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Abstract
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degree of skepticism depends on how much evidence the sender is expected to possess. I char-
acterize when a change in the prior distribution of evidence induces more skepticism, i.e. induces
any receiver to take an equilibrium action that is less favorable to the sender following every
message. I formalize an increase in the sender’s (ex-ante) amount of evidence and show that this
is equivalent to inducing more skepticism. My analysis provides a method to solve general ver-
ifiable disclosure games, including an expression for equilibrium actions. I apply these results
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1. Introduction

A fundamental question in communication with misaligned interests is ”what are you not telling
me?” Auditors will be suspicious about missing line items, and juries are less likely to convict
on purely circumstantial cases. This skepticism in response to incomplete disclosures is a shared
feature of communication with evidence. Seen from the perspective of prosecutors and firms, jurors
and corporate auditors who hold less skeptical beliefs will be preferred. Identifying beliefs that
induce more skepticism is therefore important in understanding how jurors or corporate auditors
are selected, or more generally, any situation in which the ”sender” can affect or select the beliefs of
the ”receiver”.

The degree of skepticism depends on beliefs about the availability of evidence: a circumstantial
case provoked less suspicion thirty years ago than it does currently. The criminal justice literature
terms this the ”CSI effect”: Shelton et al. (2009) find that jurors who are more informed about foren-
sics expect more hard evidence to be available to the prosecutor, and as a consequence are less likely
to convict for every evidence profile. This suggests that prosecutors will try to avoid jurors who ex-
pect more evidence to be available. However, in criminal trials, or corporate disclosures, there are
potentially multiple dimensions over which one can be informed. In these general evidence envi-
ronments, what does it mean for there to be more available evidence? And, to what extent is this
associated with inducing more skepticism?

Model and Main Results I address these questions in a general verifiable disclosure framework.
An informed sender communicates with an uninformed receiver in order to influence his action
choice. While the receiver’s preferences over actions depend on the private information or ”type”
of the sender, the sender always prefers higher actions.1 Following Hart et al. (2017), and Ben-
Porath et al. (2017), I model the structure of hard evidence as a partial order: type t dominates
type s according to the ”disclosure order”, or t �d s, if type t can mimic type s. For example, a
suspect with an alibi dominates a suspect without one, as the former can simply conceal his alibi.
Importantly, there is no assumed relationship between whether a type is ”high value” (commands
a favorable best response from the receiver) and whether that type is dominant according to the
disclosure order (has a large feasible message set).

The main goal of this paper is to characterize changes in the prior distribution of evidence (or
types) that induce greater skepticism. One prior distribution induces more skepticism than another if
equilibrium actions are lower following any message, regardless of the receiver’s preferences.2 To
characterize this equilibrium notion I formalize an increase in the amount of evidence: one prior
distribution f has more evidence than another prior distribution g if whenever t �d t′, the likelihood
ratio f

g is greater at t than at t′. That is, whenever type t can mimic t′, type t is relatively more likely
than t′ under the distribution with more evidence.

1 The receiver chooses the action from a subset of R.
2 There are multiple equilibria. I focus on the receiver optimal equilibrium.

1



The main result, Theorem 1, shows that the more skepticism and more evidence orders are equiv-
alent. That is, (i) if the sender has more evidence, then any receiver takes a lower action for every
type (in fact, after every message) and (ii) if the sender does not have more evidence then there
exists a receiver that will strictly increase his action following some message. The key to estab-
lishing Theorem 1 is characterizing equilibrium: Theorem 3 provides an explicit expression for the
associated mapping from types to actions.

The characterization of more skepticism is important for understanding which prior beliefs the
sender wants to induce in the receiver. The sender’s ex-ante payoff depends on both his and the
receiver’s prior beliefs over evidence. Theorem 1 identifies the more evidence order as the prefer-
ence over receiver prior beliefs that is common to all senders. That is, a sender with any ex-ante
distribution over evidence prefers to induce one prior belief over another if and only if it has less
evidence. This illustrates how the ”CSI effect” can shape jury selection: the prosecutor will try to
avoid jurors who believe he has more evidence.

Why More Evidence Induces More Skepticism Any equilibrium partitions the sender types into
pooled sets that obtain the same equilibrium action. The central insight to Theorem 1 is that in
the receiver optimal equilibrium, the value of these pooled sets decreases under a more evidence
shift. The analysis proceeds by first characterizing these pooled sets, and then using this and novel
comparative statics techniques to establish the above claim.

Intuitively, pooled sets ”cannot be separated” because they involve low value types that are
more dominant in the disclosure order mimicking high value types that are less dominant. For ex-
ample, the set of job applicants that present no references include experienced applicants with bad
references mimicking higher quality fresh applicants who actually have no references. Definition 5
formalizes this intuition. Pooled sets are those over which the receiver’s best response is downward
biased: any subset of types that cannot mimic their complement (i.e. a lower contour subset accord-
ing to �d) has higher value than the set as a whole.3 The receiver optimal equilibrium is uniquely
characterized by the receiver’s best response being downward biased on each pooled set.4

This observation underlies two novel solution methods for receiver optimal equilibria: (i) an al-
gorithm to find the equilibrium partition; and (ii) an explicit expression for the equilibrium actions.
The pooled set containing type t forms through the following two step process: first, t chooses to
mimic a set of types with higher value, and second, some set of types chooses to mimic t if t has
higher value. The former serves to maximize the action for type twhile the latter serves to minimize
it. The result is the familiar ”minmax” form of the expression for equilibrium actions in Theorem 3.

I next analyze how the value of pooled sets changes under a more evidence shift. Proposition 3
establishes that the value of a set decreases under any more evidence shift if and only if the down-

3 A lower contour subset S of a partially ordered set (X,≥) is all the elements dominated by elements in S, i.e.
{s ∈ X : ∃s′ ∈ S, s′ ≥ s}.

4 Some additional constraints on the partition are required and made precise in Proposition 1.
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ward biased property holds. This means that the downward biased property characterizes both
equilibrium pooled sets and monotone comparative statics (MCS) under any more evidence shift.

This connection between MCS under any more evidence shift and pooled sets is not implied
by known results concerning monotone likelihood ratio shifts in the distribution. For instance, the
well known result that a monotone likelihood ratio increase lowers the expectation of a decreasing
function cannot be directly applied. The reason is that the downward biased condition does not
imply that the value is decreasing in the disclosure order. That is, within a pooled set, it is not
necessarily true that if t can mimic t′, the value of t is lower than that of t′. This means that the
effect of a more evidence change on the value of a pooled set, which shifts probability to mimicking
types, is unclear.

Section 5 develops novel results to deal with downward biased sets. The main contribution is
Algorithm 2 which iteratively pools larger and larger subsets based on incentives to mimic. At
each stage, one subset only mimics another if the value of the latter subset is higher. This means
that at every stage the value of each ”currently pooled subset” is lower under the more evidence
distribution. Forming the equilibrium partition through this process shows that the value of a
pooled set decreases under a more evidence shift. Subsection 1.1 illustrates this algorithm in a
specific example.

Application to Dynamic Disclosure The relationship between more skepticism and the sender’s
ex-ante preferences over receiver prior beliefs also has applications to dynamic disclosure. In a
pre-play communication stage the sender will never signal to the receiver that he expects more
evidence.

I apply this observation to a game in which the sender obtains and discloses evidence over two
periods. I examine whether the receiver can benefit from ”early inspections” relative to the game
in which communication only occurs in period 2. The sender’s distribution over period 2 evidence
depends on his period 1 evidence, so there is potential for informative signaling. However, because
evidence accumulates over time, period 1 disclosures can reveal to the receiver that the sender
expects more evidence in period 2, and thereby induce more skepticism in the receiver.

I show that the receiver does not benefit from early inspections regardless of his preferences or
prior beliefs if and only if the evidence structure satisfies the ”Unique Evidence Path Property”
(UEPP). The UEPP holds, if for any two types that cannot mimic each other in period 1, the types
that they can possibly become in period 2 also cannot mimic each other. Broadly, This ensures
that any ”potential for separation” created in period 1 is preserved in period 2. Without this prop-
erty, the receiver can benefit from early inspections by separating period 1 evidence realizations
that could otherwise lead to inseparable realizations in period 2. In contrast, under the UEPP any
”informative signaling” in period 1 will violate sender incentive compatibility. More specifically,
the receiver’s beliefs following any two different period 1 disclosures will be ordered by the more
evidence relation from the perspective of some type.
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Implications and Extensions Theorem 1 unifies some existing results from the verifiable disclo-
sure literature. Seemingly different changes in the distribution considered in Jung & Kwon (1988),
Guttman et al. (2014), and Dziuda (2011) imply decreases in equilibrium actions for specific re-
ceiver preferences and evidence structures. This paper identifies the more evidence relation as the
common thread between these changes. While examples like Guttman et al. (2014), who consider
adding evidence types to the Dye model, are consistent with the interpretation of the main result,
Theorem 1 also applies to seemingly less related changes in the distribution of evidence. I general-
ize the result from Dziuda (2011) that decreasing the probability of honest types (types who must
fully reveal themselves) decreases the equilibrium actions for all messages by showing that this
change corresponds to a more evidence shift.

The full characterization of receiver optimal equilibrium also allows for new insights when the
assumptions on the sender’s preferences are relaxed. First, I consider introducing some probability
of senders who are ”unbiased”, i.e. have the same preferences as the receiver. I show that unlike in
cheap talk games (Kim & Pogach (2014)) the receiver optimal equilibrium is equivalent to that in a
game with the same probability of honest senders. The actions in this equilibrium are the same as
one without unbiased senders, but where the receiver has a higher best response to any subset of
evidence types. Moreover, I show that a decrease in the probability of unbiased types can be seen
as a more evidence change, and thereby induces more skepticism.

Second, I consider a game in which the receiver does not know whether the sender prefers higher
or lower actions. I construct a disclosure game in which the sender has known preferences toward
higher actions that has the same receiver optimal equilibrium. In this equilibrium there exists ex-
actly one message that does not credibly convey the sender’s direction of bias. I use Theorem 1 to
show that the sender always wants to convince the receiver that his bias is the opposite of his own.

Layout The paper proceeds as follows. Subsection 1.1 previews the model, characterization ap-
proach, and comparative statics result in a simple example. Subsection 1.2 discusses the related
literature. Section 2 lays out the model and lists examples that fit my framework. Section 3 defines
the more skepticism and more evidence orders and states the main result that they are equivalent.
The analysis proceeds by first characterizing the receiver optimal equilibrium in Section 4, and then
introducing and using the comparative statics techniques in Section 5. I then move on to two ap-
plications. Section 6 considers two extensions based on the sender’s preferences, and Section 7
discusses a dynamic disclosure framework. Section 8 concludes. Unless noted otherwise, all proofs
are in the appendix.

1.1. An Example of the Model and a More Evidence Shift

Consider an entrepreneur (the sender) who instructs his engineers to run a beta test for a new
software. There are four different outcomes. The software could perform above expectations gar-
nering positive reviews from its users. The reviews could also reveal that software is inaccessible to
non-scientific users. Having realized that the software is inaccessible, the engineers could partially
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salvage the problem by adding a useful tutorial. Lastly, the beta test could yield no evidence, per-
haps because the users were not a representative sample or because there was a bug in the software.

The entrepreneur reports to his investor (the receiver), and attempts to extract the most funding
possible. However, communication is not ”cheap talk” and some of the above outcomes can be cer-
tified. If the product performs above expectations, or if the software is inaccessible, the reviews can
confirm this. In addition, if the software is inaccessible and a tutorial is developed the entrepreneur
can credibly present this new tutorial. Although, in this case it will be apparent that the software
was inaccessible to begin with. Finally, the entrepreneur can always claim that the test results were
unusable.

The entrepreneur can be one of four ”types”- no evidence (NE), above expectations (AE), inac-
cessible (I), and Tutorial (T ). The problem is illustrated in Figure 1. The directed graph illustrates
the disclosure order: each vertex represents a type, and the available messages to each type are the
set of vertices accessible via a directed path. For example, T can declare {T, I,NE} but not {AE}.
The investor’s type dependent value for the product is displayed above each vertex. Suppose that
the investor’s prior over entrepreneur types is uniform and the investor chooses an amount of fund-
ing equal to the expected value of the product.5

v = 3

v = 0

v = 1

Inaccesible

Tutorial

(a) Disclosure Order and Investor’s Best Responses

v = 1

v = 3

v = 0

I

T

(b) Equilibirum Strategies

Figure 1: Investor with Uniform Prior

The unique equilibrium involves the pure strategies represented by the dotted arrows in the
right panel of Figure 1. Types in {NE, I, T} all claim to have no evidence, and obtain funding
equal to a(NE) = 4/3. The AE type truthfully reveals and obtains funding a(AE) = 5.6 The
interpretation is that an entrepreneur will only reveal positive test results, and will claim the test

5 Formally, let the investors utility over actions and types be given by −(a− v(t))2 where v(t) is the value above each
vertex.

6 There are many ways to set the actions for the off path declarations I and T . The analysis in the main text does this
according to the truth leaning refinement by HKP, which in this case dictates that a(I) = 0 and a(T ) = 1.
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was faulty otherwise. The investor anticipates this, and is skeptical upon receiving NE, i.e. he
forms a lower expectation of the value of the product than if he were certain that the test were
faulty.

The above equilibrium can also be seen as a partition of the types into sets who obtain the same
equilibrium action, or pooled sets. This partition is (P1, P2) where P1 = {NE, I, T} and P2 = {AE}.
The most important feature of this partition is that the investor’s expected value is downward bi-
ased on each pooled set: the lower contour subsets of P1, i.e. subsets who cannot mimic their
complement, induce a higher investor expected value than P1 as a whole. To verify, note that the
expected values of NE and {NE, I}, (the two (strict) lower contour subsets) are 3 and 3/2 respec-
tively, which are both greater than 4/3. In Proposition 1, I show that the downward biased property
characterizes pooled sets in the receiver optimal equilibrium.

Suppose that the investor learns that the beta test and engineers are of higher quality, and there-
fore provide the entrepreneur with more evidence about his product. Specifically, the investor now
believes there is a 1

12 probability of NE, a 1
6 probability of I , a 1

4 probability of T , and a 1
2 proba-

bility of AE. This means the entrepreneur is both more likely to get a test result and more likely
to develop a tutorial. This distribution and the original uniform distribution are compared by the
more evidence relation: the likelihood ratio between any type and some type that can be mimicked
has increased. For example, the T type can mimic the I type, and the likelihood ratio between T

and I has increased from 1 to 3/2. Does the entrepreneur benefit or suffer from this change in the
investor’s beliefs (assuming that his true distribution over evidence remains fixed)?

The receiver optimal equilibrium involves the same pooled sets as under the uniform prior.
Thus, the answer to the above question depends on how the investor’s value for the set {NE, I, T}
changes when the entrepreneur is believed to have more evidence (the funding for AE remains at
5). While in this case, one can simply calculate that it decreases, a({NE, I, T}) = 6/5, it is not ap-
parent whether this is general for more evidence shifts in the investor’s prior. Probability is shifted
from NE to I which tends to decrease the investor’s value, but probability is also shifted from I

to T which increases the investor’s value.7 Theorem 1 shows that despite this ambiguity, the fact
that these types pool together ensures that the investor’s value decreases under any more evidence
shift. Furthermore, the decrease in equilibrium funding would hold regardless of how the investor
values different realizations of the beta test. In the language of this paper, the investor’s new prior
induces more skepticism than the uniform prior.

To see why this is true consider pooling the {NE, I, T} set iteratively as follows. Notice that
whatever the prior, the I type will pool with the NE type because v(I) < v(NE). This means that
one can treat the {NE, I} set as a single type with an expected value (under the uniform distribu-
tion) of 3/2. Therefore, type T will also pool with {NE, I} because v(T ) < 3/2. The key observation
is that any more evidence shift can be decomposed in a similar way. Probability is shifted first from

7 One could also see this change as moving probability from both NE and I to T . The same comment applies because
the former change decreases the investor’s value while the latter increases it.
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NE to I , and second from the set {NE, I} to T . Since each shift decreases the investors value, one
can conclude that the overall effect is negative. Section 5 generalizes this argument to show that the
downward biased property characterizes monotone comparative statics under any more evidence
shift.

1.2. Related Literature

The first verifiable disclosure models were introduced by Milgrom (1981), Grossman (1981), and
Grossman & Hart (1980). The sender, who knows the state and is biased towards higher actions, can
be vague but not lie, i.e. he can declare any subset of states that contains the true state. The main
finding is the ”unraveling” result that in any equilibrium the sender fully reveals his information.
There are multiple ways in which unraveling can fail: if the sender’s direction of bias depends on
his type (e.g. Seidmann & Winter (1997)), if the sender pays a cost to disclose information (e.g.
Verrecchia (1983)), or if it is unknown whether the sender knows the state (e.g. Dye (1985) and Jung
& Kwon (1988)).8,9

The Dye (1985) model in which the sender has the possibility to be uninformed has been ex-
tended to incorporate more complex evidence structures. Shin (2003) and Dziuda (2011) consider
multidimensional versions of this model in which the sender obtains potentially multiple pieces of
either good or bad evidence and can disclose any subset. Dziuda (2011) and Einhorn (2007) also
consider uncertainty over the preferences of the sender and over whether he is honest or strategic.

