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Abstract

I study dynamic delegation of heterogeneous projects to agents with diverse capabilities. Each

agent’s (e.g., division managers, employees) true ability to carry out projects varies over time based

on his expertise and private idiosyncratic compatibility with the specifics of the current project. The

principal’s (e.g., headquarters, management) ability to credibly provide incentives in order to dele-

gate efficiently hinges on the degree of specialization across agents. Efficiency - where each project

is assigned to the agent best suited for it - is attainable if and only if specialization does not ex-

ceed a threshold. If specialization is sufficiently high, communication breaks-down entirely. The

derivation of a necessary and sufficient condition for efficiency, at fixed discounting, enables con-

structing a simple class of delegation rules that are efficient whenever any rule is, and deriving the

key properties of such rules. These properties shed light on the potential benefits or drawbacks of

certain management practices in the absence of monetary incentives. I establish an equivalence be-

tween ex-post equilibria – in which agents’ ex-post incentive constraints are satisfied in each period

– and a natural class of equilibria in which delegation is driven by past performance, but does not

condition directly on past communication. The analysis also studies optimal delegation when the

principal is unable to discriminate between the agents, and characterizes the cost associated with

this inability.
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1 Introduction

Matching projects or tasks with those best suited for them is one of the most prominent goals in

organizational decision making. A growing body of empirical evidence has documented a trend to-

wards flexible workplace practices, which involve highly dynamic and less specialized job assign-

ment, and in which divisions, teams or employees are able (and required) to perform a diverse and

often overlapping range of tasks.1 Since agents (e.g., division managers, employees) are typically bet-

ter informed than the principal (e.g., headquarters, management) about how well suited they truly are

given the specifics of each task, a principal’s ability to efficiently delegate responsibilities and respond

to a changing environment hinges on her ability to elicit such private information over time. In many

economic environments, however, this ability is hindered by both a misalignment of interests (e.g.,

while headquarters aims to maximize overall profits, division managers are likely biased toward the

profits of their own divisions) and a limited set of tools with which to reconcile this misalignment. In

particular, in many environments of interest, the principal is limited in her ability to provide incentives

through monetary compensation, or commit to future allocation decisions.2

Many environments share these features. A firm’s headquarters may wish to choose a division

to head up a new project or acquire a new client.3,4 A district attorney chooses a prosecutor to lead

a high exposure case. A military general selects an elite unit for a prestigious operation.5 In such

environments, (how) can the principal efficiently delegate tasks over time among her heterogeneously

specialized but privately informed agents? What is the role of specialization in shaping dynamic

incentive provision?

To study such questions, I introduce the following dynamic environment. A principal faces a

stream of projects - whose types differ over time - to delegate to one of two agents. Each agent’s true

ability to successfully carry out a project is private and varies over time based on his specialization

(known) in the current type of project and idiosyncratic compatibility (private) with its specific char-

acteristics. The more specialized an agent is in a given type of project, the more likely he is to be well

1See, e.g., Osterman (1994), Brickley et al. (1996), OECD (1999), Caroli and Van Reenen (2001) (and references therein).
2The ability to exchange money within an organization is often hampered by various managerial and legal constraints.

Indeed, it has long been observed (e.g., Cyert and March (1963)) that the promise of future influence is a prevalent method of

payment within organizations. Such constraints also limit the principal’s ability to contractually commit to future decisions.

For example, courts typically do not enforce contracts between parties within the same organization (see, e.g., Bolton and

Dewatripont (2013)).
3For example, within a consulting firm, divisions such as risk-management and process-improvement often share signif-

icant overlap in capabilities and vie for the same clients, as do cyber-security and business continuity management.
4As Ben-Porath et al. (2014) point out, in such a scenario, each division may be interested in the resources associated

with the new project, independently of whether it is best equipped for it. Furthermore, using these resources as a means of

providing monetary incentives appears to be wasteful.
5E.g., the UK’s Parachute Regiment and the Royal Marines differ in their specialization, but share a significant overlap in

capabilities, which has led to a decades-long competition for prestige. See Berbéri and Castro (2016).
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suited for such projects and the less likely he is to be well suited for others. Indeed, gaining knowl-

edge in a certain field often comes at the expense of another. In each period, the agents communicate

with the principal, who subsequently makes her delegation decision. The outcome of each project is

publicly observed but monitoring is imperfect - while an agent well equipped for a project is natu-

rally more likely to be successful than one who is not, the latter may nevertheless carry out the project

successfully; similarly, a well equipped agent may nevertheless fail. Furthermore, while the principal

cares about the organization’s performance as a whole, each agent is only concerned with his own

outcomes. To provide incentives, the principal can rely only on credible promises; in particular, she

cannot offer monetary incentives or formally commit to future decisions.6

The first results of the paper concern how the degree of specialization across agents shapes the

principal’s ability to delegate efficiently. I first derive a necessary and sufficient condition for efficiency

(i.e., the principal’s first-best), where each project is delegated to an agent best suited for it. Efficiency

is attainable if and only if the degree of specialization does not exceed a certain threshold. Hence,

specialization limits the scope for communication between the principal and the agents. Moreover,

if agents are sufficiently specialized, communication is not only inefficient but breaks-down entirely.

That is, agents cannot be incentivized to any extent and decentralization - where each agent is assigned

the type of project he is specialized in regardless of whether he is truly suited for it or not - is inevitable.

The environment features a combination of adverse selection and imperfect monitoring. One of

the contributions of the paper is to shed light on the interaction between these two components. In

order to study this interaction and highlight particular features relevant for dynamic incentive provi-

sion, the analysis focuses on ex-post equilibria. Ex-post equilibria require that in each period, taking

expectation over the future path of play, each agent’s announcement remain optimal irrespective of his

belief about the other agent’s current type (see Athey and Miller (2007) and Bergemann and Välimäki

(2010)). Such equilibria have the appeal of being robust to information leakage as well as certain

model misspecifications.7 Eliminating the need for stringent (simultaneous and private) communica-

tion protocols is particularly appealing in the context of organizations, in which it may be undesirable

to restrict the way divisions or employees share information.

A key feature of the analysis is the derivation of a necessary and sufficient condition for efficiency

(for fixed primitives, including patience). In particular, the approach differs from a folk-theorem anal-

ysis. Such a characterization is instrumental for the second component of the paper, which studies the

design of rules for efficient delegation. In particular, I consider the following questions: What rules

induce efficient communication whenever possible (i.e., over the entire region of primitives for which

6Note that the inability to provide monetary incentives does not imply the absence of monetary compensation altogether.

Indeed, in many public organizations monetary compensation is fixed and nonnegotiable.
7Specifically, such equilibria require no knowledge of the distribution over potential payoff-irrelevant signals (see Berge-

mann and Morris (2005)). The presence of payoff-irrelevant signals which may be correlated with agents’ types can generate

arbitrary higher-order beliefs. While this complication can be avoided by assuming away the existence of payoff-irrelevant

signals altogether, higher-order beliefs may have important equilibrium consequences (see Weinstein and Yildiz (2007)).
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efficiency is attainable)? What are the key properties of such rules?

In order to delegate efficiently, the principal must use some form of dynamic favoritism – the cred-

ible promise (threat) of a future (dis)advantage. Such favoritism may take many forms. The key dif-

ficulty in designing efficient rules is that punishing one agent rewards another. A rule that is efficient

whenever possible must perfectly balance the incentives of both agents, generating high variation in

continuation payoffs while remaining credible. I characterize a simple class of rules that achieve this,

and show that they are efficient whenever possible. For example, one such rule – maximal-priority –

features the following dynamics. In each period, one of the agents is favored. If both agents request

the project, or both do not, the project is assigned to this favored agent, who continues to be favored

as long as he does not fail. If and only if a favored agent fails he immediately loses favor, and the

other agent is favored instead. Importantly, note that a favored agent ‘takes responsibility’ for failing

in a project even if he did not claim to be suited for it. While remarkably simple, this rule in fact

incentivizes both agents to be truthful in all periods over the largest region of primitives for which

efficiency is attainable (by any rule).

The results speak to the potential effectiveness of certain management styles in the absence of

monetary incentives. First, dynamics under maximal-priority are failure-driven – priority is assigned

based on solely the (most recent) failure of the favored agent; in particular, success is not (directly) re-

warded. I show that this property is indeed essential for efficiency among a class of Markov-priority

rules. Hence, in this sense, the stick is more effective than the carrot.8 Second, as maximal-priority

illustrates, efficiency does not require the principal’s knowledge of project types or the agents’ special-

ization. Indeed, in many circumstances, the principal may not posses the expertise required to assess

the nature of incoming projects and their relation to the agents’ specialization. The results show that

such ignorance need not be costly for the principal.

