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Abstract

We introduce the concept of attainable sets of payoffs in two-player repeated games

with vector payoffs. A set of payoff vectors is called attainable if player 1 can ensure

that there is a finite horizon T such that after time T the distance between the set and

the cumulative payoff is arbitrarily small, regardless of what strategy player 2 is using.

This paper focuses on the case where the attainable set consists of one payoff vector.

In this case the vector is called an attainable vector. We study properties of the set of

attainable vectors, and characterize when a specific vector is attainable and when every

vector is attainable.
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1 Introduction

There are various dynamic situations in which the stage payoff is multi-dimensional, and

the goal of the decision maker is to drive the total vector payoff as close as possible to a

given target set. One such example is dynamic network models, which include a variety of

different logistic applications such as production, distribution and transportation networks.

In the literature on dynamic network flow control [4, 5, 11, 12, 13], the supplier tries to

meet a multi-dimensional demand. His goal is to ensure that the difference between the

total demand and the total supply converges with time to a desirable target. One can model

such a situation as a two-player repeated game, where player 1 is the decision maker, and

player 2 represents the adversarial market that controls the demand. For instance, in the

distribution network scenario, the supplier has a desirable multi-inventory level that he

would like to maintain, despite erratic behavior of the demand side. Having to deal with

an adversarial opponent requires the supplier to cope with the worst case possible. This

motivates our main objective: to find conditions that characterize when a specific target

vector x can be attained against any possible demand pattern exhibited by the market.

A second example is the Capital Adequacy Ratio. The third Basel Accord states that

(a) the bank’s Common Equity Tier 1 must be at least 4.5% of its risk-weighted assets at

all times, (b) the bank’s Tier 1 Capital must be at least 6.0% of its risk-weighted assets

at all times, and (c) the total capital, that is, Tier 1 Capital plus Tier 2 Capital, must

be at least 8.0% of the bank’s risk weighted assets at all times. To accommodate this

example in our set up, consider the following 3-dimensional vector. The first coordinate

stands for the difference between the bank’s Tier 1 Capital and 6.0% of its risk-weighted

assets; the second coordinate stands for the difference between the bank’s Tier 1 Capital

and 6.0% of its risk-weighted assets; and the third stands for the difference between the total

capital and 8.0% of the bank’s risk weighted assets. According to the Capital Adequacy

Ratio the coordinates of this vector should be non-negative. Here, player 1 represents the

bank’s managers who control its assets, and player 2 represents market behavior, which

is unpredictable and thought of as adversarial. Thus, the goal of player 1 is to design a

strategy that would drive the 3-dimensional total payoff to the target set – the non-negative

orthant.

To model such situations we study two-player repeated games with vector payoffs in

continuous time. We say that a set A in the payoff space is attainable by player 1 if there is

a time T such that for every level of proximity, ε > 0, player 1 has a strategy guaranteeing

that against every possible strategy of player 2, the cumulative payoff up to any time greater
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than T is within ε from A. In other words, for every ε player 1 can ensure that the distance

between the cumulative payoff at time t (t > T ) and the set A is smaller than ε. When a

set A is attainable, player 1 can plan his actions, based on historical inventory and market

data, to ensure that the inventory level would be in A. In the case where A consists of one

point, the supplier may guarantee that his inventory level will be as close as he wishes to

an ideal level.

The definition of attainability is close in spirit to the concept of approachable sets (see

[9]), which refers to the average stage payoff rather than the cumulative payoff. While a set

A is attainable if the cumulative payoff can always guarantee to be arbitrarily close to it,

A is approachable if the average payoff can be forced by player 1 to converge to it.

In case a point, say x, is attainable by player 1, it implies that the long run inventory

level is stable, around x. On the other hand, if x is approachable, it merely guarantees that

the average payoff converges to x. It does not even ensure that a fixed running average

converges to x. This observation suggests that although the notions of attainability and

approachability look similar at first sight, and indeed are related, the flavor of the results

and their proofs are completely different.

In the theory of attainability the possibility to maintain a fixed level, namely to attain

a desirable point x, requires the ability to keep x when getting sufficiently close to it. In

terms of attainability it means that the vector ~0 ought to be attainable. The first main

result, Theorem 1, characterizes when ~0 is attainable. The result implies that, with regard

to the vector ~0, attainability and approachability coincide: the vector ~0 is attainable by

player 1 if and only if it is approachable by player 1 in the game in discrete time.

The second main result, Theorem 2, characterizes when a given vector x is attainable. It

turns out that a vector x is attainable by player 1 if and only if (i) the vector ~0 is attainable

by player 1, and (ii) the vector ~0 is attainable by player 1 in a game whose payoffs are

translated by δx for some δ > 0. Condition (i) is shared by all x: in order for any x to

be attainable, the vector ~0 must be attainable. Condition (ii), on the other hand, is point

specific, and it uses the attainability of ~0 in a modified version of the original game.

The last result, Theorem 3, characterizes the cases in which the controller has full

freedom in the sense that every x is attainable.

There is a literature on decision problems related to dynamic multi-inventory in con-

tinuous time (see for instance, the continuous-time control strategy in [11]). The control

literature up to this point refers to one-person (the controller) decision problems facing

uncertainty. As far as we know, this paper is the first taking a strategic approach to the
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problem.

In the game in continuous time we discuss, players are allowed to use a special type of

behavior strategies. These strategies are characterized by an increasing sequence of positive

real numbers, that divide the time span [0,∞) into sub-interval. The play of the player

in each interval depends on the play of the other player before the interval starts, but is

independent of the play of the other player during that time interval. This is equivalent to

saying that before the game starts, a player sets an alarm clock to ring in certain times,

and whenever the clock rings, the player looks at the historical play path up to that point

and determines how to play until the next time the clock rings. We later discuss the

interpretation of this type of strategies.

This paper is organized as follows. In Section 2, we provide motivating examples. In

Section 3 we introduce the model and main definitions. In Section 4, we introduce and

discuss the results. Section 5 is devoted to the discussion of a few aspects related to the

definition of attainability and to the type of continuous strategies that we are using. Proofs

are relegated to Section 6.

2 Motivations

This section details one motivation of our study: distribution networks. Consider a dis-

tributer of a certain product who has two warehouses A and B in different regions. Every

month the distributer can order products from factories to each of the warehouses, and he

can transport products between the two warehouses, while vendors order products from the

warehouses. This situation is described graphically in Figure 2.

fA

fB

fT

wA

wB

A

B

(a) Three distribution flows fA,

fT , fB and two vendors requests

wA, wB .

fA

fB

fT

wA

wB

wC
A

B

C

(b) Factory manager can sell directly

to vendors: node C represents factory.

Figure 1: Distribution network with warehouses A and B.

In Figure 2, fA and fB are the number of products that are sent from factories to the two
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warehouses A and B, fT is the number of products that are transported from warehouse A

to warehouse B, and wA and wB are the number of products sent from the two warehouses

to vendors. Negative flows are interpreted as flows in the opposite direction; e.g., if vendors

return products to warehouse A (resp. to warehouse B), then wA (resp. wB) is negative.