There have also been a number of dynamic extensions. Guttman et al. (2014) and Acharya
et al. (2011) consider dynamic frameworks in which the receiver is also uncertain about when the
sender has obtained evidence. Einhorn & Ziv (2008) consider a repeated dye model in which the
sender wants to achieve a reputation of having less evidence. These dynamic models develop or
use seemingly different changes in the distribution that induce lower equilibrium actions. I show
that these changes are examples of more evidence shifts.

Another strand of literature shows that the receiver’s utility in some equilibrium of the verifiable
disclosure game is the same as that in which the receiver can commit to a best response before
learning the sender’s message. This equivalence was first introduced in Glazer & Rubinstein (2004)
and further explored by Sher (2011), and Ben-Porath et al. (2017). Hart et al. (2017) identifies the
equilibrium that achieves this equivalence through the ”truth leaning refinement”. I focus on this
receiver optimal equilibrium and my model is the same as that in Hart et al. (2017) and Sher (2011).

In addition to the above equivalence results, Glazer & Rubinstein (2004) and Sher (2014) derive
methods to find the receiver optimal equilibrium. However, their models involve a binary action
choice and only two types of senders - acceptable and unacceptable. My algorithm for solving for
equilibrium bears similarities to that in Bertomeu & Cianciaruso (2016) which characterizes equi-
librium in disclosure games when pure strategy equilibria exist. I focus on equilibrium outcomes

8 Hagenbach et al. (2014) and Mathis (2008) provide necessary and sufficient conditions for unraveling in a general
framework.

9 For surveys of the verifiable disclosure literature see Milgrom (2008) and Dranove & Jin (2010).
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which also allows for a tractable characterization in games with only mixed strategy equilibria such
as that in Dziuda (2011).

To my knowledge there is no other study that examines monotone likelihood ratio shifts over a
partially ordered set. The more evidence shift involves the monotone likelihood ratio order because
my methodology requires that first order stochastic dominance (FOSD) hold on any subset of types.
Milgrom (1981) showed that such a change in the distribution must be a monotone likelihood ratio
shift. I iteratively apply the well known result that an FOSD shift in the distribution lowers the
expectation of a decreasing function.

2. Model

The setting involves a single sender and a single receiver. The sender observes his type t ∈ T ,
where |T | = n, and sends a message from his feasible set. The receiver observes this message and
then chooses an action a ∈ A, where A is a compact convex subset of R.

The receiver has a prior belief h ∈ ∆T over the sender’s type. In order to investigate the sender’s
preferences over inducing different receiver prior beliefs, I allow the sender to have a potentially
different prior, η ∈ ∆T . However, the set of equilibria does not depend on the sender’s prior
because the sender chooses his message after realizing his type. Unless otherwise noted, I assume
that η and h have common and full support over T . Appendix G extends the results to general
distributions.

2.1. Preferences

The receiver’s utility, UR : A × T → R, depends on both the action and the sender’s private
information. The sender always prefers higher actions and so it is without loss of generality to let
US(a, t) = a. I assume that UR is strictly concave and differentiable in a. Denote the set of all such
receiver utilities Υ. The strict concavity ensures that the receiver has a unique optimal action for all
distributions over sender types.10

The preference assumptions ensure the ”in-betweenness” property from Hart et al. (2017).

Lemma 1. For any distribution over types q ∈ ∆T , define a∗(q) ≡ arg maxa E[UR(a, t)|t ∼ q]. Consider
two distributions q1, q2 ∈ ∆T such that a∗(q1) < a∗(q2). For any λ ∈ (0, 1),

a∗(q1) < a∗(λq1 + (1− λ)q2) < a∗(q2).

This says that the optimal action for the mixture of two distributions is between the optimal
actions in response to each individual distribution.11 Lemma 1 ensures that whenever two types
pool together (declare the same message), one type would like to credibly reveal himself to the

10 Making the same weaker assumptions as in Hart et al. (2017) would not change the results, i.e. E[UR(a, t)|t ∼ q] is
strictly quasi-concave in a, ∀q ∈ ∆T .

11 One could abstract from the action choice, and alternatively model the sender and receiver preferences over induced
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receiver, while the other type would like to remain pooled. Thus in order for the former type to
separate in equilibrium he must have access to a message that the latter type does not.

Denote the receiver’s unique best response to type t by v(t) ≡ arg maxa U
R(a, t). Similarly,

define Vh(S) ≡ arg maxa E[UR(a, t)|t ∈ S, t ∼ h] to be the receiver’s best response conditional on
the sender’s type being in S and distributed according to h. I refer to sets of types with relatively
high (low) optimal actions, as ”high (low) value”.

The leading example for the receiver’s utility will be quadratic loss defined by UR(a, t) = −(a−
v(t))2 for any function v : T → R. In this case Vh(S) = E[v(t)|t ∈ S, t ∼ h] is the expectation of the
receiver’s value for each type.

2.2. Messaging Technology

I assume that the message space is the type space and interpret type t sending message t′ as type
t ”mimicking” t′. In addition, there is a partial order �d over T , such that t �d t′ means that t can
mimic t′. The set of available messages to each type t is given by M(t) ≡ {s : t �d s}. The partial
order assumption imposes reflexivity and transitivity. That is, (i) every type can truthfully reveal
(send their corresponding message) and (ii) if t can mimic t′ and t′ can mimic t′′, then t can mimic
t′′.12 I refer to �d as the ”disclosure order”.

Remark 1. One can add additional messages, by adding zero probability types.

The verifiable disclosure literature sometimes uses a more general messaging structure. There is
an arbitrary message space C and each type has access to some subset E(t) ⊂ C. However, these
papers often assume a normality (Bull & Watson (2004)) or nested range condition (Green & Laffont
(1986)) which make the two sets of assumptions ”equivalent”. That is, given a message space C and
message sets E : T → 2C , there exists a (T,�d) such that the set of equilibria are the same under
both messaging structures.13,14

Two generalities of the model are worth emphasis. First, the disclosure order is arbitrary. And
second, there is no assumed relationship between the disclosure order and the receiver’s prefer-
ences. Common examples that fit the framework are described below. I represent (T,�d) as a di-
rected graph with vertices representing types and directed paths between types representing dom-
inance in the disclosure order.

receiver beliefs given by US , UR : ∆T → R. In this framework Lemma 1 is a necessary assumption for my results. The
two following assumptions would also be required: (i) ∀µ, µ′ ∈ ∆T, US(µ) = US(µ′) =⇒ UR(µ) = UR(µ′), and (ii)
US(µ) is continuous in µ.

12 The partial order also imposes antisymmetry but this is without loss of generality. Types within an equivalence class
cannot induce different equilibrium actions, because the sender always prefers higher actions.

13 A message structure is normal if ∀t ∈ T , there exists et ⊂ E(t), such that ∀t, t′ ∈ T , et ∈ E(t′) =⇒ E(t) ⊂ E(t′).
The following disclosure ordered type space (T,�d) has the same equilibrium set. T ≡ M with pr(et) ≡ pr(t) and
pr(m) = 0 otherwise, and et �d m if m ∈ E(t).

14 For examples of disclosure games without normality, see Sher (2014) and Rubinstein & Glazer (2006).
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2.3. Examples

Dye Evidence The type space is T = {t1, ..., tn−1, t∅}. With probability (1 − p) the sender is ”un-
informed”, t∅, and with probability p the sender draws an ”evidence type” from h ∈ ∆{t1, ..., tn−1}.
Denote the total probability distribution hp ∈ ∆T . The disclosure order is given by M(ti) =

{ti, t∅}, ∀i < n, and M(t∅) = {t∅}. The interpretation is that the evidence types can certify their
type or pretend to be uninformed, while the uninformed type cannot certify his lack of evidence.
This model was first introduced by Dye (1985), and Jung & Kwon (1988), and has been widely used
in the verifiable disclosure literature, e.g. by Grubb (2011), Acharya et al. (2011), and Bhattacharya
& Mukherjee (2013).

Vagueness The sender learns the state x ∈ X drawn from h ∈ ∆X . The type space is all non-
empty subsets ofX : T = 2X\∅. The disclosure order is given byM(t) = {t′ ∈ T, t ⊂ t′}, ∀t ∈ T . The
interpretation is that each type t can credibly reveal himself or be ”vague”. For example, in Figure 2,
X = {0, 1}, and type {0} can either truthfully report {0}, or be vague and report {0, 1}, however
she cannot ”lie” and report {1}. This description uses zero probability types to model additional
messaging options for positive probability types. Any non-singleton type t is zero probability, but
represents a feasible message for types t′ ⊂ t. These message structures were first introduced by
Grossman (1981) and Milgrom (1981).

t∅

t4

t3

t2

t1

(a) Dye Model (b) Vagueness

Figure 2: Common Examples

Multidimensional Evidence The agent draws an integer m from some g ∈ ∆{0, 1, ..., k}. The
agent then draws a sample of size m from some distribution h ∈ ∆X where X is a finite set. Each
type is a sample of size m, i.e. t = {x1, .., xm}, and the type space is T = {t ∈ 2X : |t| ≤ k}.
The disclosure order is given by M(t) = {t′ : t′ ⊂ t} ∀t ∈ T . The interpretation is that each type
can report any combination of pieces of evidence in his possession. Examples of multidimensional
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evidence models include Guttman et al. (2014), Dziuda (2011), and Shin (2003). Figure 3 illustrates
a multidimensional evidence model where k = 2 and X = {0, 1}.

∅

0

1

10

11

00

Figure 3: Mutlidimensional Evidence

Honest Types In addition to obtaining evidence from some T ′, the sender can either be strategic,
S, with probability p, or honest, H , with probability 1 − p. Strategic types can disclose evidence
according to some disclosure order �′d, while honest types must truthfully reveal. The total type
space and disclosure order are given by (T,�d) defined as follows: T = T ′×{S,H}, withM(t, S) =

M�′d ×{S,H} and M(t,H) = (t,H). Figure 4 displays the multidimensional example from Figure 3
with the addition of honest types.

∅ , H

10, S∅ , S

0, S

11, S

00, S

10, H

1, S

1, H

00, H

0, H

11, H

Figure 4: Honest Types
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Complete Order and Empty Order The cases in which the disclosure order is complete or empty
serve as illustrative examples. A completely disclosure ordered type space is given by (T,�d), with
T = {t1, ..., tn}, and i ≥ j ⇐⇒ ti �d tj . That is, types with higher indices can report all types with
lower indices. An empty disclosure ordered type space (T,�d) is given by t �d t′ ⇐⇒ t = t′. Since
no type dominates any other in the disclosure order, each type is forced to truthfully reveal.

2.4. Strategies and Equilbrium

A strategy for the sender is σ : T → ∆T where Supp(σt) ⊂M(t), ∀ t. σt(s) refers to the probabil-
ity that type t declares type s. Because the receiver’s utility is strictly concave, it is without loss to
restrict the receiver to use a pure strategy, a : T → A, which specifies an action choice in response to
each message. A perfect Bayes equilibrium (PBE) is a pair of strategies for the sender and receiver
such that σt(s) > 0 =⇒ s ∈ arg maxs′∈M(t) a(s′), a(s) = arg maxa E[UR(a, t)|σ, s], ∀s ∈ Supp(σ),
and a(s) = a∗(q) for some q ∈ ∆{t : t �d s}, ∀s ∈ T .

I focus on the receiver optimal PBE. A number of studies have provided justifications for this
selection. Hart et al. (2017) has shown that the truth leaning refinement, in which the receiver
interprets each off path message credulously, selects the receiver optimal equilibrium. Relatedly,
Bertomeu & Cianciaruso (2016) shows that the receiver optimal equilibrium is also the unique equi-
librium without ”self signaling sets”.

My methodology focuses on the equilibrium outcomes, i.e. the equilibrium mapping from types
to actions. Denote πh(t|UR) as the receiver optimal equilibrium action for type t facing a receiver
with preferences UR and prior beliefs h ∈ ∆T .

3. Characterizing Increased Skepticism

The main goal is to explore how the receiver optimal equilibrium actions, πh(t|UR), depend on
the receiver’s prior distribution, h.

3.1. The More Skepticism Order

Definition 1. Let f, g ∈ ∆T . f induces more skepticism than g, also expressed as f ≥MS g, if

πf (t|UR) ≤ πg(t|UR), ∀t ∈ T, ∀UR ∈ Υ. (1)

One prior belief induces more skepticism than another if it leads any receiver to take a lower
equilibrium action for every type.

Remark 2. Definition 1 identifies the preference order over receiver prior beliefs that is common
to any sender. That is, ex-ante, the sender would like to induce the receiver to hold less skeptical
beliefs regardless of his actual distribution over evidence, η, or the receiver’s preferences, UR. Also,
any distribution that does not induce more skepticism is preferred by the sender for some η. This
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means that if the sender can signal to the receiver prior to realizing his type, he will never send
signals that make the receiver more skeptical.15

One basic question concerns whether≥MS is empty. Alternatively, does one’s level of skepticism
always depend on their preferences? To see that it does not, consider the following simple example.

Example 1. Let the type space be T ≡ {t1, t2} with t2 �d t1. The prior distribution is given by
p ≡ pr(t2). The equilibrium structure has two cases based on UR: (i) v(t1) ≥ v(t2), t1 and t2 both
declare t1, and obtain the ”average action” Vp(T ); and (ii) v(t1) < v(t2), t1 and t2 separate, and
obtain actions v(t1) and v(t2) respectively.

Now consider two such prior distributions p′ > p′′. In case (ii), the equilibrium actions do
not depend on the prior, so πp′(·|UR) = πp′′(·|UR). In case (i), p′ shifts probability to the lower
value type t2 relative to p′′, and so Vp′(T ) ≤ Vp′′(T ). This means that for all receiver preferences
πp′(·|UR) ≤ πp′′(·|UR), i.e. p′ ≥MS p

′′. 4

Example 1 shows that shifting probability to types that are more dominant in the disclosure
order can induce more skepticism. More specifically, the relative probability of the mimicking type-
t2, to the mimicked type- t1, is higher under the more skeptical prior. The next definition extends
this notion to more complex disclosure orders.

3.2. The More Evidence Order

Definition 2. Let f, g ∈ ∆T . f has more evidence than g with respect to �d, also expressed as
f ≥ME g, if

∀t, t′ ∈ T, t �d t′ =⇒ f(t)

g(t)
≥ f(t′)

g(t′)
. (2)

The more evidence relation depends only on the disclosure order (a dependence I often omit).
For any type t that can mimic t′, t is relatively more likely than t′ under a prior distribution with
more evidence. If �d were a complete order, then f ≥ME g would be equivalent to f monotone
likelihood ratio (MLR) dominates g on (T,�d). Definition 2 is an extension of MLR dominance to a
partially ordered set that only imposes the likelihood ratio inequality on comparable pairs of types.

Natural changes in the prior distribution are more evidence shifts. To preview now, recall the ex-
amples from Subsection 2.3. In the multidimensional evidence model, performing an MLR increase
in the distribution g (the distribution over the number of pieces of evidence the sender obtains),
while leaving h (the distribution of each piece of evidence) constant is a more evidence shift. In the
honest types model, Increasing the probability of strategic types, p, is a more evidence shift.

15 This statement will not be true if the prior belief of the sender and receiver are identical and one considers changing
both simultaneously. That is, it is possible that despite the decrease in utility ”type by type”, the sender that induces
more skepticism has a higher probability of being higher valued types, and therefore a higher ex-ante utility.
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While Definition 2 concerns changes in the distribution, by allowing for zero probability types,
more evidence changes can also capture changes in the disclosure order or ”evidence structure”.
For distributions without full support, f ≥ME g with respect to �d if

∀t, t′ ∈ T, t �d t′ =⇒ f(t)g(t′) ≥ f(t′)g(t). (3)

Thus, adding a ”no evidence type” which cannot mimic any other type is a less evidence change.
Similarly, adding a type which cannot be mimicked is a more evidence change.

3.3. The Equivalence Result

Theorem 1. Let f, g ∈ ∆T . The more skepticism and more evidence relations are equivalent, that is

f ≥ME g ⇐⇒ f ≥MS g.

The result says that If f has more evidence than g, all types obtain a lower action under f than
g for any receiver preferences. The converse also holds: if f does not have more evidence than g,
then there will exist a receiver that treats some type strictly more favorably under f than under g.
In light of Remark 2, one can restate Theorem 1 as follows: the sender prefers to induce one belief
over another in any receiver, regardless of his ex-ante distribution over evidence, if and only if it
has less evidence.

The inequality in (1) is weak (vs. strict) partly because changes in the distribution do not affect
outcomes for types that completely separate in equilibrium. However, Appendix I provides a strict
counterpart to Theorem 1: if the likelihood ratio inequality in Definition 2 is strict, then every type
that is ”pooled” will experience a strict decrease in their equilibrium action under a more evidence
shift.

The fact that more skepticism implies more evidence is relatively straightforward. If the likeli-
hood ratio inequality in (2) does not hold for some pair of ordered types, t �d t′, one can consider
receiver preferences such that these types pool together, while all other types separate. Since t only
pools with t′ if it has lower value, the receiver’s best response to this set is higher under f than g.

The broad intuition for why more evidence implies more skepticism is as follows. Any equi-
librium is a partition of the type space into sets of types that ”pool together” or obtain the same
equilibrium action. These pooled sets involve types with higher value that are less dominant in the
disclosure order being mimicked by types with lower value that are more dominant in the disclo-
sure order. A more evidence change shifts probability ”up the disclosure order” on each of these
pooled sets to the types with relatively lower value. This tends to reduce the receiver’s best response
to each pooled set, i.e. induce more skepticism.