The third main result sheds light on the interplay between adverse selection and imperfect mon-

itoring and the role of each of these components in shaping dynamic incentives. In each period,

efficiency requires the principal to condition her decision not only on current announcements by the

agents but also on past (payoff-irrelevant) information, which may include past delegation decisions,

communication, and performance. I introduce a class of performance-based equilibria, in which the ex-

post requirement on equilibria is no longer imposed, but in each period the principal’s decisions do

not condition directly on past communication; that is, past communication shapes current decisions

only through its impact on past delegation decisions and performance. This is the case, for example,

under the maximal-priority rule mentioned above. I show that efficiency can be attained in an ex-post

equilibrium if and only if it can be attained in a performance-based equilibrium. Furthermore, the

sets of efficient equilibrium payoffs under the two coincide. On the one hand, a performance-based

8In “Inside Intel” (Harvard Business Review, Dec. 1996), Andrew Grove’s (former Intel CEO) view on the effectiveness of

a certain measure of fear within organizations is described as follows: “Fear can be a healthy antidote to the complacency

that success often breeds”. Such a view contrasts with the alternative view (see, e.g., Deming (1986)) that fear has no place

within organizations.

4



equilibrium entails less flexibility in conditioning decisions on past information. On the other hand,

ex-post incentive compatibility is relaxed. The analysis shows that the flexibility lost by the former

restriction is precisely recovered by the relaxation of incentive constraints.9

In some economic environments favoring one agent over another, even temporarily, may be unde-

sirable.10 In such circumstances it may be in the interest of the principal to signal that she is not biased

by avoiding asymmetric treatment. What is the cost of such a decision? To answer this question,

I study non-discriminatory equilibria, where at the beginning of each period the expected continua-

tion payoffs of the agents are required to be equal to one another. Efficiency is unattainable without

discrimination. I characterize the highest payoff the principal can obtain without discriminating, and

consequently derive the cost of restricting attention to non-discriminatory rules (alternatively, the ben-

efit from favoritism). Furthermore, I construct a non-discriminatory rule that attains the principal’s

highest payoff without discrimination. Under this rule, each project is delegated by default to the

agent more specialized in its type, unless the less specialized agent requests it. A decentralization

phase is triggered if and only if an agent fails in a project in which he is less specialized. Interestingly,

when the principal cannot discriminate, priority over a project is most effective when granted to the

agent who is less specialized.

Finally, the model is extended to allow for correlation in agents’ types over time in order to study

the role of persistence in shaping dynamic incentive provision. Whether persistence is helpful or

harmful for incentive provision is not immediate. On the one hand, the possibility of signaling may

strengthen agents’ incentives to be untruthful. On the other hand, persistence also permits the princi-

pal to infer information about the agents’ future types based on past outcomes. I show that persistence

hinders efficiency. In particular, efficiency is attainable if persistence is not too high, but not otherwise.

The rest of the paper is organized as follows. The remainder of this section includes a discussion of

the related literature. The model is introduced in Section 2. Section 3 contains the results concerning

the (im)possibility of efficiency, decentralization and the role of specialization. Section 4 studies the

design of rules for efficient delegation. Section 5 establishes the equivalence between ex-post equilibria

and their performance-based counterpart. Section 6 studies equilibria without discrimination and

characterizes the principal’s benefit from favoritism. Finally, Section 7 includes a discussion of possible

extensions, while Section 8 concludes. The Appendix contains all proofs omitted from the main text.

9In particular, any improvement in the primitive region under which efficiency is attainable beyond the class of

performance-based equilibria necessarily implies a loss of robustness.
10Asymmetric treatment may raise concerns that the principal is biased towards an agent. For example, if employees

within a division believe that headquarters is biased toward another division, this may reduce motivation or distort incen-

tives (e.g., by inducing counterproductive efforts to overcome such a bias).
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1.1 Related literature

This paper is related to several strands of literature. First, it contributes to the literature on delegation,

which studies the incentive problems in organizations due to the combination of misaligned prefer-

ences and hidden information.11 In common with much of this literature is the assumption that the

principal is unable to use monetary transfers as a means of aligning incentives. This assumption re-

flects the view that within organizations, various managerial and legal constraints often impede such

monetary transfers.

While this literature has mostly focused on static environments, in recent years a growing litera-

ture has begun to study delegation and mechanism design without money in dynamic settings. Guo

and Hörner (2017) study optimal dynamic mechanisms without money. An uninformed principal,

who has full commitment power, decides in each period whether to provide a costly perishable good

to an agent, whose valuation evolves over time. Lipnowski and Ramos (2016) and Li et al. (2017) both

study a repeated game between a principal and a better informed agent, where the principal repeat-

edly relies on the agent to perform tasks, but cannot utilize monetary incentives or commit to future

decisions. In common with these papers is the focus on non-monetary dynamic incentives, and (with

respect to the latter two) the principal’s inability to commit.12 However, among other differences,

while these papers consider environments with a single agent, I study dynamic delegation to multiple

(and heterogeneous) agents. In particular, the focus is on how delegation should be organized among

the agents over time, and how heterogeneity between the agents shapes dynamic incentive provision.

The environment studied in this paper is most closely related to Andrews and Barron (2016)

and de Clippel et al. (2017). Andrews and Barron (2016) study relational contracting with multiple

agents.13 A firm repeatedly contracts with one of multiple suppliers, whose productivity is redrawn

in each period and is observed by the principal, but whose effort is subject to moral hazard. Output

is stochastic and non-contractible, and monitoring is private – suppliers observe only their own rela-

tionship with the principal. The principal can provide monetary compensation, but cannot commit

to such compensation. In contrast, the environment in the current paper involves a combination of

adverse selection and imperfect (public) monitoring. Furthermore, a key difference is the principal’s

inability to use monetary incentives. The results in the current paper show that the absence of mon-

etary incentives leads to dynamics that contrast sharply with those that arise in their environment.

In de Clippel et al. (2017), a principal with limited attention designs an idea-selection mechanism to

repeatedly choose among multiple agents who wish to have their ideas implemented. As in the envi-

11The seminal work is Holmström (1977, 1984). See Armstrong and Vickers (2010), Amador and Bagwell (2013), Frankel

(2014) and Ambrus and Egorov (2017) for more recent contributions.
12See also Alonso and Matouschek (2007), Guo (2016), Bird and Frug (2017) and Deb et al. (2017) for related contributions.
13Several other papers in the relational contracting literature, including Levin (2002), Board (2011) and Urgun (2017),

consider environments with multiple agents. As in Andrews and Barron (2016), a key difference with respect to this paper

is the principal’s ability to provide incentives through monetary transfers.
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ronment of the current paper, the principal can neither commit nor use transfers in order to incentivize

the agents to suggest only good ideas. Among other differences, a key difference in the current paper

is the derivation of a necessary and sufficient condition for efficiency, at fixed primitives (including

patience). Such an approach enables identifying results that need not hold when focusing on asymp-

totically optimal rules (as discounting vanishes), and to study how effective different delegation rules

are relative to one another. Section 7.3 discusses the relationship with these two papers in greater

detail.

This paper is also related to the literature on “trading favors” studied in Möbius (2001) and Hauser

and Hopenhayn (2008), in which players have private opportunities to do favors for one another.

An important distinguishing feature is that in these papers agents benefit (in the stage game) at the

expense of one another. See also Abdulkadiroğlu and Bagwell (2013) and Olszewski and Safronov

(2017a,b) for more recent contributions. The analysis is also related to Athey and Bagwell (2001), in

which colluding firms play a repeated Bertrand game and are privately informed about their respec-

tive costs. In a binary type model, they show how the firms can use future “market-share favors” in

order to achieve first-best payoffs. Among other differences, the environment I consider features both

adverse selection and imperfect monitoring. (In general, the literature on collusion has typically mod-

eled these two issues separately.) Furthermore, the analysis imposes a robustness criterion in the form

of a restriction to ex-post equilibria – where ex-post incentive constraints are imposed in each period

(taking expectation over the future path of play) – which also sheds light on the interaction between

these two components.14 Another key difference with respect to these papers is the derivation of a

condition both necessary and sufficient for efficiency. This condition plays an important role in the

subsequent analysis in the paper, which focuses on equilibrium behavior rather than on payoffs.