If products are transported from warehouse B to warehouse A, then fT is negative. We

analyze this situation in continuous time. The change in the stock in the two warehouses

is given by the 2-dimensional vector,

u(at1, a
t
2) =

(
1 −1 0

0 1 1

)
︸ ︷︷ ︸

F


f tA

f tT

f tB


︸ ︷︷ ︸

at1

−

(
wtA

wtB

)
︸ ︷︷ ︸

at2

where at1 = (f tA, f
t
B, f

t
T ) is the decision variable of the distributer, and at2 = (wtA, w

t
B) is the

uncontrolled market demand at time t.

Suppose that the number of products that can be ordered by vendors at each time

instance is bounded by 2, and the number of products that can be returned by vendors

to each warehouse at every time instance is 3. In other words, wtA and wtB are in [−3, 2].

Suppose also that the amount of product that the distributer can order from or return to

the factories and transport between the two warehouses is bounded by 5.

This situation can be described by a two-person game as follows. The distributer (player

1) has 8 actions

(5, 5, 5), (5, 5,−5), (5,−5, 5), (5,−5,−5), (−5, 5, 5), (−5, 5,−5), (−5,−5, 5), (−5,−5,−5),

while the market demand or nature (player 2) has 4 actions

(−3,−3), (−3, 2), (2,−3), (2, 2).

The payoffs correspond to the change of stock in the two warehouses, and are given by the

following table:
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(-5,-5,-5)

(-5,-5,5)

(-5,5,-5)

(-5,5,5)

(5,-5,-5)

(5,-5,5)

(5,5,-5)

(5,5,5)

(-3,-3) (-3,2) (2,-3) (2,2)

(3,-7)

(3,3)

(-7,3)

(-7,13)

(13,-7)

(13,3)

(3,3)

(3,13)

(3,-12)

(3,-2)

(-7,-2)

(-7,8)

(13,-12)

(13,-2)

(3,-2)

(3,8)

(-2,-7)

(-2,3)

(-12,3)

(-12,-13)

(8,-7)

(8,3)

(-2,3)

(-2,13)

(-2,-12)

(-2,-2)

(-12,-2)

(-12,8)

(8,-12)

(8,-2)

(-2,-2)

(-2,8)

At every time instance the two players choose their actions. The (2-dimensional) total

payoff up to time t is the number of products that are stored in each of the two warehouses.

The goal of the distributer is to ensure that the total number of products in each warehouse

does not exceed its capacity, that is, that the total payoff should not exceed a certain

(2-dimensional) bound.

Figure 2 describes the case where the factory manager can sell directly to vendors, thus

by-passing the distribution to warehouses. This situation can be represented by adding an

additional node C modeling the factory, and an edge that represents the market demand.

The stock is now a 3-dimensional vector, as we have to take into account the inventory

available at the factory, and consequently the change in the stock modifies as shown below:

u(at1, a
t
2) =


1 −1 0

0 1 1

−1 0 −1




f tA

f tT

f tB

−


wtA

wtB

wtC

 .

A recurrent question in the network flow control literature [4, 5, 11, 12, 13] is about

conditions that ensure the existence of a control strategy that drives the excess supply

vector to a desired target level in Rm regardless of the unpredictable realization of the

demand. The equivalence between the excess supply and the cumulative payoff in the

dynamic game motivates our study. The rest of the paper is devoted to the analysis of

conditions under which player 1 has a strategy ensuring the attainability of a given point,

regardless of the behavior of player 2.

Situations where the target is to control the total payoff occur also in production and

transportation networks. Production networks describe production processes and activities

necessary to turn raw materials into intermediate products and eventually into final prod-
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ucts. The nodes of the networks represent raw materials and intermediate/final products.

The buffer at each single node i models the amount of material or product of type i stored

or produced up to the current time, and hyper-arcs describe the materials or products con-

sumed (tail nodes) and produced (head nodes) in each activity or process. Transportation

networks model the flow of commodities, information, or traffic; nodes of the networks rep-

resent hubs and the buffers at the nodes describe the quantity of commodities present in

the hubs. The edges describe transportation routes.

2.1 Related control and optimization literature

We highlight two main streams of related literature, one from the control area and the

second from the optimization area. These two bodies of literature have two main elements

in common: i) the interest towards robustness, and ii) the presence of a network dynamic

flow scenario.

Connections between robust control and noncooperative game theory has a long history

(see, e.g., [3]). In plain words, robust control is the area of control theory that looks for

control strategies that “control” the state of a dynamical system, for instance, drive it to

a given set, despite the effects of disturbances (see the seminal paper [7]). Among the

foundations of robust control we find two main notions that can be related to attainability

and are surveyed in [10]. The first notion is called robust global attractiveness and refers to

the property of a set to “attract” the state of the system under a proper control strategy and

independently of the effects of the disturbance. The second notion is referred to as robustly

controlled invariance and describes the property of a set to bound the state trajectory under

a proper control strategy and independently of the effects of the disturbance. Both notions

are widely exploited in a variety of works that contribute to the use of robust control in

dynamic network flow models [4, 5, 11, 12, 13].

A second stream of literature can be identified under the name of “robust optimization”.

This is a relatively recent technique that describes uncertainty via sets and optimizes the

worst-case cost over those sets (see, e.g., the introduction to the special issue [6]). The use

of robust optimization techniques in dynamic network models is the main focus of [1, 2, 8].

There, a main theme is to “adjust” some of the supplier’s decision variables to the uncertain

outcome. More specifically, some variables are determined before the outcome is realized

while the rest are determined after the outcome is realized. Such a problem formulation

is referred to as “Adjustable Robust Counterpart” (ARC) problem, or “two-stage robust

optimization with recourse” and as it will be clear later it shares striking similarities with
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the formulation of attainable strategies presented in the current paper.

This paper focuses on the game theoretic aspects related to attainable sets. A discussion

on applications to network flow control problems is introduced in a companion paper ([14]).

3 Attainability

In the first part of this section, we introduce a mathematical model of the repeated game

studied in this paper and elaborate on the type of strategies used by the players. In the

remaining part, we provide a formal definition of attainability.

3.1 The model

We study a two-player repeated game with vector payoffs in continuous time Γ. The set of

players is N = {1, 2}, and the finite set of actions of each player i is Ai. The instantaneous

payoff is given by a function u : A1 ×A2 → Rm, where m is a natural number. We assume

w.l.o.g. that payoffs are bounded by 1, so that u : A1×A2 → [−1, 1]m. We extend u to the

set of mixed actions pairs, ∆(A1)×∆(A2), in a bilinear fashion. For simplicity the one-shot

vector-payoff game (A1, A2, u) is denoted by G. If i ∈ {1, 2}, then −i denotes the player

who is not i.

The game Γ is played over the time interval [0,∞). We assume that the players use

non-anticipating behavior strategies with delay, which we define now. Roughly, a non-

anticipating behavior strategy with delay divides time into blocks. The behavior of a player

in a given block depends on the behavior of the other player up to the beginning of that

block. In other words, the way a player plays during a given block of time is not affected

by the way the other player plays during that block. Still, it may affect the other player’s

play in subsequent blocks.

Denote by Ci the set of all controls of player i, that is, the set of all measurable functions

from the time space, [0,∞), to player i’s mixed actions. That is,

Ci := {ai : [0,∞)→ ∆(Ai), ai is measurable} .