The intuition above echoes Example 1 in which the more dominant type t2 pools with the less
dominant type t1 because it has lower value. This case is simple because the receiver’s best response
is decreasing in the disclosure order (which is complete) on each pooled set. If this were true in
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general then Theorem 1 would follow from: (i) the result in Milgrom (1981) that MLR dominance
induces FOSD on subsets, and (ii) that the expected value of a decreasing function is lower under
an FOSD shift. However, Figure 1 exemplifies a pooled set over which the receiver’s best response
is non-monotonic: the NE, I , and T types pool together in equilibrium, but T �d I �d NE, while
v(NE) > v(T ) > v(I). In addition, pooled sets are not always completely ordered by �d.

The analysis deals with these issues in two steps. First, Section 4 characterizes pooled sets in
terms of the disclosure order and the receiver’s best response. Second, Section 5 shows that this
condition is equivalent to the expected value decreasing under a more evidence shift. Before mov-
ing onto these two steps, I briefly illustrate Theorem 1, and discuss its extensions and limitations.

I next show how Theorem 1 can reconcile different comparative statics results in the Dye evi-
dence model from Subsection 2.3. For two distributions in f, g ∈ ∆(t1, ..., tn−1, t∅) in the Dye model,
f ≥ME g ⇐⇒

f(t∅)

g(t∅)
≤ min

i<n

f(ti)

g(ti)
. (4)

Jung & Kwon (1988) consider increasing p, the probability of evidence types while holding constant,
h, the distribution over evidence types. They find that the non-disclosure action decreases. In this
case, the inequality in (4) reduces to 1−p2

1−p1 ≤
p2
p1

, which holds for p2 > p1. For any probability of
evidence p, let hp ∈ ∆T denote the receiver’s prior belief over the sender’s type.

Corollary 1. In the Dye Model, if p2 > p1, then hp2 ≥ME hp1 , and hp2 ≥MS hp1 .

Guttman et al. (2014) consider a different change in the prior distribution but also find that the
non-disclosure action decreases. Their change involves augmenting the Dye model with additional
evidence types. For any two nested subsets of evidence types S ⊂ S′ ⊂ {t1, ..., tn−1}, they find that
the non-disclosure action is lower when the distribution is conditioned on the larger set S′. For an
original prior h ∈ ∆T , define the restricted prior hS by

hS(t) ≡


h(t)

H(S∪{t∅})
if t ∈ S ∪ {t∅}

0 otherwise
.

To see that hS′ ≥ME hS note that (4) is an equality for ti ∈ S, and the RHS is ”infinite” for ti ∈ S′\S.16

Corollary 2. In the Dye Model, if S ⊂ S′, then hS′ ≥ME hS , and hS′ ≥MS hS .

3.3.1. Skepticism with Restricted Receiver Preferences

A more skeptical distribution induces lower equilibrium actions for all types, regardless of the
receiver’s preferences. The latter condition may be overly demanding in scenarios in which it is
known that the receiver will value certain types higher than others. For example, an entrepreneur

16 More formally, one would use the definition of more evidence in Equation 3.
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with positive customer reviews will have a higher value according to any investor than one with
negative customer reviews. This section generalizes Theorem 1 to characterize a version of more
skepticism in which the inequality in (1) need only hold for certain receiver utilities.

Consider an arbitrary partial order �v on T . Define the restricted set of receiver utilities,

Υ�v ≡ {UR ∈ Υ : t �v t′, t 6= t′ =⇒ v(t) ≥ v(t′)}.

Definition 3. A prior distribution f is more skeptical than g for receivers who agree on �v if,

πf (t|UR) ≤ πg(t|UR), ∀t ∈ T, ∀UR ∈ Υ�v .

f is more skeptical than g for receivers who agree on�v if it induces all receivers who share rank-
ings according to�v to take a lower equilibrium action for all types. Thus, Definition 1 corresponds
to the above definition with an empty �v.

Define the limited disclosure order, �d,v, over T as the transitive closure of the relation given by
t �d t′ and t 6�v t′.17 The interpretation is that t �d,v t′, if t not only has the ability to mimic t′, but
also the incentive, for some receiver preferences in Υ�v .

Theorem 2. f is more skeptical than g for receivers who agree on �v if and only if f ≥ME g with respect to
�d,v.

The interpretation of the result is as follows. In order to ensure that equilibrium actions decrease
for every type, the likelihood ratio inequality must only hold for the mimicking relationships ”that
will be used” in equilibrium. The broad intuition is that if t �d t′ and v(t) ≥ v(t′) there exist receiver
optimal equilibrium strategies in which t does not mimic t′. Thus, shifting probability between t

and t′ does not affect the receiver’s best response.

Theorem 2 is useful in comparing different information structures when the evidence is a signal
about an unknown payoff relevant state. Let the state space be X with prior distribution h ∈ ∆X .
The receiver has utility given by UR : A × X → R. The sender obtains evidence in T ′ drawn
according to the information structure, pr(t|x) ≡ qx(t), which can be disclosed according to �′d.

This information structure framework fits into the basic model by defining
UR(a, t) ≡ 1∑

x∈X qx(t)

∑
x∈X U

R(a, x)qx(t). However, this means that a change in the prior distribu-
tion over T ′ does not necessarily correspond to a change in the sender’s information structure and
vice-versa. A change in the prior distribution over T assumes that the value of each type or signal
stays constant which excludes certain changes in the information structure. Conversely, a change
in the prior distribution over T can change the ”expected value” of the sender’s evidence which
cannot occur under a change in the information structure.

By incorporating the state space into the type space and applying Theorem 2, one can character-
ize the changes in the information structure that induce more skepticism. Label X = (x1, ..., xm)

17 the transitive closure of a binary relation, is the coarsest transitive refinement.
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so that the receiver prefers higher actions in higher states, i.e. v(x1) < ... < v(xm). Let the new
type space be T × X . A prior distribution, f ∈ ∆(T × X) is an information structure if the total
probability of each state accords with the prior, i.e.

∑
t f((t, x)) = h(x), ∀x ∈ X . Since the sender

cannot credibly reveal the state, messaging is given by the preorder, �d, defined by (t, x) �d (t′, x′)

if t �′d t′. However, the receiver’s best response to states will not change with the information
structure, so define �v as (t, xi) �v (t′, xj) if i ≥ j. Thus if f and g are two information structures, f
induces lower equilibrium actions than g if and only if f ≥ME g with respect to �d,v.

This is illustrated in the the Dye evidence model with a ”good” and ”bad” state, i.e. X = {G,B},
in Figure 5. The receiver’s value is higher for the good state than the bad state and does not depend
on the evidence, so (t, G) �v (t′, B), ∀t, t′ ∈ T . Equivalently, one can eliminate the possibility for G
types to mimic B types because this option will never be used in equilibrium.

(t∅, G)

(t2, G)

(t1, G)

(t∅, B)

(t1, B)

(t2, B)

Figure 5: �d,v with a Good and Bad state

4. Equilibrium Characterization

The equivalence between more skepticism and more evidence relies on the structure of the re-
ceiver optimal equilibrium. This section characterizes this structure and provides two ways to find
the corresponding equilibrium actions.

The following notation for upper and lower contour sets will be useful. For S ⊂ T , let W (S) ≡
{s ∈ T : ∃t ∈ S, t �d s} be the lower contour set of S according to �d. These are the types that
are worse than some type in S by �d, or equivalently, the set of types that can be mimicked by
some type in S. Similarly, for any subset S ⊂ T , let B(S) ≡ {s ∈ T : ∃t ∈ S, s �d t} be the upper
contour set of S according to�d. This is the set of types that are better than some type in S by�d, or
equivalently, the set of types that can mimic some type in S. This notation omits the dependence on
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the disclosure order. When dealing with other ordered sets– (X,≥), I refer to the lower and upper
contour sets as W≥ and B≥ respectively.

4.1. Equilibria as Partitions

Because the sender’s payoff is strictly increasing in the action, in equilibrium no type can mix
over declarations that induce different actions. Thus, any equilibrium is associated with a partition
of the type space, P = {P1, ..., Pm},18 into pooled sets that obtain the same action, where each type
only mimics other types in his associated pooled set. I call this the equilibrium partition.

Every equilibrium has an associated partition, but when does an arbitrary partition P represent
the payoff equivalence classes of an equilibrium? Receiver incentive compatibility imposes that
the action for each part Pi must be Vh(Pi). That is, the receiver best responds to the prior belief
conditioned on t ∈ Pi. I conventionalize that higher indices correspond to parts with higher actions,
i.e. Vh(Pi) is increasing in i. Thus, sender incentive compatibility implies that no type t ∈ Pj should
be able to declare any type s ∈ Pk when j < k. Otherwise, t would deviate to the strategy of s and
obtain a strictly higher action. I call a partition that satisfies this property an interval partition which
is formalized below in the context of arbitrary partial orders.

Definition 4. Let (X,≥) be a partially ordered set. An interval partition of (X,≥) is P = (P1, ..., Pm)

such that W≥(Pk) ∩ Pj = ∅, ∀j > k.19

Since higher indices correspond to higher actions, P being an interval partition means that the
disclosure order is ”consistent” with the order on the receiver’s best responses. The interval parti-
tion condition roughly characterizes when a partition represents the payoff equivalence classes of
an equilibrium.20

In the receiver optimal equilibrium, pooled sets have the additional property that they cannot be
further ”separated”. Intuitively, this means that within a pooled set, types that are dominant in the
disclosure order must have lower value than types that are less dominant. Otherwise, the receiver
would prefer an equilibrium that separated these more dominant types by giving them a higher
action. The next definition formalizes this property which turns out to be necessary and sufficient
for the pooled sets of the receiver optimal equilibrium.

Definition 5. The set function H : 2X → R is downward biased on an ordered subset (X,≥) if

H(W≥(X̃) ∩X) ≥ H(X), ∀X̃ ⊂ X. (5)

18 I omit the dependence of P on the prior h and receiver utility UR.
19 The term ”interval partition” is used because for any interval partition P = (P1, ..., Pm) of the reals (R,≥), each part

is an interval, i.e. Pi = [a, b], ∀i, for some (extended) real numbers a ≤ b.
20 One other technical condition is required: for each Pi, there exists a feasible sender strategy σ : Pi → ∆Pi, such

that the best response of the receiver is to choose the same action for all on path declarations in Pi. This property is
characterized in terms of the primitives of the model in Appendix J.
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Proposition 1. Let P be a partition of T , where Vh(Pi) is increasing in i. P is the receiver optimal equilib-
rium partition ⇐⇒

Vh is downward biased on (Pi,�d), ∀i, (6)

(P1, ..., Pm) is an interval partition of (T,�d). (7)

The receiver’s best response is downward biased on S if all lower contour subsets, subsets that
cannot mimic their complement in S, have higher value than the set as a whole. Note that due to
Lemma 1, an equivalent version of the receiver’s best response being downward biased is

Vh(B(S̃) ∩ S) ≤ Vh(S), ∀S̃ ⊂ S. (8)

That is, all upper contour subsets of S, subsets of S that cannot be mimicked by their complement,
have lower value than the set as a whole. As a shorthand I also refer to sets over which Vh is
downward biased as downward biased sets. The next two examples illustrate the downward biased
condition by showing its implications for empty and complete disclosure orders.

Example 2. Consider that the disclosure order is the empty order as in Subsection 2.3. In this case,
any subset of S is a lower contour subset. Because W ({s}) = {s}, ∀s ∈ S, Vh is downward biased
on (S,�d) implies that v(s) ≤ Vh(S), ∀s ∈ S. By Lemma 1, this implies that v(s) = Vh(S), ∀s ∈ S.
That is, when no type can mimic another, all types pool together only if the receiver’s best response
is constant across types. 4

Example 3. Let (S,�d) be completely ordered as in Subsection 2.3. If Vh is downward biased on
(S,�d), then ∀i = 1, ...,m, Vh({s1, ..., si}) ≥ Vh(S). A specific example is illustrated in Figure 6. In
this case the receiver’s utility is quadratic loss, S ≡ (s1, ..., s8), and h is the uniform distribution. The
left panel shows the receiver’s best response to each type and the right panel shows the receiver’s
best response to lower contour subsets. This demonstrates that on a completely ordered set, Vh
being downward biased on (S,�d) is weaker than v being decreasing on (S,�d). 4

Remark 3. These examples illustrate that refining the disclosure order makes the condition that Vh
is downward biased on (S,�d) less restrictive. Consider two disclosure orders, �d and �′d on S,
such that �′d is a refinement of �d.21 Any lower contour subset of (S,�′d) is also a lower contour
subset of (S,�d). Therefore Vh is downward biased on (S,�d) implies Vh is also downward biased
on (S,�′d).

4.2. Solving for Equilibrium

This section uses Proposition 1 to develop two methods to find receiver optimal equilibria.

Lemma 2. For any subset S ⊂ T , let J ⊂ arg minS̃⊂S Vh(W (S̃) ∩ S). ∪Ŝ∈JW (Ŝ) ∩ S is a downward
biased set.

21�′d is a refinement of �d if ∀t, t′ ∈ S, t �d t′ =⇒ t �′d t′.
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(b) Best response to lower contour sets

Figure 6: Vh is downward biased on (S,�d)

ALGORITHM 1: Partition into Pooled Sets
Input: (T,�d)
Output: Equilibrium partition
i = 1; S1 = T ;
while Si 6= ∅ do

P i = arg minS̃i⊂Si Vh(W (S̃i) ∩ Si);
Pi = ∪S∈P iS;
i = i+ 1;
Si = Si−1 \ Pi−1;

end

Lemma 2 says that Vh is downward biased on the minimal valued lower contour subset. Sym-
metrically, Vh is downward biased on the maximal valued upper contour subset.

The ability to find downward biased sets is useful in finding the equilibrium partition. Consider
applying the above result as follows. Begin with the entire type set T and use Lemma 2 to find a
downward biased P1. Next remove P1 and apply Lemma 2 to T \ P1 to find another downward
biased set P2. Repeat this process, until the type space is exhausted. This algorithm, which I call
partition into pooled sets, generates the receiver optimal equilibrium partition.

Proposition 2. The output of ”Partition into Pooled Sets” (P1, ..., Pm) is the receiver optimal equilibrium
partition with t ∈ Pi =⇒ πh(t|UR) = Vh(Pi).

The algorithm constructs the equilibrium partition from the ”bottom-up”, i.e. starting with the
lowest payoff part. If the minimization were replaced with a maximization, the algorithm would
construct the same equilibrium partition from the ”top-down”, i.e. starting from the highest payoff
part. This means that the payoff of very dominant types will correspond to that for a maximal
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valued upper contour subset, and the payoff for non-dominant types will correspond to that for
a minimal valued lower contour subset. The next result extends this description showing that the
payoff for any type can be expressed as a ”minmax” expression.

Theorem 3. Let πh : T → R be the equilibrium payoff vector.

πh(t|UR) = min
{Sa:t∈Sa}

max
{Sb:t∈Sb}

Vh(W (Sa) ∩B(Sb)). (9)

The expression in (9) corresponds to the equilibrium utility (and thereby obtained action) of
the sender of type t.22 To elucidate the result, consider that (T,�d) is completely ordered as in
Subsection 2.3, and fix any type ti. For any feasible Sa, W (Sa) = {t1, ..., ti, ..., ta} for some a ≥ i.
Similarly, for any feasible Sb, B(Sb) = {tb, ..., ti, ..., tn} for some b ≤ k. Thus B(Sb) ∩ W (Sa) =

{tb, ..., ti, ..., ta}. In this case, the above problem reduces to choosing sets of types {ti, ..., ta} and
{tb, ..., ti} that will pool with type ti from ”above” and ”below” respectively. This means (9) can be
rewritten as,

πh(ti|UR) = min
a≥i

max
b≤i

Vh({tb, ..., ta}). (10)

The problem in (10) suggests that each pooled set forms through the following process. Given a set
of types that pool with ti from above, ti will choose to pool with a set of lower types in order to
maximize his value. Similarly, types that pool from above will only do so if it increases their value.
This second process serves to minimize the expression in (10).

The next section uses these characterization results to show that the equilibrium actions decrease
under a more evidence shift, i.e. that more evidence implies more skepticism.

5. Why More Evidence implies More Skepticism

Consider two distributions f, g ∈ ∆T , such that f ≥ME g, and where f is only a ”small pertur-
bation” from g.23 Generically, the equilibrium partition will be the same under f and g. To prove
Theorem 1 in this case, it suffices to prove that the value of each pooled subset decreases when the
sender has more evidence. In light of Proposition 1, I prove the following.

Proposition 3. Fix f ∈ ∆T . Vf (S) ≤ Vg(S), ∀g ∈ ∆T : f ≥ME g ⇐⇒ Vf is downward biased on
(S,�d).