A large literature on organizational decision making has argued that the advantages from special-

ization are constrained by the need to coordinate specialized activities (see, e.g., Becker and Murphy

(1992), Bolton and Dewatripont (1994), Garicano (2000) and Dessein and Santos (2006)).15 The more

specialized employees or divisions within an organization are, the more communication is necessary

to coordinate activities between them. The analysis in this paper sheds light on a different aspect of

the tradeoff between specialization and communication by studying a dynamic environment and ab-

stracting away from joint coordinated activity in order to focus on competition among agents within

the organization. The analysis shows that when such competition is present, specialization hinders

14Such equilibria were separately introduced in Athey and Miller (2007) and in Bergemann and Välimäki (2010), and are

often studied in the dynamic mechanism design literature (see also Athey and Segal (2013)). This concept is also related

to belief-free equilibria in repeated games with imperfect private monitoring, as introduced in Piccione (2002) and Ely and

Välimäki (2002) and extensively studied in Ely et al. (2005). Hörner and Lovo (2009) and Hörner et al. (2011) study belief-

free equilibria in games with incomplete information. Fudenberg and Yamamoto (2010) study ex-post equilibria in repeated

games with imperfect public monitoring in which the payoffs and monitoring structure are unknown.
15See also Dessein and Matouschek (2008), Fuchs et al. (2014) Alonso et al. (2015), Dessein et al. (2016) for related contri-

butions.
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dynamic incentive provision by creating endogenous communication costs. The more specialized

agents are, the more costly communication becomes. When specialization is too high, communication

breaks-down entirely.

In the environment of this paper, the principal uses dynamic favoritism – the promise (threat) of

future (dis)advantage – as a means of aligning incentives. Such strategic use of favoritism also arises

in static mechanism design environments in which monetary transfers are absent. In Ben-Porath et al.

(2014), a principal allocates a good among multiple agents, each of which is privately informed about

the principal’s value from allocating the good to him. The principal can verify agents’ private infor-

mation at a cost, and transfers are not permitted. A favored-agent mechanism consists of a favored

agent and a threshold value. If all other agents report values below the threshold, the good is allocated

to the favored agent. Otherwise, the agent who reports the highest value is checked and receives the

good if and only if his report is confirmed. Ben-Porath et al. (2014) show that all optimal mechanisms

are essentially randomizations over optimal favored-agent mechanisms.16

The paper is also related to the literature on intrafirm resource allocation in finance. Harris et al.

(1982) study the problem of how a firm should allocate a resource among divisions when its produc-

tivity in each division is privately known to the respective division manager. In a static environment

in which transfers are permitted, they establish the optimality of certain transfer pricing schemes. The

results in this paper shed light on the nature of such resource allocation in a dynamic environment,

when the organization faces certain costs or constraints in utilizing such transfer schemes.

2 Model

Time is discrete, indexed by t = 1, ..., ∞. In each period, a risk-neutral principal, indexed by i = 0,

receives a new project she may delegate to one of two risk-neutral agents, 1 and 2. Each period-t

project may take one of two possible types, ωt ∈ {A, B}, with equal probability. The type of project is

publicly observed.

Specialization

Agents are privately informed in each period about their suitability for the current type of project.

Specifically, agent i’s period-t type is denoted by θit ∈ {α, β}, where type α (β ) is suited for a type A

(B) project, and unsuited for a type B (A) project. If an agent is suited for a project, he is successful

in carrying it out with probability µ ∈ (0, 1). An unsuited agent may nevertheless succeed, but with

a lower probability, µ ∈ (0, µ). Each agent i’s type is drawn independently in each period t ≥ 1,

16Antic and Steverson (2017) demonstrate how a principal can benefit by coordinating her actions when preferences ex-

hibit complementarities, and show that such coordination may also result in strategic favoritism.
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according to his specialization, which is captured by17

φi := Pr(θit = α) ∈ (0, 1).

Hence, the higher is φi, the more likely agent i is to be suited for a type-A project, and the less likely he

is to be suited for a type-B project.18 For expositional purposes, we assume agents are heterogeneous

in their specialization. Specifically, let φ ∈ [ 1
2 , 1), φ1 = φ and φ2 = 1− φ. Hence, agent 1 is specialized

in projects of type A, while agent 2 is specialized in projects of type B. The degree of specialization

across agents is therefore measured by φ. The higher is φ, the more specialized the agents are; that is,

the more likely they are to be suited for the projects in which they are specialized, and the less likely

they are to be suited for projects in which they are not specialized.19

Timing

The timing of each stage-game, illustrated in Figure 1, is the following. First, a project arrives, its

type ω ∈ {A, B} is publicly observed, and each agent i = 1, 2 privately observes his own type, θi ∈
{α, β}. Agents then simultaneously and publicly announce whether they are suited for the project

or not, where mi = 1 denotes i’s announcement that he is suited for the project, and mi = 0 his

announcement that he is not. Next, the principal publicly makes an allocation decision (x1, x2) ∈
X := {(0, 0), (0, 1), (1, 0)}. The principal’s decision to allocate the current project to agent i is denoted

by xi = 1, whereas xi = 0 denotes her choice to withhold the project from i. Each project can be

delegated to at most a single agent, while (x1, x2) = (0, 0) reflects the principal’s decision to carry

out the project herself, in which case her payoff is 0. The project is then carried out and its outcome

y ∈ {0, S, F} is publicly observed. Success and failure are represented by S and F, respectively, and 0

denotes the outcome in case the project has not been delegated. Finally, the principal and the agents

observe the realization of a public randomization device.20

The principal cannot use monetary transfers in order to incentivize the agents to reveal their pri-

vate information, nor can she commit to future allocation decisions. Monetary compensation may

either be entirely infeasible, or it may be predetermined and fixed.

17Section 7 considers an environment in which agents’ private information evolves independently according to a two-state

Markov chain.
18Note that the assumption that agents’ types always realize either α or β is made only for convenience. It is irrelevant

whether an agent who is not suited for the current type of project is indeed suited for the other. What matters is only whether

agents are suited for the current type of project or not.
19The results extend to arbitrary specialization profiles (φ1, φ2) ∈ (0, 1)2. See Section 7 for a discussion.
20Randomization allows to convexify the set of equilibrium continuation payoffs. I do not explicitly model such random-

ization.
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Figure 1: Timeline of the stage-game

Preferences

If an agent succeeds in a project, he receives a stage-game payoff of π > 0; otherwise, his payoff is

0. The payoff π may be interpreted as either a non-monetary reward, which may, for example, take

the form of gain of professional experience, reputation or positive psychological reinforcement, or

alternatively an exogenously fixed monetary payment.21 Carrying out a project involves no cost for

the agents (alternatively, this cost may be positive but small relative to µπ). Hence, the incentives of

the agents and the principal are misaligned: While agents benefit only from success, they myopically

prefer to be awarded a project regardless of whether they are truly suited for it or not.

The principal and agents share a common discount factor, δ ∈ (0, 1). The principal’s period-t

expected continuation payoff is given by

U0,t := E
∞

∑
r=t

δr−t1{yr=S},

the expected discounted number of successful projects. Each agent i’s period-t expected continuation

payoff is equal to the expected discounted sum of his payoffs,

Ui,t := E
∞

∑
r=t

δr−txirπ1{yr=S}.

Throughout the paper, continuation payoffs are multiplied by (1− δ) so as to be expressed as per-

period averages. The term ’value’ will often be used to refer to a player’s expected average discounted

continuation payoff.

Equilibrium and robustness

Following Fudenberg et al. (1994), we consider perfect public equilibria (PPE) – that is, sequential

equilibria in which the players use public strategies. Denote by ht = {ωr, mr, xr, yr}t
r=1 the period-

t public history at the beginning of period t + 1, which includes the history of past project types,

announcements, allocation decisions, and project outcomes until period t. h0 denotes the null history.

21See Halac and Prat (2016) for a model of managerial attention in which a worker benefits from managerial attention,

which may induce some form of psychological recognition of their performance.
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Let Ht denote the set of period-t histories, and H :=
∞
∪

t=1
Ht the set of all histories. A public strategy

for agent i is a sequence of functions {Mit}∞
t=1, where each

Mit : Ht−1 × {A, B} × {α, β} → {0, 1}

specifies an announcement mit ∈ {0, 1} as a function of the public history ht−1 ∈ Ht−1, the current

project type ωt ∈ {A, B}, and the agent’s current private information θit ∈ {α, β}. An agent’s an-

nouncement is truthful if mit = 1 whenever (ωt, θit) ∈ {(A, α), (B, β)}, and mit = 0 otherwise. Agent

i’s strategy is truthful if his announcement is truthful given any public history. The principal’s public

strategy is a sequence of functions {χt}∞
t=1, where each

χt : Ht−1 × {A, B} × {0, 1}2 → X

specifies an allocation decision x ∈ X as a function of the public history ht−1 ∈ Ht−1, the project type

ωt ∈ {A, B}, and the period-t announcements (m1t, m2t) ∈ {0, 1}2.

