαs , β]. Then Rβ(s) satisfies Bellman equation49

Rβ(s) = sup
b∈Bs∩[0,β]

{
(β − b)(P̂ (b)− c(s)) + e−2r∆Rb(s)

}
. (18)

Denote by Tβ(s) the set of maximizers of the right-hand side of (18). A seller strategy tβ(s) is
a best-reply to buyer strategy P (b), if tβ(s) = inf Tβ(s) for all s and β ≥ bαs . A special role in
the analysis is played by the first cut-off buyer type chosen by seller type s, which I denote by
t(s) ≡ tbωs (s).

For screening strategy tβ(s) of the seller, the willingness to pay P (b) for b ∈ (η, 1] is given
by

P (b) = (1− e−2r∆)v(b) + e−2r∆P̂ (t(sαb )) (19)

The interpretation of (19) is as follows. The expectation of buyer type b about future screening
offers of the seller is determined by the screening policy of seller type sαb . Buyer type b in the
interval (η, 1] believes that he is the highest buyer type in the support of beliefs of seller type
sαb . If the seller makes price offer P (b), then in the next screening round, buyer type b will be
the highest buyer type remaining in the game. Hence, buyer type b will expect to buy the good
in the next round at price P̂ (t(sαb )). Equation (19) states that buyer type b is simply indifferent
between accepting price offer P (b) and getting utility b−P (b), and rejecting P (b) and accepting
price offer P (t(sαb )) in the following round of screening.

As with seller type 0, the willingness to pay of buyer types in the interval [0, η] differs from
that of the rest of the buyer types. Both on and off the equilibrium path of the punishing
equilibrium, it is determined by some strictly increasing and left-continuous function P 0(b).

Strategies off-path. If the buyer makes a price offer different from c(0)+e−r∆v(0)
1+e−r∆ or β < bαs ,

seller type s switches to optimistic beliefs and assigns probability one to the highest buyer type
in the support of her prior belief, i.e.

µns (bωs ) = 1 (20)

for all histories hn with both seller- and buyer-detectable deviations. Lemma 13 in the Appendix
describes equilibrium strategies when both players have optimistic beliefs. This result is based
on the analysis of a bargaining game with complete information (Rubinstein (1982)).

Seller deviations from the equilibrium strategies in the punishing equilibrium are ignored. If
49The value function is defined only on the set {(β, s) ∈ BS : bαs ≤ β}. Outside of this set, seller s detects that

state β is achieved as a result of buyer deviation and switches to the optimistic belief (20) as specified below.
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buyer type b rejects a seller price offer lower than P (b), then the seller detects such deviation
only if b > β + 2η. In this case, the continuation play is as in Lemma 13. If β < b ≤ β + 2η,
then such deviation is not detected and buyer type b makes price offer c(0)+e−r∆v(0)

1+e−r∆ , and accepts
any price offer less than Pβ(b) ≡ (1 − e−2r∆)v(b) + e−2r∆P (tβ(sαb )), which now depends also
on the highest remaining buyer type β. This completes the description of the strategies in the
punishing equilibrium.

6.3 Existence

In this subsection, I show the existence of the punishing equilibrium. The proof of the existence
is constructive, and the key to its construction is to show that willingness to pay P (b) and
screening policy tβ(s) satisfying (18) and (19) exist. The next theorem presents the result.

Theorem 7. For all sufficiently small ∆, there exist tβ(s) and P (b) such that they satisfy (19)
and tβ(s) is the solution of the optimization problem in equation (18).

I now sketch the main steps for the construction of the punishing equilibrium. The construc-
tion is carried out starting from the bottom of the type distribution. I first analyze strategies
of seller type 0 and buyer types in [0, η] that put probability one on this seller type. This is the
model with one-sided incomplete information and alternating offers, and the following result is
standard in the literature.50

Lemma 3. For all sufficiently small ∆, there exists a sequential equilibrium in a game between
seller type 0 and buyer types in [0, η], in which on the equilibrium path

1. the buyer makes price offer c(0)+e−r∆v(0)
1+e−r∆ and accepts seller price offers according to left-

continuous and strictly increasing willingness to pay function P 0(b) ;

2. there exists β̄ ∈ [0, η] such that if the highest remaining buyer type is below β̄, then seller
type 0 accepts the buyer price offer c(0)+e−r∆v(0)

1+e−r∆ ;

3. given the highest remaining buyer types β ∈ (β̄, η], seller type 0 allocates to buyer types
above tβ(0) in the current round.

Moreover, for any ε > 0 the first price offer of seller type 0 does not exceed v(0)+c(0)
2 + ε for ∆

sufficiently small.

One detail worth mentioning is that despite the fact that in the punishing equilibrium, seller
type 0 follows a pure strategy on the equilibrium path, off-the-equilibrium path mixing might
be necessary (see footnote 18). This possibility can easily be incorporated into the analysis. For
notation simplicity, I will assume that the seller screening strategy in Lemma 3 is pure.

50See Grossman and Perry (1986), Gul and Sonnenschein (1988).
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Strategies for the rest of the types are constructed via the iterative algorithm that runs as
follows. Buyer types in [0, η] put probability one on seller type 0 and have willingness to pay
P 0(b). By Lemma 18 in the Appendix, all seller types allocate to at least a mass c(η,∆) of
buyer types in the first round of screening where c(η,∆) is a constant as specified in Lemma
18. Hence, it is sufficient to know the willingness to pay of buyer types in [0, η] to construct
the screening policy of seller types in [0, c(η,∆)]. Moreover, buyer types in [η, η + c(η,∆)] put
probability one on sellers in the interval [0, c(η,∆)]. In Step 1 of the algorithm, screening policy
tβ(s) for seller types in [0, c(η,∆)] and willingness to pay P (b) for buyer types [η, η + c(η,∆)]
is constructed. The algorithm continues “climbing up” the types with an increment c(η,∆).
Choose I as the smallest integer such that Ic(η,∆) ≥ 1− η.

Iterative Algorithm

Input: Define π0(b) =

P
0(b), for b ∈ [0, η],

v(b), for b ∈ (η, 1].
Execute Step i, i = 1, . . . , I + 1.
Step i. Construct a best-reply τ iβ(s) to πi−1(b). Construct πi(b) by

πi(b) =


πi−1(b), for b ∈ [0, η + (i− 1)c(η,∆)],

(1− e−2r∆)v(b) + e−2r∆π̂i−1(τ i(sαb )), for b ∈ (η + (i− 1)c(η,∆), η + ic(η,∆)],

v(b), for b ∈ (η + ic(η,∆), 1];

where π̂i−1(b) denotes the right-continuous function that coincides with πi−1(b) at all
continuity points of πi−1(b).
Output: P (b) = πI+1(b), tβ(s) = τ I+1

β (s).

By construction, tβ(s) is a best-reply to P (b), and one is left to verify that P (b) is the optimal
acceptance strategy for the buyer and that it is optimal for buyer types to pool on c(0)+e−r∆v(0)

1+e−r∆ .
The former is proven in Lemma 20 in the Appendix, and the argument uses the monotonicity
in s of seller screening strategy tβ(s) and the monotonicity of P (b). The proof of the latter is
based on the Contagious Coasian Property proven in the next subsection.

6.4 Proof Sketch of Theorem 6

This subsection proves the Contagious Coasian Property. The frequent-offer limit of the pun-
ishing equilibria gives all seller types their reservation utility level independent of η. At the
same time, all optimistic buyer types expect to acquire the good in the first round of the seller’s
screening at the price that converges to the lowest (type specific) price. The former property
allows us to support a wide range of equilibrium behavior in CSEs and segmentation equilibria.
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The latter property gives the final step in the proof of the existence of punishing equilibria, as
it deters deviations of the buyer from pooling on the price offer c(0)+e−r∆v(0)

1+e−r∆ in the punishing
equilibrium. Therefore, the seller-punishing equilibrium is a natural candidate for deterring de-
viations from the equilibrium path: it simultaneously punishes all types of seller as harshly as
possible, and rewards all types of buyer by the greatest amount possible.

Theorem 6 is a corollary of the following result describing the limit of willingness to pay
functions as ∆→ 0. Consider a sequence of punishing equilibria indexed by ∆→ 0. For each ∆,
let (P∆(b), t∆β (s)) be equilibrium path strategies of the punishing equilibrium for round length
∆. Then the limit of P∆(b) is given by the following theorem.

Theorem 8. There exists a subsequence of the sequence P∆(b) that converges uniformly to
P ∗(b) = max

{
v(0)+c(0)

2 , c(sαb )
}

as ∆→ 0.

The proof of Theorem 8 is broken down into three steps. In each step the limit of the
willingness to pay function P ∗(b) for a separate category of buyer types is analyzed. Let s+ be
the seller type for whom c(s+) = v(0)+c(0)

2 holds. In the first step it is shown that for buyer
types in [0, η] and seller type 0 equilibrium behavior exhibits Coasian dynamics. Namely, as
∆ → 0, the first offer of seller type 0 is close to the buyer’s demand c(0)+v(0)

2 . In the second
step buyer types in (η, bωs+ ] and seller types in (0, s+] are analyzed, and the last step covers
the remaining types. The difference between these two cases is that seller types below s+ have
positive expected profit from the lowest buyer type in the support of their beliefs when they
face limit willingness to pay function P ∗(b), while for seller types above s+, such profit is zero.

Step 1. The final statement in Lemma 3 implies that P ∗(b) = v(0)+c(0)
2 for b ∈ [0, η].

Step 2. The next lemma shows that if the limit function P ∗(b) is increasing at b̂, then it is
equal to the reservation price of the seller type sα

b̂
.51

Lemma 4. Suppose that for some b̂ ∈ (0, 1), P ∗(b̂) > c(sα
b̂
). Then there exists φ > 0 such that

P ∗(b) is constant for all b ∈ (b̂− φ, b̂+ φ).

Lemma 4 means that function P ∗(b) could be increasing at b only if buyer type b expects
the seller to make the first offer close to c(sαb ). In other words, function P ∗(b) could have jumps
only at points where P ∗(b) = c(sαb ). This implies that P ∗(b) = v(0)+c(0)

2 for b < bωs+ .
Step 3. It is more intricate to find the limit of the screening policy for seller types above

s+ for the following reason. For seller type s < s+, it can be shown that a positive mass of
buyer types in Bs has willingness to pay close to v(0)+c(0)

2 and so the profit from allocating to all
remaining buyer types at a price close to v(0)+c(0)

2 is positive. Suppose seller type s delays trade
at price v(0)+c(0)

2 to sell at a price exceeding v(0)+c(0)
2 . Such a delay should be sufficiently large

to guarantee that buyer type bωs buys in the first round of screening. Then for any ε > 0, it is
possible to construct an alternative screening policy that accelerates the trade at prices above

51An increasing function f(x) is increasing at point x if for all φ > 0, f(x+ φ) > f(x− φ).
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v(0)+c(0)
2 and loses at most ε on such trades. The advantage of such a policy is that it allows the

seller to allocate to all buyer types with the willingness to pay v(0)+c(0)
2 sooner. Since the profit

from such buyer types is strictly positive, for sufficiently small ε such an alternative screening
policy is preferred by the seller, giving a contradiction.

The reasoning above is not valid for seller types above s+. These seller types eventually
decrease their screening offers to a level close to their costs. Hence, they could have incentives
to spend a significant amount of time screening buyer types that will bring them positive profit.
The next lemma is key for establishing that the time seller types above s+ screen buyer types
is enough to keep P ∗(b) just above c(sαb ).

Lemma 5. The function P ∗(b) is continuous.

Together with Lemma 4, Lemma 5 implies that P ∗(b) = c(sαb ) for b ≥ bωs+ and completes the
proof of Theorem 8.

7 Conclusion

This paper studies implications of the correlation of values for trade dynamics and efficiency in
a standard bargaining model with alternating offers and an infinite horizon. The analysis of the
CSEs shows that models with independent values overlook an important source of inefficiency
due to common screening. This new source of inefficiency becomes predominant in environments
where there is a big gap between private and public information. Many secondary markets
are known for their opaqueness and, at the same time, sophistication of their participants.
This paper shows that for a wide range of individual uncertainty levels, bargaining in such
markets may feature two-sided screening dynamics which is a realistic description of the actual
negotiation process. I also show that there are equilibria in which common screening inefficiency
is eliminated shortly after bargaining begins. In segmentation equilibria, types self-select into
endogenous segments by their initial price offers. For small individual uncertainty, most of the
types in such equilibria trade immediately after the first offers, and only a small mass of types
located at the boundaries of segments continues bargaining. I characterize CSE limits in terms
of equilibria in smooth, monotone strategies of the concession game (for smooth limits), and
incentive compatibility and individual rationality constraints (double limits). Both of them are
intuitive and analytically tractable.

There are two assumptions that are important to the analysis in this paper. First is the
distribution of types and, specifically, the bounded support of beliefs. One might wonder in
particular what would happen if the buyer’s and seller’s types are distributed with a positive,
continuous density on the unit square with most of the density concentrated on the diagonal
stripe. The crucial difference lies in the conjectures supporting the equilibrium path. When
beliefs of players have full support, the optimistic beliefs of the buyer put probability one on
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the lowest seller type (s = 0) after the seller’s deviation. Then the initial correlation of values
is virtually erased off-the-equilibrium path. Even if beliefs of each buyer type are initially
concentrated on a very narrow range of seller types, after the deviation, because of the full-
support assumption, each buyer type puts probability one on the seller type that he initially
considered very unlikely. This is an undesirable feature of the model that studies the implications
of the correlation of values, and one might try to refine off-path beliefs by requiring that they
preserve the information about the correlation of types. The model in this paper is essentially
doing this by restricting the support of beliefs, and hence, preserving the correlation of types
even off-path.

In terms of the analysis, the construction of the punishing path is greatly simplified by
the full-support assumption, and it boils down to the Coase conjecture. Therefore, the CSE
equilibria can be constructed even without the bounded-support assumption. However, the
construction of the segmentation equilibria does not go through in the case of full support of
beliefs. An interesting topic for future research is whether under the full-support assumption it
is possible to construct equilibria that feature the separation by price offers and are efficient in
the limit of vanishing individual uncertainty.

The second important assumption of the model is that I allow for optimistic beliefs after
deviations. To motivate the restriction to particular equilibrium classes, Cramton (1984) and
Cho (1990) use certain monotonicity conditions to restrict the out-of-the-equilibrium-path beliefs
and in particular, to rule out optimistic beliefs. Their conditions seem less compelling in the
environment with heterogeneous beliefs. With heterogeneous beliefs, describing conjectures that
satisfy the monotonicity condition is a daunting task, as one must carefully specify beliefs for
every type of the punishing player. The task is much simpler with independent values, as all
types of player have the same beliefs about the opponent’s type. From this point, optimistic
conjectures are more intuitive than the conjectures satisfying certain monotonicity constraints.

Apart from the simplicity of optimistic beliefs, it is a priori unclear whether they will have
the same bite when the support of beliefs is restricted. In particular, simulations in the Online
Appendix reveal that for a fixed length of the bargaining rounds ∆, decreasing η leads to a
higher utility of seller types in the punishing equilibria exceeding the reservation utility. I show
an interesting robustness property of the optimistic beliefs. Optimistic beliefs are known to be
capable of supporting a great variety of outcomes when the support of beliefs is big (Rubinstein
(1985)). In this paper, even when optimism is restricted in such a way that players update their
beliefs only marginally, optimistic beliefs are still efficient in supporting equilibrium paths due to
the Contagious Coasian Property of the punishing equilibria. The techniques developed in this
paper may be useful in the analysis of other dynamic models with correlated types. In particular,
the analysis of punishing equilibria could be extended to a model with interdependent values.52

52By an interdependent-values environment I mean that the values of players are determined by an unobserved
fundamental, and players receive signals about the fundamental.
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Extending the equilibrium analysis in this paper to an interdependent-values environment is an
exciting topic for future research.