The result says that the condition that characterizes pooled sets in the receiver optimal equilib-
rium also characterizes monotone comparative statics (MCS) under any more evidence shift. The
fact that MCS under any more evidence shift implies that the set is downward biased is relatively
straightforward. If Vh is not downward biased on (S,�d), there is a lower contour subset with lower

22 For solutions Sa and Sb to (9), W (Sa) ∩B(Sb) is the part of the equilibrium partition that contains t
23 For example, consider f̃ ≥ME g and let f(t) ≡ αf̃(t) + (1− α)g(t) ; ∀t, for some small α ∈ (0, 1].
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ALGORITHM 2: Monotonic Coarsening
Input: Distributions f, g ∈ ∆S.
Output: An interval partition of (S,≥f/g).
i = 1; m(1) = m; P 1 = ({t1}, ..., {tm});
while i = 1 or P i 6= P i−1 do

I0 = 0;
k = 0;
while Ik < m(i) do

k = k + 1;
Ik = max{j > Ik−1 : Vf (P iIk−1+1) ≥ ... ≥ Vf (P ij )}

end
i = i+ 1;
P i = (∪I0<j≤I1P i−1j , ...,∪Ik−1<j≤IkP

i−1
j );

m(i) = k;

end

value than S. Moving probability from this subset to its complement is a more evidence shift and
increases the value of S.

As mentioned, the reverse direction in Proposition 3 is complicated by the fact that the down-
ward biased condition is weaker than the receiver’s best response being decreasing in the disclosure
order. This section introduces an algorithm that deals with this issue by iteratively pooling larger
and larger subsets based on incentives to mimic.

5.1. Iteratively Pooling Subsets

For any two distributions f, g ∈ ∆S, define the induced f − g likelihood ratio order, ≥f/g, as

x ≥f/g x′ ⇐⇒
f(x)

g(x)
≥ f(x′)

g(x′)
.

(S,≥f/g) is a completely ordered set of types, in which more dominant types are relatively more
likely under f than under g. Notice that the definition of more evidence can be restated as the f − g
likelihood ratio order is a refinement of the disclosure order. This means that if Vf is downward
biased on (S,�d), then by Remark 3, Vf is also downward biased on (S,≥f/g).

To ease exposition, I focus on the quadratic loss case in which Vf is a conditional expectation
and leave the case of general receiver utilities to the appendix. The following algorithm is used to
establish that if Vf is downward biased on (S,≥f/g), then Vf (S) ≤ Vg(S).

Description of Algorithm 2 The algorithm begins with the complete interval partition of
(S,≥f/g), P 1 = ({t1}, {t2}, ..., {tm}). Beginning with t1, the algorithm repeatedly forms the largest
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sequence of elements such that v(tj) is decreasing in j. That is, the first sequence is {t1, t2, ..., tI1}
such that v(t1) ≥ ... ≥ v(tI1) and v(tI1) < v(tI1+1), the second sequence is {tI1+1, ..., tI2} such that
v(tI1+1) ≥ ... ≥ v(tI2) and v(tI2) < v(tI2+1), and so on until all types in S are exhausted. Next, a
coarser interval partition P 2 is formed by pooling all the elements of each decreasing sequence into
an associated single part. That is, P 2

1 ≡ {t1, ..., tI1}, P 2
2 = {tI1+1, ..., tI2}, and so on. This process

is repeated: at each stage, P i is coarsened into P i+1 where each part of P i+1 pools a consecutive
sequence of P ij over which Vf (P ij ) is decreasing in j. The algorithm concludes when P T = P T+1.

The interpretation of this algorithm is that each stage pools two subsets P1 and P2 only if they
would mimic each other for any distribution that preserves their value. That is, only if P2 is ”adja-
cently more dominant” in the disclosure order and has lower value than P1.

Implications for Downward Biased Sets There are two key features of this algorithm. First, if
Vf is downward biased on (S,≥f/g), then the algorithm concludes with the trivial partition, i.e.
P T = (S). To see this, note that P T = P T+1 only if Vf (P Ti ) is strictly increasing in i. If P T were non-
trivial, then by iterated expectations, Vf (P T1 ) < Vf (S). But this contradicts the downward biased
condition as P T1 is a lower contour subset. The second key feature uses the following well known
result.

Remark 4. Let v : S → R, and f, g ∈ ∆S. If v is decreasing on (S,≥f/g), then Vf (S) ≤ Vg(S).

Each P ij is composed of a sequence of parts from P i−1 over which Vf is decreasing. Thus, one
can apply Remark 4 to obtain,

1

G(P ij )

∑
P i−1
l ⊂P ij

Vf (P i−1l )G(P i−1l ) ≥ 1

F (P ij )

∑
P i−1
l ⊂P ij

Vf (P i−1l )F (P i−1l ) = Vf (P ij ), ∀P ij . (11)

Since the process ends with the trivial partition, using a sequence of these inequalities gives Vf (S) ≤
Vg(S). While the details are left to the appendix, I illustrate the algorithm in the following example.

Example 4. Recall the example in Figure 6 in which Vf is downward biased on (S,�d). Specifi-
cally, the disclosure order is complete on S = (s1, ..., s8), f is the uniform distribution on S, and
(v(s1), ..., v(s8)) = (6, 4, 5, 3, 4, 2, 3, 1). Let g ∈ ∆S such that f ≥ME g. Since the disclosure order
is complete, ≥f/g=�d. The goal is to show that Vf (S) ≤ Vg(S) establishing MCS under any more
evidence shift in this case. However as v is not decreasing, one cannot directly apply Remark 4.
Instead Algorithm 2 pools types iteratively such that at each stage the value of the currently pooled
subset is lower under the more evidence distribution.

Since v(s1) > v(s2), s2 will pool with s1 regardless of the distribution. Thus, the algorithm
pools {s1, s2} into a ”single type” with value given by Vf ({s1, s2}). Similar logic also pools {s3, s4},
{s5, s6}, and {s7, s8}. The result is the partition P2 illustrated in the left panel of Figure 7. Notice
that since v(s) is decreasing on each P 2

i , Remark 4 implies that Vf (P 2
i ) ≤ Vg(P 2

i ), ∀i = 1, ..., 4.

Next, note that since Vf (Pi) is decreasing in i, these sets will all pool together in equilibrium.
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Thus, the algorithm pools {P 2
1 , ...P

2
4 } into a single pooled set with value Vf (S). The result is a

coarser (trivial) partition P 3 illustrated in the right panel of Figure 7. As before, since Vf (P 2
i ) is

decreasing in i, Remark 4 implies that

Vf (S) =
4∑
i=1

Vf (P 2
i )F (P 2

i ) ≤
4∑
i=1

Vf (P 2
i )G(P 2

i ).

Using the inequalities derived at each of the two stages gives the desired result, i.e. Vf (S) ≤ Vg(S).
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Figure 7: Applying Algorithm 2

4

5.2. Changes in the Equilibrium Partition

The preceding analysis is only sufficient for Theorem 1 in the case when the equilibrium partition
is constant across distributions f and g. This section provides some intuition for how this result
extends to cases in which the equilibrium partition changes when the sender has more evidence.

Consider that f ≥ME g. For simplicity let P g = (P g1 , P
g
2 ) have two elements, while P f = (P f1 ),

has only one. Define the combination distribution, hα ≡ αf + (1− α)g with corresponding equilib-
rium partition Pα ≡ (Pα1 , ..., P

α
mα). First, since the equilibrium action is increasing in the disclosure

order, Vg(P
g
1 ) < Vg(P

g
2 ), and second, since the receiver’s best response is downward biased on

each part, Vf (P g1 ) ≥ Vf (P g2 ). Thus, because the receiver’s best response to these subsets is contin-
uous in α, there must exist some α∗ after which the equilibrium partition changes from P g to P f

and Vhα∗ (P
g
1 ) = Vhα∗ (P

g
2 ). For simplicity, suppose that this is the only change in the equilibrium

partition as α increases from 0 to 1. Figure 8 illustrates this example.

Notice that f ≥ME hα∗ ≥ME g, ∀α ∈ [0, 1]. Thus, Proposition 3 completes the argument in this
case. The idea is that each equilibrium part, P g1 , P

g
2 decreases in value as α increases until equalizing

at α = α∗. For α > α∗, all types pool together and so again by Proposition 3, the value of P 1
f = S

decreases in α. Figure 9 illustrates the equilibrium utilities as a function of α.
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6. Application 1: Extensions of the Sender’s Preferences

This section uses the characterization results from Section 4 to extend the model beyond one
with sender’s who always prefer higher actions. I solve for equilibrium in games with unbiased
senders, and senders who have unknown bias. Then I use Theorem 1 to obtain new comparative
statics predictions.

6.1. Unbiased vs. Honest Senders

In many communication environments the sender does not always attempt to induce the highest
action from the receiver. For example, criminal investigations are sometimes carried out by ”good
cops” whose goal is to find out the truth rather than to always convict the suspect. Does this good-
ness originate from a compulsion to be honest or from preferences that are aligned with the court,
and do these two explanations lead to different outcomes? More specifically, does a game with
some probability of honest senders have different equilibria than one with the same probability of
unbiased senders? Kim & Pogach (2014) show that the answer to this question is yes in a cheap talk
setting: depending on the specification the receiver can prefer either honest or unbiased senders. I
show that in the disclosure setting, unbiased and honest senders lead to the same receiver optimal
equilibrium outcomes.

Consider two games, H̃ , and ŨB, defined as follows. In both games there is probability p that the
sender prefers higher actions (S type). These senders have evidence from T ′ distributed according
to f ∈ ∆T ′, and can disclose according to �d. In both H̃ and ŨB, there is probability 1 − p of
”non-strategic types” (NS type), who has evidence from T ′ distributed according to g ∈ ∆T ′. In
H̃ , the non-strategic sender is honest (H type) in that he can only declare truthfully. In ŨB, the
non-strategic sender can disclose according to �d, but is unbiased (UB type) in that he has the
same utility as the receiver. In both games, the receiver’s utility is dependent only on the evidence:
UR : T ′ ×A→ R.

H̃ fits the basic framework (it is an example from Subsection 2.3), while ŨB does not. The total
type space for ŨB is T ′ × {S,UB} with messaging given by the disclosure order �UBd defined as
follows:

(t, UB) ∼UBd (t, S), ∀t ∈ T ′,

(t, S) �UBd (t, S) if t �d t′.

The definition of �UBd captures that both UB and S types have the same disclosure opportunities,
and can make cheap talk declarations about their preference type.
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6.1.1. Characterization

Since H̃ is in the form of the basic model,24 its receiver optimal equilibrium is given by Theo-
rem 3. The following definition further refines this characterization in honest type games.

For any R ⊂ T ′, define

Ṽ (R) ≡ max
R′⊂R

arg max
a∈A

(1− p)
∑
t∈R

UR(a, t)f(t) + p
∑
t∈R′

UR(a, t)g(t).

This is the receiver’s best response to the biased senders in R and the honest or unbiased senders in
some subset R′ ⊂ R. R′ is the set of types in R who have higher value than Ṽ (R), i.e. R′ ≡ {s ∈ R :

v(s) ≥ Ṽ (R)}. Mechanically, Ṽ (R) ≥ Vf (R), ∀R ⊂ T ′.

Proposition 4. Let the receiver optimal equilibrium allocation (actions to types) in H̃ and ŨB be given by
πH , πUB respectively. The receiver optimal equilibrium allocations are the same, i.e. πH(t, S) = πUB(t, S) ≡
π∗(t, S), ∀t ∈ T ′ and πH(t,H) = πUB(t, UB) ≡ π∗(t,NS), ∀t ∈ T ′. Moreover,

π∗((t, S)) = min
{Sa⊂T ′:t∈Sa}

max
{Sb⊂T ′:t∈Sb}

Ṽ (W (Sa) ∩B(Sb)), ∀t ∈ T ′,

π∗((t,NS)) = min{π∗((t, S)), v(t)}, ∀t ∈ T ′. (12)

The equilibrium actions for strategic types in a game with honest senders (or unbiased senders)
are the same as one without honest senders but where the receiver has ”more favorable” preferences
to the sender: his best response to all subsets shift up from Vf to Ṽ . On the other hand the receiver
obtains his bliss point for any honest sender with value less than the equilibrium action of his
strategic counterpart.

The reason why π∗ is the receiver optimal equilibrium allocation of ŨB is as follows. First,
receiver and strategic sender incentive compatibility are directly transferred from that in H̃ . Second,
unbiased sender’s who obtain v(t) are at their bliss point. And third, unbiased senders who obtain
π∗((t,NS)) < v(t) must only be able to deviate to lower actions which are further from their bliss
point. Otherwise their strategic counterparts would deviate in H̃ . The reason why π∗ is receiver
optimal in ŨB is that the receiver can always separate unbiased senders who have value less than
their equilibrium action by making these sender’s truthfully reveal.

6.1.2. Comparative Statics

Since H̃ and ŨB can be seen as standard disclosure games, Theorem 1 applies. In either game, an
increase in p, the probability of strategic types, can be seen as a more evidence shift. This is apparent
in Figure 4, as increasing p corresponds to shifting probability ”up the disclosure order” from the red
honest types to the blue strategic types. By Theorem 1 this change induces more skepticism. Dziuda
(2011) establishes this conclusion for honest types in a specific disclosure framework, however the

24 It is without loss to assume that honest senders prefer higher actions. In general their preferences are irrelevant to
the equilibrium because they only have one message available.
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next corollary shows that the result is general to any disclosure structure. For any p, denote the
prior over T as hp.

Corollary 3. Let p ≥ p′, then hp ≥ME hp′ and hp ≥MS hp′ in both ŨB and H̃ .

6.2. Senders with Unknown Bias

There are other reasons why the sender may not always prefer higher actions. The sender may be
biased but in an unknown direction. For example, a police officer may want to exonerate a suspect
with whom he has a relationship. When will the sender credibly convey the direction of his bias to
the receiver? What beliefs about his preferences does the sender want to induce in the receiver?

The sender prefers higher actions (is type H ; note that H types no longer refers to honest
senders), US(a) = a, with probability p, and prefers lower actions (is type L), US(a) = −a, with
probability 1 − p. In addition to private information about his preferences, the sender obtains dis-
closable evidence from (T ′,�′d). The total type space is given by T ′ × {H,L}. The distribution over
evidence can depend on the preference of the sender: let fH , fL ∈ ∆T ′ be the marginal distributions
forH and L preferences respectively. Denote the unconditional distribution, g ∈ ∆T . The receiver’s
preferences can also depend on the senders preferences as well as the evidence, i.e. UR : T×A→ R.

In addition to disclosing evidence, the sender can make a cheap talk declaration of his preference
type. The set of available messages to each type t is {s : t �′d s} × {H,L}. Call this communication
game C̃, and let πC̃ : T → R be the corresponding receiver optimal equilibrium allocation of actions
to types. Note that C̃ does not fit into the basic framework.

Unlike in the original model, the inclusion of cheap talk messages can alter the set of equilibria.
When it is known that the sender prefers high actions, two on path cheap talk messages cannot
induce different actions, otherwise all sender types would deviate to the one that induces the higher
action. With both H and L senders, two on-path cheap talk messages can lead to different actions:
H senders induce the high action and L senders induce the low action. For this reason, I include
the possibility of cheap talk about preferences.

6.2.1. An Equivalent Disclosure Game

Consider a related disclosure game, in which the sender has known preferences towards higher
actions. The disclosure ordered type space is (T,�d), where T ≡ T ′ × {H,L} remains unchanged
and �d is defined as follows:

(t,H) �d (t′, H) ⇐⇒ t �′d t′,

(t, L) �d (t′, L) ⇐⇒ t′ �′d t,

(t,H) �d (t′, L) ⇐⇒ ∃s : t �′d s, and t′ �′d s.

The disclosure order �d (i) maintains �′d when comparing two H types, (ii) reverses �′d when
comparing two L types, And (iii) ranks an H type above an L when both types can mimic some
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common evidence type s ∈ T ′. The distribution over types, g ∈ ∆T remains unchanged. Call the
associated game D̃ and let πD̃ : T → R be the receiver optimal equilibrium allocation of actions to
types. I illustrate the construction of D̃ in Figure 10. Panel (a) illustrates the evidence space T ′ and
the associated disclosure order �′d in C̃. Panel (b) illustrates the disclosure order in the associated
D̃.

[0, 1 /2)

[1 /2, 1]

[0, 1]

[0, 1 /4)

[1 /4, 1 /2)

[1 /2, 3 /4)

[3 /4, 1]

(a) (T ′,�′
d) in C̃

H types prefer high actions.
Distributed according to p fH .

L types prefer low actions.
Distributed according to 1-p fL.

([0, 1], L)

([1 /2, 3 /4), L)

([0, 1 /4], L)

([0, 1 /2], L)

([0, 1], H)

([1 /2, 1], L)

([3 /4, 1], L)

([1 /4, 1 /2), L)

([0, 1 /4], H)

([0, 1 /2], H)

([1 /2, 1], H)

([1 /4, 1 /2), L)

([1 /2, 3 /4), L)

([3 /4, 1], H)

(b) (T,�d) in D̃

Figure 10: Construction of D̃ from C̃

Proposition 5. πD̃(t) = πC̃(t), ∀t ∈ T.

Since D̃ fits into the framework of Section 2, Theorem 1 applies to πD̃ and therefore πC̃(t). In D̃,
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increasing p constitutes a more evidence change in the distribution over (T,�d).

Corollary 4. Let p > p′ with gp, gp′ ∈ ∆T as the corresponding prior distributions. gp ≥ME gp′ on (T,�d)
so gp ≥MS gp′ .

Note that more skepticism, a decrease in equilibrium actions, no longer corresponds to a decrease
in utility. Indeed, the L type senders are better off facing a receiver with a more skeptical prior. Thus
L types benefit from the presence of H types and vice versa. If L and H types pool together, the
H types that are misreporting will tend to have lower value than the receiver’s best response to
the pooled set. Thus, increasing the probability of H types decreases the receiver’s best response,
which benefits the L types. The construction of D̃ also provides some insights into the structure of
the receiver optimal equilibrium in C̃.