In the environment above, each of the agents has private information in each period. If an agent

could delay the timing of his announcement, or learn about another agent’s private information

through other means, he might be led to change his announcement based on the additional infor-

mation he obtains. A standard PPE breaks-down in such circumstances. We consider PPE that are

robust in the following sense.

Definition 1 An ex-post PPE (XPPE) is a PPE in which, in each period, taking expectation over the future

path of play, each agent’s announcement remains optimal irrespective of his belief about the other agent’s past

and current type.

The above notion of ex-post equilibrium, imposing ex-post incentive compatibility in each period

taking expectations over the future path of play, was introduced separately by Athey and Miller (2007)

and Bergemann and Välimäki (2010).22 Note that the ‘ex-post‘ requirement applies to past and current

signals, but not future ones.23 An XPPE has the appeal of being robust to information leakage, as well

as to the introduction of payoff-irrelevant signals and high-order beliefs (an XPPE can be constructed

without any knowledge of the distribution over potential payoff-irrelevant signals; see Bergemann

and Morris (2005)).

Such properties are particularly appealing in the context of organizations, in which it may be diffi-

cult or undesirable to restrict the way divisions or employees share information. In an XPPE, stringent

(simultaneous and private) communication protocols are not necessary; division managers or employ-

ees can exchange information freely.24

22See also Miller (2012), who considers such ex-post equilibria in a model of collusion with adverse selection.
23For this reason, Bergemann and Välimäki (2010) use the term ‘periodic ex-post’.
24Even if it is indeed possible to enforce the communication protocols necessary for standard PPE, there may be other

unmodelled costs or concerns associated with such protocols, which may be avoided by considering XPPE.
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Efficiency and decentralization

An efficient XPPE is an XPPE in which at all periods t ≥ 1 the project is allocated to an agent who is

best suited for it. That is, in an efficient XPPE, any type-A or type-B project is assigned to an agent

of type α or β, respectively, whenever such an agent exists. If an efficient XPPE exists, we say that

efficiency is attainable. Furthermore, the principal’s allocation rule is efficient if it is part of an efficient

XPPE. Note that in an efficient XPPE the principal obtains her first-best value v∗ (i.e., her first-best

expected average payoff) equal to

v∗ = φ(1− φ)µ + (1− φ(1− φ)) µ

= µ− (µ− µ)φ(1− φ).

In any Nash equilibrium of the one-shot game the principal allocates each project to the agent who

is specialized in it, regardless of the agents’ announcements. An XPPE involving such decentraliza-

tion, in which agent 1 receives all projects of type A and agent 2 all projects of type B, regardless of

agents’ announcements, will be referred to as a communication-free XPPE. The principal’s value vo in a

communication-free XPPE is equal to

vo = φµ + (1− φ)µ.

3 Efficient Delegation

This section studies the role of specialization (as well as patience and the monitoring structure) in

shaping incentive provision. Specifically, the following questions are considered: When can efficiency

be attained? When is any form of ‘informative’ communication feasible?

3.1 Efficiency – a characterization

In this section, I identify a necessary and sufficient condition for the existence of an efficient XPPE,

and characterize the set of efficient XPPE values. Importantly, the characterization applies for any set

of primitives {φ, δ, µ, µ, π}; in particular, for a fixed discount factor δ, as opposed to studying the limit

as δ→ 1. That is, the approach differs from a folk-theorem analysis.

The set of equilibrium values is denoted by E ⊆ R3
+, and the set of efficient XPPE values by

E∗ := {(v0, v1, v2) ∈ E| v0 = v∗ and v1 + v2 = πv∗} ⊆ R3
+.

Proposition 1 identifies a necessary and sufficient condition for the set E∗ to be non-empty, whereas

Proposition 2 characterizes the set E∗ completely.

Proposition 1 For any δ, µ, µ there exists φ∗(δ, µ, µ) < 1 such that efficiency is attainable if and only if

φ ∈ [ 1
2 , φ∗(δ, µ, µ)].

12



Figure 2: Threshold level of specialization φ∗ below which efficiency is attainable, as

a function of δ, given different success probabilities (µ, µ).

When agents’ specialization exceeds a threshold, efficiency is unattainable. Figure 2 illustrates the

threshold specialization level φ∗ as a function of the discount factor δ, for different success probabilities

(µ, µ). As Figure 2 illustrates, the region in which efficiency is attainable shrinks as agents become less

patient. Note that if

δ <
4µ

(µ− µ)(1− µ) + 4µµ
(1)

there cannot exists an efficient XPPE regardless of the level of specialization. However, for any δ, µ, µ

the specialization threshold φ∗(δ, µ, µ) is strictly smaller than 1, hence high patience cannot fully com-

pensate for high specialization. In other words, if agents are sufficiently specialized, efficiency cannot

be attained regardless of how patient the agents are. The intuition for the results and the role of spe-

cialization are discussed in Section 3.2. We now describe the main steps of the proof of Proposition 1,

the formal proof of which can be found in the Appendix.

Step 1. In order to describe E∗, we first adapt the recursive methods of Abreu et al. (1990) and

Fudenberg et al. (1994) to the current environment, which involves a combination of both adverse

selection and imperfect monitoring, and in which XPPE are considered as opposed to standard PPE.

XPPE payoffs are factored into two components: current-period payoffs and promised continuation

payoffs, where the latter are themselves required to be XPPE payoffs. Observe that in an XPPE, the set

of continuation payoffs can depend on the type of project, the profile of agents’ announcements, the

identity of the agent who carries out the project, and finally whether that agent was successful or not.

Denote byZ = (χ,M,V) a policy, which consists of (a) χ, a rule specifying the principal’s allocation

decision as a function of the agents’ announcements and the type of project; (b)M = (M1,M2), rules

specifying the agents’ announcements as a function of their own type and the current type of project;

13



Figure 3: Illustration of Ψ

and (c) V , a rule specifying the agents’ promised continuation payoffs as a function of the outcomes

described above. (See Appendix A for the formal definitions of concepts introduced in this section.)

A policy Z is ex-post incentive compatible (XIC) if agents’ announcements are a best-response re-

gardless of their belief about the other’s type. Denote by Λi(Z) the ex-ante expected payoff of player

i under a policy Z . A payoff vector v ∈ R3
+ is then ex-post decomposable on a set V ⊆ R3

+ if there exists

a policy Z such that (i) Z is XIC; (ii) promised continuations are elements of V; and (iii) payoffs are

dynamically consistent, i.e., vi = Λi(Z).25

In the Appendix, it is shown that the set of XPPE E can be characterized through ex-post self-

generation. For any fixed set of primitives, {φ, δ, µ, µ, π}, if v ∈ E∗, then v is ex-post decomposed by

someZ on E∗, whereZ is such that allocation is efficient (i.e., the project is allocated to an agent suited

for it whenever such an agent exists). In this case, Z is said to ex-post E-decompose v on E∗. Moreover,

either E∗ = ∅ or E∗ = co ({v̂, ṽ}), for some v̂, ṽ ∈
{
(v∗, v1, v2) ∈ R3

+|v1 + v2 = πv∗
}

.

Step 2. Suppose E∗ 6= ∅. Then by compactness of E∗ there exist minimal and maximal agent values

that can be supported under an efficient XPPE,

v := min {v ∈ R+ : (v∗, v, v2) ∈ E∗}

and v := πv∗ − v. Define a function Ψ that maps any v ∈ [v, 1
2 πv∗] to the minimum of the set of

values ṽ ∈ R+ such that the payoff vector (v∗, ṽ, πv∗ − ṽ) is ex-post E-decomposable on the inter-

val co {(v∗, v, πv∗ − v), (v∗, πv∗ − v, v)}. See Figure 3 for an illustration. Observe that v is a fixed-

point of Ψ. Denote by J (v) the set of policies that ex-post E-decompose (v∗, Ψ(v), πv∗ − Ψ(v)) on

25Throughout the paper, whenever their is no confusion, we often use the term ’decomposable’ rather then ’ex-post de-

composable’.
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co {(v∗, v, πv∗ − v), (v∗, πv∗ − v, v)}. For any value v ∈ [v, 1
2 πv∗] a key step of the proof is in solving

for Ψ(v) by characterizing completely the set J (v).

Step 3. The proof then identifies, using the above characterization, conditions on the underlying

set of primitives necessary for the existence of a fixed-point of Ψ. These conditions boil down to the

requirement that

1
2
≤ φ ≤φ∗ =

1
2
+

1
2

√√√√√1− 4

 µ (1− δµ)

δ
(

µ− µ
) (

1− µ
)
, (2)

which is consequently necessary for the existence of an efficient XPPE.