Definition 1 A function σi : C−i → Ci is a behavior strategy with delay (or simply a

strategy) for player i, if there exists an increasing sequence of real numbers (τki )k∈N such

that for every a−i, a
′
−i ∈ C−i,

a−i(t) = a′−i(t) ∀t ∈ [0, τki ) =⇒ (σi(a−i))(t) = (σi(a
′
−i))(t) ∀k ≥ 0∀t ∈ [0, τk+1

i ),

where τ0i = 0.
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Remark 1 A strategy as we defined here is called a non-anticipating strategy with delay

in the literature of differential games. An equivalent formulation, that may look more trans-

parent to game theorists, is as follows. A strategy for player i is a vector (τki , σ
k
i )k∈N where

(τki )k∈N is an increasing sequence of real numbers, and for each k ∈ N, σki is a function

that maps play paths (of both players) on the interval [0, τk−1i ) to plays of player i in the

interval [τk−1i , τki ).

When defining a strategy and when referring to a strategy we will usually take the equiv-

alent formulation given in this remark.

In the sequel we will refer to the real numbers (τki )k∈N in Definition 1 as the updating

times related to σi.

Remark 2 Continuous time is usually used as a convenient model for discrete time, when

the gap between two stages is small. This is the case here as well. Suppose that time is

discrete, and the time difference between any two decision moments is extremely small.

Suppose that observation of the actions of the other player is time consuming and possibly

costly, so that players cannot observe each other at every decision point. Thus, the players

are in fact playing a game in discrete time, in which they can randomize at every decision

point, but they observe the actions of the other player only rarely, relative to the frequency

in which they take actions. By improving the observation technology a player can observe

the actions of the other player more frequently, but this frequency will always be significantly

slower than the frequency in which actions are taken.

Every pair of strategies σ = (σ1, σ2) uniquely determines a play path (at(σ))t∈R+ . The

payoff (vector) up to time T associated with the pair of strategies σ is given by

γT (σ) =

∫ T

0
u(at(σ))dt ∈ Rm. (1)

When we wish to emphasize that the payoff is in the game G we will write γTG rather than

γT . Since payoffs are bounded by 1, the integral in (1), which is the cumulative payoff up

to time T , is well-defined.
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3.2 Attainability: the definition

For every set Y ⊆ Rm we denote by B(Y, ε) the set of all points whose distance1 from at

least one point in Y is less than ε. That is,

B(Y, ε) := {x ∈ Rm : d(x, Y ) < ε}.

When Y is a single point x, we write B(x, ε) instead of B({x}, ε).
The subject matter of the paper is the concept of attainable sets: a set of vectors

is attainable by a player if he can guarantee that the total payoff converges to the set,

regardless of the strategy of the other player. We provide a definition for this concept. Two

other possible definitions are given and discussed in Section 5.

Definition 2 The set Y is attainable by player 1 if there is T > 0 such that for every ε > 0

there is a strategy σ1 of player 1 such that

d(γt(σ1, σ2), Y ) ≤ ε, ∀t ≥ T, ∀σ2.

A set Y is attainable if there is a finite horizon T such that player 1 can ensure, against

any possible strategy of player 2, that the cumulative payoff up to any time t ≥ T is within

ε from Y . Note that the time T is uniform across all levels of precision. That is, in order

for Y to be attainable by player 1, player 1 must be able to guarantee that the cumulative

payoff at any time longer than T would be within any ε from Y . However, different ε’s

might require different strategies employed by player 1. It might therefore happen that

although Y is attainable and player 1 is doing his best to attain it, the cumulative payoff

would never touch y itself. We say that the strategy σ1 in Definition 2 attains the set Y up

to ε.

When Y = {x}, meaning that it contains a single vector, we say that the vector x is

attainable by the player. Denote by W the set of attainable points.

The definition of an attainable set looks close in spirit to that of approachable set in

games played over discrete set of times (see [9]). There is, however, a significant difference

between the two concepts. A set is approachable if the average payoff converges to it,

while a set is attainable if the cumulative payoff converges to the set. In other words,

approachability refers to the convergence of the average payoff, while attainability to the

convergence of the cumulative payoff. Indeed, the results characterizing approachable sets

and attainable sets are significantly different, both in contents and in spirit.

1The distance and the norm referred to throughout the paper is ‖.‖2. For instance, d(x,A) = miny∈Y ‖x−
y‖2.
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4 Results

This section presents the three main results of our study. The first result, Theorem 1,

focuses on the conditions under which the vector ~0 is attainable. Attainability of ~0 turns

out to be crucial if we wish to inspect attainability of a single vector x 6= ~0, and this

constitutes our second result (see Theorem 2). The third result builds upon the previous

two results, and provides a stricter condition for any vector x to be attainable.

We start with a simple observation regarding the notion of attainability, which holds

due to the continuous time set up.

Proposition 1 The set W is a convex cone.

The proof is differed to the last section.

The next theorem characterizes when the vector ~0 is attainable. To state this result we

need the following notations. Let λ ∈ Rm. Denote2 by 〈λ,G〉 the zero-sum one-shot game

whose set of players and their action sets are as in the game G, and the payoff that player 2

pays to player 1 is 〈λ, u(a1, a2)〉 for every (a1, a2) ∈ A1×A2. As a zero-sum one-shot game,

the game 〈λ,G〉 has a value, denoted vλ.

For every mixed action p ∈ ∆(A1) denote

D1(p) = {u(p, q) : q ∈ ∆(A2)}.

D1(p) is the set of all payoffs that might be realized when player 1 plays the mixed action p.

If vλ ≥ 0 (resp. vλ > 0), then there is a mixed action p ∈ ∆(A1) such that D1(p) is a subset

of the closed half space {x ∈ Rm : 〈λ, x〉 ≥ 0} (resp. half space {x ∈ Rm : 〈λ, x〉 > 0}).

Theorem 1 The following conditions are equivalent.

B1 The vector ~0 ∈ Rm is attainable by player 1;

B2 vλ ≥ 0 for every λ ∈ Rm.

Corollary 2 in [9] implies that the vector ~0 is approachable in the game in discrete time

with payoff function u if and only if condition B2 holds. We thus deduce the following

corollary to Theorem 1.

Corollary 1 The vector ~0 ∈ Rm is attainable by player 1 in Γ if and only if it is approach-

able by player 1 in the game in discrete time with payoff function u.

2The inner product is defined by 〈x, y〉 :=
∑m
i=1 xiyi for every x, y ∈ Rm.
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The following result characterizes when a given vector x is attainable. We will need the

following notation. For every y ∈ Rm denote by (G− y) the two-player one-shot game that

is identical to G except for its payoff function. The payoff function of (G − y) is (u − y),

where (u− y)(a1, a2) = u(a1, a2)− y for every a1 ∈ A1 and a2 ∈ A2.

Theorem 2 Let ~0 6= x ∈ Rm. The vector x is attainable by player 1 if and only if

B1 The vector ~0 ∈ Rm is attainable by player 1

and either one of the following conditions holds:

B3 There is δ0 > 0 such that for every q ∈ ∆(A2) there is p ∈ ∆(A1) and δ > δ0 satisfying

u(p, q) = δx with δ > δ0.

B4 There is δ > 0 such that the vector ~0 ∈ Rm is attainable by player 1 in the game

(G− δx).