Proposition 6. Let (T ′,�′d) have a lower bound s, fH = fL, and UR(a, (t,H)) = UR(a, (t, L)), ∀t ∈ T ′.
Then there exists exactly one on path receiver optimal equilibrium action at which H and L types pool. This
pooled set includes s.

The result says that there is exactly one message in which the sender does not credibly reveal his
preference type. The latter two assumptions impose that the receiver’s utility and the distribution
over evidence are independent of the sender’s preference type. The first assumption is that there
exists some type s in which all other evidence types can mimic. s need not have positive probability,
so the assumption only ensures its availability as a message. The presence of s can be justified by
noting that the sender can always choose to present nothing. Note that unlike in the original model,
the presence of zero probability types does affect the receiver optimal equilibrium, as it can change
the disclosure order �d in D̃.25

The reason why there is at most one equilibrium action in which H and L types pool is that by
incentive compatibility all L types must obtain lower actions than s, and all H types must obtain
higher actions than s. Alternatively, it is immediate from Figure 10 that at most one interval can
intersect both the H and L ”sides” of the directed graph, and that this interval must contain s. To
see why there is exactly one equilibrium action in which H and L types pool, suppose that the (s,H)

type obtains a different equilibrium action from (s, L). Incentive compatibility implies that,

πC̃((t,H) ≥ πC̃((s,H) > πC̃((s, L) ≥ πC̃((t, L), ∀t ∈ T ′.

But this implies that the receiver’s action for all L types is lower than that for all H types. Since by
assumption, the distribution of payoff relevant types T ′ is the same across H and L senders, this
violates Lemma 1. This means that there is always positive probability that the sender does not
reveal his preference type.

25 This point relates to Seidmann & Winter (1997) who study a vagueness model in which the sender’s direction of
bias is also unknown. Even though the sender is ”informed” with probability 1,The ability to be vague, i.e. mimic zero
probability types destroys the truthful revelation equilibrium.
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7. Application 2: Dynamic Disclosure

7.1. Dynamic Arrival and Inspection

The static arrival of evidence can be unrealistic. Consider an entrepreneur strategically disclos-
ing the consumer reviews of his product to an investor. It is likely that the customer reviews arrive
gradually. Thus, the investor could also request to see the reviews at some intermediate stage be-
fore the actual investment decision. The question is whether the investor could benefit from these
additional early inspections, as compared to the situation in which he only communicates with the
entrepreneur after all reviews have come in.

This comes down to whether the sender can disclose evidence acquired early in order to induce a
more favorable impression from the receiver in a later period. But intuitively, a sender who obtains
more evidence early on is more likely to have more evidence tomorrow: the entrepreneur that
has one customer review today is more likely to have two customer reviews by tomorrow than
an entrepreneur that has zero customer reviews today. Combined with Theorem 1, this suggests
that disclosing evidence early is not beneficial for the sender since it will induce more skepticism
in the receiver. I introduce a model in which the sender obtains and can disclose information over
multiple periods and identify the conditions on the evidence structure so that there is no benefit to
early inspections.

7.1.1. Model

The evidence space and messaging are still given by (T,�d). There are two periods over which
the sender can obtain evidence. The period 1 probability distribution of evidence is given by
g1 ∈ ∆T which is assumed to have full support. The probability of obtaining t2 in period 2 given
possession of t1 in period 1 is given by

pr(t2|t1) =


g2(t2)

G2(B(t1))
if t2 ∈ B(t1)

0 otherwise
,

for some g2 ∈ ∆T . This implies that possessing more evidence in period 1 makes one more likely
to have more evidence in period 2. Indeed, if ft ∈ ∆T represents the probability distribution over
period 2 evidence after acquiring t in period 1, t′ �d t′′ =⇒ ft′ ≥ME ft′′ . Note that for
t1 �d t2, there is a zero probability of obtaining t2 in period 2 having possessed t1 in period 1,
i.e. the sender does not lose evidence over time. In addition, the distribution of period 2 evidence
depends on period 1 evidence only through its upper contour subset. That is, if two types, s, s′,
both have positive probability in period 2 after two different period 1 realizations, then the relative
probability of s to s′ will be the same after both period 1 realizations. At the end of the section I
discuss the implications of relaxing the assumptions on the evolution of evidence.

In each period the sender can declare any type s such that his current evidence t satisfies t �d s.
This means that in period 2, the sender cannot credibly convey his period 1 evidence. The receiver,
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having observed the declarations in periods 1 and 2 takes an action a ∈ A. The receiver’s utility,
UR(t2, a), depends on the action and the sender’s final type. Thus, period 1 disclosures are only
potentially useful as signals for future evidence. The sender still prefers higher actions, i.e. US(a) =

a.

I maintain that the equilibrium in period 2 is receiver optimal given the receiver’s beliefs. This
can be justified in a setting where the receiver has commitment power within each period but not
inter-temporally as in Skreta (2006). Because the receiver only takes an action in the last period, this
means that the receiver can commit at time 2 to an action plan, a : T → A, but not before. This
justification uses the fact that the receiver optimal equilibrium is also the commitment solution.

For a given equilibrium of this dynamic disclosure game, denote π̃ : T → ∆A as the distribution
of actions given to the sender with period 2 type t.26 The potential randomness in π̃ arises due
to different period 1 disclosures leading to the same period 2 disclosure, rather than due to action
randomization by the receiver.

I say that the receiver ”benefits from early inspections” if his expected utility in some equilibrium
of the dynamic disclosure game is higher than that if the receiver were to only communicate with
the sender in period 2. Let the ex-ante beliefs over period 2 types be defined by

g̃(t) ≡ g2(t)
∑

s∈M(t)

g1(s)

G2(B(s))
.

The receiver benefits from early inspections if there exists an equilibrium allocation, π̃ : T → ∆A

such that ∑
t∈T

(∑
a

UR(a, t)π̃t(a)

)
g̃(t) >

∑
t∈T

UR(πg̃(t)(t|UR), t)g̃(t).

7.1.2. The Unique Evidence Path Property

I next introduce the pivotal feature of a disclosure order that will determine whether the receiver
can benefit from early insepctions. Define t ⊥d t′ if t and t′ are not comparable under �d.

Definition 6. A disclosure ordered type space (T,�d) has the unique evidence path property (UEPP)
if ∀s′, s′′ ∈ T, s′ ⊥d s′′ =⇒ B(s′) ∩B(s′′) = ∅.

The UEPP says there is a unique ”path” in the disclosure order to each type. This can be sum-
marized by two properties: (i) the sender type can always report nothing or ”no evidence” and
(ii) the directed graph representation of �d has no cycles. Many classic examples fit this property
such as the Dye model of Subsection 2.3. A more interesting example from the dynamic disclosure
perspective is the following extended version of the vagueness model.

26 As this is the only payoff relevant information for both parties, I exclude any description of how π̃ : T → ∆A
depends on period 1 disclosures.

32



Example 5. Consider a sequence of partitions of some setX ,R1 = (R1
1, ..., R

1
m1

), ..., Rn = (Rn1 , ..., R
n
mn)

with Ri finer than Ri−1 for every i. The type space, T ≡ ∪i,jRji , is the set of all parts of the par-
titions. The disclosure order is given by R′ �d R′′ ⇐⇒ R′ ⊂ R′′, with the interpretation that
obtaining evidence Rji is learning that the ”state” is in Rji , and one can be vague about his knowl-
edge. R′ ⊥d R′′ =⇒ R′ ∩ R′′ = ∅ since the different partitions are ordered. This means that
R̃ ⊂ R′ =⇒ R̃ ∩ R′′ = ∅ which confirms that the UEPP holds. In fact, every disclosure order in
which the UEPP holds can be interpreted as above. Figure 11 displays an example of such a dis-
closure order with three increasingly fine partitions of [0, 1]: R1 = ([0, 1]), R2 = ([0, 1/2), [1/2, 1]),
and R3 = ([0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]). Dominance in the disclosure order is indicated by
a directed path. 4

[0, 1 /2)

[1 /2, 1]

[0, 1]

[0, 1 /4)

[1 /4, 1 /2)

[1 /2, 3 /4)

[3 /4, 1]

Figure 11: Extended Vagueness Model Satisfies the UEPP

Notice that under the UEPP, any two period 1 types that cannot mimic each other lead to period
2 type realizations that also cannot mimic each other. In this sense, any potential for separation
in period 1 is maintained in period 2. To illustrate why this is important for signaling consider
a sender who obtains a sample of unknown size from the set {0, 1} and can disclose any subset.
This does not satisfy the UEPP as 01 �d 0 and 01 �d 1, but 0 ⊥d 1. If the receiver waits until
period 2 to communicate with the sender, he could miss out on the opportunity to separate period
1 realizations of 0 and 1, because these two paths to the period 2 type 01 are indistinguishable in
period 2.

Proposition 7. If (T,�d) satisfies the UEPP, then the only equilibrium allocation π̃ is degenerate on

min
{Sa:tN∈Sa}

max
{Sb:t∈Sb}

Vg̃(W (Sa) ∩B(Sb)),
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and the receiver does not benefit from early inspections. Moreover, if (T,�d) does not satisfy the UEPP, then
there exists g1, g2, and UR such that the receiver benefits from early inspections.

The result is somewhat surprising as different period 1 evidence induces different distributions
over period 2 evidence and thereby different preferences over receiver beliefs. The idea is that under
the UEPP, for any sender strategies, two different period 1 disclosures will induce beliefs that are
ranked by the more evidence relation from the perspective of some type.

To see this, consider that T = (t1, ..., tn) is completely ordered as in Subsection 2.3, and an equi-
librium in which there are only two on path period 1 disclosures s′ and s′′ that induce receiver
beliefs, fs′ , fs′′ . Suppose that, in contradiction to Proposition 7, these beliefs admit different period
2 action profiles, πfs′ , πfs′′ .

The most dominant type, tn, according to the disclosure order, is in the highest payoff part under
both s′ and s′′. Because the sender can only gain evidence as time goes on, a sender with type tn
in period 1 is certain that he will pool with this highest payoff part in period 2. Thus, if in period
2, s′ induces a lower payoff for tn than s′′, then tn will not disclose s′ in period 1 and neither will
any type that pools with tn under s′′. The main observation is that in this case, fs′′ ≥ME fs′ on the
pooled set containing tn. But this means that fs′′ ≥MS fs′ on this pooled set. This contradicts the
fact that s′′ induced a higher payoff for tn.

This means that πfs′ (tn) = πfs′′ (tn). But similarly, a sender with type tn−1 in period 1 can only
realize types tn−1 or tn in period 2. Thus, the sender with tn−1, chooses his period 1 declaration
based only on the comparison between πfs′ (tn−1) and πfs′′ (tn−1). One can repeat the previous
argument to obtain that these two quantities are equal. Continually applying this argument leads
any informative dynamic signaling to ”unravel” (reminiscent of the original argument in Milgrom
(1981)), and so πfs′ = πfs′′ .

To see how the receiver can benefit from early inspections when the UEPP does not hold, con-
sider the following example.

Example 6. The type space is {1, 2, 3, 4, 5, 6} with UR as quadratic loss, and with the value of each
type vi and �d both illustrated in the left panel of Figure 12. Notice that the UEPP does not hold
as types 3 and 2 are not ordered but are both dominated by type 5. The right panel shows the
equilibrium partition over types under any distribution in period 2. More specifically, types 1, 3, 6

declare 1, types 2, 5 declare 2, and type 4 declares 4.

Consider also using this strategy in the right panel of Figure 12 in period 1. Note that 4 truth-
fully reveals under all period 1 declarations and is thereby indifferent across them. Thus, the only
incentive to check is that types 2 and 5 do not want to deviate to declare type 1 in period 1. Let fi be
the receiver’s period 2 belief in ∆T following declaration i in period 1. Types 2 and 5 do not want
to deviate if Vf1({2, 5} ≥ Vf2({2, 5}). This comes down to comparing the likelihood ratio between 2
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and 5 in period 2 under the two period 1 declarations. Incentive compatibility holds if

g1(2)
G2({2,4,5})
g1(2)

G2({2,4,5}) + g1(5)
g2(5)

≥ g1(1)

g1(1) + g1(3)
G2({3,5,6})

.

An example thatr satisfies this inequality is when g1 and g2 are the uniform distribution. Since the
receiver’s behavior is sequentially optimal and the period 2 equilibrium vector is different following
the two on path messages in period 1, the receiver benefits from early inspections. 4

v1 = 0

v3 = -1

v2 = 1

v5 = 0

v4 = 2

v6 = -2

(a) (T,�d) does not satisfy the UEPP

v1 = 0

v3 = -1

v2 = 1

v5 = 0

v4 = 2

v6 = -2

P1

P2

P3

(b) Equilibrium pooling in Periods 1 and 2

Figure 12: Informative Dynamic Signaling Without the UEPP

This section identifies the UEPP as the condition on the disclosure order such that the receiver
does not benefit from early inspections. One potential weakness of this result is the assumption on
how evidence evolves over time. A more general framework would assume that the probability of
period evidence t2 given period 1 evidence t1 is given by g2(t2, t1), while maintaining the substan-
tive assumptions that (i) evidence is not lost over time, i.e. t1 �d t2 =⇒ g2(t2, t1) = 0, and (ii) that
t′1 �d t′′1 =⇒ g2(·|t′1) ≥ME g2(·|t′′1). One can show that under the UEPP, if the disclosure order is
”large enough” (has a chain of at least 4 types), the receiver does not benefit from early inspections
regardless of his preferences or g1 if and only if g2 satisfies the assumptions of this section.

7.2. Multiple Receivers

One reason that there is no use for dynamic signaling is that the evidence type in period 1 is
payoff irrelevant. Recall the entrepreneur releasing customer reviews to an investor. In addition to
signaling value to investors at the angel round, the entrepreneur may make an early disclosure in
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order to obtain funding from separate investors at the seed round. The entrepreneur must balance
the incentive to get early funding with how his early disclosure will affect funding in later rounds.
Does the seed investor benefit or suffer from the entrepreneur’s dynamic incentives? Is the amount
of seed funding negatively or positively related to the amount of angel funding?

7.2.1. Model

I augment the previous dynamic model with an additional receiver who takes an action a1 ∈ A,
following the first period disclosure. The period 1 and period 2 receiver’s preferences are repre-
sented by U1, U2 : T × A → R respectively. For period 1 and period 2 action choices, a1, a2 the
sender’s utility is given by δa1 + (1 − δ)a2. The timing is as follows. The sender obtains type t1
in period 1 and makes a disclosure d1 ∈ M(t1). Receiver 1 observes d1, takes an action a1, and
obtains utility U1(a1, t1). Then the sender obtains t2 in period 2 and discloses d2 ∈M(t2). Receiver
2 observes d1 and d2, takes an action a2, and obtains utility U2(a2, t2).

The sender’s strategy is a first period reporting strategy, σ : T → ∆T ; and a second period
conditional reporting strategy, γ : T 2 → ∆T . Receiver 1’s strategy is a1 : T → A and Receiver 2’s
strategy is a2 : T 2 → A. I assume that in period 2, γ and a2 are played according to the receiver 2
optimal equilibrium. Thus the equilibrium action in period 2 for type t after a disclosure s in period
1 is given by πhs(t|U2), where hs ∈ ∆T is the interim distribution over period 2 types given σ and
after observing s in period 1. For tractability I focus on interval equilibria.

Definition 7. An interval equilibrium is one in which {t : a1(t) = c} is is an interval for every c ∈ R.

Lemma 3. If (T,�d) satisfies the UEPP, then any interval equilibrium (a1, σ) has, t �d t′ =⇒ a1(t) ≥
a1(t

′). More over if t �d t′ and a1(t) > a1(t
′) then ht ≥ME ht′ .

This result says that if the sender makes a disclosure in period 1, then he must be given a higher
action than if he did not disclose (or disclosed less). The idea is that the period 1 disclosure induces
the receiver to believe that the sender has more evidence. Since this induces more skepticism in the
receiver the sender must be compensated in the form of a higher first period action.

Since first period actions are increasing in the disclosure order, increasing δ, the sender’s weight
on the first period action, further dis-incentivizes the sender from withholding. Thus any equilib-
rium action profile under δ will also be one under δ′ > δ.

Proposition 8. Let (T,�d) satisfy the UEPP. Define Π(δ) to be the set of interval equilibrium period 1
action profiles, i.e. all a1 such that there exists σ with (a1, σ) constituting an equilibrium.

∀δ < δ′, Π(δ) ⊂ Π(δ′).

Let E1(δ) be the equilibrium that is optimal from the perspective of the period 1 receiver. A
straightforward corollary is that receiver 1’s expected utility from E1(δ) increases in δ. Thus, period
2 incentives harm the period 1 receiver. The intuition is that because the sender can always wait to
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disclose, he will never be induced to disclose more in period 1 by dynamic incentives. Moreover, all
else equal, the sender would prefer to wait to disclose because first period disclosures induce more
skepticism in receiver 2. Therefore, the sender’s dynamic incentives make him to ”disclose less”.