Finally, this condition is shown to indeed be sufficient for the existence of efficient XPPE, which

establishes the result.26

Remark 1 Section 5 shows that the set of efficient XPPE values coincides with the set of efficient

equilibrium values under a natural class of ‘performance-based’ equilibria, in which dynamics are

driven by past performance, rather than past communication (specifically, ex-post incentives are not

imposed, but the principal’s allocation procedure does not directly condition on past announcements),

providing an alternative foundation for efficient XPPE.

3.2 The role of specialization

Proposition 1 highlights the effects of specialization, patience, and the success probabilities on efficient

dynamic incentive provision.

When agents are highly specialized, efficiency is unattainable. The intuition is the following. In

order to incentivize an agent, the principal must credibly promise more (or threaten with less) favor-

able treatment in the future. Efficiency means that the principal can only utilize such favoritism when

it is unclear which of the agents is better suited for the project, hence such promises are only credible

if agents are not too specialized. Since future delegation decisions are the only tool available to the

principal, high specialization hinders incentive provision.

Proposition 1 also sheds light on the impact of the success probabilities, (µ, µ), on E∗. As µ de-

creases or µ increases, it becomes more difficult to incentivize the agents, and the efficiency region

shrinks (see Figure 2), as both the relative value of being suited for a project decreases and perfor-

mance becomes less informative. In particular, note that as µ approaches 0, agents’ incentive to falsely

claim to be suited for projects vanishes and an agent’s success perfectly reveals that he was indeed

suited for the project. Hence an efficient XPPE is guaranteed to exist for sufficiently small µ. On the

26Proposition 1 and the results below extend to the case of arbitrary specialization profiles (φ1, φ2) ∈ (0, 1)2. See Section

7 for further discussion.
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Figure 4: Feasible values under first-best delegation (shaded region) and efficient

XPPE (dashed region) for specialization levels φ = 1
2 , 2

3 , 3
4 , given (δ, µ, µ, π) =

( 4
5 , 1

5 , 4
5 , 1), for which φ∗ = 3

4 . The distortion in the set of efficient XPPE values due to

the presence of private information, v∗(φ)− v(φ), is equal to φ(1− φ)µπ +
µ(1−µ)π

2(1−µ)
.

other hand, as µ → 1, although an agent suited for a project is almost guaranteed to succeed, an

efficient XPPE need not exist if agents are too specialized or are not sufficiently patient.27

Denote the lowest and highest feasible (but not necessarily equilibrium) values for any given agent

under first-best project delegation by v∗ and v∗, respectively. A simple calculation yields

v∗ =
1
2

πµ
(
φ2 + (1− φ)2) , v∗ =

1
2

π
(

µ + 2φ(1− φ)µ
)

.

Clearly, the value profile (v∗, v∗, v∗) (and similarly (v∗, v∗, v∗)) cannot be sustained in equilibrium.

The set of efficient XPPE values can be explicitly solved for as a function of the underlying primi-

tives of the model.

Proposition 2 For any φ ∈ [ 1
2 , φ∗], E∗ = co ({(v∗, v, v) , (v∗, v, v)}) , where

v =
1
2

π

(
µ− 2φ(1− φ)

(
µ− µ

)
+

µ(1− µ)

(1− µ)

)
, v =

1
2

π

(
µ− µ

1− µ

)
. (3)

In line with the intuition above, the set E∗ is decreasing in the agents’ specialization. The more

specialized the agents are, the higher is the level of asymmetry between the agents (in terms of con-

tinuation values) that can be supported in an XPPE. Figure 4 contrasts the agents’ set of efficient XPPE

values with its counterpart in the complete information benchmark in which the principal perfectly

observes agents’ types.

3.3 High specialization and decentralization

The analysis above showed that efficiency is attainable if and only if agents are sufficiently non-

specialized (namely, φ ∈ [ 1
2 , φ∗]). The following result establishes that when agents’ specialization

27Nevertheless, note that for µ sufficiently close to 1, efficiency is always attainable if agents are sufficiently patient; that

is, there always exists a threshold discount factor beyond which an efficient XPPE exists.
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is sufficiently high, communication between the principal and the agents is not only inefficient, but

breaks-down entirely, and decentralization becomes inevitable.

Proposition 3 For any δ, µ, µ there exists φ(δ, µ, µ) < 1 such that for all φ ≥ φ, any XPPE is communication

-free.

Proposition 3 shows that there exists a threshold level of specialization beyond which not only is

efficiency unattainable, but the principal cannot sustain informative communication to any extent. In

other words, the principal can do no better than allocating projects of type A to agent 1 and projects

of type 2 to agent B, ‘no questions asked’.

To understand this result, first note that the more specialized agents are, the less the principal

stands to gain from informative communication in the first place, as agents are more likely to be

suited for projects they are specialized in, and less likely to be suited for the other type of project.

In particular, recalling that vo(φ) denotes the principal’s value under decentralization and v∗(φ) the

principal’s first-best value, as φ → 1, it must be the case that v∗(φ)− vo(φ) → 0. Since the principal

cannot commit to future decisions, in equilibrium, at any history, the principal’s continuation value

v(φ) must satisfy

vo(φ) ≤ v(φ) ≤ v∗(φ). (4)

On the other hand, as shown in Proposition 1, when specialization exceeds φ∗, if communication is

to be informative, incentivizing an agent requires the principal to promise to distort future allocation

decisions in a way that is costly for her.28 Denoting by v∗(φ) and v∗(φ) the lowest and highest feasible

values for an agent under a first-best allocation rule, note that as φ→ 1,

v∗(φ) =
1
2

(
µ + 2φ(1− φ)µ

)
π → 1

2
µπ

and

v∗(φ) =
1
2

µ
(
φ2 + (1− φ)2)π → 1

2
µπ;

in particular v∗(φ)− v∗(φ) → 0. Since any increase in an agent’s continuation value above v∗(φ) (or

decrease below v∗(φ)) is proportional to the principal’s efficiency loss from such an increase, from

(4), the principal’s ability to credibly promise to inefficiently distort future allocation is weakened as

specialization increases. That is, as specialization increases, the principal becomes more constrained

in the extent to which she can credibly promise to increase an agent’s continuation value above v∗(φ),

or decrease it below v∗(φ). In particular, her ability to credibly generate differences in an agent’s

continuation values at any given history vanishes as φ → 1. Consequently, as agents’ level of special-

ization becomes sufficiently large, the principal’s ability to incentivize agents through the promise of

distorting future decisions vanishes, and informative communication can no longer be sustained.

28In particular, this requires promising an agent, with positive probability, future projects for which he will not be suited

while the other agent will be; alternatively, threatening the agent through the promise of withholding, with positive proba-

bility, projects for which he will be suited while the other agent will not be.
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4 Rules for efficient delegation

The analysis until now has focused on the principal’s ability to sustain efficient (or any informative)

communication. However, it does not shed much light on what form such dynamic incentive provi-

sion should take. In each period t ≥ 1, past allocation decisions xt−1, performance outcomes yt−1,

announcements mt−1 and projects ωt−1 are all payoff-irrelevant with respect to the continuation game

starting from period t. Nevertheless, in the absence of monetary incentives, it is necessary for the

principal to make use of such payoff-irrelevant information and engage in dynamic favoritism - the

promise of an advantage or threat of a disadvantage in future decisions - as a means of incentivizing

agents to truthfully reveal whether they are suited for projects or not.29 There are, however, many

ways in which the principal might design such favoritism: A ‘favored’ agent may be granted a slight

advantage or a significant one; the advantage may be constant or change over time; the identity of the

agent with the advantage could shift frequently or infrequently, and such dynamics may be more or

less history dependent, and may be driven by rewards for success or punishment for failure.

The key difficulty in the design of such favoritism is that punishing one agent often implies re-

warding the other. To attain efficiency, a priority rule must balance the agents’ incentives, generating

high variation in their continuation payoffs while remaining credible.

This section introduces a simple (albeit non-stationary) family of Markov priority rules (MPR), and

shows that whenever efficiency is attainable (i.e., whenever there exists any efficient XPPE), it is at-

tainable using a rule within this family. Furthermore, we establish necessary properties that any MPR

that indeed induces efficient delegation of projects over the entire region φ ∈ [ 1
2 , φ∗] must satisfy. To

illustrate the results, I introduce one such simple MPR, referred to as maximal-priority, and show that

under this rule allocation is efficient and agents are provided (robust) incentives to be truthful over

the entire region φ ∈ [ 1
2 , φ∗].30 Finally, Section 4.3 highlights additional robustness properties of such

rules, which permit the principal to utilize a ‘hands-off’ approach in her delegation of projects at no

cost.