Theorem 2 implies that whenever any vector x is attainable, so is the vector ~0. Since

attainability is concerned with the cumulative payoff, once a target level is (almost) reached,

this level should be maintained in the long run. This means that once a neighborhood of a

target level x is reached, from that point on the level ~0 ought to be attained. This is the

reason why ~0 is attainable when any vector x is, and why ~0 plays a major role in the theory

of attainability. However, condition B1 alone is not sufficient for the attainability of other

vectors.

Condition B3 states that for every q ∈ ∆(A2) there is a strategy of player 1 such that

the payoff u(p, q) is x multiplied by a scalar δ, which is bounded away from 0. Condition

B4 states that ~0 is attainable in some game whose payoff is a translation of the original

payoff function by δx.

The following theorem deals with the case where all the vectors are attainable.

Theorem 3 The following statements are equivalent:

C1 vλ > 0 for every λ ∈ Rm;

C2 Every vector x ∈ Rm is attainable by player 1.

Remark 3 If condition C2 is satisfied, then for every open half space H of Rm, there is

a mixed action p ∈ ∆(A1) such that D1(p) ⊆ H. Standard continuity and compactness

arguments imply that in this case there is δ1 > 0 such that for every half space H there

is p ∈ ∆(A1) satisfying d(D1(p), H) ≥ δ1. Stated differently, there is δ2 > 0 such that for

every vector λ whose `1-norm is 1, 〈λ, u(p, q)〉 > δ2 for every q ∈ ∆(A2).
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Note the difference between condition B2 of Theorem 1 and condition C2 of Theorem 3.

In the former, the value of the scalar-payoff game with payoffs 〈λ, u(p, q)〉 is non-negative

for every direction λ ∈ Rm, while in the latter it is strictly positive. The former guar-

antees attainability of the only vector ~0, while the latter guarantees that every vector is

asymptotically attainable.

5 Discussion

The problem setting and the results illustrated above give rise to a number of additional

questions such as: Is Theorem 1 still valid if the repeated game is in discrete time? Can we

derive a different notion of attainability that captures the model behavior when the time

of convergence to a given set is unbounded by above? What if the updating times are not

pre-determined and can be selected as a function of the information available up to the

previous time interval? We next elaborate on the above issues one by one and highlight a

few other open problems which we leave for future research.

5.1 Continuous time versus discrete time.

The characterization presented in Theorem 1 depends crucially on the continuous time

setting. The following example shows that this result is invalid when time is discrete.

Example 1 Consider a game in discrete time where payoffs are one-dimensional and each

player has two actions. Payoffs are given by the following matrix:

B

U

L R

2− 1

−2− 1

2 + 1

−2 + 1
=

B

U

L R

1

−3

3

−1

The payoffs in this game are the sum of two numbers, one determined by player 1 (-2 if

he plays U , 2 if he plays B), and the other by player 2 (-1 if she plays L, 1 if she plays R).

Condition B2 is satisfied, and therefore 0 is attainable by player 1. The following

strategy guarantees that the cumulative payoff is3 within 9 · 2η from 0 at any t > 2; the

details of the proof can be found in the proof of Theorem 1. Divide the time line into

countably many blocks, where the length of the k-th block is η
k . In the k-th block player 1

plays U if the cumulative payoff at the beginning of the block is positive, and he plays B

otherwise.

3The extra 9 appears because in this example the payoffs are not bounded by 1, and 32 = 9.
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We show that 0 is not attainable by player 1 in the game with discrete time. When time

is discrete, a behavior strategy of a player is a function that assigns a mixed action to each

past history. For every ` ∈ N let p` be the mixed action played by player 1 at stage `. The

mixed action p` depends on past play. Let σ2 be the strategy that at each stage ` plays L

if p`(U) ≥ 1
2 , and R otherwise. The stage payoff is then at least 2 whenever player 2 plays

R, and at most −2 whenever player 2 plays L. In particular, if the total payoff up to stage

` is in the interval [−1
2 ,

1
2 ], then the payoff up to stage `+ 1 lies outside this interval. Thus,

the cumulative payoff does not converge to 0.

Example 1 suggests that the characterization of the set of attainable vectors in games

in discrete time is more challenging that the characterization in continuous time.

5.2 Alternative definitions of attainability

We here provide two alternative definitions of the concept of attainability, which we term

asymptotic attainability and weak asymptotic attainability. We then explore some relations

between the three definitions.

Definition 3 (i) The set Y ⊆ Rm is asymptotically attainable by player 1 if there is a

strategy σ1 for player 1 such that for every strategy σ2 of player 2,

lim
T→∞

d(γT (σ1, σ2), Y ) = 0. (2)

(ii) The set Y is weakly asymptotically attainable by player 1, if the set B(Y, ε) is asymp-

totically attainable by player 1 for every ε > 0.

Asymptotic attainability requires that a set is asymptotically reached by the cumulative

payoff without putting any bound on the time it takes to reach the set. Attainability, on the

other hand, requires that a set is approximately reached in a bounded time, independent of

the degree of approximation. Weak asymptotic attainability relaxes both time boundedness

and the level of the approximation precision. A set Y is weakly asymptotically attainable

if any neighborhood B(Y, ε) around Y can be asymptotically attained, without having a

universal bound on the time at which this neighborhood is reached.

Any attainable set is also weakly asymptotically attainable and any asymptotically

attainable set is weakly asymptotically attainable as well. Analogously to Proposition 1,

the set of asymptotically attainable vectors and the set of weakly asymptotically attainable
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vectors are convex cones. The definition implies that the set of weakly attainable vectors

is also closed.

Using Theorem 1 we now show that attainability of a vector does not imply its asymp-

totic attainability. It implies in particular that these two concepts are not identical.

Example 2 We provide an example where the vector ~0 is attainable but not asymptotically

attainable. Consider the following game where payoffs are 2-dimensional, player 1 has 8

actions, player 2 has 4 actions, and the payoff function is:

a81

a71

a61

a51

a41

a31

a21

a11

a12 a22 a32 a42

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 1)

(1, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0,−1)

(1, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 1)

(−1, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0,−1)

(−1, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

In this game vλ = 0 for every λ ∈ R2. Thus, for every λ ∈ R2 one has vλ ≥ 0. Theorem

1 implies that the vector ~0 is attainable by player 1. We argue that ~0 is not asymptotically

attainable by player 1. Assume that player 1 implements a strategy σ1. In an initial time

interval the strategy σ1 plays one of the rows with a positive probability. Consider the

strategy σ2 of player 2 that plays constantly a column that generates a non-zero vector in

that initial interval. For instance, if player 1 plays the action a11 with positive probability

in the initial interval, then player 2 should play the action a12 for ever. The initial period

produces a non-zero payoff and this payoff is not diminishing to zero because player 2

keeps playing the same column forever. This example shows that ~0 is attainable but not

asymptotically attainable by player 1.

We point out that the argument mentioned above shows in fact that ~0 is not attainable

in the corresponding game in discrete time as well.

The following example shows that a weakly attainable vector needs not be attainable.

Example 3 Consider a two-player game where payoffs are 2-dimensional, player 1 has 3

actions, player 2 has 2 actions, and the payoff function is given by:
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B

M

U

L R

(0, 0)

(0, 0)

(1, 1)

(0, 0)

(1, 1)

(0, 1)

The vector (0, 0) is attainable by player 1, using the strategy that always plays B. The

vector (1, 1) is weakly asymptotically attainable according to Definition 3. Indeed, given

ε > 0 consider the strategy σε1, with updating times (τk1 )k∈N defined by τk1 = kε for k ∈ N,

that is defined as follows.