8. Conclusion

This paper has two main contributions: (i) it characterizes the receiver optimal equilibrium in a
large class of verifiable disclosure games and (ii) it shows that distributions which induce greater
skepticism in the receiver are characterized by the more evidence relation. While quite general, the
disclosure model does not incorporate all related examples from the literature. A prime example is
that I do not allow for message dependent disclosure costs such as that of Verrecchia (1983). With
disclosure costs, the equilibrium action for any type is not pinned down by the set of types with with
which he pools. This impedes the equilibrium partition approach. Another open generalization is
allowing the sender to have type dependent preferences.
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A. General implications of Algorithm 2

This section establishes a general comparative statics result that concerns the output of Algo-
rithm 2. For a function r : X → R and distribution h ∈ ∆X , denote the conditional expectation
function as Erh(S) ≡ E[r(x)|x ∈ S, x ∼ h].

Proposition 9. Let X be a finite set, f ∈ ∆X , and r : X → R. For any g ∈ ∆X , there exists an interval
partition P = (P1, ..., Pm) of (X,≥f/g) with,

Erf (P1) < ... < Erf (Pm), (13)

and Erf (Pi) ≤ Erg(Pi) ∀i, (14)

where the partition P does not depend on g given ≥f/g.

To interpret Proposition 9, consider its implications in two extreme cases. First, if r is strictly
increasing on (X,≥f/g), then the only interval partition satisfying (14) is the complete partition
P = ({x1}, ..., {xn}). Conversely, if r is decreasing on (X,≥f/g), then the only interval partition
satisfying (13) is the trivial partition P = (X).

Broadly, every function has decreasing and increasing portions on (X,≥f/g). On the decreasing
regions the expectation is lower under f than under g. The argument for Proposition 9 repeatedly
applies this result, collapsing decreasing sequences to their average, until the interval partition
has ”no more decreasing regions”. The consequences are (13) and (14). The former says that the
conditional expectation is strictly increasing in the part’s index. The latter says that for each part
the conditional expectation is lower under f than under g.27

27 The last part of the result says that P only depends on g through ≥f/g ; i.e. if P satisfies (13) and (14) for g′ ∈ ∆X ,
then P will also satisfy these conditions for any g′′ such that ≥f/g′=≥f/g′′ .
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A.1. Proof of Proposition 9

Proof. I prove the existence of a partition satisfying (13) and (14) by construction: the output of
Algorithm 2 satisfies (13) and (14).

Input (X,≥f/g) for some f, g ∈ ∆X , and the conditional expectation function Erf associated
with r : X → R. Because X is a finite set, and the algorithm repeatedly returns coarser and coarser
partitions, the process must terminate at some stage T . At this point P T = P T+1 which means
that Erf (P T1 ) < ... < Erf (P Tm). Thus P T satisfies (13). I will show that P T also satisfies (14), thereby
proving the result.

Consider the partition P i = (P i1, ..., P
i
m) generated at stage i > Er1. Each part P ij is the union

of an ”interval” of parts from the previous partition P i−1. More specifically, for each j there exists
k(j) ≤ k(j) such that P ij = ∪k(j)l=k(j)P

i−1
l . Because P i−1 is an interval partition of (X,≥f/g), and

Erf (P i−1l ) is decreasing for k(j) ≤ l ≤ k(j) one can use Remark 4 on the set P ij , to obtain,

1

G(P ij )

k(j)∑
l=k(j)

Erf (P i−1l )G(P i−1l ) ≥ 1

F (P ij )

k(j)∑
l=k(j)

Erf (P i−1l )F (P i−1l ).

Consider a given part P Tk of the final partition P T . One can iteratively use the above inequality
for every part of the interval partition at every stage of the algorithm to obtain the following string
of inequalities,

Erg(P Tk ) =
1

G(P Tk )

∑
ti∈PTk

r(ti)g(ti) =
1

G(P Tk )

∑
P 2
j ⊂PTk

 1

G(P 2
j )

∑
ti∈P 2

j

r(ti)g(ti)

G(P 2
j )

≥ 1

G(P Tk )

∑
j

 1

F (P 2
j )

∑
tk∈P 2

j

r(ti)f(ti)

G(P 2
j ) =

1

G(P Tk )

∑
j

Erf (P 2
j )G(P 2

j )

...

≥ 1

G(P Tk )

 1

G(P Tk )

∑
PT−1
l ⊂PTk

Erf (P T−1l )G(P T−1l )

G(P Tk )

≥ 1

G(P Tk )

 1

F (P Tk )

∑
PT−1
l ⊂PTk

Erf (P T−1l )F (P T−1l )

G(P Tk )

=Erf (P Tk ).

Combining these inequalities gives Erg(P Tk ) ≥ Erf (P tk), ∀k establishing (14) and thereby Proposi-
tion 9. Q.E.D.
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B. Preliminaries

B.1. Proof of Lemma 1

Proof of (1)

Proof. Let a1 ≡ mini a
∗(qi) and a2 ≡ maxi a

∗(qi). Note that because UR is strictly concave, a∗(q) ≥
a ⇐⇒

∑
t U

R
a (a, t)qi(t) > 0. This means that

∑
t U

R
a (a2, t)q1(t) < 0 and

∑
t U

R
a (a1, t)q2(t) > 0. This

implies that ∑
t

URa (a2, t)(λq1(t) + (1− λ)q2(t))

=λ
∑
t

URa (a2, t)q1(t) + (1− λ)
∑
t

URa (a2, t)q2(t)

=λ
∑
t

URa (a2, t)q1(t) < 0.

This implies that a∗(λq1 + (1 − λ)q2) < a2. The argument is symmetric for a1 < a∗(λq1 + (1 −
λ)q2). Q.E.D.

B.2. Truth leaning Equilibrium Refinement

Hart et al. (2017) show that the truth leaning refinement selects the receiver optimal equilibrium.
For any sender strategy σ define Supp(σ) ≡ ∪tSupp(σt). An equilibrium (σ, a) is truth leaning if,

t /∈ Supp(σ) =⇒ a(t) = v(t), and (15)

t ∈ arg max
s∈M(t)

a(s) =⇒ σt(t) = 1. (16)

I recall one result from HKP concerning truth leaning equilibria.

Lemma 4. If (σ, a) constitute a truth leaning equilibrium, then for every t ∈ T exactly one of the following
holds,

σt(t) = 1, and πh(t|UR) = a(t) ≤ v(t), or (17)

σs(t) = 0, ∀ s, and πh(t|UR) > v(t) = a(t). (18)

Proof. See Hart et al. (2017). Q.E.D.

C. Proofs from Section 4

C.1. Proof of Proposition 1

Proof. Suppose P is an equilibrium partition but not an interval partition. This means that t �d s
where t ∈ Pi, s ∈ Pj , and j > i. But then t can deviate to the strategy of s and obtain a strictly
higher action.
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Now suppose that P is an interval partition, and that there exists σ, such that t ∈ Pi =⇒
Supp(σt) ⊂ Pi and s ∈ Pi ∩ Supp(σ) =⇒ arg maxa

∑
UR(a, t)σt(s)h(t) = Vh(Pi). That is, σ is self

contained in each part, and induces the receiver to take the same action for each declaration within
each part. If such a σ exists then P is an interval partition. To complete the argument I prove the
following claim.

Claim 1. For a subset S ⊂ T . There exist truth leaning mutual best responses σ : S → ∆S and a : S → A,
such that s ∈ Supp(σ) =⇒ a(s) = Vh(S) if and only if Vh is downward biased on (S,�d).

Proof. ” =⇒ ” Now say that, Vh is not downward biased on (S,�d), i.e. there exists S̃ ⊂ S

such that Vh(W (S̃) ∩ S) < Vh(S). Let W̃ ≡ W (S̃) ∩ S. Take the set of declared types in W̃ to be
W̃d ≡ ∪t Supp(σt)∩ W̃ . Because W̃ is a lower contour subset of S, ∪t∈W̃ Supp(σt) ⊂ W̃d. By receiver
incentive compatibility, ∑

s

URa (Vh(S), s)σs(t)h(s) = 0, ∀t ∈ W̃d.

Summing over t ∈ W̃d,

0 =
∑
t∈W̃d

∑
s

URa (Vh(S), s)σs(t)h(s)

=
∑
t∈W̃d

∑
s/∈W̃

URa (Vh(S), s)σs(t)h(s) +
∑
s∈W̃

URa (Vh(S), s)h(s)
∑
t∈W̃d

σs(t)

=
∑
t∈W̃d

∑
s/∈W̃

URa (Vh(S), s)σs(t)h(s) +
∑
s∈W̃

URa (Vh(S), s)h(s). (19)

The last equality follows from the fact that ∪t∈W̃ Supp(σt) ⊂ W̃d and so
∑

t∈W̃d
σs(t) = 1, ∀s ∈

W̃ . By assumption Vh(W̃ ) < Vh(S) and so the second term in (19) is negative i.e.,∑
s∈W̃

URa (Vh(S), s)h(s) < 0.

This means that the first term must be positive. Lemma 4 states that every type s that declares some
other type t must have lower value than the action a(t) which type s obtains. This means that for
s /∈ W̃ such that σs(t) > 0, v(s) < a(t) = Vh(S). Thus, every summand in the first term in (19),
URa (Vh(S), s) < 0. But this is a contradiction.

”⇐= ”

Now say that Vh is downward biased on (S,�d). Bipartition S into U ≡ {t : v(t) ≥ Vh(S)},
D ≡ U c. Now consider any feasible strategy η : D → ∆U , and define σ : S → ∆S as σt(s) =

ηt(s), ∀t ∈ D and σt(t) = 1, ∀t ∈ U . Denote Z the set of all such σ.

First, note that Z is non-empty. Z is empty only if ∃s, s.t. M(s) ∩ U = ∅, i.e. M(s) ∩ S ⊂ D. By
Lemma 1, Vh(M(s)∩ S) < Vh(S), which contradicts the fact that Vh is downward biased on (S,�d).
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Thus the restricted set of strategies Z is nonempty. Define the receiver’s unique truth-leaning best
response to σ ∈ Z as aσ : S → R. Now consider the problem,

min
σ∈Z

f(σ) ≡
∑
t∈U

(aσ(t)− Vh(S))2. (20)

The objective in (20) is continuous in a and σ. The receiver can be taken to maximize over a
compact set ([mint v(t),maxt v(t)]) so the theorem of the maximum holds. Moreover the maximum
is unique, so for each t ∈ U , aσ(t) is continuous in σ. Since Z is a compact set, the problem has a
solution σ∗ by Weierstrauss theorem. Let the corresponding receiver best response be aσ

∗
.

Now say f(σ∗) > 0, i.e. ∃t ∈ U : aσ
∗
(t) 6= Vh(S). Notice that ∪s Supp(σs) = U , so by Lemma 1,

UB ≡ {s ∈ U : aσ
∗
(s) ≥ Vh(S)} and UW ≡ {s ∈ U : aσ

∗
(s) < Vh(S)} are both nonempty. Let,

X ≡ {s : ∃t ∈ Supp(σ∗s), Vh(S) > aσ
∗
(t) > v(s)}, and

Y ≡ {s : UB ∩M(s) 6= ∅}.

X is the set of types that obtain an action with positive probability that is less than Vh(S), but
greater than its own value. Y is the set of types that have value less than Vh(S), but have the ability
to obtain an action greater than Vh(S). I will show that X ∩ Y 6= ∅.

First note that X 6= ∅. This is because UW is non-empty, meaning there exists a type t ∈ U with
a(t) < Vh(S). But by Lemma 1, the best response action must be in between the values of the types
that declare it. Since t ∈ U , v(t) ≥ Vh(S), and σ∗t (t) = 1. This in turn means there must exist an s
that declares t such that v(s) < aσ

∗
(t), or in other words X is non-empty. Let W̃ ≡W (X) ∩ S.

Now suppose that X ∩ Y = ∅. Consider the sender strategy of types in W̃ , and recompute
receiver best responses as aσ

∗

W̃
: W̃ → R. That is, let

aσ
∗

W̃
(s) ≡ arg max

a

∑
t∈W̃

UR(a, t)σ∗t (s)h(t).

I claim that aσ
∗

W̃
(s) < Vh(S). ∀s ∈ W̃ . To see this, first note that aσ

∗
(s) < Vh(S), ∀s ∈ W̃ , because by

assumption X ∩ Y = ∅, i.e. types in X cannot obtain a higher action than Vh(S). Now inspect the
types that declare some s ∈ W̃ under σ∗, but are not in W̃ . Call this set

R ≡ {t /∈ W̃ : ∃s ∈ W̃ ∩ Supp(σ∗t )}.

Consider t ∈ R. By definition t /∈ X because t /∈ W̃ and X ⊂ W̃ . Now consider s ∈ W̃ ∩ Supp(σ∗t ).
Because, s ∈ W̃ , aσ

∗
(s) < Vh(S). Then, because t /∈ X and s ∈ Supp(σ∗t ), v(t) ≥ aσ

∗
(s). Thus,

excluding types in R from σ∗ decreases σt(s) which decreases the best response of the receiver
establishing that aσ

∗

W̃
(s) < Vh(S) ∀s ∈ W̃ .

Also by Lemma 1, the best response action to the entire set W̃ must be in between the best
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response actions to each type for any strategy, i.e.

min
s∈W̃

aσ
∗

W̃
(s) ≤ Vh(W̃ ) ≤ max

s∈W̃
aσ
∗

W̃
(s).

This implies that Vh(W̃ ) < Vh(S). But this is a contradiction, because Vh is downward biased on
(S,�d).

Thus X ∩ Y 6= ∅. Let s ∈ X ∩ Y . This means ∃t′, t′′ ∈ S such that t′ ∈ Supp(σ∗s) with v(s) <

aσ
∗
(t) < Vh(S) and t′′ ∈ W̃ with aσ

∗
(t′′) ≥ Vh(S). Now construct a new strategy σ̃ ∈ Z as follows.

σ̃s̃(t̃) =


σ∗s̃(t̃) if s̃ 6= s, t̃ 6= t′, t′′

σ∗s̃(t̃)− ε if s̃ = s, t̃ = t′

σ∗s̃(t̃) + ε if s̃ = s, t̃ = t′′

,

with ε > 0 small enough such that this is a feasible strategy. Because Vh(S) > aσ
∗
(t′) > v(s), and

this new strategy decreases the probability that s declares t′, this change increases the best response
aσ
∗
(t). This decreases the objective in (20). Similarly because a(t′′) ≥ Vh(S) > v(s) and this new

strategy increases the probability that s declares t′′, this change decreases the best response aσ
∗
(t′′).

This also decreases the objective in (20).28 All other best responses remain unchanged. This change
thereby decreases the objective in (20) so that f(σ̃) < f(σ∗), contradicting the minimality of σ∗. So
at the minimum, f(σ∗) = 0 =⇒ aσ

∗
(t) = Vh(S) ∀ t ∈ U . Q.E.D.

Q.E.D.

C.2. Proof of Lemma 2

Proof. Let S∗ ∈ arg minS̃⊂S Vh(W (S̃) ∩ S) with value V , let W ≡W (S∗) ∩ S. I prove that,

Vh(W (S̃) ∩W ) ≥ Vh(W ), ∀S̃ ⊂W.

Suppose not, and take W ′ ≡ W (S̃) ∩W such that Vh(W
′
) < Vh(W ). Note that W (W

′
) ∩ S = W

′,
which contradicts the minimality of W in the above problem. Thus each minimizer of the above
problem is downward biased.

Now take J ⊂ arg minS̃⊂S Vh(W (S̃) ∩ S) with J ≡ (S1, ..., Sc) and W i ≡ W (Si) ∩ S and W ≡
∪ck=1W k. Note that because each W i is downward biased, for each i, Vh(Wi \ ∪i−1k=1W i) ≤ Vh(Wi) =

V . Since W is the disjoint union of these sets, i.e. W = ∪ci=1(Wi \ ∪i−1k=1W i), Lemma 1 implies that
Vh(W ) ≥ V . ThusW ∈ arg maxS̃⊂S Vh(W (S̃)∩S), and so by the previous argumentW is downward
biased. Q.E.D.

28 If Vh(S) = aσ
∗
(t′′) then this change actually increases (aσ

∗
(t′′)−Vh(S))2. However, for small enough ε this increase

will be second order.
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C.3. Proof of Proposition 2

Proof. Algorithm 1 produces a partition of T into disjoint sets (P1, P2, ..., Pm). I argue that this par-
tition satisfies the requirements of Proposition 1, and thereby constitutes an equilibrium partition.
Lemma 2 implies that each Pi is a downward biased set. One must only check that i > j =⇒
Vh(Pi) > Vh(Pj) and that i > j =⇒ W (Pj) ∩ Pi = ∅.

First, suppose that Vh(Pi) ≥ Vh(Pi+1). Note that W (Pi ∪ Pi+1) ∩ Si = Pi ∪ Pi+1. This is because,
W (Pi+1)∩Si+1 = Pi+1 by definition, andW (Pi+1)∩Si ⊂ Pi∪Pi+1 by the construction in Algorithm 1.
Thus, Vh((Pi ∪ Pi+1) ∩ Si) ≤ Vh(Pi) by Lemma 1. But this means that Pi could not have been
the output of the algorithm at stage i as (Pi ∪ Pi+1) ∩ Si is a larger (in the sense of set inclusion)
minimizing set than Pi.

Second, notice that for i < j, Pj ⊂ Si. But W (Pi) ∩ Si = Pi. Since Pi ∩ Pj = ∅, this means that
W (Pi) ∩ Pj = ∅. Q.E.D.

C.4. Proof of Theorem 3

Proof. Take the equilibrium partition (P1, ..., Pm). For t ∈ Pi, Vh(Pi) = πh(t|UR). Thus, I prove that
the solution to the problem on the right hand side of (9) is Vh(Pk).