This paper provides a useful benchmark for future research by suggesting that to get sharper
predictions additional restrictions are required. A natural development of the model is to explore
the predictions of the model in the presence of outside options, as in Fuchs and Skrzypacz (2007),
or to endogenize the length of bargaining rounds and use an intuitive criterion style refinement,
as in Admati and Perry (1987) and Cramton (1992). Finally, similarly to Tsoy (2014) one can
apply the characterization of double limits of CSEs to study implications of bargaining delay
for efficiency and dynamics of labor markets and macroeconomic models.
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8 Appendix

In the Appendix, I present the proofs in the order of their appearance in the paper. I use
the following additional notation throughout the Appendix. Let Σ ≡ max

(s,b)∈SB
{v(b) − c(s)} be

maximal gains from trade possible in the game. I denote δ ≡ e−r∆ to be the players’ discount
factor and the frequent-offer limit (∆ → 0) corresponds to the limit of patient players δ → 1.
For any real a and b, denote a ∨ b ≡ max{a, b} and a ∧ b ≡ min{a, b}. To unify the notation,
whenever I refer to a sequence of equilibria, I reserve index j to indicate magnitudes arising in
the j’s equilibrium in the sequence. In particular, I use superscript j to denote functions in the
j’s equilibrium, and subscript j to denote variables that I introduce in the analysis of the j’s
equilibrium.53

8.1 Proofs for Section 3

8.1.1 Concession Game

Lemma 6. If s∗t is a monotone seller strategy, then uB(t, b) on TB ≡ {(t, b) : b ∈ [0, 1], t ∈ [0, t∗S(sωb )]}
satisfies the smooth strict single-crossing difference property in (−t, b).54,55

Proof of Lemma 6. Suppose that the acceptance strategy of the seller t∗S(s) (or alternatively
s∗t ) is monotone. Consider buyer types b < b′, times t < t′ ≤ t∗S(sωb ) ≤ t∗S(sωb′), and suppose a
type b buyer prefers to accept at time t rather than time t′. If s∗t′ < sαb , then the probability
that the buyer’s offer is accepted before time t′ is zero for both b and b′ and so buyer type b′

strictly prefers to accept at time t by the single-crossing property of e−rt(v(b) − qSt ). Suppose
that s∗t′ ≥ sαb . Let ϕ(b) = sωb −s

∗
t′∧s

ω
b

sω
b
−s∗t∨sαb

be the probability that a type b buyer assigns to the event
that the seller does not accept the buyer’s offer before time t′ conditional on the fact that she
has not accepted by time t. Notice that ϕ(b) < ϕ(b′). The following two claims prove the strict
single-crossing property of uB(t, b).

Claim 1. Suppose

v(b)−qSt ≥ (1−ϕ(b))

s∗
t′∧s

ω
bˆ

s∗t∨sαb

e−r(t∗S(s)−t) (v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb − s∗t ∨ sαb
+ϕ(b)e−r(t′−t)(v(b)−qSt′).

(21)

53For example, in the analysis of punishing equilibria, I consider a sequence of seller punishing equilibira as
δj → 1. In such a sequence, (P j(b), tjβ(s)) denote on-path equilibrium strategies in j’s punishing equilibrium, and
in the proof of the Contagious Coasian Property, I introduce types bj ,βj ,sj ,σj and quantities Kj , Lj , xKj , xLj .

54I only provide statements for the buyer, and symmetric statements are true for the seller.
55Observe that for any b, uB(t, b) is constant for t > t∗S(sωb ), as buyer type b expects that the seller accepts by

time t∗S(sωb ) with probability one. Hence, the restriction to set TB is necessary to guarantee strict inequalities in
the definition of the strict single crossing property.
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Then

v(b)−qSt > (1−ϕ(b′))

s∗
t′∧s

ω
b′ˆ

s∗t∨sαb′

e−r(t∗S(s)−t) (v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb′ − s∗t ∨ sαb′
+ϕ(b′)e−r(t′−t)(v(b)−qSt′).

(22)

Proof. Choose s̃ so that s̃−s∗t∨sαb
sω
b
−s∗t∨sαb

= s∗
t′∨s

α
b′−s

∗
t∨sαb′

sω
b′−s

∗
t∨sαb′

. Then I have the following sequence of
inequalities,

(1− ϕ(b))

s∗
t′∧s

ω
bˆ

s∗t∨sαb

e−r(t∗S(s)−t) (v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb − s∗t ∨ sαb
+ ϕ(b)e−r(t′−t)

(
v(b)− qSt′

)
≥

(1− ϕ(b′))
s̃ˆ

s∗t∨sαb

e−r(t∗S(s)−t) (v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb′ − s∗t ∨ sαb′
+ ϕ(b′)e−r(t′−t)

(
v(b)− qSt′

)
≥

(1− ϕ(b′))

s∗
t′∧s

ω
bˆ

s∗t∨sαb′

e−r(t∗S(s)−t) (v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb′ − s∗t ∨ sαb′
+ ϕ(b′)e−r(t′−t)

(
v(b)− qSt′

)
.

The first inequality follows from the ϕ(b′) > ϕ(b) and qBt∗S(s) ≤ q
B
t′ ≤ qSt′ for all t∗S(s) ≤ t′. To get

the second inequality, observe that by monotonicity of qBt and t∗S(s), for all s ≤ s′, t∗S(s) ≤ t∗S(s′)
and qBt∗S(s) ≤ qBt∗S(s′) and so, function e−rt

∗
S(s)

(
v(b)− qBt∗S(s)

)
is decreasing in s. Moreover, since

s∗t ∨ sαb < s∗t ∨ sαb′ and s̃ < s∗t′ ∨ sαb′ , the uniform distribution on [s∗t ∨ sαb′ , s∗t′ ∨ sαb′ ] first-order
stochastically dominates the uniform distribution on [s∗t ∨ sαb , s̃], and the inequality follows from
the definition of the first-order stochastic dominance. Q.E.D.

Since ϕ(b′) > 0 and v(b) is strictly increasing, by substituting b′ instead of b in (22), strict
inequality results and so type b′ strictly prefers to accept at time t. By an analogous argument,
I can make the following claim, which completes the proof of Lemma 6.

Claim 2. Suppose

v(b′)−qSt ≤ (1−ϕ(b′))

s∗
t′∧s

ω
b′ˆ

s∗t∨sαb′

e−r(t∗S(s)−t) (v(b′)− qBt∗S(s)

) ds

s∗t′ ∧ sωb′ − s∗t ∨ sαb′
+ϕ(b′)e−r(t′−t)(v(b′)−qSt′).

(23)

Then

44



v(b)−qSt < (1−ϕ(b))

s∗
t′∧s

ω
bˆ

s∗t∨sαb

e−r(t∗S(s)−t) (v(b)− qBt∗S(s)

) ds

s∗t′ ∧ sωb − s∗t ∨ sαb
+ϕ(b)e−r(t′−t)(v(b)−qSt′).

(24)

Claim 3. d
dtu

B(t, b) is decreasing in b on TB.

Proof. Differentiating uB(t, b) in t, results in the sign of the derivative being the same as the
sign of

(qSt − qBt ) ṡ∗t
sωb − s∗t

1 {sαb ≤ s∗t } − r
(
v(b)− qSt

)
+ q̇St .

The expression is decreasing in b on TB, which verifies the condition.

Lemma 7. If b∗t is a smooth monotone strategy in the concession game that satisfies (3) for
some smooth monotone strategy of the seller s∗t , then b∗t is a best-reply to s∗t .

Proof of Lemma 7. In the proof I verify conditions of Theorem 4.2 in Milgrom (2004). Lemma
6 verifies that uB(t, b) satisfies the smooth strict single-crossing difference condition. Function
uB(t, b) is continuously differentiable in t for fixed b by the definition of uB(t, b) and the fact that
s∗t is a smooth monotone strategy, and qBt and qSt are continuously differentiable. The envelope
condition uB(t∗1, 1)− uB(t∗b , b) =

´ 1
b

d
dbu

B(t∗b , b)db follows from condition (3).

Proof of Theorem 1. The discussion following Theorem 1 shows that conditions (3) and (4) are
necessary conditions of equilibria in smooth monotone strategies. Observe that by (1), eventually
all gains from trade are realized and so, b∗T = bαs∗t

. Moreover, if T < ∞ and qBT < qST , then the
type of player that accepts at time T can delay acceptance by a short period of time and still
have the opponent accept his/her offer. This will give him/her strict gain in the utility due to
qST > qBT which is a contradiction. Therefore, condition (2) is necessary.

Conversely, suppose b∗t and s∗t are given by equations (3) and (4), and the boundary condition
(2). Then b∗t and s∗t specify acceptance strategies for all types and, by Lemma 7, they are mutual
best replies and so constitute the equilibrium of the concession game.

8.1.2 Preliminary Results about CSEs

The following two examples clarify the difference between conditions 2 and 3 in Definition 4.
In both examples suppose that s∆

n = 0 for all n ∈ N and ∆ > 0 and so, s∗t = 0 for all t ≥ 0.
In the first example, suppose that for some T ′ > 0, b∆n = T ′−n∆

T ′ + n∆
T ′ ∆, for n ∈ N ∩

[
0, T ′∆

)
,

and b∆n = ∆e−(n∆−T ′), for n ∈ N ∩
[
T ′

∆ ,∞
)
. Then T∆ = ∞, but for all t ≥ T ′, b∆t → 0 as

∆→ 0 and so, T = T ′. Hence, condition 2 is not satisfied, however, b∆T∆
= b∗T = 0 and condition

3 holds. In the second example, suppose that b∆n = 1
2

(
1 + e−n∆

)
, for n ∈ N ∩

[
0,∆−2), and
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b∆n = 1
2

(
1 + e−∆−1

)
e−n∆+∆−2 , for n ∈ N ∩ [∆−2,∞). Then b∆T∆

= 0, but for all t ≥ 0,
b∆t → 1

2
(
1 + e−t

)
as ∆→ 0 and so b∗T = 1

2 . Hence, condition 3 is not satisfied, but T∆ = T =∞
and condition 2 holds.

In a CSE, denote by UBn (b) and USn (s) expected continuation utilities in round n of a type b
buyer and a type s seller, respectively, and by UBt (b) and USt (s) their extensions to a continuous
domain. For CSE strategies bn and sn, denote by nb ≡ inf{n : bn ≤ b} and ns ≡ inf{n : sn ≥ s}
rounds of acceptance of a type b buyer and a type s seller, respectively. The following lemma
is the counterpart of Lemma 6 for the bargaining game, and its proof replicates the proof of
Lemma 6.

Lemma 8. Suppose pBn and pSn are price paths as in the definition of the CSE. If sn satisfies
the skimming property, then UBn (b) on NB =

{
(n, b) : b ∈ [0, 1], n = 1, nsω

b

}
satisfies the strict

single crossing property in (n, b). Analogously, if bn is a monotone buyer strategy, then USn (s)
on NS =

{
(n, s) : s ∈ [0, 1], n = 1, nbαs

}
satisfies the strict single crossing property in (n,−s).

I next state the necessary conditions for the optimality of strategies bn and sn in the active
CSE that reflects the indifference of threshold types between accepting in the current round and
delaying acceptance until the next active round.

Lemma 9. Suppose (bn, sn, pBn , pSn) describe an active CSE. Then for all even n ≤ N̄ ,

v(bn)− pSn = δαSn

(
v(bn)− pBn+1

)
+ δ2

(
1− αSn

) (
v(bn)− pSn+2

)
(25)

where

αSn =


sn+1−max{sn−1,sαbn}
sω
bn
−max{sn−1,sαbn}

, if sαbn ≤ sn+1,

0, otherwise,
(26)

and for all odd n ≤ N̄ ,

pBn − c(sn) = δαBn

(
pSn+1 − c(sn)

)
+ δ2

(
1− αSn+2

) (
pBn+2 − c(sn)

)
(27)

where

αBn =


min{bn−1,bωsn}−bn+1
min{bn−1,bωsn}−bαsn

, if bωsn ≥ bn+1,

0, otherwise.
(28)

Proof. The left-hand side of equation (25) gives the utility of buyer type bn from accepting the
seller’s offer pSn . The right-hand side of equation (25) gives the utility of buyer type bn from
delaying acceptance until the next active round. Then in round n + 1, the seller accepts the
buyer price offer pBn+1 with probability αSn (according to the beliefs of buyer type bn) and with
complementary probability in round n + 2 buyer type bn accepts offer pSn+2. Notice that the
probability αSn is the probability of acceptance of the offer in the next round for the threshold
type of the buyer. Condition (27) is derived by analogous argument.
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The following result shows that necessary conditions (25) and (27) are also sufficient. Say
that a tuple (bn, sn, pBn , pSn) is a common screening strategy profile if it satisfies conditions of CSE
on-path strategies.

Lemma 10. Suppose a tuple (bn, sn, pBn , pSn) is a common screening strategy profile such that
after some N̄ ≤ ∞ no types remain in the game. If condition (25) holds for all rounds n ≤ N̄ ,
then bn is a best reply to sn. Symmetrically, if condition (27) holds for all rounds n ≤ N̄ , then
sn is a best-reply to bn.

Proof. Consider a buyer of type b who accepts in round nb ≤ N̄ and n ≤ N̄. By condition (25),
a buyer type bn is indifferent between accepting pSn and delaying the acceptance until n + 2.
By Lemma 8, all buyer types above bn strictly prefer to accept in round n rather than delay
acceptance until round n + 2, and all buyer types below bn strictly prefer to delay acceptance
until round n + 2 to accepting in round n. When n < nb, then bn > b and so a buyer of type
b prefers to accept in round n + 2 rather than in round n. When n > nb, then bn < b and so
a buyer of type b prefers to accept in round n rather than in round n+ 2. Therefore, nb is the
optimal acceptance time for a buyer of type b.

Proof of Lemma 1. Let p̄ be the supremum of equilibrium price offers accepted by the buyer and
p̄B be the supremum of equilibrium price offers made by the buyer. I show that p̄ ≤ v(1)+δc(1)

1+δ
and p̄B ≤ δp̄ + (1 − δ)c(1) ≤ δv(1)+c(1)

1+δ , which proves the first statement of the lemma. The
second statement of the lemma is a symmetric statement for the seller and is proven analogously.

Claim 4. p̄B ≤ δp̄+ (1− δ)c(1).

Proof. Suppose, by contradiction, that this is not the case. Then for any γ > 0 there is a
history such that some buyer type makes an offer higher than p̄B − γ/2. Consider a deviation
of this buyer type to p̄B − γ. Such a price offer is accepted by the seller with probability one
only if p̄B − γ − c(s) > max{δ(p̄− c(s)), δ2(p̄B − c(s))} for all s ∈ [0, 1]. This is indeed the case
whenever γ < min{1− δ2, p̄B − δp̄− (1− δ)c(1)} which is possible for small γ, as the right-hand
side of the inequality is positive. Given that price offer p̄B − γ is accepted, the buyer prefers to
deviate to price offer p̄B − γ rather than make price offer p̄B − γ/2, which is a contradiction.
Therefore, in equilibrium, the buyer never makes any offer higher than δp̄+ (1− δ)c(1). Q.E.D.

Claim 5. p̄ ≤ v(1)+δc(1)
1+δ

Proof. Suppose, by contradiction, that p̄ > v(1)+δc(1)
1+δ . Then for any γ > 0 there is a history

such that some seller type s makes a price offer p̃ ∈ (p̄− γ, p̄] that is accepted by some buyer of
type b. Consider a deviation by the buyer to a counter-offer pd. For such a deviation not to be
profitable it is necessary that pd−c(s) ≤ max{δ(p̄−c(s)), δ2(p̄B−c(s))} and δ(v(b)−pd) ≤ v(b)−p̃
for some s and b. If this were not the case, then all seller types would prefer to accept price offer pd
(by the first inequality), and all buyer types would prefer such a counter-offer to accepting p̃ (by
the second inequality). Then 1

δ (p̃−(1−δ)v(b))) ≤ c(s)+max{δ(p̄−c(s)), δ2(p̄B−c(s))} for some
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s and b, from which it follows that 1
δ (p̃−(1−δ)v(1))) ≤ max{δp̄+(1−δ)c(1), δ2p̄B+(1−δ2)c(1))}.

The maximum in the right-hand side is equal to δp̄+ (1− δ)c(1). Indeed, if it were not the case,
then p̄ < δp̄B + (1 − δ)c(1) ≤ δ(δp̄ + (1 − δ)c(1)) + (1 − δ)c(1) or p̄ < c(1), which contradicts
p̄ > v(1)+δc(1)

1+δ . Hence, p̃− (1− δ)v(1)) ≤ δ2p̄+ δ(1− δ)c(1) or p̃−δ2p̄
1−δ2 ≤ v(1)+δc(1)

1+δ . The left-hand
side is greater than p̄ − γ

1−δ2 > v(1)+δc(1)
1+δ − γ

1−δ2 . Since γ was chosen arbitrarily, this gives a
contradiction. Q.E.D.

8.1.3 Proof of Theorem 2. Necessity

Consider a sequence of active CSEs indexed by j → ∞ with a smooth limit and such that
∆j → 0 as j →∞. I show that the smooth limit satisfies conditions (2), (3) and (4) (and hence,
constitutes an equilibrium in the concession game by Theorem 1) and conditions (7) and (8).
The latter follow immediately from Lemma 1. Notice also that since pBn and pSn are monotone
by Definition 3, so are their limits qBt and qSt .

Claim 6. Condition (2) holds.

Proof. Suppose, by contradiction, that b∗T > bαs∗T
. By condition 3 in Definition 4, for any

ε ∈
(

0,
b∗T−b

α
s∗
T

3

)
and ∆j > 0 sufficiently small, bjT > b∗T − ε and bα

sjT
< bαs∗T

+ ε. Consider seller

type sjT and any time t. The continuation utility of seller sjT at time t from following equilibrium
strategy is bounded above by

min
{
bjt , b

ω
sjT

}
− bjT

min
{
bjt , b

ω
sjT

}
− bα

sjT

(
v(bjt )− c(s

j
T )
)
.