• If the total payoff up to time τk1 is not in the set B((1, 1), ε), during the time interval

[τk1 , τ
k+1
1 ) play the mixed action [ε(U), (1− ε)(M)].

• If the total payoff up to time τk1 is in the set B((1, 1), ε), during the time interval

[τk1 , τ
k+1
1 ) play the action B.

For every t ≥ 1
ε one has d(γt(σε1, σ2), (1, 1)) < ε, so that the vector (1, 1) is indeed weakly

asymptotically attainable by player 1.

The vector (1, 1), however, is not attainable by player 1 (according to Definition 2).

Indeed, let T > 0, let ε < 1
2(T+1) and let σ1 be a strategy of player 1 with updating times

(τk1 )k∈N. Define a strategy σ2 of player 2 as follows: the updating times of σ2 are the

same as those of σ1. The strategy σ2 is defined recursively. Suppose that the strategy is

already defined in the time interval [0, τk1 ), so that the play of σ1 in this time interval can

be calculated by player 2. Define

lk :=

∫ τk+1
1

t=τk1

at1(σ1, σ2)(U) + at1(σ1, σ2)(M)dt

to be the total weight of the actions U and M in the k’th block, and define

αk :=
1

lk

∫ τk+1
1

t=τk1

at1(σ1, σ2)(U)dt

to be the total weight of the action U relative to that assigned to U and M in the k’th

block. Define σ2 in the time interval [τk1 , τ
k+1
1 ) as follows:

• If αk ≤ ε, play L for every t ∈ [τk1 , τ
k+1
1 ).

• If αk > ε, play R for every t ∈ [τk1 , τ
k+1
1 ).
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If σ1 attains (1, 1) up to ε, then the total payoff is within ε of (1, 1). In particular, the

Lebesgue measure of the set of times in which the action pair (U,R) is played is at most

2ε, and therefore the Lebesgue measure of the set of times in which the action pairs (U,L)

and (M,R) (together) are played is between 1− ε and 1 + ε. Under (σ1, σ2) the Lebesgue

measure of the set of times in which the action pair (U,R) is played is
∑
{k : αk>ε} αklk, and

therefore ∑
{k : αk>ε}

εlk <
∑

{k : αk>ε}

αklk < 2ε,

which implies that ∑
{k : αk>ε}

lk < 2ε.

Under (σ1, σ2) the Lebesgue measure of the set of times in which the action pair (U,L) is

played up to time T is bounded by ∑
{k : αk≤ε,τk+1

i ≤T}

αklk ≤ εT <
1

2
.

The Lebesgue measure of the set of times in which the action pair (M,R) is played up to

time T under this strategy pair is bounded by∑
{k : αk>ε,τk+1

i ≤T}

lk ≤
∑

{k : αk>ε}

lk < 2ε.

It follows that the total payoff up to time T is not larger (in each coordinate) than (12 +

2ε, 12+4ε), hence in particular (σ1, σ2) does not attain (1, 1) up to ε, provided ε is sufficiently

small.

Remark 4 The proof of Theorem 3 shows that every point is attainable if and only if

every point is asymptotically attainable. Example 2 shows that attainability does not imply

asymptotic attainability. We are unable to tell whether or not asymptotic attainability

implies attainability.

5.3 Alternative strategies in continuous time.

The strategies we use here are non-anticipating strategies with delay. In these strategies

the times (τki )k∈N, at which a player observes past play, are independent of the play of the

other player. One could consider a broader class of strategies in which (τki )k∈N are stopping

times. In other words, τk+1
i is a time that depends on (that is, it is measurable with respect

to) the information available to player i at time τki , for each k ∈ N. In this type of strategies
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the updating times (τki )k∈N, are not pre-determined real numbers, as in Definition 1. Our

results remain valid even if player 2 is allowed to use a strategy from this broader class of

strategies.

5.4 Remaining open problems

In the applications that we provided, both in control theory and in banking, the target

sets are often not singletons. All the results above refer to attainability of singletons, and

did not discuss attainability, asymptotic attainability or weak asymptotic attainability of

sets. Characterizing when a set of payoffs is attainable (according to these three definitions)

remains open. We also leave attainability in discrete time and attainability when payoffs

are discounted for future investigation.

6 Proofs

6.1 Proof of Proposition 1

The following two lemmas prove the proposition.

Lemma 1 The set W is a cone.

Lemma 2 The set W is convex.

Proof of Lemma 1. Suppose that x ∈W , and fix β > 0. We will show that 1
βx ∈W

as well.

For every strategy σi of player i, let σβi be the strategy σi accelerated by a factor β.

That is, (σβi (a−i))(t) := (σi(â−i))(βt), where â−i(t) = a−i(βt).

By the definition of attainability, there is T > 0 such that for every ε > 0 there is a

strategy σε1 of player 1 such that

d(x, γt(σ1, σ2)) ≤ ε, ∀t ≥ T, ∀σ2.

For every strategy σ2 of player 2 one has

γt(σβ1 , σ2) =

∫ t

0
u(as(σβ1 , σ2))ds

=
1

β

∫ βt

0
u(as(σ1, σ

1/β
2 ))ds (3)

= (1/β)γβt(σ1, σ
1/β
2 ).
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We deduce that

d(
x

β
, γT (σβ1 , σ2)) ≤

ε

β
, ∀t ≥ βT, ∀σ2,

and therefore 1
βx is attainable by player 1, as desired.

Proof of Lemma 2. Let x, y ∈W and let 0 < β < 1. We show that βx+(1−β)y ∈W .

From Lemma 1, βx and (1− β)y are attainable by player 1.

By the definition of attainability there are Tx, Ty > 0 such that for every ε > 0 there

are strategies σx1 and σy1 of player 1 such that

d(γt(σx1 , σ2), βx) < ε, ∀t ≥ Tx,∀σ2, (4)

d(γt(σy1 , σ2), βy) < ε, ∀t ≥ Ty, ∀σ2. (5)

Partition the time line [0,∞) into two sets, T1 and T2 as follows:

• T1 = ∪∞`=0[`, `+ β);

• T2 = ∪∞`=0[`+ β, `+ 1).

Thus, each integer interval [`, ` + 1) is partitioned into two sets: one set with Lebesgue

measure β is included in T1, and the other set with Lebesgue measure 1− β is included in

T2. We construct a strategy σ1 of player 1 that uses σx1 on T1 and σy1 on T2, and show that

this strategy attains βx+ (1− β)y up to ε. Formally, for each j ∈ {1, 2} define ϕj(t) to be

the Lebesgue measure of the set [0, t) ∩ Tj . Given a control a−i ∈ C−i define two auxiliary

controls â1−i and â2−i by

âj−i(t) := a−i(ϕ
−1
j (t)) for every t ≥ 0, j ∈ {1, 2}.

The control âj−i consists of that part of a−i that corresponds to times in Tj . The strategy

σ1 is defined by

σ1(a−i)(t) :=

{
(σx1 (â1−i))(t), t ∈ T1,

(σy1(â2−i))(t), t ∈ T2.

Fix a strategy σ2 of player 2.