Consider setting S∗a ≡ ∪ik=1Pk and S∗b ≡ ∪mk=iPk. S∗a is the union of parts of the equilibrium
partition that have value less than or equal to Pi, and S∗b is the union of parts of the equilibrium
partition that have value greater than or equal to Pi. Note that W (S∗a) = S∗a and B(S∗b ) = S∗b . Using
these choices in equation (9) gives,

Vh(W (S∗a) ∩B(S∗b )) = Vh(S∗a ∩ S∗b ) = Vh(Pi).

First, I show that given S∗a , S∗b solves the partial problem max{Sb:t∈Sb} Vh(W (S∗a) ∩ B(Sb)). This
shows that Vh(Pi) is achievable in the problem in (9). Second, I show that for any feasible Sa,
choosing Sb = S∗b gives Vh(Sa ∩ S∗b ) ≥ Vh(Pi). This means that for any feasible Sa, the value to the
partial problem max{Sb:t∈Sb} Vh(W (Sa) ∩ B(Sb)) ≥ Vh(Pi). Thus, choosing Sa = S∗a achieves the
minimum value, establishing the result.

Step 1: Take any feasible Sb. B(Sb)∩W (S∗a) = ∪ik=1(B(Sb)∩Pk). By the fact that Vh is downward
biased on each part Pk, for k ≤ i (whenever non-empty) Vh((B(Sb) ∩ Pk) ≤ Vh(Pk) ≤ Vh(Pi). Thus,
by Lemma 1, Vh(∪ik=1(B(Sb)∩Pk)) ≤ Vh(Pi). Since S∗b achieves Vh(Pi), S∗b solves the partial problem
max{Sb:t∈Sb} Vh(W (S∗a) ∩B(Sb)).

Step 2: Take any feasible Sa. Notice that B(S∗b ) ∩ W (Sa) = ∪mk=i(W (Sa) ∩ Pk). Because Vh is
downward biased on each part Pk, for k ≥ i (whenever non-empty) Vh((W (Sa) ∩ Pk) ≥ Vh(Pk) ≥
Vh(Pi). Thus, by Lemma 1 that Vh(∪mk=i(W (Sa) ∩ Pk)) ≥ Vh(Pi). Since S∗b is feasible, the solution
to the partial problem max{Sb:t∈Sb} Vh(W (Sa) ∩ B(Sb)) ≥ Vh(Pi). Since choosing Sa = S∗a achieves
Vh(Pi), this choice achieves the minimal value.
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Q.E.D.

D. Proofs from Section 5

D.1. Proof of Proposition 3

Proof. ”⇐= ”

Let r : S → R be defined as r(s) ≡ URa (Vf (S), s). Notice that because UR is strictly concave,

Vh(S̃) > Vf (S) ⇐⇒ Erg(S̃) > Erf (S) = 0, ∀S̃ ⊂ S, h ∈ ∆S. (21)

Thus, because Vf is downward biased on (S,�d), Erf is downward biased on (S,�d). Because f has
more evidence than g, (S,≥f/g) is a refinement of (S,�d), and so Erf is also downward biased on
(S,≥f/g).

Using Erf in Proposition 9 produces an interval partition P = (P1, ..., Pm) of (S,≥f/g) such that
(13) and (14) hold. If P is not the trivial partition, then because of (13) Erf (P1) < Erf (S). But this
is a contradiction because P1 is a lower contour subset of (S,≥f/g) and Erf is downward biased on
(S,≥f/g). Since P must be the trivial partition, (14) gives Erf (S) ≤ Erg(S).

” =⇒ ”

suppose Vf is not downward biased on (S,�d). This means there exists a lower contour subset
L = W (L) ⊂ S, such that Vf (L) < Vf (S) =⇒ Vf (L) < Vf (S \ L). Define g(s) = f(s)

F (L) if s ∈ L and
g(s) = 0 otherwise. f ≥ME g but Vf (S) > Vg(S). Q.E.D.

E. Proofs from Section 6

E.1. Proof of Proposition 4

Proof. That the expression in (12) corresponds to the receiver optimal equilibrium in H̃ , flows di-
rectly from Theorem 3, and taking Sb ≡ R′ × {NS} in the definition of Ṽ .

The fact that π∗ is an equilibrium allocation of ŨB is as follows. Receiver and strategic sender
incentive compatibility are directly transferred from that in H̃ . Unbiased sender’s who obtain v(t)

are at their bliss point. unbiased senders who obtain π∗(t,NS) < v(t) can only potentially deviate to
lower actions which are further from their bliss point, otherwise their strategic counterparts would
deviate in H̃ .

Now I show that π∗ is receiver optimal in ŨB. Consider some other equilibrium allocation π′ in
ŨB. Define the following commitment allocation, π̂, in ŨB defined by:

π̂((t, S)) = π′((t, S)),

π̂((t, UB)) = min{π′((t, UB)), v(t)}.

46



Take any k, k′ ∈ T ′ × {S,UB} and let k �UBd k′. If k is strategic then π′(k) ≥ π′(k′) ≥ π̂(k′)

so π̂ is incentive compatible for strategic senders. If k is unbiased, then either π̂(k) = v(k), or
v(k) > π̂(k) = π′(k) ≥ π′(k′) ≥ π̂(k′) so π̂ is also incentive compatible for unbiased senders. The
receiver is better off under π̂ than π′. Also π̂ is an incentive compatible commitment allocation in
H̃ . Since the optimal commitment allocation is the receiver optimal equilibrium allocation in H̃ , the
receiver prefers π∗ to π′. Q.E.D.

E.2. Proof of Proposition 5

Proof. Step 1: Every equilibrium of C̃ is an incentive compatible commitment allocation of D̃ Con-
sider any equilibrium allocation of C̃ given by π : T → R. Consider altering D̃ to a game in which
the receiver can commit ex-ante to an action a : T → R. Say that π is not incentive compatible in D̃
with commitment. There exists t, t′ ∈ T ′ such that either

π((t,H)) < π((t′, H)), t �′d t′, (22)

π((t, L)) > π((t′, L)), t �′d t′, (23)

π((t,H)) < π((t′, L)), ∃s ∈M�′d(t) ∩M�′d(t
′). (24)

The statements in (22) and (23) directly violate incentive compatibility in C̃. incentive compati-
bility in C̃ requires that π((t,H)) > π((s,H)) and π((t′, L)) < π((s, L)), which combined with (24)
gives π((s,H)) < π((s, L)) violating incentive compatibility in C̃.

Step 2: πD̃ is an equilibrium in C̃, The receiver optimal commitment allocation in D̃ is equivalent
to that in D̃ by Sher (2011). By Proposition 1 this corresponds to a interval partition of (T,�d),
(P1, ..., Pm) such that Vg is downward biased on each (Pi,�d). I will show that condition (B) of
Proposition 12 is satisfied so that there exists a pooling strategy. Let Pi ∩ {T ′ × {H} ≡ Ri and
Pi ∩{T ′×{L} ≡ Qi. Take the set of non-dominant elements of (Pi,�′d) to be Wi. Consider W ⊂Wi.
Define

Qi ≡ {(t,H) : M�′d((t,H)) ⊂W ∩ T ′ × {H}} ∪B�′d(W ∩ T
′ × {L}).

Notice that Qi is a lower contour set of (Pi,�d), and so by Proposition 1 Vg(Qi) ≥ Vg(Pi). This
verifies condition (B) and therefore there exists a pooling strategy for each Pi under �c. Thus

step 3 πD̃ = πC̃ . Notice that the receiver’s expected utility for any allocation in C̃ is the same
as that in D̃. Step 1 shows that the set of equilibrium allocations in C̃ is smaller than the set of
equilibrium allocations of the commitment version of D̃. Second, the set of equilibrium allocations
of the commitment version of D̃ is larger than the set of equilibrium allocations of the commitment
version of D̃. Third, step 2 shows that the receiver optimal commitment allocation in D̃ is incentive
compatible in C̃ and in D̃. Thus, this allocation is both πD̃ and πC̃ . Q.E.D.
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F. Proofs from Section 7

F.1. Proof of Proposition 7

Proof. Consider any equilibrium allocation π̃ : T → ∆A with sender strategies σ and γ. Let the
perceived distribution over T for period 2 following declaration t in period 1 be ft ∈ ∆T with
corresponding equilibrium partition (Zt, P t1, ..., P

t
m). Note that Supp(ft) = B(S) for some S ∈ T ,

i.e. Zt ≡ {s : ft(s) = 0} is a lower contour set. Also note that,

ft(s) =

∑
r∈M(s)

g2(s)
G2(B(r))γr(t)g1(r)∑

s

∑
r∈M(s)

g2(s)
G2(B(r))γr(t)g1(r)

. (25)

Note that if π̃ is degenerate then the result holds by Lemma 1 and Theorem 3. So in search of
a contradiction suppose that π̃ is not degenerate. There exists s, t′, t′′ ∈ T with s ∈ P t′k′ ∩ P t

′′
k′′ such

that πf ′t(s|U
R) > πf ′′t (s|UR) and πf ′t(s

′|UR) = πf ′′t (s′|UR) ∀s′ ∈ B(P t
′
k′) \ P t

′
k′ . In words, there is some

most dominant part of the equilibrium partition in period 2 over which the payoffs to different
period 1 declarations differ. This means that in period 1 type s expects a payoff difference between
declarations t′ and t′′ at πft′ (s|U

R)− πft′′ (s|U
R) in period 2.

This means that ∀s ∈ P t
′
, declaring t′′ in the first period is strictly dominated by declaring t′,

i.e. γs(t
′) = 0 ∀s ∈ P t

′
k′ . I will show that ft′ ≥ME ft′′ on P t

′
k′ . Then by using Proposition 11,

this will imply that Vft′ (P
t′
k′) ≤ Vft′′ (P

t′
k′). This means that by Proposition 2 Vft′ (P

t′
k′) ≥ Vft′′ (P

t′
k′),

contradicting the fact that πf ′t(s|U
R) > πf ′′t (s|UR).

The argument for why ft′ ≥ME ft′′ on P t
′
k′ is as follows. Take s′ �d s′′. First suppose that

s′′ 6∈ Supp(ft′′). If s′ ∈ Supp(ft′′) then ∃s̃ ∈ M(s′) such that γs̃(t′′) > 0 and s̃ /∈ M(s′). This means
that s′ �d s′′ and s′ �d s̃, so because of the UEPP, s̃ 6⊥d s′′. Since s̃ /∈ M(s′) it must be that s̃ �d s′.
Given that s′, s′′ ∈ P t′k′ and P t

′
k′ is an interval, s̃ ∈ P t′k′ . But this means that γs̃(t′′) = 0, a contradiction.

Thus s′ /∈ Supp(ft′′) and ft′(s′)ft′′(s′′) ≥ ft′(s′′)ft′′(s′) holds.

Now consider that s′′ ∈ Supp(ft′′).

ft′′(s
′)

ft′′(s′′)
=

∑
r∈M(s′)

g2(s′)
G2(B(r))γr(t

′′)h1(r)∑
r∈M(s′′)

g2(s′)
G2(B(r))γr(t

′′)h1(r)

=
g2(s

′)

g2(s′′)

∑
r∈M(s′)

γr(t′′)h1(r)
G2(B(r))∑

r∈M(s′′)
γr(t′′)h1(r)
G2(B(r))

.

This motivates the definition of the following term for any s′, s′′, t,

Rs′,s′′(t) ≡
∑

r∈M(s′)
σr(t)hN−1(r)
GN (B(r))∑

r∈M(s′′)
σr(t)hN−1(r)
GN (B(r))

.

Since s′ �d s′′, Rs′,s′′(t′′) ≥ 1. Now if Rs′,s′′(t′′) > 1, this means there exists r ∈ M(s′) \M(s′′) such
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that γr(t′′) > 0 which implies that t′′ ∈ M(r). Also note that because s′′ ∈ Supp(ft′′), ∃r′ ∈ M(s′′)

with γr′(t
′′) > 0. This means that t′′ ∈ M(s′′). But since the UEPP holds, s′′ 6⊥d r, i.e. r �d s′′.

But since s′, s′′ ∈ P t′k′ and P t
′
k′ is an interval, we have that r ∈ P t′k′ . But this means that γr(t′′) = 0,

a contradiction. This means that Rs′,s′′(t′′) = 1. But then Rs′,s′′(t′) ≥ Rs′,s′′(t
′′) which implies that

ft′(s
′)ft′′(s

′′) ≥ ft′(s′′)ft′′(s′) holds. Thus ft′ ≥ME ft′′ on P t
′
k′ , completing the argument.

Q.E.D.

F.2. Proof of Lemma 3

Proof. Suppose not, i.e. ∃t, t′ : t �d t′, a1(t) < a1(t
′). Take the interval of types who induce a1(t)

and a1(t
′) to be I and I ′ respectively. Let f and f ′ be the distributions induced after a declaration

x inducing a1(t) and x′ inducing a1(t
′) respectively. Because t �d t′ and I and I ′ are intervals,

W (I ′) ∩ I = ∅.

Now take s �d s′. We will show that f ≥ME f ′. If f ′(s′) = 0, f(s′) > 0, and f ′(s) > 0 then
∃k ∈ I : s′ �d k and k′ ∈ I ′ : s �d k′, s′ 6�d k′. By the UEPP k′ 6⊥ k so k′ �d k. But this means that
k ∈ W (I ′) ∩ It, a contradiction. Also if f(s′) > 0, then f(s) > 0. Thus one need only consider cases
in which f(s), f(s′), f ′(s), f ′(s′) are all strictly positive. I will show that,

f(s)

f(s′)
=
g2(s

′)

g2(s)

∑
r∈M(s′)

σr(x)h1(r)
G2(B(r))∑

r∈M(s)
σr(x)h1(r)
G2(B(r))

≤ g2(s
′)

g2(s)

∑
r∈M(s′)

σr(x′)h1(r)
G2(B(r))∑

r∈M(s)
σr(x′)h1(r)
G2(B(r))

=
f ′(s)

f ′(s′)
.

Notice that if r ∈ M(s) \ M(s′) ∩ I ′, then f(s′) = 0. By the UEPP r �d s′. So if f(s′) > 0.
∃r′ ∈ M(s′) ∩ I . But then r �d r′ contradicting that W (I ′) ∩ I = ∅. Thus if f(s), f(s′), f ′(s), f ′(s′)

are all strictly positive, then Rs,s′(x) = 1, its maximum value.

Since f ≥ME f ′, by Theorem 1, f ≥MS f ′. Thus E[πf (s|U2)|t] ≤ E[πf ′(s|U2)|t]. But since t
induces a1(t) instead of a1(t),

a1(t) + E[πf (s|U2)|t] ≥ a1(t′) + E[πf ′(s|U2)|t].

This gives the desired result that a1(t) ≥ a1(t′). Q.E.D.

G. Generalization to Non-Full Support Distributions

G.1. Results from Section 4

It turns out that all the construction results go through without further refinement of the equi-
librium concept. Adding zero probability types is like order embedding (Supp(h),�d) into some
larger ordered type set (T,�′d). This change enlarges the message sets of positive probability types.
One might think that one may have to deter positive probability types from taking advantage of
these new messages by appropriately refining the off path best response to these zero probability
types. Also the set of equilibrium payoffs changes by adding these zero probability types.
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However the receiver optimal equilibrium does not change and does not involve declaration of
zero measure types with positive probability. This is because the truth leaning refinement which
identifies the commitment solution ensures that zero probability types will be off path. Consider
some t ∈ T \ Supp(h). Suppose t ∈ ∪t∈Supp(h) Supp(σt), with best response a(t), for truth leaning a
and σ. By Lemma 1 there exists some type s ∈ Supp(h) such that σs(t) > 0 and v(s) ≥ a(t). But since
s 6= t, and πh(s|UR) = a(t), this is a contradiction to Lemma 4 which says that π(s|UR) ≤ v(t) =⇒
σs(s) = 1. This allows one to ignore zero probability types in the construction of equilibrium.
However, the truth leaning refinement must be adjusted to allow for more flexibility for off path
declarations of zero probability types,

t ∈ arg max
s′∈M(t)

a(s′) =⇒ σt(t) = 1,

s /∈ ∪t Supp(σt) =⇒

a(s) = v(s) ∀s ∈ Supp(h)

a(s) = mins′∈B(s) v(s) ∀s /∈ Supp(h)
.

Without this modification, the equilibrium may not exist. Notice that the modification still selects
a PBNE. The above refinement derives the same equilibrium payoff vector for types in Supp(h) as
when T is restricted to Supp(h). Thus it is without loss to focus on T̃ ≡ Supp(h) and apply the
results of Section 4.

G.2. Comparative Statics Results from Section 5 and Appendix A

In this section I compare equilibrium utilities for distributions without full support. Because the
supports may differ across the distributions one cannot simply discard the zero probability types as
in the previous subsection. The main problem that arises is that the best response function Vh will
not be defined on all sets if h does not have full support. However, I show that the main theorem,
Theorem 1, goes through with little modification.

First I make some notions robust to general distributions. Consider some finite set X , and f, g ∈
∆X such that without loss X = Supp(f)∪Supp(g).29Define the f − g likelihood ratio order≥f/g, as

x ≥ x′ =⇒ f(x)g(x′) ≥f/g f(x′)g(x).

This definition reduces to the one in the main text for full support distributions. It is straightforward
to verify that (X,≥f/g) is a completely preordered set.

I next state the revised versions of the results from Section 5 and Appendix A.