Since min{bjt , bωsjT
}− bα

sjT
≥ min{bjT − bαsjT

, η} > min{b∗T − bαs∗T − 2ε, η} > min{ε, η} > 0, the upper
bound converges to zero as t → ∞. An analogous upper bound (converging to zero as t → ∞)
can be derived for buyer type bjT . This is in contradiction with condition 4 of Definition 3, which
requires that over time price offers converge enough so that gains from trade can be realized
through the acceptance of one of the parties.

Now suppose T < ∞, but qST > qBT . By condition 2 of the Definition 4, for any ε > 0,
Tj < T + ε. By the continuity of qBt and qSt , for ε small enough, qSt − qBt >

qST−q
B
T

2 for all t ∈
[T−ε, T+ε] and so, for ∆j sufficiently small, pSjt > pBjt + qST−q

B
T

4 for all t ∈ [T−ε, T+ε]. Suppose
buyer type bjT−ε deviates by rejecting pSjT−ε and waiting for 2ε until the seller accepts some price
offer of the buyer. Type bjT−ε gets utility of at least mint∈[T−ε,T+ε] e

−2rε
(
v(bjT−ε)− p

Bj
t

)
. On

the other hand, from following the equilibrium strategy, type bjT−ε gets v(bjT−ε) − p
Sj
T−ε. For ε

small enough, such deviation is profitable, which is a contradiction. This proves condition (2).
Q.E.D.
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Claim 7. Conditions (3) and (8) hold.

Proof. For any t < T , let τt ≡ 2∆j

⌊
t

2∆j

⌋
. By Lemma 9, condition (25) holds for all even

n ≤ N̄ , which can be rewritten for any τt as follows:

v
(
bjτt

)
− pSjτt = e−r∆jαSjτt

(
v
(
bjτt

)
− pBjτt+∆j

)
+ e−2r∆j

(
1− αSjτt

) (
v
(
bjτt

)
− pSjτt+2∆j

)
.

Subtracting e−2r∆j

(
v
(
bjτt
)
− pSjτt

)
from both sides and dividing by 2∆j results in

1− e−2r∆j

2∆j

(
v
(
bjτt

)
− pSjτt

)
= e−r∆j

αSjτt
2∆j

(
v
(
bjτt

)
− pBjτt+∆j

)
−e−r∆j

(
v
(
bjτt

)
− pSjτt

)
+e−2r∆j

pSjτt − p
Sj
τt+2∆j

2∆j
.

Taking ∆j → 0 results is condition (3), where convergence is guaranteed by the definition of the
smooth limit and by the continuity of function v. The derivation of equation (4) for buyer price
offers is symmetric. Q.E.D.

8.1.4 Proof of Lemma 2

I reduce the problem of finding a CSE with price offers that are constant over time to a math-
ematical problem of finding a positive trajectory which satisfies a particular recursive system.
The following lemma is a key mathematical fact in the proof of Lemma 2.

Lemma 11. Consider b∞ ∈ (0, 1− η), s∞ = b∞ + η, PB, PS that satisfy

max
{
c (s∞) , v(0) + c(0)

2

}
< PB < PS < min

{
v (b∞) , v(1) + c(1)

2

}
. (29)

There exists δ̄ ∈ (0, 1) such that for all δ ∈ (δ̄, 1) there are positive trajectories xk and yk that
satisfy recursive system

xk+1 = (1− αB(yk+1))xk − αB(yk+1)yk+1,

yk+1 = (1− αS(xk))yk − αS(xk)xk,

b∞ + xk ≤ s∞ − yk + η;

(30)

where αB(y) ≡ (1−δ2)(PB−c(s∞−y))
δ(PS−c(s∞−y))−δ2(PB−c(s∞−y)) and αS(x) ≡ (1−δ2)(v(b∞+x)−PS)

δ(v(b∞+x)−PB)−δ2(v(b∞+x)−PS) . More-
over, for all k ∈ N,

max{xk−1 − xk, yk−1 − yk} < (1− δ)C, (31)

where C is a constant that does not depend on δ.

49



Proof of Lemma 11. Observe that if xk and yk are given for k ≥ k0, then by (30), I can construct
xk and yk for k < k0. The following claim shows that it is sufficient to construct xk and yk that
are positive starting from some k0.

Claim 8. If trajectories xk and yk satisfying (30) are positive starting from some k0, then xk

and yk are positive for all k ∈ N.

Proof. By rearranging terms in the first equation of (30), xk = xk+1+αB(yk+1)yk+1
1−αB(yk+1) . Observe

that αB(y) ∈ (0, 1) for y > 0 and so xk is positive whenever xk+1 and yk+1 are positive.
Analogously, it can be shown from the second equation of (30) that yk is positive whenever xk+1

and yk+1 are positive. Q.E.D.

Claim 9. For given xk0 and yk0, there is K(xk0 , yk0) such that k0 ≤ K(xk0 , yk0).

Proof. First, observe that xk and yk are decreasing whenever they are positive. Indeed, for
all k ∈ N, I have xk−1 − xk = αB(yk)(xk−1 + yk) > 0 and similarly, yk−1 − yk > 0. Next, from
(30), for all k ≤ k0,

xk−1 − xk = αB(yk)(xk−1 + yk) ≥ αB(yk0)(xk0 + yk0) > c1 (32)

for some c1 > 0 where I made use of the fact that αB(y) is increasing and xk and yk are decreasing
sequences. Suppose for any K ∈ N, I could construct sequences xk(K) and yk(K) such that
xK(K) = xk0 and yK(K) = yk0 . From (32), for K sufficiently large, b∞+x0(K) > s∞−y0(K)+η,
which contradicts (30). Q.E.D.

Let V B ≡ v(b∞) − PS , V S ≡ PB − c(s∞) and ∆P ≡ PS − PB. The following claim gives
rise to the Taylor expansion of αB(y) and αS(x).

Claim 10. There exists δ1 ∈ (0, 1) and ε1 > 0 such that for all δ ∈ (δ1, 1) and all x ∈ (0, ε1),y ∈
(0, ε1),

αB(y) ≡ αB − φB
∞∑
l=1

γBl y
l, (33)

αS(x) ≡ αS − φS
∞∑
l=1

γSl x
l, (34)

where

αB ≡
(1− δ2)V B

δ(∆P + (1− δ)V B) , γB ≡ −
1− δ

∆P + (1− δ)V B
< 0, φB ≡

(1 + δ)∆P
δ(∆P + (1− δ)V B) > 0,

αS ≡
(1− δ2)V S

δ(∆P + (1− δ)V S) , γS ≡ −
1− δ

∆P + (1− δ)V S
< 0, φS ≡

(1 + δ)∆P
δ(∆P + (1− δ)V S) > 0,

γBl ≡
l∑

j=1
γjB

 ∑
l1+···+lj=l

dl1c(s∞)/dsl1
l1! . . .

dljc(s∞)/dslj
lj !

 ,
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γSl ≡
l∑

z=1
γzS

 ∑
l1+···+lz=l

dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

 ,
and γSl ≤ |γSD|(1 + |γSD|)l−1, γBl ≤ |γBD|(1 + |γBD|)l−1.

Proof. As δ → 1, γS and γB converge to zero and so, for δ sufficiently close to one, |γS(v(1)−
v(0))| < 1 and |γB(c(1)− c(0))| < 1. Expanding αS(x) into the Taylor series, results in

αS(x) = αS − φS
∞∑
z=1

γzS(v(b∞ + x)− v(b∞))z.

Since v is a smooth function, expanding it into the Taylor series around b∞ results in v(b∞ +
x)−v(b∞) =

∞∑
l=1

dlv(b∞)
dbl

xl

l! . By the regularity of v, all derivatives dlv(b)/dbl
l! , l ∈ N are bounded by

D for some D > 1. Therefore, the Taylor expansion of v around b∞ is an absolute convergent
series, and by the Merten’s theorem the z’s power of it equals

(v(b∞ + x)− v(b∞))z =
∞∑
l=z

xl

 ∑
l1+···+lz=l

dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

 ,
and so,

αS(x) = αS − φS
∞∑
z=1

γzS

∞∑
l=z

xl

 ∑
l1+···+lz=l

dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

 . (35)

Observe that
∞∑
z=1

∣∣∣∣∣∣γzS
∞∑
l=z

xl
∑

l1+···+lz=l

dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

∣∣∣∣∣∣ ≤
∞∑
z=1
|γS |z

∞∑
l=z

xl
∑

l1+···+lz=l

∣∣∣∣∣dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

∣∣∣∣∣ ≤
∞∑
z=1
|γS |z

∞∑
l=z

xl
∑

l1+···+lz=l
Dz =

∞∑
z=1
|γS |zDz

∞∑
l=z

xl
(
l − 1
z − 1

)
=
∞∑
z=1

(|γS |Dx)z

(1− x)z <∞

where the first inequality follows from the triangle inequality, the second inequality follows from
the regularity of v and the fact that (l1 + . . .+ lz)! ≥ l1! · . . . · lz!, the first equality follows from

the fact that a number of compositions of l into exactly z parts is equal to
(
l − 1
z − 1

)
, the second

equality results by summing over l, and the resulting series is convergent for x sufficiently small
(so that x < (1 + |γS |D)−1). Therefore, the series in (35) is absolutely convergent, and by the
Fubini’s theorem, I could exchange the order of summation in (35) to get expression (33). I have
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the following upper bound on the absolute values of coefficients γSl

|γSl | ≤
l∑

z=1
|γS |z

 ∑
l1+···+lz=l

∣∣∣∣∣dl1v(b∞)/dbl1
l1! . . .

dlzv(b∞)/dblz
lz!

∣∣∣∣∣
 ≤ l∑

z=1
|γSD|z

(
l − 1
z − 1

)
= |γSD|(1+|γSD|)l−1

(36)
where the first inequality comes about via the triangle inequality, the second inequality follows
from the regularity of v, and the equality is obtained by algebraic manipulation. The derivation
of the corresponding expression for αS(y) is analogous. Q.E.D.

System (30) has steady states (z,−z), z ∈ R. By the specification of the problem I am
interested only in steady state (0, 0). Around this steady state the linearized system can be
written in the matrix form(

xk+1

yk+1

)
=
(

1− αB + αSαB −αB(1− αS)
−αS 1− αS

)(
xk

yk

)
.

The matrix has eigenvalues 1 and λ ≡ (1− αB)(1− αS). Since one of eigenvalues is equal to 1,
the steady state is unstable, and I cannot conclude that in the neighborhood of the steady state
the non-linear system will converge to the steady state. Therefore, I find a particular trajectory
that satisfies desired properties.

I conjecture that there exist µxi and µyi such that

(
xk

yk

)
=
∞∑
i=1

λik
(
λi/2µxi
µyi

)
, (37)

which is the required solution and for all i ∈ N,

|µxi | ≤ uδM i and |µyi | ≤ uδM
i (38)

for some positive M and uδ such that

M < 1 < 1
λ(1 + uδ(1 + max{|γS |, |γB|}D)) . (39)

Given the accuracy of this conjecture, I next derive expressions for coefficients µxi and µyi , and
then verify that for δ sufficiently close to one, upper bounds on absolute values of coefficients
will hold. Series (37) defining (xk, yk) are absolutely convergent, as they are dominated by the
absolutely convergent series uδ

∞∑
i=1

λikM i.
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Plugging the solution (37) into system (30), I get
∞∑
i=1

λik(µxi − µxi λi − αB(µxi + µyi λ
i/2)) = −φB

(
∞∑
l=1

γBl

( ∞∑
i=1

µyi λ
i(k+1)

)l)( ∞∑
i=1

λik(µxi + µyi λ
i/2)

)
,

∞∑
i=1

λik(µyi − µ
y
i λ

i − αS(µxi λi/2 + µyi )) = −φS

(
∞∑
l=1

γSl

( ∞∑
i=1

µxi λ
ik

)l)( ∞∑
i=1

λi(k+1/2)(µxi λi/2 + µyi )
)
.

(40)

Consider the first equation in system (40). By the Merten’s Theorem,
( ∞∑
i=1

µyi λ
i(k+1)

)l
=

∞∑
i=l

∑
i1+···+il=i

µyi1 · . . . · µ
y
il
λi(k+1) and

∞∑
l=1

γBl

( ∞∑
i=1

µyi λ
ik

)l
=
∞∑
l=1

γBl

∞∑
i=l

∑
i1+···+il=i

µyi1 · . . . · µ
y
il
λi(k+1). (41)

The series in (41) is absolutely convergent by

∞∑
l=1

∞∑
i=l

∣∣∣∣∣∣λi(k+1)γBl
∑

i1+···+il=i
µyi1 · . . . · µ

y
il

∣∣∣∣∣∣ ≤
∞∑
l=1

∞∑
i=l

λi(k+1)|γBl |
∑

i1+···+il=i

∣∣∣µyi1 · . . . · µyil ∣∣∣ ≤
∞∑
l=1

∞∑
i=l

λi(k+1)|γBl |
∑

i1+···+il=i
ulδM

i =
∞∑
l=1

∞∑
i=l

λi(k+1)|γBl |ulδM i

(
i− 1
l − 1

)
≤

|γBD|
∞∑
l=1

∞∑
i=l

λi(k+1)(1+|γBD|)l−1ulδM
i

(
i− 1
l − 1

)
= |γBD|

1 + |γBD|

∞∑
l=1

(1+|γBD|)lulδ

(
λk+1M

1− λk+1M

)l
≤

|γBD|
1 + |γBD|

∞∑
l=1

(1 + |γBD|)lulδ
(

λM

1− λM

)l
,

where the first inequality arises via the triangle inequality, the second inequality follows from
(38), the first equality arises from the fact that the number of compositions of i into exactly l

parts is
(
i− 1
l − 1

)
. The third inequality follows from (36), the forth inequality is by λk+1 < λ,

and the resulting series is convergent whenever uδ(1 + |γBD|) λM
1−λM < 1, which holds by (39).

Therefore, by Fubini’s Theorem, exchanging the order of summation in (41) results in

∞∑
l=1

γBl

( ∞∑
i=1

µyi λ
ik

)l
=
∞∑
i=1

λi(k+1)
i∑
l=1

∑
i1+···+il=i

γBl µ
y
i1
· . . . · µyil .
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By the absolute convergence of both series on the right-hand side of (40), the product on the
right-hand side is equal to the Cauchy product, and so I can rewrite system (40) as follows
∑∞
i=1 λ

ik

(
µxi − µxi λi − αB(µxi + µyi λ

i/2) + φB
i−1∑
j=1

(µxi−jλj/2 + µyi−jλ
i/2)

j∑
l=1

γBl
∑

j1+···+jl=j
µyj1 · . . . · µ

y
jl

)
= 0,

∑∞
i=1 λ

ik

(
µyi − µ

y
i λ

i − αS(µxi λi/2 + µyi ) + φS
i−1∑
j=1

(µxi−jλi/2 + µyi−jλ
j/2)

j∑
l=1

γSl
∑

j1+···+jl=j
µxj1 · . . . · µ

x
jl

)
= 0.

Setting all coefficient at λik equal to zero results in the system
µxi − µxi λi − αB(µxi λj/2 + µyi λ

i/2) = −φB
i−1∑
j=1

(
(µxi−jλj/2 + µyi−jλ

i/2)
j∑
l=1

γBl
∑

j1+···+jl=j
µyj1 · . . . · µ

y
jl

)
,

µyi − µ
y
i λ

i − αS(µxi λi/2 + µyi ) = −φS
i−1∑
j=1

(
(µxi−jλi/2 + µyi−jλ

j/2)
j∑
l=1

γSl
∑

j1+···+jl=j
µxj1 · . . . · µ

x
jl

)
.

Using notation Ai ≡
(

1− λi − αB −αBλi/2

−αSλi/2 1− λi − αS

)
, µi ≡

(
µxi
µyi

)
, and

ϕi =
(
ϕxi
ϕyi

)
≡


−φB

i−1∑
j=1

(
(µxi−jλj/2 + µyi−jλ

i/2)
j∑
l=1

γBl
∑

j1+···+jl=j
µyj1 · . . . · µ

y
jl

)

−φS
i−1∑
j=1

(
(µxi−jλi/2 + µyi−jλ

j/2)
j∑
l=1

γSl
∑

j1+···+jl=j
µxj1 · . . . · µ

x
jl

)
 , (42)

and I can write the system in matrix form as Aiµi = ϕi. Since det(Ai) = (1− λi)(λ− λi) > 0,
for i ≥ 2, matrix Ai is invertible, and I can solve for all µi (with the exception of i = 1)

µi = A−1
i ϕi. (43)

For i = 1, the equations are linearly dependent and the relation between µx1 and µy1 is given by

µx1 = µy1
αB
αS

(1− αS). (44)

Equations (43) and (44) give the desired expressions for µi through the parameters of the model.
The next claim verifies that bounds (38) and (39) indeed hold and so, my derivation is justified.