4.1 Markov priority rules

We now introduce the following simple family of rules. A Markov priority rule consists of a ‘favored

agent’ in the initial period, a fixed rule prescribing project allocation given the identity of the favored

agent, and a fixed rule governing transitions in the identity of the favored agents. Formally:

Definition 2 A Markov priority rule (MPR) is characterized by ( f1,X , ψ), with

• f1 ∈ {1, 2} denoting the identity of the ’favored agent’ in period 1;

29Clearly, if the principal assigns incoming projects according to a stationary policy, an agent could always announce that

he is suited for the project without concern for future repercussions.
30Hence, whenever maximal-priority fails to incentivize the agents to be truthful, efficiency is unattainable.
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• X : {A, B} × {1, 2} × {0, 1}2 → X describing the allocation of the project as a function of its type

ω ∈ {A, B}, the current favored agent f ∈ {1, 2}, and current announcements m ∈ {0, 1}2;

• ψ : {A, B} × {1, 2} × {1, 2} × {S, F} → ∆{1, 2} describing the transitions in the identity of next

period’s favored agent, as a function the project type ω ∈ {A, B}, the current favored agent f ∈ {1, 2},
the agent allocated the project j ∈ {1, 2}, and its outcome y ∈ {S, F}.

Note that X and ψ are independent of t. That is, both what it means to be favored and the rule

governing who is favored are fixed over time.

Given a transition rule ψ, it will be convenient to denote by ψ f (ω, j, y) the probability with which

the favored agent f ∈ {1, 2} remains as such in the following period, given (ω, j, y).

Definition 3 A MPR ( f1,X , ψ) is failure-driven if ψ f (ω, j, y) = 1{(j,y) 6=( f ,F)}.

A MPR is failure-driven if the identity of the favored agent shifts (immediately and deterministi-

cally) if and only if the favored agent fails. Dynamics under such rules are driven entirely by the

(most recent) failure of a favored agent, which triggers a reversal of the agents’ roles. In particular,

failure is punished but success is not rewarded. That is, while each agent is clearly always better off be-

ing successful in a project rather than failing, an agent’s success does not directly result in a strict

improvement in his continuation value.

Example 1 (Maximal-priority) Consider the following example of an MPR, which will be referred to

as maximal-priority.

Definition 4 Under the maximal-priority rule, in each period t ≥ 1, projects are allocated as follows:

• At the beginning of the period, one of the agents is selected to be the favored agent. Given the subsequent

announcements, if i ∈ {1, 2} is the favored agent, i receives the project whenever (mi, m−i) 6= (0, 1);

otherwise, agent j ∈ {1, 2}, j 6= i is assigned the project.

• A favored agent remains favored as long as he does not fail in a project. If such a failure occurs, however,

the other agent becomes the favored agent instead. The identity of the first favored agent is determined

arbitrarily in period 1.

Figure 5 illustrates the dynamics governing the identity of the favored agent under maximal-

priority. Clearly, maximal-priority is failure-driven. Furthermore, a key feature of this MPR is its

severe use of punishment – the favored agent (deterministically and immediately) loses his status as

favored upon failing in a project, even if it is publicly known that he was not at fault; that is, even if he did

not claim to be suited for the project in the first place.

Note that when delegating according to this simple rule, the principal only needs to keep track of

the identity of the favored agent in the previous period, and whether the agent failed in that period or

not. �
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Figure 5: Transitions determining the identity of the favored agent, f , under maximal-

priority.

4.2 Efficiency whenever possible

While MPR are relatively simple, the following result shows that whenever efficiency is attainable, it

is in fact attainable using a MPR. Furthermore, any MPR that induces an allocation rule that is efficient

over the widest region of primitives for which efficiency is attainable must be failure-driven, and must

also satisfy the property that whenever both agents claim to be suited for a project, the favored agent

is awarded the project.

Proposition 4 .

1. If and only if φ ∈ [ 1
2 , φ∗], there exists a MPR that induces an allocation rule that is efficient.

2. If the allocation rule induced by the MPR ( f1,X , ψ) is efficient for any φ ∈ [ 1
2 , φ∗] then:

(a) ( f1,X , ψ) is failure-driven; and

(b) if m = (1, 1) then the project is assigned to the current favored agent.

The first part of Proposition 4 shows that in search of a rule that is efficient over the widest region of

primitives for which efficiency is attainable, one can restrict attention to the simple class of MPR. The

second part of Proposition 4 shows that punishing failure and ignoring success is necessary in order

to attain efficiency over the widest possible primitive region. In particular, while failure of the favored

agent is punished, failure of the non-favored agent is not. Attaining efficiency whenever possible

is linked to the highest payoff asymmetry credibly sustainable between the agents. When a MPR is

failure-driven, the non-favored agent is incentivized entirely through the favored agent’s outcomes.

The proof in the Appendix shows that incentivizing the non-favored agent directly through his own

success or failure requires projects to be assigned to him too often in order for the principal to be able

to generate the necessary asymmetry in continuation values required to induce efficiency over the

entire region φ ∈ [ 1
2 , φ∗].

Example 1 (continued) If agents are truthful, delegating projects according to maximal-priority is

clearly efficient. The question is then: When can agents be provided incentives to be truthful?
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For each agent i ∈ {1, 2}, denote by v f
i the expected average continuation payoff at the begin-

ning of a period in which he is chosen to be the favored agent. Similarly, denote by v− f
i agent i’s

continuation value when agent −i is the favored agent.

Suppose ω = A (analogous arguments apply for the case in which ω = B). XIC requires con-

sidering the interim incentive constraints of an agent i to announce truthfully, given any belief the

agent may hold about agent −i’s current type, when he expects −i to be truthful in the continuation

game. Consider first the incentives of agent i when he is the favored agent. Regardless of i’s type, if he

believes θ−i = β , i’s ex-post incentive constraint (XIC) is satisfied, as he expects to receive the project

regardless of his announcement. Suppose then that i believes θ−i = α. If θi = β, then XIC implies

mi=0, forgo project︷︸︸︷
δv f

i ≥

mi=1, get project︷ ︸︸ ︷
µ
(
(1− δ)π + δv f

i

)
︸ ︷︷ ︸

succeed

+ (1− µ)δv− f
i︸ ︷︷ ︸

fail, lose favor

,

whereas if θi = α, XIC requires

mi=1, get project︷ ︸︸ ︷
µ
(
(1− δ)π + δv f

i

)
︸ ︷︷ ︸

succeed

+ (1− µ)δv− f
i︸ ︷︷ ︸

fail, lose favor

≥

mi=0, forgo project︷︸︸︷
δv f

i .

Consider next i’s incentives when−i is the favored agent. Regardless of i’s type, if he believes θi =

α, i’s XIC is satisfied, since he does not expect to receive the project regardless of his announcement.

Suppose i believes θ−i = β. If θi = β then XIC requires

mi=0, forgo project︷ ︸︸ ︷
µδv− f

i︸ ︷︷ ︸
-i succeeds

+ (1− µ)δv f
i︸ ︷︷ ︸

-i fails, gain favor

≥

mi=1, get project︷ ︸︸ ︷
µ(1− δ)π + δv− f

i ,

and finally if θi = α then XIC implies

mi=1, get project︷ ︸︸ ︷
µ(1− δ)π + δv− f

i ≥

mi=0, forgo project︷ ︸︸ ︷
µδv− f

i︸ ︷︷ ︸
-i succeeds

+ (1− µ)δv f
i︸ ︷︷ ︸

-i fails, gain favor

.

Rearranging these condition, it is easily verified that XIC is equivalent to

v− f
i +

µ(1− δ)π

δ(1− µ)
≤ v f

i ≤ v− f
i +

µ(1− δ)π

δ(1− µ)
. (5)

The proof, in the Appendix, derives an additional equilibrium consistency condition relating v f
i

and v− f
i . Combined, this condition and the above XIC condition can be used to show that maximal-

priority is XIC whenever an efficient XPPE exists.31

31Recall that the principal’s allocation rules is said to be efficient if it is part of an efficient XPPE.
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Proposition 5 The allocation rule induced by maximal-priority is efficient if and only if an efficient XPPE

exists.

Proposition 5 shows that whenever efficiency can be attained, it can be attained using a remarkably

simple rule. The favored agent, who has priority over the other agent whenever it is unclear which of

the agents is better suited for the project (hence the term maximal-priority), is incentivized to request

only those projects for which he is suited through the threat of punishment for failure. Interestingly,

however, the favored agent may be punished (by losing favor) as a result of his failure in a project

even if he did not claim to be suited for it. This harsh punishment serves the role of incentivizing

the other agent to be truthful, through the hope of potentially becoming the favored agent in the

next period. Interestingly, maximal-priority perfectly balances the agents’ incentives, generating the

highest possible variation in continuation payoffs while remaining credible.