Proposition 10. Let X be a finite set, r : X → R, and f ∈ ∆X with full support. For any distribution

29 One can disregard elements not in Supp(f) ∪ Supp(g) by the same logic presented above.
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g ∈ ∆X , there exists an interval partition P = (P1, ..., Pm) of (X,≥f/g) with,

Eεf (P1) < ... < Erf (Pm), and (26)

Erf (Pi) ≤ Erg(Pi) ∀i : G(Pi) > 0. (27)

Moreover, P is independent of g given ≥f/g.

Proposition 11. Let f ∈ ∆T . If S ⊂ Supp(f) and S ∩ Supp(g) 6= ∅, then Vf (S) ≤ Vg(S),∀g : f ≥ME

g, S ∩ Supp(g) 6= ∅ ⇐⇒ Vf is downward biased on (S,�d).

Theorem 4. Let f, g ∈ ∆T , where T = Supp(f) ∪ Supp(g). f ≥ME g =⇒

πf (t|UR) ≤ πg(t|UR) ∀t ∈ Supp(f) ∩ Supp(g), ∀UR ∈ Υ.

Moreover, if f(t)g(t) <
f(t′)
g(t′) for some t �d t′ then ∃UR ∈ Υ such that πf (t′|UR) > πg(t

′|UR).

The only real amendment in the above results is in Theorem 4. The reason is that one cannot
compare the utility of types that are not in Supp(f) ∩ Supp(g) simply because πf (t|UR) does not
exist if f(t) = 0.

The proofs of the first three results are identical to those of their original versions. The proof of
Theorem 4 is slightly modified.

H. Proofs of Equivalence Between ≥MS and ≥ME

H.1. Proof of Theorem 1 and Theorem 4

Proof. ” =⇒ ”

The key observation in proving the theorem is that if f ≥ME g then Zg ≡ {t : g(t) = 0} is an
upper contour set of (T,�d) andZf ≡ {t : f(t) = 0} is a lower contour set of (T,�d), i.e. B(Zg) = Zg

and W (Zf ) = Zf .

Let P f = (Zf , P f1 , ..., P
f
m) and P g = (P g1 , ..., P

g
l , Z

g) be the equilibrium partitions under f and
g respectively.30 ∀t ∈ Supp(f) ∩ Supp(g), t ∈ P fi ∩ P

g
j for some i, j. I will show that πf (t|UR) =

Vf (P fi ) ≤ Vg(P gj ) = πg(t|UR) proving the result. Now let Dg ≡ ∪jk=1P
g
k and let Uf ≡ ∪mk=iP

f
k .

Now consider the set R ≡ Uf ∩ Dg. This set is the union of disjoint subsets, R = ∪mk=i(P
f
k ∩

Dg). Also whenever non-empty W (P fk ∩ D
g) ∩ P fk = P fk ∩ D

g, because W (Dg) = Dg as P g is an
equilibrium partition. Now since P fk is poolable under f , Proposition 1 implies that Vf is downward
biased on (P fk ,�d). This means that, whenever non-empty, Vf (P fk ∩ D

g) ≥ Vf (P fk ). Also because
P f is an equilibrium partition, Proposition 1 implies that Vf (P fk ) ≥ Vf (P fi ) ∀k ≥ i. Putting these

30 Since I do not use any refinement beyond truth leaning, one can set the off path actions for declarations in Zg and
Zf arbitrarily to guarantee that this is an equilibrium.
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together gives Vf (P fk ∩D
g) ≥ Vf (P fi ) ∀k ≥ i. Since R is the union over these disjoint sets, Lemma 1

implies, Vf (R) ≥ Vf (P fi ). Now consider the problem,

max
S̃⊂Dg\Zf

Vf (B(S̃) ∩ (Dg \ Zf )), (28)

with corresponding solution S with R ≡ B(S) ∩ (Dg \ Zf ). Because B(R) ∩ (Dg \ Zf ) = R,
Vf (R) ≥ Vf (R). Moreover R ⊂ Supp(f) ∩ Supp(g) and so because of Lemma 2, R is poolable
under f . Using Proposition 11, this means that Vg(R) ≥ Vf (R). Now notice that by Proposition 2,

Vg(P
g
j ) = max

S̃⊂Dg
Vg(B(S̃) ∩Dg).

Thus since R is feasible in this problem, by optimality Vg(P
g
j ) ≥ Vg(R). Putting this string of

inequalities together,
Vg(P

g
j ) ≥ Vg(R) ≥ Vf (R) ≥ Vf (R) ≥ Vf (P fi ),

proving the result.

”⇐= ”

Let A = [a, a]. Define S ≡ M(t) ∩ B(t′), and S̃ ≡ S \ {t, t′}. By assumption, {t, t′} ⊂ Supp(f) ∩
Supp(g). I prove the case in which F (S̃) ≥ G(S̃); the opposite case is symmetric. Let UR be
quadratic loss, with v(s) = a ∀s /∈M(t), v(s) = a ∀s ∈M(t)\S, v(s) = a∀s ∈ S̃∪{t′}, and v(t) = A.
The equilibrium partition is clearly (M(t) \ S, S,M(t)c) and prior independent. For any h ∈ ∆T

with H(S) > 0, Vf (S) = (H(S̃ ∪ {t′})a + h(t)a)/H(S). Thus Vf (S) > Vg(S) if f(t)
F (S∪{t′}) <

g(t)
G(S∪{t′})

which holds by assumption. Thus πf (t′|UR) > πg(t
′|UR). Q.E.D.

H.2. Proof of Theorem 2

Proof. I only prove the ⇐= direction, as the proof of =⇒ is equivalent to that for Theorem 1.

”⇐= ”

Take the receiver optimal equilibrium partition under �d, P = (P1, ..., Pm). I show that P is also
the receiver optimal equilibrium partition under �d,v. The result then follows from Theorem 1.

Since �d,v is coarser than �d, P remains an interval partition. Thus by Proposition 1 all that
remains is to check that Vh is downward biased on (Pi,�d,v), ∀i.

Suppose not. Take S ≡ arg minS′∈Pi Vh(W�d,v(S
′)), with Vh(S) < Vh(Pi) by assumption. Note

that by Lemma 2, Vh is downward biased (S,�d,v). Let R ≡ {t ∈ Pi : t ∈ W (S) \ S}. ∀t′ ∈ R,
t ∈ B(t′) ∩ S =⇒ v(t) ≥ v(t′). This means that Vh(B(t′) ∩ S) > v(t′) and since B(t′) ∩ S is an
upper contour subset of S, Vh(S) ≥ Vh(B(t′)∩S) ≥ v(t′). This establishes that Vh(R) ≤ Vh(S) which
implies Vh(W (S)) < Vh(Pi) violating that P is the receiver optimal partition under �d. Q.E.D.
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I. Strict Comparative Statics Results

Theorem 1 says that receiver optimal equilibrium actions weakly decrease when the sender has
more evidence. More evidence is also defined in terms of a weak inequality. In this section I charac-
terize changes in the prior distribution that characterize when receiver optimal equilibrium actions
will strictly decrease. I next introduce the strictly more evidence relation over prior distributions. For
simplicity, assume that all distributions have full support over the type space.

Definition 8. Let f, g ∈ ∆T . Distribution f has strictly more evidence than g (f ≥SME g) if

t �d t′ =⇒ f(t)

g(t)
>
f(t′)

g(t′)
.

This definition is not sufficient for receiver optimal equilibrium actions to be strictly lower under
f than g. The reason is that some types may completely separate in equilibrium in which case
the receiver’s best response will be constant across f and g. Thus, the ”strict” version of more
skepticism can only obtain a strict decrease in actions for types that pool together. Moreover, I
incorporate strictness into the definition of pooling.

Definition 9. For the receiver equilibrium partition P = (P1, ..., Pm), P ′ = (P ′1, ..., P
′
n) is the strict

equilibrium partition defined by

1) P is an interval partition of (T,�d).

2) Vh(Pi) is weakly increasing in i.

3) ∀S ⊂ Pi : Pi 6⊂W (S), Vh(S) > Vh(Pi), ∀i.

P and P ′ differ in their pooled sets but not in their equilibrium outcomes, and so the strict
equilibrium partition is merely a different representation of the same equilibrium. Higher parts
in the strict equilibrium partition can have the same action as those in lower parts, while lower
contour subsets of strict equilibrium parts merit strictly higher actions. Finding P ′ is simple given
P , as P ′ is finer than P , and for all P ′i ⊂ Pj , Vh(P ′i ) = Vh(Pj).

This notion of pooling may seem less observable than that in the main text because types in
different parts can obtain the same action. However, one can distinguish strict equilibrium parts
through messaging behavior, as there exists a sender strategy σ behind the strict equilibrium parti-
tion has that t ∈ P ′i =⇒ Supp(σt) ⊂ P ′i . That is, the receiver can distinguish the strict equilibrium
part from the message that is sent. P ′ is the finest partition that ”represents” the receiver optimal
equilibrium. I define the strictly more skepticism relation over prior distributions. For any partition
P and t ∈ T , let P (t) be the part that contains t.

Definition 10. Let f, g ∈ ∆T with receiver optimal strict equilibrium partitions P f , P g under UR.
Distribution f induces strictly more skepticism than g (f ≥SMS g) if f ≥MS g and P f (t) 6= {t} or
P g(t) 6= {t} =⇒ πf (t|UR) < πg(t|UR), ∀UR ∈ Υ.
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SMS strengthens MS so equilibrium actions are weakly lower for all types under a strictly
more skeptical distribution. The addition is that types that pool together in the sense of the the
strict equilibrium partition obtain strictly lower actions under the more skeptical distribution.

Theorem 5. The strictly more skeptical and strictly more evidence relations are equivalent, i.e.

f ≥SME g ⇐⇒ f ≥SMS g.

Proof. ” =⇒ ”

Let f ≥SMS g. Take hα ∈ ∆T defined by hα(t) ≡ αf(t) + (1 − α)g(t). The first point of the
theorem is guaranteed by Theorem 1. I will prove the case when P f (t) is not a singleton, and omit
the analogous case when P g(t) is not a singleton.

Claim 2. For any α ∈ (0, 1] Vhα(S) > Vf (S) whenever S is not a singleton and satisfies (3) in Definition 9.

If one can find an α small enough such that the equilibrium strict partition does not change,
this completes the proof because hα ≥MS g by Theorem 1. Since the receiver’s best response to
subsets is continuous in α, the only occasion when the strict partition does change for any small
α is when pooled sets Pk, Pk+1, ..., Pj all of the same value join together. Say that for any small
α Pk, Pk + 1, ..., Pj pool together. Since Pj is an upper contour subset of this new pooled set and
Vhα(S) > Vf (Pj), Vhα(Pk∪, ...,∪Pj) > Vf (Pj). Thus proving the claim completes the argument.

Proof of Claim 2: First let Vh(S) be the conditional expectation of v(t) over S and under distribu-
tion h. Define the complete order≥′f/g on S as t ≥′f/g t

′ if f(t)g(t) >
f(t′)
g(t′) or f(t)

g(t) = f(t′)
g(t′) and v(t) > v(t′).31

Perform a slightly modified version of Algorithm 2 where maximal strictly decreasing sequences are
collected, on (S,≥′f/g).

Let the partition formed at the first stage be Q1, ..., Qm. For each Qi that is not a singleton
Vf (Qi) < Vhα(Qi). This uses the strict version of Remark 4, i.e. the expectation of a strictly decreas-
ing function is strictly lower under a strict monotone likelihood ratio increase in the distribution.
The one subtlety is that f strictly likelihood ratio dominates hα which comes from the construction
of ≥′f/g. If at lease one Qi is not a singleton,

Vhα(S) =
∑
t

v(t)hα(t)

=
∑
i

Vhα(Qi)hα(Qi)

>
∑
i

Vf (Qi)hα(Qi).

The algorithm concludes when each maximal strictly decreasing sequence is a singleton, i.e. Vf
is weakly increasing on each part. Because f ≥SME hα, t ≥′f/g t

′ is a completion of �d. Thus there

31 Break other ties arbitrarily.
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does not exist a non-trivial interval partition of S such that Vf is weakly increasing on each part by
(3) in Definition 9. Moreover since S is not a singleton Qi must not be a singleton for some i. Thus
by the logic of the proof of Proposition 9∑

i

Vf (Qi)hα(Qi) ≥ Vf (S).

This completes the proof for when the best response is an expectation. For the more general case I
apply the logic of the proof of Proposition 3.

”⇐= ”

Say f 6≥SME g, i.e. t′ �d t′′ but f(t′)
g(t′) ≤

f(t′′)
g(t′′) . It is without loss to take t′, t′′ such that @s : t′ �d

s �d t′′. Take UR(a, t) ≡ −(a−v(t))2 with v(t′) = 0, v(t′′) = 1, v(t) = 1, ∀t ∈ B(t′′)\{t}, and v(t) = 0

otherwise. The strict equilibrium partition is ({s1}, {s2}, ..., {t′, t′′}, {sk}, ..., {sn}) under both f and
g. However Vf ({t′, t′′}) ≥ Vg({t′, t′′}), so f 6≥SMS g. Q.E.D.

J. Other Equilibria

This appendix characterizes the conditions for an interval partition (P1, ..., Pm) to constitute an
equilibrium partition without imposing receiver optimality.

J.1. Generally Poolable Sets

Let (P1, ..., Pm) constitutes an equilibrium partition. For each Pi, there exists a sender strategy
that induces the receiver to take the same action following each on-path declaration within Pi. I
formalize this definition below.

Definition 11. a subset S is generally poolable if ∃ mutual best responses σ : S → ∆S, aσ : S → A

such that aσ(t) = Vh(S), ∀t ∈ ∪t∈SSupp(σt).

I next characterize generally poolable sets in terms of the primitives of the model. LetWS ≡ {t ∈
S : M(t) ∩ S = {t}}S, be the set of non-dominant types in S. Define the following conditions:

(A) ∀ s ⊂ S,Mint∈B(s) v(t) ≤ Vh(S).

(B) ∀W ⊂WS , ∃Q ⊂ B(W ) : S \Q ⊂ B(WS \W ) and Vh(Q) ≥ Vh(S).

Proposition 12. A set S is generally poolable ⇐⇒ (A) and (B) hold.

In considering existence of sender strategies that induce pooling, it is without loss to focus on
those such that a declarations is on path if and only if it is contained in WS .

Proof. ” =⇒ ”

First I will show that (A) must hold. Say, to the contrary that there exists t ∈ S such that Vh(S) <

Mint∈B(s)v(t). It is without loss to take t such that B(t) ∩ S = {t}. If t ∈ ∪t∈SSupp(σt), then
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aσ(t) = v(t) = Vh(S) by the fact that σ is pooling and aσ is a best response. This contradicts the
hypothesis. However, if t 6∈ ∪t∈SSupp(σt), then aσ(t) must be a best response to some belief over
types in B(t), which by Lemma 1 implies that aσ(t) > Vh(S). This means that σt(t) = 1 which
contradicts that t is off path.

Now I will show that (B) must hold. Take an arbitrary W ⊂WS . Let

Q ≡ {s ∈ S : v(s) ≥ Vh(S) &Supp(σs) ∩W 6= ∅} ∪ {s : M(s) ⊂W},

i.e. the types that declare an element of W and have value greater that Vh(S) combined with the
types that can only declare elements of W . It is straightforward that Q ⊂ B(W ). The difference
between Vh(Q) and Vh(S) can be seen through the following shifts. The first component ofQweakly
increases the probability of types with value greater than Vh(S) relative to the induced distribution
under σ. Because σ induces a best response aσ(t) = Vh(S), ∀s ∈W , this change increases the value.
Secondly, the construction of Q removes all types that had value less than Vh(S) and could declare
something not in W , which also increases the value. Thus, Vh(Q) ≥ Vh(S).

”⇐= ”

For any arbitrary feasible σi : S → ∆WS , let the receiver best response be aσ : WS → A. . Begin
with arbitrary σ and do the following iterated process.

Initialize i = 0.

Step (1): set Wi ≡ arg mins∈S a
σ(s). If Wi = WS then σ is a pooling strategy.

Step (2): Take s ∈ B(Wi) : (v(s) ≥ Vh(S) and ∃t ∈Wi : σs(t) < 1). If this is not feasible, then take
s ∈ B(Wi) : (v(s) ≤ Vh(S) and ∃t ∈ Wi : σs(t) > 0) One of these must exist otherwise assumption
(B) is violated.

Step (3): In the first (second) case increase (decrease) σs(t) until either, (i) ∃t′ 6= t : aσ(t) = aσ(t′),
or (ii) σs(t) ∈ {1, 0} occurs. In both cases, set i = i+ 1 and return to Step (1).

Let the lowest action at stage i be ai. By construction ai is weakly increasing at each stage with
strict increases guaranteed at a future stage ifWi 6= WS . Also ai is bounded above by Vh(S) because
of Lemma 1. Thus ai must converge to Vh(S). The associated σ is a pooling strategy.

Q.E.D.

For completeness I present the characterization of equilibrium with no additional refinement.

Proposition 13. Let πh : T → R with equivalence classes ∪s{πh(s|UR)} = {π1 < ... < πm} and let
Pi ≡ {s : πh(s|UR) = πi}. πh is an equilibrium sender payoff vector ⇐⇒

Pi satisfies (A) and (B) ∀i, (29)

(P1, ..., Pm) is an interval partition of (T,�d), (30)

and πi = Vh(Pi) ∀i. (31)
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