Claim 11. For M < 1, there exists δ̂ ∈ (0, 1) such that for any δ ∈ (δ̂, 1) there exist positive uδ
and µy1 such that (39) holds, and for µi defined by (43) and (44), bounds (38) hold.

Proof. The proof is by induction on i. Without loss of generality, I assume that

V S ≤ V B (45)

and so, αS ≤ αB, |γS | ≥ |γB|, φS ≥ φB. Let uδ ≡ u
2 min{|γS |, |γB|} where u = 1

2 min{V S , V B}.
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Let us first show that for our choice of uδ, 1 < 1
λ(1+uδ(1+max{|γS |,|γB |}D)) for δ sufficiently close

to one. To see this, observe that for δ sufficiently close to one, max{|γB|, |γS |}D < 1 and so,
1

λ(1+2uδ) <
1

λ(1+uδ(1+max{|γS |,|γB |}D)) . Therefore, it is sufficient to show that λ1/2(1 + 2uδ) < 1.
Then

λ1/2(1 + 2uδ) = ((1− αS)(1− αB))1/2 (1 + umin{|γS |, |γB|}) ≤ (1− αS)(1 + u|γS |).

Observe

(1− αS)(1 + u|γS |) =
(

1− (1− δ2)V S

δ(∆P + (1− δ)V S)

)(
1 + (1− δ)u

∆P + (1− δ)V S

)
,

and λ1/2(1 + 2uδ) < 1 is equivalent to

∆P + (1− δ)V S + u(1− δ) < δ(∆P + (1− δ)V S)(∆P + (1− δ)V S)
∆Pδ − (1− δ)V S

,

or

u < (1 + δ)V S ∆P + (1− δ)V S

∆Pδ − (1− δ)V S
. (46)

As δ → 1, the right-hand side of (46) converges to 2V S . Since u < V S , inequality (46) holds
and so (1− αS)(1 + u|γS |) < 1 for sufficiently large δ. Hence, I have proven that (39) holds.

To prove bounds (38), let µx1 and µy1 be defined as follows. If αB
αS

(1 − αS) ≤ 1, then let
µy1 = uδM and µx1 = µy1

αB(1−αs)
αS

≤ µy1, and otherwise let µx1 = uδM and µy1 = µx1
αS

αB(1−αS) ≤ µ
x
1 .

By the definition, |µx1 | and |µyi | are less than uδM , which proves the base of induction.
Suppose that the statement is true for all j < i. I show that |µxi | < uδM

i and |µyi | < uδM
i.

I can find closed-form solution to system (43),

|µxi | =
|(1− λi − αS)ϕxi + αBλ

i/2ϕyi |
(1− λi)(λ− λi) ≤ 4 max{1− λi, αS , αB} ·max{|ϕxi |, |ϕ

y
i |}

(1− λi)(λ− λi)

and the same upper bound holds for |µyi |. It is sufficient to show that 4 max{(1−λi),αS ,αB}·max{|ϕxi |,|ϕ
y
i |}

(1−λi)(λ−λi)uδM i <

1.
Notice that αS

1−λi <
αS

1−λ for i ≥ 2, and by l’Hospital rule lim
δ→1

αS
1−λ = lim

δ→1
αS

αS+αB−αSαB =
V S

V S+V B ≤ 1. Hence, for sufficiently large δ and all i ≥ 2, I have αS
1−λi < 1, and by an analogous

argument, αB
1−λi < 1. Therefore, 4 max{1−λi,αS ,αB}

1−λi < 5 for sufficiently large δ and it remains to
show that max{|ϕxi |,|ϕ

y
i |}

(λ−λi)uδM i < 1
5 for sufficiently large δ.

I next show that |ϕxi |
(λ−λi)uδM

< 1
5 (by the symmetric argument |ϕyi |

(λ−λi)uδM
< 1

5). From (42) it
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follows

|ϕxi |
φB
≤

i−1∑
j=1

λj/2
j∑
l=1
|γBl |

∑
j1+···+jl=j

|µxi−jµ
y
j1
· . . . ·µyjl |+λ

i/2
i−1∑
j=1

j∑
l=1
|γBl |

∑
j1+···+jl=j

|µyi−jµ
y
j1
· . . . ·µyjl | ≤

i−1∑
j=1

λj/2
j∑
l=1
|γBl |

∑
j1+···+jl=j

ul+1
δ M i + λi/2

i−1∑
j=1

j∑
l=1
|γBl |

∑
j1+···+jl=j

ul+1
δ M i ≤

2uδM i
i−1∑
j=1

λj/2
j∑
l=1
|γBl |ulδ

(
j − 1
l − 1

)
≤

2uδM i|γBD|
i−1∑
j=1

λj/2
j∑
l=1

ulδ(1 + |γBD|)l−1
(
j − 1
l − 1

)
≤

2uδM i|γBD|
i−1∑
j=1

λj/2uδ (1 + uδ(1 + |γBD|))j−1 ≤

2uδM i|γBD|
i−1∑
j=1

λj/2uδ(1 + 2uδ)j−1 =

2uδM i|γBD|
uδλ

1/2(1− λ(i−1)/2(1 + 2uδ)i−1)
1− λ1/2(1 + 2uδ))

,

where the first inequality is due to the triangle inequality, the second inequality arises via the
inductive hypothesis, the third inequality makes use of the fact that the number of compositions

of j into exactly l parts is
(
j − 1
l − 1

)
and that λj > λi for j < i, the forth inequality uses a bound

on |γBl |, the fifth inequality exists by summing over l, the sixth inequality is by |γBD| < 1 for
sufficiently large δ, the equality is the summation over j. It remains to show that

2φB|γBD|
uδλ

1/2(1− λ(i−1)/2(1 + 2uδ)i−1)
(λ− λi)(1− λ1/2(1 + 2uδ))

<
1
5 . (47)

Since the denominator in (47) is positive, (47) is equivalent to

λ− λi − 10φB|γBD|
uδλ

1/2(1− λ(i−1)/2(1 + 2uδ)i−1)
1− λ1/2(1 + 2uδ)

> 0. (48)

The derivative of (48) with respect to i is equal to

λi/2
(
− ln(λ)λi/2 + 10 ln(λ1/2(1 + 2uδ))φB|γBD|

uδ(1 + 2uδ)i−1

1− λ1/2(1 + 2uδ)

)
.

Multiplication by λi/2 does not affect the sign of the derivative so I focus on the term in brackets.
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The positive (first) term in brackets is decreasing in absolute value, while the negative (second)
term is increasing in absolute value. Therefore, the minimum of expression (48) is either attained
at i = 2 or i→∞. For i = 2, (48) is equal to

λ− λ2 − 10φB|γBD|uδλ1/2 > 0, (49)

whenever uδ < λ1/2(1−λ)
10φB |γBD| . By (45), λ1/2(1−λ)

10φB |γBD| = λ1/2(1−(1−αB)(1−αS))
10φB |γBD| ≤ λ1/2(1−(1−αB)2)

10φB |γBD| ≤
αB

φB |γB | → V B. Since uδ converges to zero as δ → 1, inequality (49) holds for δ close to one.
For i =∞, (48) is equal to

λ

(
1− 10DφB|γB|

λ1/2
uδ

1− λ1/2(1 + 2uδ)

)
. (50)

Observe that lim
δ→1

uδ
1−λ1/2(1+2uδ)

= u
V S+V B−2u . Since |γB| → 0, λ → 1, φB → 2 as δ → 1, I have

that (50) is positive for sufficiently large δ. Q.E.D.
So far I have constructed the candidate trajectories (xk, yk) given by (37). First, notice that

by making k sufficiently large the solution approaches zero and so, the Taylor expansion in Claim
10 is justified. Second, observe that xk =

∞∑
i=1

λikλi/2µxi = λk+1/2
(
µx1 +

∞∑
i=2

λ(i−1)kλi/2µxi

)
, and

for sufficiently large k , the sign of xk is determined by µx1 which I can choose to be positive.
Analogously, since µy1 has the same sign as µx1 (by the definition), yk is positive for sufficiently
large k. By Claim 8, the constructed trajectory (xk, yk) is positive.

To show that I can bound the change in xk and yk by a term of order 1− δ, observe that

xk−1 − xk = αB(yk)(xk−1 + yk) ≤ 2
(
αB − φB

∞∑
z=1

γzB(c(s∞)− c(s∞ − yk))z
)
≤

2
(
αB −

φB|γB|Σ
1− |γB|Σ

)
∼ 1− δ,

and so there exists C such that xk−1 − xk < (1− δ)C for all k ∈ N. The analogous bound holds
for yk−1 − yk.

Lemma 12. Consider b0 ∈ (0, 1 − η], s0 ∈ [b0 − η, b0 + η) ∩ [η, 1),PB,PS that satisfy (9).
There exist δ̄ ∈ (0, 1), b∞ ∈ (bαs0 , b0), s∞ = b∞ + η such that for all δ ∈ (δ̄, 1) there are positive
trajectories xk and yk that satisfy recursive system (30). Moreover, for all k ∈ N, (31) holds for
some constant C that does not depend on δ.

Proof. Fix any b∞ ∈ (bαs0 , b0) and s∞ = b∞ + η. By Lemma 11, I can construct positive
trajectories xk and yk that satisfy (30) and(31). Then construct sequences b̂n and ŝn by defining
b̂2k−1 = b̂2k−2 = b∞ + xk−1 and ŝ2k = ŝ2k−1 = s∞ − yk for k ∈ N and letting ŝ0 = b̂0 − η. There
exist minimal kB and kS such that b̂2kB < b0 and ŝ2kS−1 > s0. I define bn and sn as subsequences
of b̂n and ŝn starting from n0 = 2 max{kB, kS}. Observe that by the construction of xk and
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yk in (37),(43) and (44), any xk and yk are continuous in b∞ and s∞. Moreover, for b∞ = b0,
I have that n0 = 2kB, b0 − b1 = 0, s1 − s0 = 2η, and at the other extreme, for b∞ = s0 − η,
n0 = 2kS ,b0 − b1 = 2η, s1 − s0 = 0. By continuity, there exists b∞ (and correspondingly,
s∞ = b∞ + η) such that for corresponding bn and sn constructed as described above, I have
max{|b0 − b1|, |s1 − s0|} < (1 − δ)C. For all n ≥ 1, max{|bn−1 − bn|, |sn − sn−1|} < (1 − δ)C
follows from the corresponding inequality for xk and yk.

Proof of Lemma 2. By Lemma 12, I can construct sequences of threshold types bn and sn so
that corresponding sequences xk and yk defined by xk = b2k− b∞ and yk = s∞−s2k−1 for k ∈ N
satisfy (30). Since (xk, yk) is a positive trajectory and αB(y) > 0 whenever y > 0, from (30) it
follows that xk+1−xk = −αB(yk+1)(xk+yk+1) < 0 for all n ∈ N, and analogously, yk+1−yk < 0.
Hence, bn and sn are monotone sequences. Since (xk, yk) converges to (0, 0), the limits of bn and
sn are b∞ and s∞, respectively.

The form of functions αB(x) and αS(y) guarantees that equations (25) and (27) hold. Hence,
threshold types are indifferent between accepting an opponent’s offer in the current round and
rejecting it (and accepting in the following round). By Lemma 10, this is sufficient for the
optimality of acceptance strategies given by thresholds bn and sn. Moreover, recursive system
(30) guarantees that the probability that threshold types assign to their offer being accepted
in the next round is derived from the acceptance policy of the opponent. This completes the
construction of the equilibrium strategies on the equilibrium path.

All deviations from acceptance strategies bn and sn are ignored. To deter deviations from
offers PB and PS specify that after deviations from price offers PB and PS , players switch to
the punishing equilibrium of the deviator. By Theorem 8, in such an equilibrium the expected
utility of the deviator is uniformly (over all types of the deviator) close to the reservation utility
as δ converges to one. On the other hand, by following the equilibrium strategy any seller type
s ≤ sωb0 gets at least PB−c(s), and any buyer type b ≥ bαs0 gets at least v(b)−PS . These utilities
are bounded away from the reservation utility by (9). This proves that the constructed thresholds
constitute a required continuation CSE whenever recursion (30) has a positive solution.

8.1.5 Proof of Theorem 2. Sufficiency

Consider a tuple (b∗t , s∗t , qBt , qSt , T ) as in the sufficiency part of Theorem 2. For any ε̃ > 0, choose
t̃ ∈ R+ such that b∗

t̃
< b∗T + ε̃ and s∗

t̃
> s∗T − ε̃. Since b∗∞ ∈ (0, 1) and s∗∞ ∈ (0, 1), b∗T = s∗T − η

by (2). Therefore, I can choose t̃ sufficiently large so that

0 < b∗t̃ < 1− η, η < s∗t̃ < 1, and s∗t̃ ∈ [b∗t̃ − η, b
∗
t̃ + η). (51)

By the strict versions of (7) and (8), I have qS0 < v(1)+c(1)
2 and qB0 > v(0)+c(0)

2 and so, by the
monotonicity of qBt and qSt ,
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v(0) + c(0)
2 < qBt ≤ qSt <

v(1) + c(1)
2 , (52)

for all t ∈ [0, T ]. For any time t, let N j
t ≡

⌊
t

∆j

⌋
. There are three cases to consider: 1) T = ∞

and qST > qBT , 2) T <∞ and qST = qBT , 3) T =∞ and qST = qBT .

Case 1) T =∞ and qS
T > qB

T. CSEs that I construct to approximate (b∗t , s∗t , qBt , qSt ) are in
grim-trigger strategies. Players start the game by following the main path and continue following
it so long as there were no detectable deviations in the past. If one of the sides detects deviation
from the main path, then the play switches to the punishing path of the deviator.

Construction of the main path (bjn, sjn, pBjn , pSjn ). Strategies on the main path are
constructed separately for times before and after t̃. Since c(s∗T ) < qBT < qST < v(b∗T ), I
can choose ε̃ small enough and t̃ large enough so that v(b∗T − ε̃) > v(b∗T ) − ε̃` > qS

t̃
and

c(s∗T + ε̃) < c(s∗T ) + ε̃` < qB
t̃

where I use the Lipschitz continuity of v(b) and c(s) in the
inequalities. Combining this with (52) leads to

min
{
c(s∗T + ε̃), v(0) + c(0)

2

}
< qBt̃ < qSt̃ < min

{
v(b∗T − ε̃),

v(1) + c(1)
2

}
. (53)

Let b
Nj

t̃

≡ b∗
t̃
, s

Nj

t̃

≡ s∗
t̃
. By (51) and (53), conditions of Lemma 2 are satisfied and so for

∆j sufficiently small, there exists a continuation CSE for n > N j
t̃

such that price paths are

constant, pSjn = qS
t̃

and pBjn = qB
t̃

, and max
{
bj
Nj

t̃

− bj
Nj

t̃
+2
, sj
Nj

t̃
+2
− sj

Nj

t̃

}
< C∆j for some C > 0

independent of ∆j .
For n ≤ N j

t̃
−1, construct sequences bjn, sjn, pSjn , pBjn as follows. For any integer n ≤ N j

t̃
−1, I

define bjn = b∗n∆j
for even n and bjn = bjn−1 for odd n. Analogously, for any integer n ≤ N j

t̃
− 1, I

define sjn = s∗n∆j
for odd n and sjn = sjn−1 for even n. For any integer n ≤ N j

t̃
−1, I define αSjn and

αBjn by (26) and (28). Given bjn, s
j
n, α

Bj
n , αSjn , I construct price paths pBjn and pSjn starting from

round N j
t̃
− 1 and proceeding backwards in time so that equations (25) and (27) are satisfied.

Convergence. Since b∗t is continuously differentiable, function b∗t is Lipschitz continuous
with some modulus `1 on [0, t̃], and without loss of generality, let C < `1. Hence, the extension bjt
of bjn to continuous domain is Lipschitz-continuous with the same modulus `1 on [0, t̃]. Therefore,
bjt converges to b∗t uniformly on [0, t̃] as ∆j → 0. Analogously, extension sjt of sjn to a continuous
domain converges uniformly to s∗t on [0, t̃].

Writing equation (25) with n = N j
t , subtracting from both sides e−2r∆j

(
v

(
bj
Nj
t

)
− pSj

Nj
t

)

59



and dividing by 2∆j , I get

1− e−2r∆j

2∆j

(
v

(
bj
Nj
t

)
− pSj

Nj
t

)
= e−r∆j

αSj
Nj
t

2∆j

(
(1− e−r∆j )v

(
bj
Nj
t

)
− pBj

Nj
t +1

+ e−r∆jpSj
Nj
t +2

)
+e−2r∆j

pSj
Nj
t

− pSj
Nj
t +2

2∆j
.