Remark 2 In the equilibrium above, players do not use “review strategies,” (see, for example, Rad-

ner (1985), Rubinstein (1979), and Rubinstein and Yaari (1983)) whereby they infer the likelihood of

sequences of announcements of types; in particular, maximal-priority provides agents with incentives

to announce truthfully regardless of the likelihood of false past announcements.

Remark 3 It can easily be verified that the robustness (in the sense of Definition 1) of the particular

equilibrium above comes without a cost. That is, the strategy profile in which the principal’s allocation

of projects follows maximal-priority and agents are truthful constitutes an efficient PPE (without the

‘ex-post’ qualification) over precisely the same region (2). The strategy profile in fact constitutes an ex-

post Perfect Bayesian Equilibrium (PBE), in which each agent finds it optimal to be truthful regardless

of his belief about the other’s past and current types, taking expectation over the future path of play.

�

4.3 Hands-off delegation

Maximal-priority does not require randomization, makes no use of information about the types of

projects, and does not differentiate between agents based on their specialization in these projects.

In certain environments, the principal might be limited in her ability to continually learn whether

projects are of one type or another (for example, this may require a certain level of expertise the princi-

pal does not posses). Even if the principal is capable of observing the types of projects that arrive and

able to recognize how they relate to the agents’ specialization, a strategy that is not sensitive to such

information may eliminate certain (unmodelled) costs. An immediate consequence of Proposition 5 is

that the principal’s potential ignorance in this matter is not costly for her, in the following sense.

Corollary 1 Whenever an efficient XPPE exists, there exists an efficient XPPE that does not require the prin-

cipal’s knowledge of project types or agents’ specialization.
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The robustness of maximal-priority together with the fact that it is does not directly condition on

past announcements (see Section 5 for further discussion of such rules) also allows the principal to

dispense with the simultaneous announcement protocol and permits her to avoid potentially costly

communication.32

5 Equivalence between ex-post and performance-based equi-

libria

Efficiency requires the principal to condition her decisions on past (payoff-irrelevant) information,

which may include past allocation decisions, communication, and outcomes. In this section, we intro-

duce a class of performance-based equilibria, in which the ex-post requirement is no longer imposed, but

in each period the principal’s decisions do not condition directly on past communication. The analy-

sis provides an alternative foundation for efficient XPPE by showing that, fixing any set of primitives

{φ, δ, µ, µ, π}, the set of equilibrium values in an efficient XPPE coincides with its counterpart under

performance-based equilibria.

Definition 5 The period-t histories ht = (ωt, mt, xt, yt) and ĥt = (ω̂t, m̂t, x̂t, ŷt) are performance equiva-

lent if (ωt, xt, yt) = (ω̂t, x̂t, ŷt). The principal’s strategy is performance-based if for all t ≥ 1, if ht−1, ĥt−1 ∈
Ht−1 are performance-equivalent then

χt(ht−1, ωt, mt) = χt(ĥt−1, ωt, mt), ∀ω ∈ {A, B}, mt ∈ {0, 1}2.

A PPE in which the principal’s strategy is performance-based is a performance-based equilibrium.

Performance-based equilibria avoid any potential difficulties associated with keeping track of past

communication. Note that a performance-based equilibrium does not require that announcements

play no role in allocation decisions, or that past announcements do not shape future allocations. In

each period, the principal’s decision may arbitrarily depend on past and current project types and

the entire history of allocations decisions and past performance. While the latter are clearly also a

function of past announcements, the restriction imposed is that period-t allocation decisions do not

directly condition on such past announcements. In other words, past announcements shape current

allocations only through their effect on past allocations and performance.

32To see this, consider the following modification of maximal-priority: (i) In each period, the principal assigns the project

to the favored agent, the identity of which is determined as in maximal-priority. (That is, arbitrarily in period 1 and in any

subsequent period t ≥ 2, the favored agent in the previous period remains favored unless he failed in the project in that

period.) (ii) The favored agent is responsible for the project in the following sense: He can choose whether to retain it or to

offer it to the other agent. If the favored agent chooses the latter, the non-favored agent may choose whether to accept the

project – in which case it is assigned to him – or to reject it – in which case the favored agent retains the project.

Clearly, such a procedure is efficient whenever efficiency is attainable. Furthermore, under such a procedure, the principal

simply delegates responsibility for each project to the favored agent in each period, leaving communication within the period

up to the agents.
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Example 2 Maximal-priority is performance-based. Recall that the only past information upon which

period-t allocation decisions under maximal-priority condition are: (a) The identity of the period-t− 1

favored agent and (b) whether that agent failed in period t− 1 or not. In particular, while the identity

of the previous period’s favored agent was shaped by past announcements, the current allocation

decision does not directly condition on such past announcements. Hence, maximal-priority is indeed

performance-based. �

Example 3 Consider a rule under which the principal assigns each project to the agent who has accu-

mulated the higher number of past successes in this type of project.33 Such a rule is also performance-

based. �

Example 4 Consider any rule according to which an agent is rewarded (through some form of future

advantage over the other agent) for seldomly claiming to be suited for projects in the past, or punished

for claiming to be suited too often. Such rules are not performance-based.

Alternatively, consider a variant of maximal-priority in which a favored agent is punished more

severely (e.g., through a longer period of being unfavored) for failure in a project he announced he was

suited for than for failure in a project he did not claim to be suited for. Such a rule is not performance-

based. �

Denote the set of performance-based equilibrium values by EP ⊆ R3
+, and the set of efficient

performance-based equilibrium values by (recall that robustness – as in Definition 1 – is not imposed

here)

E∗P := {(v0, v1, v2) ∈ EP| v0 = v∗ and v1 + v2 = πv∗} ⊆ R3
+.

The following result shows that efficient ex-post and efficient performance-based equilibria are

equivalent, in that they yield the same set efficient equilibrium values.

Proposition 6 .

1. For any φ, δ, µ, µ, E∗P = E∗. In particular, efficiency is attainable in a performance-based equilibrium if

and only if it is attainable in an XPPE.

2. Efficiency is attainable over a strictly larger primitive region in a standard PPE (i.e., in the absence of the

ex-post – equivalently, the performance-based – restriction).

In a performance-based equilibrium there is less freedom in prescribing continuation values, as

these can no longer be conditioned directly on past announcements. On the other hand, ex-post in-

centive compatibility is relaxed. Proposition 6 shows that the freedom lost by the former restriction

is precisely recovered by the latter relaxation of incentive constraints. Conditioning directly on past

33If both agents have the same number of past successes, ties are broken arbitrarily.
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announcements creates a stronger incentive to lie. In particular, any improvement in the efficiency

region beyond performance-based equilibria necessarily implies a loss of robustness. The reason is

that each of these two requirements restricts the principal from making the continuation values of the

agents contingent on the failure of an agent differ depending on the profile of announcements. Such

a rule would be in direct violation of the performance-based restriction, but also, as shown in the Ap-

pendix, must violate the ex-post restriction in order to improve upon the region in which efficiency

can be attained. In particular, in the absence of the ex-post (equivalently, the performance-based) re-

striction, the principal can indeed strictly increase the region in which efficiency can be induced using

precisely such a rule.

The proof of Proposition 6 follows a similar technique to that of Proposition 1. That is, the end-

points of the set of efficient performance-based equilibrium values, assuming it is non-empty, are

shown to correspond to a fixed-point of a function Ψ̃, analogous to Ψ (see discussion in Section 3.1).34

The proof shows that these two functions, despite being solutions to different linear programs, are in

fact identical. This in turn guarantees the desired equivalence.

6 Delegation without favoritism

The analysis in the previous sections has illustrated how the principal can use dynamic favoritism

in order to provide incentives. In some settings, however, treating the agents asymmetrically, even

temporarily, may be either impossible, or undesirable. For instance, such favoritism might raise con-

cerns that the principal is biased in favor of one of the agents. It may be important for the principal to

signal that she is not biased by avoiding such asymmetric treatment. What is the cost (if any) of such

a decision?

To study this question, this section considers XPPE in which agents’ expected continuation payoffs

at the beginning of each period may not differ from one another. In other words, agents can only be

incentivized through mutual punishment or rewards.

Definition 6 A non-discriminatory XPPE is an XPPE such that, for any t ≥ 1 and any ht−1 ∈ Ht−1,

E
[
U1,t|ht−1] = E

[
U2,t|ht−1].