γT (σ1, σ2) =

∫ T

0
u(at(σ1, σ2))dt

=

∫
[0,T )∩T1

u(aϕ
−1
1 (t)(σx, σ2,x))dt+

∫
[0,T )∩T2

u(aϕ
−1
2 (t)(σy, σ2,y))dt,

where σ2,x and σ2,y are the strategies of player 2 induced on T1 and T2. The right-hand

side converges to βx+ (1− β)y up to ε, which completes the proof.
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6.2 Proof of Theorem 1

To see that condition B1 implies condition B2, assume to the contrary that B1 holds but

condition B2 does not. Then, there is λ such that vλ < 0. That is, there is q ∈ ∆(A2)

and δ > 0 such that 〈λ, u(p, q)〉 < δ < 0 for every p ∈ ∆(A1). Denote by σ2 the stationary

strategy of player 2 that plays constantly the mixed action q. This strategy guarantees that

for every strategy σ1 of player 1,

〈λ, γT (σ)〉 =

∫ T

0
〈λ, ui((at(σ))〉dt < Tδ.

In particular, the distance between
∫ T
0 ui(a

t(σ))dt and ~0 does not go to 0, and therefore the

vector ~0 is not attainable by player 1, which contradicts condition B1.

Suppose now that condition B2 is satisfied. The argument used in the proof of Lemma

1 of accelerating the time shows that, given T > 0, if for every ε there is a strategy σ1 of

player 1 such that d(γt(σ1, σ2),~0) < ε for every t ≥ T then for every ε there is a strategy

σ̂1 of player 1 such that d(γt(σ̂1, σ2),~0) < ε for every t ≥ T
2 . It follows that to prove that

condition B1 is satisfied it is sufficient to prove that condition B2 implies that for every

ε > 0 there is T > 0 and a strategy σ1 of player 1 such that d(γt(σ1, σ2),~0) < ε for every

t ≥ T .

Consider then the following strategy σ1 of player 1 that depends on a parameter η > 0.

The updating times of the strategy σ1, (τk1 )k∈N, are defined by

τk1 :=
k∑
`=1

η

`
. (6)

Denote the payoff up to time τk1 by Sk. For τk1 ≤ t < τk+1
1 we set σ1(t) to be an optimal

strategy of player 1 in the game 〈−Sk, G〉. That is, σ1 is constant in the interval [τk1 , τ
k+1
1 );

in this interval σ1(t) is equal to a mixed action that guarantees that the payoff and Sk lie on

different sides of the hyperplane perpendicular to Sk. This means that if σ2 is the strategy

played by player 2, then 〈Sk, u(at(σ))〉 ≤ 0, for every t ∈ [τk1 , τ
k+1
1 ).

By definition, Sk = γτ
k
1 (σ1, σ2). Thus,

Sk = Sk−1 +

∫ τk1

τk−1
1

u(σ(t))dt.
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Consequently,

‖Sk‖2 = ‖Sk−1‖2 + 2

〈
Sk,

∫ τk1

τk−1
1

u(σ1(t), σ2(t))dt

〉
+

∥∥∥∥∥
∫ τk1

τk−1
1

u(σ1(t), σ2(t))dt

∥∥∥∥∥
2

(7)

= ‖Sk−1‖2 + 2

∫ τk1

τk−1
1

〈Sk, u(σ1(t), σ2(t))〉dt+

∥∥∥∥∥
∫ τk1

τk−1
1

u(σ1(t), σ2(t))dt

∥∥∥∥∥
2

(8)

≤ ‖Sk−1‖2 +

(∫ τk1

τk−1
1

‖u(σ1(t), σ2(t))‖dt

)2

(9)

≤ ‖Sk−1‖2 +
(η
k

)2
. (10)

Continuing this way, one obtains, ‖Sk‖2 ≤ η2
∑k

`=1
1
`2
< 4η2. Thus, the distance between

Sk and ~0 does not exceed 2η for any k.

Note that when k ≥ e
1
η , then τk1 :=

∑k
`=1

η
` ≥ η log(k) ≥ 1. It means that the cumulative

payoff at any time τk1 that exceeds 1 is within 2η from ~0. Finally, since the length of the

time segments [τk1 , τ
k+1
1 ) is η

k , the cumulative payoff up to t > 1 + η is within 2η+ η

e
1
η

from

~0. Since η is arbitrary, it follows that the vector ~0 is indeed attainable, with4 T = 2, by

player 1. Condition B1 is therefore established. �

6.3 Proof of Theorem 2

Part 1: If the vector x is attainable by player 1 then ~0 is attainable by player 1.

Assume to the contrary that the vector x is attainable by player 1 but ~0 is not attainable

by player 1. Let T0 > 0 be arbitrary. Since the vector ~0 is not attainable by player 1, there

is ε0 > 0 such that for every strategy σ1 of player 1 there is a strategy σ2 of player 2 and

t ≥ T0 such that d(γt(σ1, σ2),~0) > ε0.

Let σ1 be a strategy of player 1 that attains x. In particular, there is T > 0 and a

strategy σ1 of player 1 such that

d(γt(σ1, σ2), x) ≤ ε0
2
, ∀σ2,∀t ≥ T. (11)

Let σ̂1 be the strategy σ1 from time T and on. Formally, let k be the minimal integer such

that τk1 > T . The updating times of σ̂1 are (τ `1)∞`=1, and σ̂1(a2) = σ1(a
∗
2 ◦ a2) for every

a2 ∈ C2, where a∗2 is the play of player 2 according to σ2 up to time T (when player 1 plays

4Recall that in the definition of attainability, see Definition 2, there should be a uniform time T at which

the cumulative payoff is with ε to ~0. Here we set T = 2 because it is greater than 1 + η and it does depends

nor on η either on the strategy employed by player 1.
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σ1), and a∗2 ◦ a2 is the concatenation of a∗2 and a2 into a log history that starts with a∗2 and

continues with a2.

Let σ̂2 be a strategy of player 2 and t ≥ T0 be a positive real such that d(γt(σ̂1, σ̂2),~0) >

ε0. Consider now the strategy of player 2 that plays arbitrarily up to time T , and from

time T is follows σ̂2. Then d(γt(σ1, σ̂2),~0) > ε0
2 , which contradicts (11).

Part 2: If the vector x is attainable by player 1, then condition B3 is satisfied.

Suppose to the contrary that condition B3 is not satisfied. That is, for every δ0 > 0

there is q ∈ ∆(A2) such that for every p ∈ ∆(A1) one has u(p, q) 6= δx for every δ > δ0. We

divide the argument into two cases.

Case A: There is q ∈ ∆(A2) such that for every p ∈ ∆(A1), and every δ > 0, u(p, q) 6= δx.

We show that by playing constantly q (a strategy that we denote by q∗) player 2 can prevent

player 2 from attaining x. Let σ1 be a strategy of player 1. Denote by pt the average mixed

action played by player 1 up to time t; that is, pt = 1
t

∫ t
0 σ1(s)ds. We obtain, γt(σ1, q

∗) =

tu(pt, q). Thus, γt(σ1, q
∗) is in the cone generated by R1(q) := {u(p, q); p ∈ ∆(A1)}. This

cone is closed and by assumption, does not contain x. Thus, there is a positive distance

between x and this cone, implying that γt(σ1, q
∗) cannot get arbitrarily close to x. This

contradicts the fact that x is attainable.