(54)
Observe that for n ≤ N j

t̃
− 1,

αSjn = max

s
j
n+1 −max{sjn−1, s

α
bjn
}

sω
bjn
−max{s∆

n−1, s
α
bjn
}
, 0

 ≤ 2∆j`1
ε̃

, (55)

and the same upper bound holds for αBjn . Therefore, by (54) for all ∆j function pSjt is Lipschitz
continuous with a common (for all ∆j) modulus of continuity, and hence, over a subsequence
pSjn converges uniformly on [0, t̃] to a Lipschitz continuous function q̃St with the same modulus of
continuity. Taking the limit of (54) I get that q̃St satisfies equation (4). By the Picard-Lindelöf
theorem the limit q̃St coincides with qSt . Therefore, pSjt converges uniformly to qSt on [0, t̃], and
by an analogous argument, pBjt converges uniformly on [0, t̃] to qBt .

Claim 12. For T̂ =∞, there exists ∆ > 0 such that for all ∆j < ∆, pBjn and pSjn are monotone
for n ≤ N j

t̃
.

Proof. Observe that unless t̃ > T̂ , in which case price paths are constant, qSt is strictly
decreasing on [0, t̃]. By the continuous differentiability of qSt there exists γ̃ > 0 such that

q̇St < −γ̃ on [0, t̃]. By the uniform convergence of bjt , s
j
t ,p

Bj
t ,pSjt , (54) implies that

pSj
N
j
t

−pSj
N
j
t

+2

2∆j

converges uniformly to q̇St and so pSn is decreasing for sufficiently small ∆j . Analogously, pBn is
increasing for sufficiently small ∆j . Q.E.D.

Notice that Tj = T = ∞ for any CSE constructed. By the definition of t̃, b∗
t̃
→ b∗T and

s∗
t̃
→ s∗T as t̃→ T . Therefore taking ε̃ to zero, and correspondingly t̃ to T results in the desired

sequence of approximating CSEs with the smooth limit (b∗t , s∗t , qBt , qSt ).

Construction of the punishing path. After deviations from the price paths of the main
path, players switch to the deviator’s punishing equilibrium described in Section 6. If a player
deviates from the acceptance strategy, then the deviating side accepts in the next round and
the other side ignores such deviation irrespective of whether it detects it or not. The next claim
shows that such punishing paths deter deviations from the main path for sufficiently small ∆j .

Claim 13. For ∆j sufficiently small, there are no profitable deviations from the main path.

There is a difference in the analysis of the incentives to deviate from the main path of buyer
types below and above b∗T − ε̃. On the one hand, buyer types below b∗T − ε̃ expect that with
probability one, one of the buyer’s offers will be accepted by time t̃. Therefore, the strategies
specified after time t̃ do not affect their incentives to deviate. On the other hand, buyer types
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above b∗T − ε̃ could remain in the game after time t̃ and so, their incentives to deviate could be
affected in the manner we specified the main path for t > t̃. The following two claims ensure
that both groups of types do not have incentives to deviate.

Claim 14. There exists ˆ̀ such that for any ∆j, UBjt (b) and UBt (b) are Lipschitz continuous in
both arguments with modulus ˆ̀. Moreover, for any ε > 0,

max
t∈[0,t̃],b∈[0,b∗T−ε̃]

|UBjt (b)− UBt (b)| < ε

for sufficiently small ∆j.

Proof. Let njb be the round during which buyer type b accepts the seller’s offer if he follows
the strategy b∆n . Consider two buyer types b and b′. Observe that

UBjt (b) = E[e−r(∆jN−t)(v(b)− p)|s ∈ Sb ∩ Sb′ , s ≥ sjt , n
j
b]
|Sb ∩ Sb′ ∩ [sjt , 1]|
|Sb ∩ [sjt , 1]|

+

E[e−r(∆jN−t)(v(b)− p)|s ∈ Sb\Sb′ , s ≥ sjt , n
j
b]
|(Sb\Sb′) ∩ [sjt , 1]|
|Sb ∩ [sjt , 1]|

≥

E[e−r(∆jN−t)(v(b)− p)|s ∈ Sb ∩ Sb′ , s ≥ sjt , n
j
b′ ]
|Sb ∩ Sb′ ∩ [sjt , 1]|
|Sb ∩ [sjt , 1]|

+

E[e−r(∆jN−t)(v(b)− p)|s ∈ Sb\Sb′ , s ≥ sjt , n
j
b′ ]
|(Sb\Sb′) ∩ [sjt , 1]|
|Sb ∩ [sjt , 1]|

=

UBjt (b′) + E[e−r(∆jN−t)(v(b)− v(b′))|s ∈ Sb ∩ Sb′ , s ≥ sjt , n
j
b′ ]
|Sb ∩ Sb′ ∩ [sjt , 1]|
|Sb′ ∩ [sjt , 1]|

−

E[e−r(∆jN−t)(v(b′)− p)|s ∈ Sb′\Sb, s ≥ sjt , n
j
b′ ]
|Sb′\Sb ∩ [sjt , 1]|
|Sb′ ∩ [sjt , 1]|

+

E[e−r(∆jN−t)(v(b)− p)|s ∈ Sb\Sb′ , s ≥ sjt , n
j
b′ ]
|Sb\Sb′ ∩ [sjt , 1]|
|Sb ∩ [sjt , 1]|

≥

UBjt (b′)− `|b− b′| − Σ|b− b′|,

where the equalities exist by application of the law of total expectation to UBjt (b) and UBjt (b′),
the first inequality arises from the fact that buyer type b prefers to accept in round njb rather
than in round njb′ , and the second inequality comes about by the Lipschitz continuity of v(b)
and the upper bound on the size of the surplus. Therefore, UBjt (b) is Lipschitz continuous in b

with modulus `+ Σ.
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Now for fixed b consider even integers n < n′ < njb. I have

UBjn (b) =
n′/2−1∑

m=n/2+1
e−r∆j(2m+1−n) sj2m+1 − s

j
2m−1

sωb −max{sαb , s
j
n}

(
v(b)− pBj2m

)
+e−r∆j(n′−n) s

ω
b −max{sαb , s

j
n′}

sωb −max{sαb , s
j
n}
UBjn′ (b).

(56)
Notice that

0 < 1−e−r∆j(n′−n) s
ω
b −max{sαb , s

j
n′}

sωb −max{sαb , s
j
n}
≤ 1−(1−r∆j(n′−n))

(
1−

max{sαb , s
j
n′} −max{sαb , sjn}

sωb −max{sαb , s
j
n}

)
=

r∆j(n′ − n) + (1− r∆j(n′ − n))
sjn′ − sjn

sωb −max{sαb , s
j
n}
≤ r∆j(n′ − n) + 2∆j(n′ − n)`1

ε̃
. (57)

By (55) and (57), (56) implies

|UBjn (b)− UBjn′ (b)| ≤ Σ
(4∆j(n′ − n)`1

ε̃
+ r∆j(n′ − n)

)
≡ ∆j(n′ − n)`2. (58)

Since function UBjt (b) is piecewise linear and, by inequality (58) its slope does not exceed `2,
UBjt (b) is Lipschitz continuous in t with modulus `2. Hence, UBjt (b) is Lipschitz continuous in
both arguments with modulus ˆ̀≡ `+ Σ + `2. The proof of the Lipschitz continuity of UBt (b) is
analogous.

The sequence of functions UBjt (b) are Lipschitz continuous for all j with common modulus
ˆ̀. Hence, they converge uniformly to some limit that is Lipschitz continuous with the same
modulus ˆ̀. Moreover, UBjNt (b) converges pointwise to UBt (b) for b ∈ [0, b∗T − ε̃] by construction by
the dominated convergence theorem. Hence, UBjt (b) converges uniformly to UBt (b) on t ∈ [0, t̃]
and b ∈ [0, b∗T − ε̃]. Q.E.D.

Claim 15. There exists ∆ > 0 and u > 0 such that for all ∆j < ∆,

min
t∈[0,t̃],b∈(b∗T−ε̃,1]

UBjt (b)−max
{
v(b)− v(1) + c(1)

2 , 0
}
> u.

Proof. The buyer could accept pSjn in any even round n. Moreover, the buyer could accept
seller offer qS

t̃
in round N j

t̃
. Therefore,

UBjn (b) ≥ max{v(b)− pSjn , e−rt̃(v(b)− qSt̃ )}.

Denote u1 ≡ e−rt̃(v(b∗T−ε̃)−qSt̃ ), and u1 > 0 by (53). For any b > b∗T−ε̃, e−rt̃(v(b)−qS
t̃

) ≥ u1 > 0.
I next show that for u2 ≡ 1

4(v(1)+c(1)
2 − qS0 ) > 0 (by (52)), we have pSjn < v(1)+c(1)

2 − u2 for
∆j sufficiently small. By the convergence of pBjt to qBt on [0, t̃], there exists ∆ > 0 such that for
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all ∆j < ∆, pSj0 < qS0 + u2, and so pSjn ≤ pSj0 < v(1)+c(1)
2 − u2. I complete the proof by taking

u ≡ min{u1, u2} > 0. Q.E.D.
Proof of Claim 13. By Claim 14, continuation utilities of buyer types in [0, b∗T − ε̃] from

following the main path converge uniformly (in type and time) to UBt (b). By the strict version
of inequality (7), there exists ε > 0 such that UBt (b) > max

{
v(b)− v(1)+c(1)

2 , 0
}

+ ε for all b and
t ∈ [0, t̃]. By Claim 15, continuation utilities of buyer types in (b∗T − ε̃, 1] from following the
main path are greater than max

{
v(b)− v(1)+c(1)

2 , 0
}

by at least u > 0, for sufficiently small ∆.
If the buyer detected that the seller deviated from the acceptance path, then his continuation
utility in even round n is e−r∆(v(b)− pBn+1) ≥ e−r∆(v(b)− pBT ) > max

{
0, v(b)− v(1)+c(1)

2

}
+ ε,

for sufficiently small ∆.
By Theorem 6, for any ε > 0, the continuation utility of any type of punished player is

at most ε away from the reservation utility max
{
v(b)− v(1)+c(1)

2 , 0
}

, for sufficiently small ∆j .
Therefore, deviations from the price paths constructed are not profitable for buyer types. By
Claim 12, the constructed price paths are monotone and so deviations from the acceptance
strategies are not optimal according to Lemma 10. The proof for the seller is symmetric.

Q.E.D.

Case 2) T <∞ and qS
T = qB

T. Let t̃ = T, ε̃ = 0, and the construction of the main path
for case 1 is repeated with the difference that after time T trade stops and there are no types
remaining. By the argument analogous to case 1, it can be verified that the constructed main
path can be supported by the punishing path and that the strategies describing the main path
converge almost everywhere to the corresponding limits on [0, T ]. Moreover, for all ∆j , Tj = T ,
and bT = b∗T , sT = s∗T which completes the analysis of case 2.

Case 3) T =∞ and qS
T = qB

T. I first construct the following approximation of (b∗t , s∗t , qBt , qSt ).
For any t̃ ∈ R+, let b̂t = b∗t − t

t̃

(
b∗
t̃
− b∗∞

)
and ŝt = s∗t + t

t̃

(
s∗∞ − s∗t̃

)
and construct price offers

q̂St and q̂Bt satisfying (3), (4) and q̂Bt = q̂St = qBT = qST . I can proceed as in case 2 to construct
an approximating sequence of CSEs of the limit (b̂t, ŝt, q̂Bt , q̂St , t̃). By construction, as t̃ → ∞,
b̂t and ŝt converge uniformly to b∗t and s∗t , respectively, as well as their derivatives converging
uniformly to the corresponding derivatives of b∗t and s∗t . By Theorem 1.1 of Freidlin and Wentzell
(1984) price offers q̂St and q̂Bt converge to qSt and qBt , respectively. Moreover, Tj = t̃ converges
to T =∞, and b̂∞ = b̂t̃ = b∗∞ and ŝ∞ = ŝt̃ = s∗∞.

8.2 Proofs for Section 4

Proof of Theorem 3. I first construct price offers of the seller. Let qBZ = qSZ . By Lemma 2, for
sufficiently small ∆, there exists a CSE with constant offers on the equilibrium path qBZ−1 and
qSZ , and acceptance strategies bZ−1

n and sZ−1
n such that bZ−1

∞ = bZ−1 and sZ−1
∞ = sZ−1. For all
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z = 1, . . . , Z − 2, let ŝz ≡ bz − η and qSz be such that

qSz − c(ŝz) = δ(qBz − c(ŝz)). (59)

Now, equilibrium strategies are described as follows. In the first round, for z = 2, . . . , Z − 1
seller types in [ŝz−1, ŝz] make offer qSz . In the second round, buyer types in [b̂0, b̂1] reject offer
qS2 , types in [b̂z−1, b̂z], z = 2, . . . , Z− 1 accept qSz and make counter-offer qBz to qSz+1, buyer types
in [b̂Z−1, b̂Z ] accept qSZ . After the first two rounds, the remaining types play a corresponding
continuation CSE with all subsequent price offers of players equal to their initial price offers.
By Lemma 2, I construct a CSE with constant offers on the equilibrium path qBz−1 and qSz ,
and acceptance strategies szn and bzn such that bz∞ = bz and sz∞ = sz. Denote b̂0 = ŝ1 = 0,
b̂Z−1 = ŝZ−1 = 1, and b̂z = bz2 for z = 1, . . . , Z − 1. After any deviation from offers in QBz and
QSz players switch to the punishing equilibrium of the deviator. If the seller deviates to a higher
price in QSZ , then such price is rejected by all remaining buyer types. If the seller deviates to a
lower price in QSZ , then such price is accepted by all remaining buyer types. If the seller deviated
from offering the prescribed equilibrium price to some other offer in QSZ or deviated from the
acceptance strategy in the past, then in subsequent rounds, she returns to following equilibrium
price offer and acceptance strategy. The buyer strategy after deviations to prices in QBZ and the
acceptance strategy is defined analogously.

Observe that if a seller type ŝz, z = 2, . . . , Z − 1 makes a lower offer qSz , then it is accepted
with probability one. Indeed, since bz − bz−1 > 4η, ŝz = bz − η and b̂z−1 < bz−1 + 2η, we have
b̂z−1 < ŝz − η and so, all buyer types in Bŝz accept offer qSz . By (59), seller type ŝz is indifferent
between offering qSz that is accepted for sure and offering qSz+1 that is rejected for sure and
accepting the buyer’s offer qBz . By the single-crossing property of the payoffs, seller types above
ŝz strictly prefer the acceptance of offer qSz by the buyer in two rounds, and seller type below ŝz

strictly prefer the acceptance of qSz in the next round. By the choice of qSz and qBz and Theorem
6, no player prefers to deviate from the equilibrium price offers to offers outside QSZ and QBZ for
∆ sufficiently small.

The seller does not have incentives to deviate to other offers in QSZ for sufficiently small ∆.
Indeed, suppose that the seller type s makes offer qSz in the first round. A deviation to a lower
offer in QSZ is worse than accepting the buyer price offer for sufficiently small ∆. A deviation to
a higher offer in QSZ in one round will not lead to a positive profit. The buyer expects that the
seller will decrease price after the round with the deviation, and hence, for sufficiently small ∆,
such offer will be rejected by the buyer.

After the first two rounds the game continues only if offers qSz and qBz−1 were made for some
z = 2, . . . , Z. Then only buyer types are below b̂z and seller types above ŝz−1 remain in the
game. Such types are playing a continuation CSE constructed by Lemma 2 with offers qSz and
qBz−1. Therefore, the probability that the game continues for longer than three rounds is at
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most 4η2(Z−1)
η(2−η) . At the same time, continuation CSEs constructed by Lemma 2 have no almost

sure upper bound on the equilibrium delay and so, there is no almost sure upper bound on the
equilibrium delay in the constructed segmentation equilibria.

8.3 Proofs for Section 5

Proof of Theorem 4 . I apply Theorem 3 with price offers and segments defined as follows. Fix
ε > 0 and choose b1 = √η, bz+1 = bz + √η and qBz = v(bz−1)+c(sz)

2 . Then Z = 1 +
⌊

1−η√
η

⌋
. I

consider only outcomes for types that trade in the first three rounds. As shown in the proof
of Theorem 3, the probability of such types is at least 1 − 4η2(Z−1)

η(2−η) which converges to one as
η → 0, since Z ∼ 1√

η . Moreover, for such types, |N∆| ≤ 2 and
∣∣∣p− v(b)+c(s)

2

∣∣∣ ≤ 1
2 |v(bz−1) −

v(b)|+ 1
2 |c(s

z)− c(s)| ≤ `
√
η

2 → 0 as η → 0. This proves, the desired convergence in probability
of segmentation equilibria outcomes to the Nash outcome.

Proof of Theorem 5. To prove the first statement, consider a sequence of CSEs indexed by
(∆, η)→ (0, 0). For any j ∈ N, let bj be the lowest weak buyer type, and sj be the highest weak
seller type in the CSE of the game with the length of bargaining round ∆j and the individual
uncertainty parameter ηj . Denote wj ≡ 1

2(bj + sj) ∈ [0, 1]. Then there exists ω∗ ∈ [0, 1] such
that wj converges to ω∗ over subsequence. Therefore, for any ε2 > 0, far enough in the sequence
all buyer types above min{1, ω∗+ ε2} and all seller types below max{0, ω∗− ε2} are weak types.
I consider only outcomes for these types, and I cover all the types but type ω∗ by choosing ε2

sufficiently small.
Any weak type knows at what time and at what price trade will happen, since the probability

of the opponent’s concession for weak types is zero. In a CSE corresponding to (∆j , ηj), for buyer
b > min{1, ω∗+ε2}, let tjb and pjb be the time and the price at which such type trades and define
analogous quantities tjs and pjs for sellers s < max{0, ω∗ − ε2}. By the single crossing property
of the payoffs, tjb is decreasing and tjs is increasing and so, pjb is decreasing and pjs is increasing.
Therefore, a sequence of four monotone functions has a pointwise converging subsequence by
Helly’s theorem and the limits (t∗b , t∗s, p∗b , p∗s) exist. For any weak buyer types b and b′, buyer type
b prefers accepting at time tjb to accepting at tjb′ , e

−rtj
b

(
v(b)− pjb

)
≥ e−rt

j

b′
(
v(b)− pjb′

)
. Hence,

in the limit e−rt∗b (v(b)− p∗b) ≥ e−rt
∗
b′ (v(b)− p∗b′), which is condition (12) for buyer and by the

same logic condition (14) obtains. Conditions (13) and (15) follow from Lemma 1. Condition 3
follows from the monotonicity of price paths in the definition of the CSE.

To prove the second statement of the theorem, let ŪB(ω) ≡ P̄ (ω)v(ω) − X̄(ω), ŪS(ω) ≡
X̄(ω) − P̄ (ω)c(ω), UB(b) ≡ PB(b)v(b) − XB(b), US(s) ≡ XS(s) − PS(s)c(s). Notice that
there is one-to-one mapping between (P̄B, P̄S , ŪB, ŪS) and (P̄B, X̄B, P̄S , X̄S). I begin with a
preliminary observation, which follows from the argument in Lemma 2 of Myerson (1981).
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Claim 16. Condition (12) is equivalent to

P̄ (ω) ≥ P̄ (ω′) > 0, (60)

ŪB(ω) = ŪB(ω′) +
ω̂

ω′

P̄ (w)dv(w), (61)

for any ω ≥ ω′ > ω∗.

Now, consider O = (P̄B, P̄S , ŪB, ŪS) satisfying conditions of theorem. , I construct a
sequence of CSEs indexed by j ∈ N with Oj = (PBj , PSj , UBj , USj) such that Oj converges a.e.
to O, and (∆j , ηj)→ (0, 0).

Consider a monotone sequence ηj → 0. Suppose that ω∗ ∈ (0, 1), and without loss of
generality, suppose that

ηj < min
{
ω∗

2 ,
1− ω∗

2

}
for all j ∈ N. When ω∗ equals 0 or 1, the argument below is first carried for ω̃∗ equal to ε̃ or
1− ε̃, respectively, for some ε̃ > 0, and then I take ε̃→ 0.

Define t∗b ≡ −1
r ln P̄ (b) for b > ω∗ and t∗s ≡ −1

r ln P̄ (s) for s < ω∗. By (60) in Claim 16,
function P̄ (b) is increasing in type b for b > ω∗ and so, t∗b is decreasing in b. Analogously, t∗s is
increasing in s. Consider inverse functions b∗t ≡ inf{b ∈ [0, 1] : t∗b ≤ t} and s∗t ≡ sup{s ∈ [0, 1] :
t∗s ≤ t}. Since P̄ (ω∗ + 0) = P̄ (ω∗ − 0) and P̄ (ω) > 0 for all ω 6= ω∗ (by condition (16)), I can
choose τj <∞ to be the minimal τj such that b∗τj − s

∗
τj ≤ ηj and, in particular,

0 < b∗τj < ω∗ + ηj ≤ 1− ηj and 1 > s∗τj > ω∗ − ηj ≥ ηj . (62)

Let T ≡ t∗ω∗ and observe that τj → T as j →∞.

Construction of CSE strategies. I construct a CSE by the same scheme as in the proof
of Theorem 2. Since v(b) and c(s) are continuous and v(ω∗) − c(ω∗) ≥ ξ > 0, v(ω∗ − ηj) >
c(ω∗ + ηj) for sufficiently small ηj . If X̄(b∗τj ) = X̄(s∗τj ), specify that at time τj all remaining
types trade at price X̄(b∗τj )/P̄ (b∗τj ) and the construction is carried as in case 2 in the proof of
Theorem 2. If X̄(b∗τj ) > X̄(s∗τj ), then I proceed as in case 1 in the proof of Theorem 2. I define
PSj ≡ X̄(b∗τj )/P̄ (b∗τj ) − εj , P

Bj ≡ X̄(s∗τj )/P̄ (s∗τj ) + εj where εj ∈ [0, 2−j ] is small enough so
that condition (9) in Lemma 2 is satisfied. By (62), for times after time τj , the continuation
equilibrium can be constructed by Lemma 2. For the rounds before time τj , the acceptance
functions bjt and sjt , and price offers pBjt and pSjt are constructed as in the proof of the sufficiency
part of Theorem 2. I choose ∆j sufficiently small so that for given ηj , the constructed main
path can be supported by the punishing path in the construction in the proof of Theorem 2.
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Convergence. By the construction, for b ∈ (b∗τj , 1] the difference between the type b’s
acceptance time and t∗b is at most 2∆j and so, as j → ∞, PBj(b) converges uniformly to P̄ (b)
for such types. By the argument analogous to Claim 16, for weak types b ∈ (b∗τj−2∆j

, 1],

UBj(b) = UBj(b∗τj−2∆j
) +

bˆ

b∗
τj−2∆j

PBj(b)dv(b).

As j → ∞, UBj(b∗τj−2∆j
) = e−rτj (v(b∗τj−2∆j

) − PBj) converges to ŪB(b∗τ ) and so, by the domi-
nated convergence theorem, UBj(b) converges to ŪB(b) for b ∈ (b∗τj , 1]. By the integral formula,
UBj(b) and ŪB(b) are Lipschitz continuous with modulus one and so, UBj(b) converges uniformly
to ŪB(b) on (b∗τj , 1].

Now for seller types s ∈ [ω∗ + 2ηj , 1],

PSj(s) = 1
|Bs|

ˆ

Bs

PBj(b)db

and
USj(s) = 1

|Bs|

ˆ

Bs

(PBj(b)(v(b)− c(s))− UBj(b))db.

By the monotonicity of PBj(b), for s ∈ [ω∗ + 2ηj , 1], PBj(bαs ) ≤ PSj(s) ≤ PBj(bωs ) and so, by
the uniform convergence of PBj(b) on (b∗τ , 1], P̄B(s−ηj)−ηj ≤ PSj(s) ≤ P̄B(s+ηj) +ηj for ∆j

sufficiently small. As ηj → 0, PSj(s) converges to P̄S(s) for a.e seller type above ω∗.56 Further,

PBj(bαs )(v(bαs )− c(s))− 1
|Bs|

ˆ

Bs

UBj(b)db ≤ USj(s) ≤ PBj(bωs )(v(bωs )− c(s))− 1
|Bs|

ˆ

Bs

UBj(b)db,

and by the uniform convergence of PBj(b) and UBj(b) on (b∗τ , 1], for ∆j sufficiently small,

P̄B(s− ηj)(v(s− ηj)− c(s))−
1
|Bs|

ˆ

Bs

ŪB(b)db− ηj ≤ USj(s),

P̄B(s+ ηj)(v(s+ ηj)− c(s))−
1
|Bs|

ˆ

Bs

ŪB(b)db+ ηj ≥ USj(s),

for all s ∈ [ω∗ + 2ηj , 1]. As ηj → 0, 1
|Bs|
´
Bs

ŪB(b)db→ ŪB(s) for a.e. seller type in [ω∗ + 2ηj , 1]

and so, US(s) converges to ŪS(s) for such types. The argument for types below ω∗ is symmetric.
Therefore, I constructed the required sequence of CSEs.

56The convergence is not guaranteed only at discontinuity points of P̄S(s). By Claim 16, P̄S(s) is monotone
on (ω∗, 1] and the set of its discontinuity points is at most countable.
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8.4 Proofs for Section 6

Lemma 13. Suppose that for some b ∈ [0, 1] beliefs of buyer types above b and seller types above
sαb are described by (17) and (20). Then the following strategies are the equilibrium strategies
for such buyer and seller types. After any history, buyer type b in the interval (b, 1] accepts
price offer less than or equal to P̌B(b). Otherwise, such type makes counter-offer ǍB(b). After
any history seller type s in the interval (sαb , 0] accepts price offer greater than or equal to P̌S(s).
Otherwise, such type makes counter-offer ǍS(s). Functions P̌B(b), P̌S(s), ǍB(b), ǍS(s)are
given by

P̌B(b) =

(1− e−r∆)v(b) + e−r∆P̌S(0)
v(b)+e−r∆c(b−η)

1+e−r∆
ǍB(b) =

P̌
S(0), for b ∈ [0, η),

c(b−η)+e−r∆v(b)
1+e−r∆ , for b ∈ [η, 1];

P̌S(s) =


c(s)+e−r∆v(s+η)

1+e−r∆

(1− e−r∆)c(s) + e−r∆P̌B(1)
ǍS(s) =


v(s+η)+e−r∆c(s)

1+e−r∆ , for s ∈ [0, 1− η],

P̌B(1), for s ∈ (1− η, 1].

Proof of Lemma 13. Consider buyer types in the interval [b, 1] ∩ [η, 1]. Buyer type b in such
interval puts probability one on seller type sαb by (17), while seller type sαb puts probability
one on type b by (20). By Rubinstein (1982) strategies of these two types given in Lemma 13
constitute the subgame perfect equilibrium of the complete information game with valuation
v(b) and cost c(sαb ).

Now consider seller types s ∈ [sαb , 1] ∩ (1 − η, 1] that put probability one on buyer type
1. Buyer type 1, in turn, puts probability one on seller 1 − η is willing to pay P̌B(1). Since
P̌B(1) > c(1), seller types s ∈ (1 − η, 1] make price offer P̌B(1). Moreover, they are willing
to pay up to P̌S(s) given by P̌S(s) − c(s) = δ

(
P̌B(1)− c(s)

)
. The argument for buyer types

b ∈ [b, 1] ∩ [0, η) is symmetric.

8.4.1 Existence of the Punishing Equilibrium

Lemma 14.

Proof of Lemma 3. The analysis of this subgame is standard, and I only sketch the argument. I
start by constructing a PBE in a game between seller type 0 and buyer types in [0, η], in which
the buyer is restricted to either accept the last seller price offer or make counter-offer δv(0)+c(0)

1+δ .
I use the analysis of Fudenberg, Levine, and Tirole (1985) to construct a PBE in such game
described by two functions P 0(b) and tβ,p and β̄ ∈ [0, η] such that

1. buyer type b accepts any price offer below P 0(b) and makes counter-offer δv(0)+c(0)
1+δ other-

wise;

2. given the highest buyer type β > β̄ and previous price offer p, seller type 0 randomized
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between the lowest types of the buyer to whom she allocates in the current round according
to tβ,p ∈ ∆(R);

3. for β ≤ β̄, seller type 0 accepts offer δv(0)+c(0)
1+δ ;

4. P 0(b) is strictly increasing and left-continuous.

The argument in Fudenberg, Levine, and Tirole (1985) should be slightly modified to incorporate
the possibility that all buyer types pool on a particular price offer that could be accepted by seller
type 0. I start by showing that for β smaller than some β̄ the seller prefers to accept δv(0)+c(0)

1+δ
rather than continue screening. This implies that there is a finite date after which bargaining
ends with probability one by the argument analogous to Lemma 3 in Fudenberg, Levine, and
Tirole (1985). I follow the steps in their proof of Proposition 1 to construct equilibrium strategies
by backward induction on beliefs starting from beliefs supported by [0, β], β < β̄ with the only
difference that instead of asking price v(0), the seller accepts price offer δv(0)+c(0)

1+δ for such beliefs.
This gives the desired equilibrium in the game with restricted buyer price offers. Note that by
the argument from the Theorem 3 in Gul, Sonnenschein and Wilson (1986) the Coase Conjecture
holds for such game, and for any ε > 0, after any history the first price offer of the seller does
not exceed v(0)+c(0)

2 + ε for δ sufficiently close to one.
To support the constructed equilibrium as an equilibrium in the game with unrestricted

buyer price offers specify the following punishment for detectable deviations of the buyer. If the
buyer deviates and makes an offer different from δv(0)+c(0)

1+δ , then the seller puts probability one
on the buyer type η and the game proceeds as in the unique subgame perfect equilibrium of the
game with complete information with the seller cost equal c(0) and the buyer valuation equal
v(η). Then trade happens immediately at a price that is close to v(η)+c(0)

2 for δ close to one. By
the Coase Conjecture the first seller price offer is close to v(0)+c(0)

2 for δ close to one, making the
deviation of the buyer non-profitable.

Lemma 15. Suppose tβ(s) is a best-reply to willingness to pay P (b). Then Rβ(s) is non-
decreasing in β , satisfying: for 0 ≤ β′′ < β′ ≤ 1 we have 0 < Rβ′(s) − Rβ′′(s) ≤ Σ(β′ − β′′)
whenever Rβ′(s) > 0, and Rβ′(s) = Rβ′′(s) = 0 whenever Rβ′(s) = 0. Moreover, Rβ(s) is
Lipschitz-continuous in both β and s of modulus `R ≡ `+ Σ.

Proof. The first part of Lemma 15 follows from Lemma A.2 in Ausubel, Deneckere (1989). To
show that Rβ(s) is Lipschitz continuous consider two seller types s and s′. Let Rβ(s, s′) be the
value function of seller type s from following tβ(s′). Since seller type s prefers policy tβ(s) to
tβ(s′), Rβ(s) ≥ Rβ(s, s′). Let ps′s and qs′s , respectively, be discounted transfer and probability of
allocation, respectively, when seller type s follows optimal policy of seller type s′ (and we write
ps for pss and qs for qss). Then

Rβ(s, s′) = ps
′
s − qs

′
s c(s) ≥ ps

′
s − qs

′
s c(s′)− |c(s)− c(s′)| ≥
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ps′ − qs′c(s′)− (`+ Σ)|s− s′| = Rβ(s′)− (`+ Σ)|s− s′|.

The first inequality is by qs
′
s ∈ [0, 1]. To see the second inequality consider two cases. When

s > s′, by using ts′(β) seller type s gets the same profit from buyer types in [bαs , bωs′ ] as seller
type s′, but looses at most Σ from buyer types in [bαs′ , bαs ]. When s < s′, by using ts′(β) seller
type s gets the same profit from buyer types in [bαs , bωs ] as seller type s′, but looses at most Σ
from buyer types in [bωs , bωs′ ]. Hence, |Rβ(s)−Rβ(s′)| ≤ (`+ Σ)|s− s′|.

Lemma 16. Suppose that tβ(s) is a best-reply to willingness to pay Pb. Then tβ(s) is non-
decreasing in s and β. Moreover, for any β, Tβ(s) has a closed graph, and in particular, t(s) is
left-continuous in s.

Proof. Denote current profit function of seller type s by πβ(s, b) = (β − b)(P (b) − c(s)) and
constraint is b ∈ Bs ∩ [0, β]. Since ∂

∂βπβ(s, b) = P (b) is increasing in b, function πβ(s, b) is
supermodular in (β, b). Since ∂

∂sπβ(s, b) = −c′(s)(β − b) is increasing in b, function πβ(s, b)
has increasing differences in b and s. Further, consider b ≥ b′, β ≥ β′, s ≥ s′ and suppose
b′ ∈ Bs ∩ [0, β] and b ∈ Bs′ ∩ [0, β′]. Then b ≤ β′ ≤ β, b ≤ s′ + η ≤ s + η, b ≥ b′ ≥ s − η
and, therefore, b ∈ Bs ∩ [0, β]. Analogously, we could show that b′ ∈ Bs′ ∩ [0, β′]. Hence,
the constraint sets are ascending in the terminology of Hopenhayn and Prescott (1992).57 By
Proposition 2 in Hopenhayn and Prescott (1992) value function Rβ(s) has increasing differences
in β and s and solution tβ(s) is non-decreasing in s and β. By the generalization of Theorem
of the Maximum in Ausubel and Deneckere (1988), for any β, Tβ(s) has a closed graph and so,
t(s) is left-continuous in s.