Case B: For every q ∈ ∆(A2) there is p ∈ ∆(A1) such that u(p, q) = δx, but the δ’s

are not bounded away from zero. Thus, for every δ > 0, there is qδ ∈ ∆(A2) such that

δ ≥ max{δ′; ∃p s.t. u(p, q) = δ′x}. We show that for every δ > 0, if player 2 plays qδ

all the time (a strategy that we denote by q∗δ ), then there is ε > 0 such that for every σ1,

‖γT (σ1, q
∗
δ )− x‖ < ε implies T > 1/(4δ).

Fix δ > 0. Denote

δ0 := max{δ′ : ∃p s.t. u(p, qδ) = δ′x} < δ.

In particular, δ0x ∈ R1(qδ), and δ′x 6∈ R1(qδ) for every δ′ > δ0. Let E be the convex hull

of R1(qδ) and ~0. That is, E = conv
(
R1(qδ) ∪ {~0}

)
. The set E is convex, compact and it

does not contain δ′x for every δ′ > δ0. In particular, 2δ0x 6∈ E. Thus, there is an open

ball F = B(2δ0x, η) which is disjoint of E. By the hyperplane separation theorem there is

a non-zero vector α ∈ Rm (without loss of generality we may assume that ‖α‖ = 1) such

that 〈e, α〉 ≤ 〈f, α〉 for every e ∈ E and f ∈ F . It implies that 0 = 〈~0, α〉 ≤ 〈f, α〉 for every

f ∈ F .

We claim that 0 < 〈x, α〉. Indeed, if 0 = 〈x, α〉, then every f ∈ F can be expressed

as f = 2δ0x + v, where v = v(f) ∈ B(~0, η). In particular, 0 ≤ 〈f, α〉 = 〈v, α〉. It follows
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that 〈v, α〉 = 0 for every v ∈ B(~0, η), which implies that α = 0, contradicting the fact that

‖α‖ = 1.

Suppose that e ∈ R1(qδ) and T · e ∈ B(x, ε), with ε = 〈x, α〉/2. Then, T · e = x + z,

where ‖z‖ ≤ ε. Thus, 〈T · e, α〉 = 〈x+ z, α〉. Since e ∈ E and 2δ0x ∈ F ,

〈e, α〉 ≤ 〈2δ0x, α〉 ≤ 〈2δx, α〉.

Hence,

T =
〈x+ z, α〉
〈e, α〉

≥ 〈x, α〉+ 〈z, α〉
2〈δx, α〉

≥ 〈x, α〉 − ε
2〈δx, α〉

=
1

4δ
. (12)

Recall that q∗δ denotes the strategy of player 2 that plays qδ all the time. To show that

condition B1 holds, that is, that x is not attainable, we need to show that for every T

there is ε > 0 such that for every strategy σ1 of player 1 there is a strategy σ2 of player 2

and t ≤ T satisfying d(γt(σ1, σ2), x) > ε. Fix a strategy σ1 of player 1, and suppose that

the cumulative payoff up to T is within ε from x. In other words, ‖γT (σ1, q
∗
δ ) − x‖ ≤ ε.

Let pT := 1
T

∫ T
0 σ1(s)ds be the average mixed action played by σ1 until time T . Thus,

Tu(pT , qδ) = x + z, where ‖z‖ ≤ ε. Letting e = u(pT , qδ), we obtain by Eq. (12) that

T > 1
4δ . In words, the time it takes to reach B(x, ε) is at least 1

4δ . This shows that there

is no uniform bound on the time at which the total payoff gets close to x. Thus, x is not

attainable, which contradicts the assumption.

Part 3: If conditions B1 and B3 hold, then condition B4 holds.

Let 〈λ, (G − δx)〉 be an auxiliary two-player zero-sum one-shot game where the sets of

actions of the two players are A1 and A2, and the payoff function is r(a1, a2) = 〈λ, u(a1, a2)−
δx〉 for every (a1, a2) ∈ A1 ×A2

We prove that there is δ > 0 such that for every vector λ ∈ Rm one has val(〈λ, (G −
δx)〉) > 0. Theorem 1 would then imply that the vector ~0 is attainable in the game

〈λ, (G− δx)〉, so that condition B4 would hold.

To this end we show that there is δ > 0 such that for every λ ∈ Rm there is p ∈ ∆(A1)

such that for every q ∈ ∆(A2), 〈λ, u(p, q)− δx〉 ≥ 0, or equivalently, 〈λ, u(p, q)〉 ≥ 〈λ, δx〉.
Fix λ ∈ Rm. Assume first that 〈λ, x〉 < 0. By condition B1 we have that vλ ≥ 0,

and therefore there is p ∈ ∆(A1) such that for every q ∈ ∆(A2), 〈λ, u(p, q)〉 ≥ 0. Hence,

〈λ, u(p, q)〉 ≥ δ〈λ, x〉 = 〈λ, δx〉 for every δ > 0, as desired. We can therefore assume that

〈λ, x〉 ≥ 0. From condition B3 we know that for every q ∈ ∆(A2) there is p ∈ ∆(A1)

such that u(p, q) = δx with δ bounded away form 0. Therefore, there is δ0 such that for

every q ∈ ∆(A2) there is p ∈ ∆(A1), such that 〈λ, u(p, q)〉 = 〈λ, δqx〉 ≥ 〈λ, δ0x〉. By the
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minmax theorem, there is p ∈ ∆(A1) such that for every q ∈ ∆(A2), 〈λ, u(p, q)〉 ≥ 〈λ, δ0x〉,
as desired.

Part 4: If conditions B1 and B4 hold then the vector x is attainable by player 1.

Let η > 0 and let ε > 0 satisfy ε
δT < η. By condition B4 the vector ~0 is attainable by

player 1 in the game (G − δx), so that there is T > 0 such that for every ε > 0 there is a

strategy σ1 of player 1 satisfying

d(γt(G−δx)(σ1, σ2),
~0) ≤ ε, ∀σ2,∀t ≥ T. (13)

By Eq. (3), for every β > 0 one has

d(
1

β
γβt(G−δx)(σ

1/β
1 , σ2),~0) ≤ ε, ∀σ2,∀t ≥ T. (14)

It follows that

d(γβt(G−δx)(σ
1/β
1 , σ2),~0) ≤ βε, ∀σ2, ∀t ≥ T, (15)

so that

d(γt(G−δx)(σ
1/β
1 , σ2),~0) ≤ βε, ∀σ2, ∀t ≥ βT, (16)

Setting β = 1
δT we deduce that

d(γt(G−δx)(σ
δT
1 , σ2),~0) ≤ ε

δT
, ∀σ2,∀t ≥

1

δ
, (17)

Setting t = 1
δ in (17) it follows in particular that

d(γtG(σδT1 , σ2), x) ≤ ε

δT
< η, ∀σ2. (18)

The strategy σδT1 ensures that the payoff at time 1
δ is close to x. It follows that the strategy

of player 1 that follows σδT1 up to time 1
δ , and follows a strategy that attains ~0 in the game

G thereafter, is a strategy that attains x in G. �

6.4 Proof of Theorem 3

We first prove that condition C1 implies condition C2. We show that for every vector x

condition B3 is satisfied. Fix a vector x ∈ Rm.