Lemma 17. For all b we have πi(b) ≥ c(sαb ) + (1 − δ2)ξ and for all s ∈ [−1,−η], Πi(s) >
C(η, δ) > 0 with C(η, δ) ∼ (1 − δ)2 where Πi(s) is the expected profit of seller s that faces
demand πi(b).

Proof. For all buyers b, πi(b) = (1− δ2)v(b) + δ2π̂i−1(τ i(sαb )) ≥ (1− δ2)v(b) + δ2c(sαb ) ≥ c(sαb ) +
(1−δ2)ξ. The first inequality follows from the fact that seller types in [0, si+1) get positive profit
when best-replying to static demand given by πi−1(b) and the second inequality follows from
v(b)− c(sαb ) ≥ ξ.

To derive the lower bound on the profit, suppose seller type s ∈ [0, 1 − η] makes price offer
c(s) + (1 − δ2) ξ2 . By the lower bound on willingness to pay P (b) derived above, buyer types
with πi(b) > c(s) + (1− δ2) ξ2` accept such price offer. The mass of buyer types who accept such
price offer and are in the support of beliefs Bs is at least min{2η, (1 − δ2) ξ2`} and seller type s
is guaranteed to get profit min{2η, (1− δ2) ξ2`}(1− δ

2) ξ2` ≡ C(η, δ). This minimal profit is equal
to (1− δ2)2 ξ2

4` for δ close to one and, hence, C(η, δ) ∼ (1− δ)2.
57The case when b′ ≥ b is checked trivially.
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Lemma 18. For all s ∈ (−1,−η], bωs − t(s) > c(η, δ). Moreover, c(η, δ) ∼ (1− δ)3 as δ goes to
one.

Proof. I make change of variable x = bωs −b in the seller’s problem (18). Then Πi(s) = x(πi(bωs −
x) − c(s)) + δ2Πi

bωs−x(s) ≤ x(πi(bωs − x) − c(s)) + δ2(Πi(s) + `Rx) where the inequality follows
from the Lipschitz continuity of Πi(s) (by Lemma 15). Therefore, I get x ≥ Πi(s)(1−δ2)

πi(bωs )−c(s)+δ2`R
≥

C(η,δ)(1−δ2)
Σ+`R where I used the lower bound on R(s) from Lemma 17.

Lemma 19. On each step of the iterative algorithm, function πi(b) is left-continuous and strictly
increasing.

Proof. The proof is by induction on the step of the algorithm. For i = 0, the strict monotonicity
of π0(b) follows from the strict monotonicity of P 0(b) and v(b), and the fact that P 0(η) ≤ v(η).
The left-continuity of π0(b) follows from the left-continuity of P 0(b) and the continuity of v(b).

Suppose by the inductive hypothesis that πi−1(b) is left-continuous and strictly increas-
ing. For b ∈ (η + ic(η,∆), 1], πi(b) = v(b) is strictly increasing and left-continuous. For
b ∈ [0, η + ic(η,∆)], πi(b) is a convex combination of strictly increasing v(b) and π̂i−1(τ i(sαb )).
Function π̂i−1(τ i(sαb )) is increasing, as π̂i−1 is increasing by the inductive hypothesis and τ i(sαb )
is increasing by Lemma 16. Therefore, πi(b) is strictly increasing on [0, η+ ic(η,∆)]. Moreover,
πi(η+ ic(η,∆)) ≤ v(η+ ic(η,∆)), which completes the proof of the strict monotonicity of πi(b).

I next show that π̂i−1(τ i(sαb )) is left-continuous. This would imply that πi(b) is left-continuous
on [0, η+ic(η,∆)] as a convex combination of left-continuous functions. Suppose to contradiction
that there exist b̂ and an increasing sequence bj → b̂ such that lim

j→∞
π̂i−1(τ i(sαbj )) < π̂i−1(τ i(sα

b̂
)).

Denote sj = sαbj for all j ∈ N and ŝ = sα
b̂
. By Lemma 16,

lim
j→∞

τ i(sj) = τ i(sj). (63)

If π̂i−1(b) is continuous at τ i(ŝ), then lim
j→∞

π̂i−1(τ i(sj)) = π̂i−1(τ i(ŝ)), which is a contradiction. If

π̂i−1(b) is discontinuous at τ i(ŝ), then the first price offer of all seller type sj is below π̂i−1(τ i(ŝ))−
ε for some ε > 0, while the first price offer of seller type ŝ is equal to π̂i−1(τ i(ŝ)). Therefore,

Πi(ŝ) = (π̂i−1(τ i(ŝ))− c(ŝ))(b̂− τ i(ŝ)) + δ2Πi
τ i(ŝ)(ŝ) >

(ε+ π̂i−1(τ i(sj))− c(ŝ))(b̂− τ i(ŝ)) + δ2Πi
τ i(ŝ)(ŝ) = ε(b̂− τ i(ŝ)) + lim

j→1
Πi(sj),

where the equality follows from the continuity of c(s) and Πi
β(s) (by Lemma 15) and (63). This

contradicts the continuity of Πi(s) (again by Lemma 15) and so, π̂i−1(τ i(sαb )) is left-continuous.
For b ∈ [0, η + ic(η,∆)], πi(b) is a convex combination of continuous v(b) and left-continuous
π̂i−1(τ i(sαb )) and so, is left-continuous itself completing the proof of the inductive step.
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Lemma 20. Suppose P (b) and tβ(s) satisfy equations (18) and (19). Then for δ sufficiently
close to one, in the (seller) punishing equilibrium on-path strategies given by P (b) and tβ(s) are
optimal for the seller and the buyer.

Proof. From the design of the algorithm the screening strategy tβ(s) is optimal for the seller
who faces the static demand given by P (b). I next show that the buyer does not have incentives
to deviate either from the acceptance strategy P (b) or from pooling on the price offer δv(0)+c(0)

1+δ .
If the highest remaining buyer type exceeds b, then buyer type b interprets the previous

seller’s offers as seller’s deviations. In this case, buyer type b expects the seller to restart
screening. From equation (19) it follows that any price offer above P (b) would be rejected by
buyer b. To complete the verification of optimality of the threshold strategy, we next show that
prices below P (b) are accepted by buyer b.

Suppose to contradiction that the seller makes price offer p which is accepted by buyer b′

and rejected by buyer type b and b > b′. First, observe that if b ≤ β̄, then both types b and b′

put probability one on seller type 0, and the result follows from the single crossing property of
the payoffs

Next, suppose that b′ > β̄. Define buyer b′′ = inf{b : P (b) ≥ p}. If the buyer rejects price
offer p, then the highest buyer type remaining in the game is b′′. Each seller type s uses screening
policy tb′′(s) after rejection. Then for all k ∈ N,

v(b′)− p ≥ δ2k
(
v(b′)− P̂ (t(k)

sα
b′

(b′′))
)

(64)

and
v(b)− p < δ2K

(
v(b)− P̂ (t(K)

sα
b

(b′′))
)

(65)

for some K.58 That is, buyer type b′ accepts price offer p, and buyer type b rejects such price
offer and expects to accept price offer P (tKsα

b
(b′′)) from seller type sαb . Subtracting inequality

(64) (with k = K) from (65), I get

v(b)− v(b′) < δ2K
(
v(b)− v(b′)− P̂ (t(K)

sα
b

(b′′)) + P̂ (t(K)
sα
b′

(b′′))
)

or (
1− δ2K

)
(v(b)− v(b′)) < −δ2K

(
P̂ (t(K)

sα
b

(b′′))− P̂ (t(K)
sα
b′

(b′′))
)
. (66)

The left-hand side of (66) is greater than zero, as b > b′. By Lemma 16, t(K)
b′′ (sαb ) ≥ t

(K)
b′′ (sαb′),

and moreover, P (b) is increasing. Hence, the right-hand side of (66) is less than zero, which
gives a contradiction.

Finally, if b′ ≤ β̄ < b, then the only difference with the previous case is that now buyer b′

58Notation f (k)(x) stands for k-superposition of function f , i.e. let f (0)(x) ≡ f(x) and for k ≥ 1 f (k)(x) ≡
f(f (k−1)(x)).
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could prefer price p not only to all the future price offers of the seller, but also to the seller’s
acceptance of offer δv(0)+c(0)

1+δ . That is, it is possible that

v(b′)− p ≥ δ
(
v(b′)− δv(0) + c(0)

1 + δ

)
or more weakly

v(b′)− p ≥ δ2K
(
v(b′)− δv(0) + c(0)

1 + δ

)
.

Combining this inequality with the same argument as before I get contradiction again.
The fact that buyers are better off pooling on δv(0)+c(0)

1+δ is the following claim and follows
from the Contagious Coasian Property proven in the next section.

Claim 17. For sufficiently large δ, in the seller punishing equilibrium no buyer type prefers to
deviate from pooling on offer δv(0)+c(0)

1+δ .

Proof. By Theorem 8 any buyer type b above η expect to get the good in the next round
buyer is active at price uniformly close to P ∗(b). By Lemma 13 if such buyer type deviates he
trades with the seller at price close to v(b)+c(sαb )

2 > P ∗(b), hence, the deviation is not profitable
for such buyer types for sufficiently large δ. Now buyer types below η expect the first price offer
of the seller to be close to v(0)+c(0)

2 which is preferred to immediate trade at v(η)+c(0)
2 , making

the deviation unprofitable for such types. Q.E.D.

Proof of Theorem 7. The iterative algorithm converges in a finite number of steps by Lemma
18 and the resulting strategies are optimal by Lemma 20.

8.4.2 Proof of the Contagious Coasian Property

Let Qβ(s) ≡ min{β, bωs } − min{β, bαs } be the mass of remaining buyer types in the support of
beliefs of seller type s when β is the highest remaining buyer type. Consider a sequence of
discount factors δj → 1. In the punishing equilibrium of the game with discount factor δj , I
denote by Aj(s) the first price offer of seller s.

Lemma 21. There exist a limit point of sequences P j(b), tj(s), Aj(s), Rjβ(s).

Proof. By Lemma 15, function Rjβ(s) is Lipschitz continuous in s and β with Lipschitz constants
not exceeding 3. Hence, for (s, β) and (s′, β′) such that |s−s′|+ |β−β′| < ε, |Rjβ(s)−Rβ′(s′)| ≤
|Rjβ(s)−Rjβ(s′)|+ |Rjβ(s′)−Rjβ′(s′)| ≤ `R(|s− s′|+ |β − β′|) < `Rε. Hence, family of continuous
functions Rjβ(s) is equicontinuous and so, by the Arzela-Ascoli theorem, Rjβ(s) converges (over
subsequence) to some continuous function R∗β(s). Moreover, Rβ(s) converges uniformly to R∗β(s)
as a sequence of continuous functions on a compact set that converges to a continuous function.
Consider now sequences of non-decreasing functions P j(b), tj(s), Aj(s). By Helly’s theorem
there is a subsequence along which the sequence converges to a non-decreasing limit P ∗(b),
t∗(s), A∗(s) pointwise.
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Proof of Lemma 4. Suppose to contradiction that there exists b̂ ∈ (0, 1) with P ∗(b̂) > c(sα
b̂
),

and for any φ > 0, P ∗(b̂ − φ) ≤ P ∗(b̂) < P ∗(b̂ + φ). Let ε ≡
P ∗(b̂)−c(sα

b̂
)

2 . Consider some
seller type ŝ > sα

b̂
+ ε

4` . By the left-continuity of P ∗(b), we choose φ small enough so that
P ∗(b̂ − φ) > P ∗(b̂) − ε

4 and (b̂ − φ, b̂ + φ) ⊂ Bŝ. By the pointwise convergence of the sequence
P j(b), for δj sufficiently large, I have P j(b̂−φ) > P ∗(b̂−φ)− ε

4 > P ∗(b̂)− ε
2 > c(sα

b̂
)+ ε

2 > c(ŝ)+ ε
4 .

There are two cases to consider: A∗(ŝ) > P ∗(b̂) and A∗(ŝ) ≤ P ∗(b̂).

Case 1) A∗(̂s) > P∗(b̂) . In the proof of case 1, I restrict that δj is sufficiently large so
that Aj(ŝ) > 1

3P
∗(b̂) + 2

3A
∗(ŝ) and P j(b̂) < 2

3P
∗(b̂) + 1

3A
∗(ŝ) (by pointwise convergence of Aj(s)

and P j(b)) and so,
Aj(ŝ) > P j(b̂) + 1

3(A∗(ŝ)− P ∗(b̂)). (67)

I show that seller type ŝ prefers to deviate from the equilibrium strategy by speeding up screening
of buyer types above b̂ which gives a contradiction. Observe that for all δj sufficiently large,
Rj
b̂
(ŝ) ≥ 2φ(P j(b̂− φ)− c(ŝ)) ≥ φε

2 > 0.
Let Kj ≤ ∞ be the round of screening when price offer of the seller type ŝ drops below

P j(b̂). Buyer type bωŝ prefers to purchase immediately rather than wait until price drops below
P j(b̂) and so, v(bωŝ )−Aj(ŝ) ≥ δ2Kj

j (v(bωŝ )− P j(b̂)) or by (67)

δ
2Kj
j ≤ v(bωŝ )−Aj(ŝ)

v(bωŝ )− P j(b̂)
<
v(bωŝ )− P j(ŝ)− 1

3(A∗(ŝ)− P ∗(b̂))
v(bωŝ )− P j(b̂)

= 1− 1
3
A∗(ŝ)− P ∗(b̂)
v(bωŝ )− P j(b̂)

. (68)

The right-hand side of (68) converges to a limit that is strictly less than 1 and so, lim
j→∞

δ
2Kj
j < 1.

Observe that the profit of seller type ŝ in the equilibrium satisfies Rj(ŝ) ≤
bωś̂

b̂

(P j(b) −

c(ŝ))db + δ
2Kj
j Rj

b̂
(ŝ). Consider an alternative screening policy in which for integer Mj seller

type ŝ posts price sequence {Am}
Mj

m=1 such that Am = v(bωŝ ) + m
Mj

(c(ŝ) − v(bωŝ )) and sell with
probability one in Mj rounds. Moreover, the loss in profit from each sale is at most Σ

Mj
. By the

optimality of the seller’s equilibrium strategy, Rj(ŝ) ≥ δ
2Mj

j

bωś̂

b

(P j(b)− c(ŝ))db− Σ
Mj

 where

b = inf{b ∈ B : P j(b) > c(ŝ)}. Therefore,

δ
2Mj

j

(ˆ bωŝ

b
(P j(b)− c(ŝ))db− Σ

Mj

)
≤
ˆ bωŝ

b̂
(P j(b)− c(ŝ))db+ δ

2Kj
j Rj

b̂
(ŝ)

or after rearranging terms

δ
2Mj

j

(ˆ b̂

b
(P j(b)− c(ŝ))db− Σ

Mj

)
≤
(
1− δ2Mj

j

)ˆ bωŝ

b̂
(P j(b)− c(ŝ))db+ δ

2Kj
j Rj

b̂
(ŝ).
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Since Rj
b̂
(ŝ) ≤

b́̂

b

(P j(b)− c(ŝ))db,

δ
2Mj

j

(
Rj
b̂
(ŝ)− Σ

Mj

)
≤
(
1− δ2Mj

j

) ˆ bωŝ

b̂
(P j(b)−c(ŝ))db+δ2Kj

j Rj
b̂
(ŝ) ≤ Σ(bωŝ−b̂)

(
1− δ2Mj

j

)
+δ2Kj

j Rj
b̂
(ŝ),

where the last inequality follows from the fact that values are bounded. Since Rj
b̂
(ŝ) ≥ φε

2 > 0,

δ
2Kj
j ≥ δ2Mj

j − 1
Rj
b̂
(ŝ)

δ2Mj

j

Mj
+ Σ(bωŝ − b̂)

(
1− δ2Mj

j

) ≥ δ2Mj

j − 2
φε

δ2Mj

j

Mj
+ Σ(bωŝ − b̂)

(
1− δ2Mj

j

)
For each δj , I can choose Mj such that δ2Mj

j converges to one, as δj → 1. Hence, from the last
inequality it follows that δ2Kj

j is arbitrarily close to one which contradicts (68).

Case 2) A∗(̂s) ≤ P∗(b̂) . Consider an alternative screening policy, in which seller type ŝ
posts price P j(b̂+φ) in the first round, then makes offer Aj(ŝ) and proceeds with the screening
policy as in the equilibrium. From the optimality of the equilibrium strategy, it follows

(bωŝ − tj(ŝ))(Aj(ŝ)− c(ŝ)) + δ2
jR

j
tj(ŝ)(ŝ) ≥

(bωŝ − b̂− φ)(P j(b̂+ φ)− c(ŝ)) + δ2
j (b̂+ φ− tj(ŝ))(Aj(ŝ)− c(ŝ)) + δ4

jRt(ŝ)(ŝ)

or

(1−δ2
j )
(
(bωŝ − tj(ŝ))(Aj(ŝ)− c(ŝ)) + δ2

jR
j
tj(ŝ)(ŝ)

)
≥ (bωŝ−b̂−φ)

(
P j(b̂+ φ)− δ2

jA
j(ŝ)− (1− δ2

j )c(ŝ)
)

(69)
The left-hand side of (69) goes to zero as δj → 1 and the right hand side of (69) converges to
(bωŝ − b̂− φ)(P ∗(b̂+ φ)−A∗(ŝ)) > 0 which is a contradiction.

Corollary 1. For any b < bωs+, P ∗(b) = v(0)+c(0)
2 .

Proof of Corollary 1. For any buyer type b ∈ [0, bωs+), P j(b) ≥ v(0)+δc(0)
1+δ > v(0)+c(0)

2 > c(sαb ) and
so, P ∗(b) > c(sαb ) for b ∈ [η, bωs+). Therefore, by Lemma 4, function P ∗(b) is constant on this
interval. Since P ∗(b) = v(0)+c(0)

2 for b ∈ [0, η], we have P ∗(b) = v(0)+c(0)
2 on [0, bωs+).

Definition 8.1. A monotone function f(x) on [0, 1] is ε-continuous if for any open interval
I ⊂ [f(0), f(1)] of length at least ε we have f([0, 1]) ∩ I 6= ∅.

Lemma 22. For any ε > 0 there exists δ̄ ∈ (0, 1) such that for all δj > δ̄, function P j(b) is
ε-continuous, and for any seller type s ∈ [0, 1] and buyer type β ∈ Bs,

P̂ j(β)− P̂ j(tjβ(s)) ≤ ε. (70)
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Proof. Suppose to contradiction that there exist ε > 0, P , and P > P + ε such that for any
b ∈ [0, 1] and infinitely many js, either P j(b) ≥ P or P j(b) ≤ P . Without loss of generality,
take P and P such that P − P is maximal. For any j, consider bj ≡ sup{b : P j(b) < P}. By
equation (19), for any b ∈ [0, 1],

P j(b)− P̂ j(t(sαb )) = (1− δ2
j )(v(b)− P̂ j(tj(sαb )) ≤ (1− δ2

j )Σ <
ε

2 (71)

for δj sufficiently close to one. Consider buyer type b̂j ≡ bj + c(η,δj)
2 and b̌j ≡ bj + c(η,δj)

2 . Then

P j(b̂j)− P̂ j(t(sαb̂j )) > P j(b̂j)− P̂ j(b̌j) > ε,

which gives a contradiction to (71).
To prove (70), observe that by Lemma 16, for any j ∈ N,

P j(β)− P̂ j(tjβ(s)) ≤ P j(β)− P̂ j(tjβ(sαβ)), (72)

for all b ∈ [0, 1]. For any ε > 0, choose δj sufficiently large so that P j(b) is ε
2 -continuous. This

implies that the right-hand side of (72) is less than ε
2 , and moreover, there exists βj > β such

that P j(βj)− P j(β) < ε
2 . Together with (72), this gives

P̂ j(β)− P̂ j(tjβ(s)) ≤ P j(βj)− P j(β) + P j(β)− P̂ j(tjβ(s)) < ε,

which proves (70).

Lemma 23. For any δj, let two converging sequences of buyer types {bj}∞j=1 and {b′j}∞j=1 be
such that P j(bj)− P̂ j(b′j) and v(bj)− P̂ j(b′j) are uniformly bounded away from zero. Then there
exist a function γ(δj) ∼ (1− δj)2 and an integer J such that bj − b′j ≥ γ(δj) for all j ≥ J .

Proof. Define sequence tjl , l = 0, . . . , Lj + 1 as follows. Let tj0 = bj and tjl = tj(sα
tj
l−1

) for

l = 1, . . . , Lj + 1 where Lj is the largest integer such that tjLj ≥ b
′
j . By (19), I have

P j(bj) = (1− δ2
j )

Lj∑
l=0

δ2lv(tjl ) + δ
2(Lj+1)
j P̂ j(tjLj+1).

Since P̂ j(b) is increasing in b and b′j ∈ [tjLj+1, t
j
Lj

],

P j(bj)− P̂ j(b′j) ≤ (1− δ2
j )

Lj∑
l=0

δ2lv(tjl )− (1− δ2(Lj+1)
j )P̂ j(b′j) ≤ (1− δ2(Lj+1)

j )(v(bj)− P̂ j(b′j)).

Since P j(bj) − P̂ j(b′j) and v(bj) − P̂ j(b′j) are uniformly bounded away from zero, 1 − δ2(Lj+1)
j

is uniformly bounded away from zero. Hence, the exists C1 > 0 and an integer J1 such that
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xKjxLj

P ∗

1
3P
∗ + 2

3P
∗(b̂)

2
3P
∗ + 1

3P
∗(b̂)

P ∗(b), P (b)

P ∗(b̂) + ε

P ∗ − ε

c(sαb )

P ∗(b̂)

b̂ bj b

P ∗(b)

P j(b)

2
3P
∗ + 1

3P
∗(b̂)− ε

2

1
3P
∗ + 2

3P
∗(b̂)− ε

2

βj

Figure 7: Illustration of the proof of Lemma 5

Lj ≥ −C1/ ln δj for all j ≥ J1.
By Lemma 18, there exists C2 > 0 and an integer J2 such that tjl−1− t

j
l > C2(1− δj)3 for all

l ∈ 1, . . . , Lj and all j ≥ J2. Hence, bj−b′j =
Lj∑
l=1

(tjl−1−t
j
l )+tjLj−b

′
j ≥ C2(1−δj)3Lj ≥ −C1C2(1−

δj)3/ ln δj ∼ (1 − δj)2 for j ≥ J ≡ max{J1, J2}. The function γ(δj) = −C1C2(1 − δj)3/ ln δj
satisfies the desired properties.

Proof of Lemma 5. Suppose to contradiction that there exists b̂ such that P ∗ ≡ P ∗(b̂ + 0) >
P ∗(b̂) (see Figure 4 for the illustration of the proof). By Corollary 1, b̂ ≥ s+ + η, and by
Lemma 4, P ∗(b̂) = c(sα

b̂
). Fix ε > 0 small enough so that P ∗ − P ∗(b̂) > 9

2ε, which ensures that
P ∗ − ε > 2

3P
∗ + 1

3P
∗(b̂) > 2

3P
∗ + 1

3P
∗(b̂)− ε

2 >
1
3P
∗ + 2

3P
∗(b̂) > 1

3P
∗ + 2

3P
∗(b̂)− ε

2 > P ∗(b̂) + ε.
Let bj ≡ inf{b : P j(b) ∈ (P ∗− ε, P ∗)} and sj ≡ sαbj . Let Kj ≤ ∞ be the first round of screening,
in which seller type sj makes a price offer below 2

3P
∗ + 1

3P
∗(b̂) and allocates to all buyer types

above some βj . In the proof, I restrict that δj is sufficiently close to one so that the conclusions
of the following claim obtain.

Claim 18. It holds
lim
j→∞

P j(bj) = P ∗ − ε, (73)

and for δj sufficiently large,

2
3P
∗ + 1

3P
∗(b̂) > P̂ j(βj) >

2
3P
∗ + 1

3P
∗(b̂)− ε

2 , (74)

bj < b̂+ ε

2` and c(sj) ≤ P ∗(b̂) + ε

2 . (75)

Proof. By Lemma 22 for any ε there exists J(ε) such that P j(b) is ε-continuous for j ≥ J(ε)
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and so, (73) obtains. Inequality (74) follows from the definition of βj and (70) in Lemma 22.
By the pointwise convergence of P j(b), lim

j→∞
bj = b̂ and so, bj < b̂ + ε

2` for δj sufficiently large.

This, in turn, implies c(sj) < c(sα
b̂

+ ε
2`) < c(sα

b̂
) + ε

2 = P ∗(b̂) + ε
2 where the second inequality is

by Lipschitz continuity of c(s). Q.E.D.

Optimality of strategy of type sj. In the first Kj rounds of screening, seller type sj
allocates to the mass of buyer types xKj ≡ bj − βj . Since buyer type bj prefers to buy at price
P j(bj) rather than wait until price drops to P̂ j(β),

v(bj)− P j(bj)
v(bj)− P̂ j(βj)

≥ δ2Kj
j . (76)

By (73) and (74), the upper bound on δ
2Kj
j in (76) converges to at most v(b̂)−P ∗+ε

v(b̂)− 2
3P
∗− 1

3P
∗(b̂) < 1.

Therefore, δ2Kj
j converges to some limit λK < 1 as δj → 1 and so, lim

j→∞
(1−δ2

j )Kj = − lnλK > 0.
For any integer MKj , consider an alternative screening strategy, in which seller type sj

speeds up screening in the first bKj/MKjc rounds. Let Ak be the price offer that seller type sj
makes in round k. Define qk = P j(bj) + kMKj

Kj

(
AKj−1 − P j(bj)

)
, k = 1, 2, .., bKj/MKjc. In the

alternative strategy, seller type sj makes price offer pk ≡ min{qk, Ak} in rounds k ≤ bKj/MKjc,
makes offer AKj in round bKj/MKjc+ 1 and continues following equilibrium strategy from then
on. The total loss from using the alternative strategy is at most MKjxKj

(
1
3P
∗ − 1

3P
∗(b̂)

)
/Kj .

Indeed, in each round the loss of seller type sj compared to the maximum surplus that could
be extracted is at most P j(bj)−P̂ j(βj)

Kj/MKj
≤ MKj

(
1
3P
∗ − 1

3P
∗(b̂)

)
/Kj where the inequality follows

from (73) and (74). Moreover, there is no loss due to discounting, as the allocation to all buyer
types happens sooner under the alternative strategy than under the equilibrium strategy.

At the same time, by speeding up the screening seller type sj gains at least
(
δ

2Kj/MKj

j − δ2Kj
j

)
VKj ,

where VKj is the continuation utility of seller type sj after she makes price offer AKj and follows
the equilibrium strategy further. By the optimality of strategy of seller type sj ,

MKj

Kj
xKj

(1
3P
∗ − 1

3P
∗(b̂)

)
≥
(
δ

2Kj/MK

j − δ2Kj
j

)
VKj (77)

Optimality of strategy of type σj. Consider seller type σj ≡ sαβj and let Lj be the first
round of screening, in which seller type σj makes a price offer below 1

3P
∗ + 2

3P
∗(b̂). By the

analogous argument as with Kj and seller type sj , I have δ2Lj
j converges to the limit λL < 1

(correspondingly, (1− δ2
j )Lj → − lnλL > 0), and for the optimality of strategy of seller type σj

it is necessary that

MLj

Lj
xLj

(1
3P
∗ − 1

3P
∗(b̂)

)
≥
(
δ

2Lj/MLj

j − δ2Lj
j

)
VLj , (78)
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for any integer MLj . In inequality (78), xLj denotes the mass of buyer types to whom seller
type σj allocates in the first Lj rounds, and VLj denotes the continuation utility of seller type
σj after price offer in round Lj and follows the equilibrium strategy further.

Lower bound on VKj . Observe that seller type sj could post price 1
3P
∗ + 2

3P
∗(b̂) − ε

2
after price offer AKj . The mass of buyer types that accept such price is xLj , and the profit from
each such buyer is 1

3P
∗ + 2

3P
∗(b̂)− ε

2 − c(sj) ≥
1
3P
∗ − 1

3P
∗(b̂)− ε by (75). Hence,

VKj ≥ xLj
(1

3P
∗ − 1

3P
∗(b̂)− ε

)
. (79)

Lower bound on VLj . Suppose that the seller allocated in previous rounds to all buyer
types with P j(b) > 1

3P
∗+ 2

3P
∗(b̂)− ε

2 . If the seller posts price P ∗(b̂) + ε after such history, then
by Lemma 23, the mass of buyer types who accept such price is at least γ(δj) > 0. The profit
of seller type σj from such buyer types is P ∗(b̂) + ε− c(σj) ≥ P ∗(b̂) + ε− (P ∗(b̂) + ε

2) = ε
2 (by

(75) and σj < sj). Hence,
VLj ≥ γ(δj)

ε

2 (80)

Lower bound on xKj. Combining inequalities (77), (78), (79), (80) I get

CxKj ≥
Kj(1− δj)
MKj

Lj(1− δj)
MLj

(
δ

2Kj/MKj

j − δ2Kj
j

) (
δ

2Lj/MLj

j − δ2Lj
j

) γ(δj)
(1− δ)2

j

ε

2 . (81)

where I collect all the constants into a positive constant C. Since Kj(1−δj)
MKj

∼ Kj ln(δj)
MKj

, Lj(1−δj)MLj
∼

Lj ln(δj)
MLj

and γ(δj) ∼ (1 − δj)2, I can find MKj and MLj (in general dependent on δj) such
that right-hand side of inequality (81) converges to a positive number. On the other hand,
xKj ≤ bj − b̂ ≤ ε

2` by (75). This contradicts the fact that ε was chosen arbitrary.

Corollary 2. For any b ≥ bωs+, P ∗(b) = c(sαb ).

Proof of Corollary 2. Suppose to contradiction that there exists some b̃ ≥ bωs+ such that P ∗(b̃) >
c(sα

b̃
). For b < bωs+ , c(sαb ) > P ∗(b) and combined with Lemma 4, this implies that there is b̂ ≥ bωs+

such that P ∗(b) is discontinuous at b̂ which contradicts Lemma 5.

Lemma 24. Sequence P j(b) converges uniformly to P ∗(b) on [0, 1].

Proof. I show that the function f j(b) = P̂ j(b) − P ∗(b) converges uniformly to zero on [0, 1],
which would imply the desired uniform convergence of P (b) by the following claim.

Claim 19. For any b ∈ [0, 1], 0 < P j(b)− P ∗(b) ≤ f j(b).

Proof. First, for all b ∈ [0, 1], P j(b) ≤ P̂ j(b) by the definition and so, P j(b)−P ∗(b) ≤ f j(b).
Second, by Lemma 1, P j(b) ≥ v(0)+δc(0)

1+δ > v(0)+c(0)
2 for all b ∈ [0, 1]. Moreover, by Lemma 17,

P j(b) > c(sαb ) for all b ∈ [0, 1]. Therefore, 0 < P j(b)− P ∗(b) for all b ∈ [0, 1]. Q.E.D.

79



Claim 20. The function f j(b) is upper-semicontinuous, and for any ε > 0, f j(b+ ε
` ) ≥ f

j (b)−ε.

Proof. To show that f j(b) is upper-semicontinuous, consider a sequence {bi}∞i=1 converging
to some b ∈ [0, 1]. Then by continuity of P ∗(b) and right-continuity of P̂ j(b), lim sup

i→∞
(P̂ (bi) −

P ∗(bi)) = lim sup
i→∞

P̂ (bi)− P ∗(b) ≤ P̂ (b)− P ∗(b).

Next, choose any ε > 0. Since P̂ j(b) is increasing, P̂ j
(
b+ ε

`

)
≥ P̂ j(b). Moreover, P ∗(b) =

max
{
v(0)+c(0)

2 , c(sαb )
}

and the derivative of c(s) is bounded above by ` and so, −P ∗
(
b+ ε

`

)
≥

−P ∗(b)− ε. Therefore, f j(b+ ε
` ) ≥ f

j (b)− ε. Q.E.D.

Claim 21. Function f j(b) converges uniformly to 0 on [0, 1].

Proof. Function f j(b) converges poinwise to 0 on [0, 1]. Since f j(b) is upper-semicontinuous
function on a compact set by Claim 20, f j(b) achieves its maximum at some bj ∈ [0, 1].

I next show that f j(bj) converges to 0 as j → ∞. Suppose to contradiction that for all
j ∈ N there exists ε > 0 so that f j(bj) > ε. By Claim 20, f j(b) > ε

2 for all b ∈
[
bj , bj + ε

2`
]
. By

compactness of [0, 1], sequence bj converges (over subsequence) to some b∗ ∈ [0, 1] as j →∞ and
so, there exists J such that for all j ≥ J , bj ∈

[
b∗ − ε

8 , b
∗ + ε

8
]
. Hence, for b ∈

[
b∗ + ε

8 , b
∗ + 3ε

8

]
,

f j(bj) > ε
2 for all j ≥ J . This contradicts the pointwise convergence of f j(b) to 0. Q.E.D.

Proof of Theorem 8. The result follows from Corollaries 1 and 2 and Lemma 24.

Proof of Theorem 6. Observe that continuation utility of seller type s in the seller punish-
ing equilibrium is bounded above by P j(bωs ) − c(s). By Theorem 8, sup

s∈[0,1]
|P j(bωs ) − c(s) −

max{v(0)+c(0)
2 − c(s), 0}| converges to zero as δj → 0 which gives the desired conclusion.
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