Part 1: We show first that x is asymptotically attainable by player 1. To this end we define

a strategy σ1 and prove that it attains x. Fix η > 0. The updating times related to this

strategy, (τk1 )k∈N, are defined by τk1 :=
∑k

`=1
η
` . Assume that the strategy σ1 is already

defined on the time interval [0, τk1 ). Denote the payoff up to time τk1 by

Sk :=

∫ τk1

0
u(at(σ1, σ2))dt,
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where σ2 is the strategy of player 2. Let p ∈ ∆(A1) be an optimal strategy of player 1 in

the game 〈x− Sk, G〉. In the time interval [τk1 , τ
k+1
1 ) the strategy σ1 is defined as follows:

(σ1(a2))(t) := p, ∀t ∈ [τk1 , τ
k+1
1 ).

That is, σ1 is constant in the interval [τk1 , τ
k+1
1 ). In case x − Sk 6= 0, in this interval σ1(t)

is equal to a mixed action that guarantees that the payoff and x− Sk lie on different sides

of the hyperplane perpendicular to x− Sk.
In light of Remark 3, there is δ2 > 0 such that when σ2 is the strategy played by player

2, 〈 x−Sk
‖x−Sk‖ , u(at(σ))〉 < −δ2 for every t ∈ [τk1 , τ

k+1
1 ). The length of the interval [τk1 , τ

k+1
1 ) is

1
k+1 , and therefore the (normalized) payoff in this interval is

wk :=
k

η

∫ τk1

τk−1
1

u(at(σ1, σ2))dt.

Then one has

Sk = Sk−1 +
η

k
wk, ∀k ∈ N,

with S0 = 0. It follows that

‖x− Sk‖2 = ‖x− Sk−1 −
1

k
wk‖2 (19)

= ‖x− Sk−1‖2 +
η2

k2
‖wk‖2 + 2

η

k
‖x− Sk−1‖

〈
x− Sk−1
‖x− Sk−1‖

, wk

〉
. (20)

Thus,

‖x− Sk‖2 =
k∑
i=1

η2

i2
‖wi‖2 +

k∑
i=1

2
η

i
‖x− Si−1‖

〈
x− Si−1
‖x− Si−1‖

, wi

〉
+ ‖x‖2 ≤ (21)

k∑
i=1

η2

i2
‖wi‖2 −

k∑
i=1

2
η

i
‖x− Si−1‖δ2 + ‖x‖2. (22)

Fix ε > 0. Suppose that for every i ≤ k, ‖x − Si‖ ≥ ε. Since ‖x − Sk‖2 ≥ 0, the right

hand side of Eq. (22) is non-negative and therefore,

k∑
i=1

2
η

i
εδ2 ≤

k∑
i=1

η2

i2
‖wi‖2 + ‖x‖2.

As log(k) ≤
∑k

i=1
1
i , and since the payoffs are bounded by 1 (in particular ‖wk‖2 ≤ 1) we

obtain,

log(k) ≤
∑k

i=1 2η
2

i2
‖wi‖2 + ‖x‖2

2ηεδ2
≤
∑∞

i=1 2η
2

i2
+ ‖x‖2

2ηεδ2
.
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The right hand side does not depend on k and therefore there must be k such that ‖x−Si‖ <
ε. Since ε is arbitrary, it implies that lim infk→∞ ‖x− Sk‖ = 0.

We proceed to show that lim supk→∞ ‖x − Sk‖ = 0. Fix ε > 0. By Eqs. (19), (20) the

figure ‖x− Sk‖2 is smaller than ‖x− Sk−1‖2 as soon as

η2

k2
‖wk‖2 + 2

η

k
‖x− Sk−1‖

〈
x− Sk−1
‖x− Sk−1‖

, wk

〉
< 0. (23)

Since the payoffs are bounded by 1, Eq. (23) holds if

η

2kδ2
< ‖x− Sk−1‖. (24)

Since lim infk→∞ ‖x − Sk‖ = 0, there are infinitely many k’s for which ‖x − Sk‖2 < ε. If

‖x− Sk‖2 < ε, then

‖x− Sk‖2 < ε+
1

k2
‖wk‖2 + 2

1

k
‖x− Sk−1‖

〈
x− Sk−1
‖x− Sk−1‖

, wk

〉
< 2ε,

provided that k is sufficiently large. But when k is sufficiently large, 1
2kδ2

< ε, and then Eq.

(24) is satisfied. In this case ‖x− Sk‖2 < ‖x− Sk−1‖2. In other words, for k large enough,

if ‖x−Sk‖2 < ε, then the next time distance squared, ‖x−Sk+1‖2, cannot be greater than

2ε. And if this figure is greater than ε, the distance ‖x− S`‖ starts to decrease. Thus, for

k large enough, once ‖x − Sk‖2 is smaller than ε, it will remain smaller than 2ε for ever.

We conclude that lim supk→∞ ‖x− Sk‖2 < 2ε, and since ε is arbitrary, x is asymptotically

attainable.

Part 2: We are ready to show that C2 is satisfy. Assume to the contrary that C2 is not

satisfied. Then, there is x0 which is not attainable. By Theorem 2 one of the two following

cases occurs.5

Case A: There is q ∈ ∆(A2) such that for every p ∈ ∆(A1) and every δ > 0, u(p, q) 6=
δx0. As in the Theorem 2’s proof, by playing constantly q player 2 ensures that x0 is not

asymptotically attainable. Contradiction to Part 1.

Case B: (i) For every q ∈ ∆(A2) there is p ∈ ∆(A1) such that u(p, q) 6= δx0 with δ > 0;

and (ii) For every natural number n there is qn ∈ ∆(A2) such that if p ∈ ∆(A1) satisfies

u(p, qn) = δx0, then δ < 1/n. Part (ii) of Case B states that

δx0 ∈ R1(qn) implies δ < 1/n. (25)

Without loss of generality the sequence qn converges to a limit, denoted q∗. By (i) there

is δ0x0 ∈ R1(q∗) for some δ0 > 0. Moreover, since vλ > 0, for every λ there is p ∈ ∆(A1)

5Analogous cases were used in the proof of Theorem 2.
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such that 〈u(p, q∗), λ〉 > 0. Thus, there is y ∈ R1(q∗) such that 〈y, λ〉 > 0. This fact and

the fact that the set R1(q∗) is convex imply that ~0 is an interior point of R1(q∗). R1(q∗)

contains δ0x0 and therefore δ0
2 x0 is also an interior point of R1(q∗).

Since R1(qn) →n→∞ R1(q∗),
δ0
2 x0 is an interior point of R1(qn) for n sufficiently large.

In particular, δ0
2 x0 ∈ R1(qn) for n sufficiently large, which contradicts (25). We conclude

that C2 is satisfied, as desired.

Part 3: It remains to show that condition C1 implies C2. Assume that the payoff function

u does not satisfy condition C2. Then there is λ ∈ Rm such that vλ ≤ 0. It follows that

there is q ∈ ∆(A2) such that {u(p, q) : p ∈ ∆(A1)} ⊆ H := {x : 〈λ, x〉 ≤ 0}. Therefore, if

player 2 employs the strategy that always plays q, the total payoff will be in H, so that

every payoff vector in the complement of H not attainable by player 1. �
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