Let E• denote the set of non-discriminatory XPPE values. Note that decentralization yields the

lowest non-discriminatory XPPE value for the principal, vo = φµ + (1− φ)µ, and 1
2 πvo for each of the

agents. We then have the following result.

Proposition 7 A non-discriminatory XPPE satisfies the following properties.

34Note that the definition of policies, decomposability, etc. are different in each of these environments. Since the rele-

vant incentive constraints differ and continuation values are restricted, solving for such fixed-points and identifying the

conditions under which they may exist requires solving a linear program different than the one in the proof of Proposition

1.
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Figure 6: Threshold φ below which condition (6) holds, as a function of δ, for different

success probabilities (µ, µ). In this region the principal’s maximal equilibrium value

is vo < v• < v∗.

1. For any {φ, δ, µ, µ, π}, efficiency is unattainable in an XPPE.

2. Suppose agents are highly patient and sufficiently non-specialized, such that

δ ≥δ• :=
µ

1
2 (1− φ)2

(
µ− µ

)
(1− µ) + µ (1− (1− φ)(1− µ))

. (6)

Then the principal’s maximal equilibrium value is equal to

v• := v∗ − 2(1− φ)
µ(1− µ)

(1− µ)︸ ︷︷ ︸
cost of non-discrimination

, (7)

which satisfies vo < v• < v∗.

Non-discrimination is costly for the principal unless agents are highly specialized. When this

is the case, from Proposition 3, the benefit from favoritism vanishes, and decentralization becomes

inevitable. When agents are sufficiently patient and non-specialized (in the sense of (6); see Figure 6),

however, the principal can indeed do better than decentralization, but efficiency is unattainable, and

the highest value she can obtain is v• < v∗.

Furthermore, note that when the agents are sufficiently non-specialized, as µ→ 1, the benefit from

favoritism vanishes. Specifically, if

1
2
≤ φ ≤ 1−

√
(1− δ)µ/

(
δ

1
2

(
1− µ

)2 )
then the principal’s highest XPPE value approaches her first-best, v∗.

What allocation procedure attains the principal’s highest value, v•? Consider the following joint

responsibility (JR) rule.
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Definition 7 Under JR, projects are allocated as follows:

• Communication phase: in each period, the agent who is not specialized in the current type of

project ω receives the project if he claims to be suited for it; otherwise, the agent who is special-

ized in ω is allocated the project.35

• Starting from t = 1, as long as decentralization has not been triggered, the communication phase

continues. If and only if an agent who is not specialized in the current type of project receives it

and fails, with probability

q :=
2µ(1− δ)

δ(1− φ)
(
(1− φ)

(
µ− µ

)
(1− µ)− 2µ(1− µ)

) (8)

communication breaks-down immediately; that is, an indefinite decentralization phase is trig-

gered.

We then have the following result.

Proposition 8 Assume (6) holds. The strategy profile in which the principal delegates projects according to JR

and agents are truthful constitutes a non-discriminatory XPPE in which the principal’s value is v•.

When a project arrives, the default in the communication phase is to delegate it to the agent who

is specialized in it, unless the agent who is not specialized requests it. If this occurs, however, and the

agent fails, then the agents share responsibility for this failure and communication breaks-down with

probability q(φ, δ, µ, µ). As the above proposition shows, JR induces truthful announcements if and

only if condition (6) holds, and the principal obtains the value v•.36

Incentive provision takes a very different form under JR than under the MPR studies in Section 4.

Perhaps surprisingly, when both agents claim to be suited for a project, the project is allocated to the

agent who is not specialized in it. That is, the non-specialized agent is granted priority. Such a rule

provides incentives effectively while triggering an (inevitable) punishment with small probability. In

fact, it can be shown that not only does the above procedure obtain v• over the entire region (6),

but alternative procedures in which priority is granted to the specialized agent, or punishments are

triggered by specialized agents are less effective – they either cannot sustain a value of v•, or do so

over a strictly smaller region of primitives.

35That is, if ω = A (ω = B), agent 1 (2) receives the project unless agent 2 (1) claims to be suited for it, in which case agent

2 (1) receives the project.
36It is possible to construct alternative procedures in which the decentralization phase is temporary, which induce truthful

announcements under the same condition (6) and generate the same value v• for the principal.
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7 Discussion and extensions

7.1 Persistent private-information

The analysis until now has considered a repeated game between the principal and the agents, in which

each agent’s private information is i.i.d. from one period to the next. This section relaxes this assump-

tion and considers an environment in which agents’ types are correlated over time. In particular, we

study how persistence in agents’ types affects the principal’s ability to delegate efficiently.

When agents’ types are correlated over time, they may use others’ past or current announcement

in order to predict their future types, and might wish to change their behavior in order to influence

others’ beliefs about their own future type. It is not immediate whether persistence helps the principal

to provide agents with incentives to reveal their private information or not. While the possibility of

signaling might strengthen an agent’s incentive to announce untruthfully, persistence also allows the

principal to infer information about future types based on past outcomes.

To examine this tradeoff in the context of our framework, agents’ types are assumed to evolve

according to the following simple first-order Markov process. For all t > 1, i ∈ {1, 2}, let

θit

= θit−1 w.p. ρ

6= θit−1 w.p. 1− ρ,

where ρ ∈ [ 1
2 , 1], and let each agents’ period 1 type θi1 be drawn from a commonly known distribu-

tion P0 over {α, β}.37 Since the game is no longer a repeated one, we will use ex-post perfect public

Bayesian equilibrium (XPPBE; see Athey and Bagwell (2008) for a formal definition of a perfect public

Bayesian equilibrium) as the solution concept in this section.38 An efficient XPPBE is an XPPBE in

which, in each period, the project is allocated to a suited agent whenever one exists.

We then have the following result, which shows that persistence hinders efficiency. In particular,

efficiency is attainable (in an XPPBE) if persistence is not too high, but not otherwise.39

Proposition 9 1. Maximal-priority induces a first-best XPPBE if and only if

1− 2ρ(1− ρ)

2ρ(1− ρ)
≤

δ(1− µ) 1
2

(
µ + µ

)
− µ + δ2µµ

(
µ + µ− 1

)
µ− δµ

(
2µ + µ− 1

)
+ δ2µµ

(
µ + µ− 1

) . (9)

37Similar results obtain if persistence may be negative as well, i.e., ρ ∈ [0, 1]. Note that ρ = 1
2 corresponds to case in which

φ = 1
2 in the i.i.d. setting.

38Perfect public Bayesian equilibrium (Athey and Bagwell (2008)) extends PPE to a dynamic Bayesian game, and consists

of a profile of public strategies, initial beliefs, and a belief updating function that specifies beliefs about others’ types at each

period. An XPPBE additionally requires that in each period, taking expectation over the future path of play, each agent’s

strategy remains optimal irrespective of his belief about the other agent’s past and current types.
39For this result it is assumed that 1 − µ ≤ µ ≤ 2(1 − µ). This assumption is not required for the result but greatly

simplifies the analysis.
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Figure 7: Threshold level of patience, δ, above which maximal-priority attains effi-

ciency, as a function of persistence, ρ.

2. There exists ρ∗ ∈ [ 1
2 , 1) such that for all ρ ∈ (ρ∗, 1] there does not exist an efficient XPPBE.

Figure 7 illustrates condition (9), which highlights the tradeoff between persistence and patience

in determining the (im)possibility of efficiency under maximal-priority. As the LHS of (9) is strictly

increasing in the level of persistence, ρ, higher persistence makes it more difficult to attain efficiency.

The intuition is that persistence preserves heterogeneity between the agents ‘along the worst path’.

That is, at histories in which agents differ in their specialization, high persistence increases the prob-

ability that this heterogeneity will be preserved the continuation game. Such future heterogeneity is

detrimental to incentive provision for reasons similar to those discussed in the i.i.d. case studied in

the previous sections. That is, future heterogeneity renders favoritism ineffective.

7.2 Homogeneous agents and general specialization profiles

For expositional purposes, the environment considered above has focused on the case φ = φ1 = 1− φ2

in which agents are heterogeneous in their specialization. Consider instead and environment in which

agents are entirely symmetric; that is, both agents are equally specialized in either A or B, φ1 = φ2 =

φ ∈ (0, 1).

We then have the following result.

Proposition 10 Assume φ1 = φ2 = φ, where φ ∈ (0, 1). Then efficiency is attainable if and only if

δ ≥
µ( 1

2 − φ(1− φ)
) (

µ− µ
) (

1− µ
)
+ µµ

(10)
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Figure 8: Top panel: Specialization profiles for which an efficient XPPE exists (shaded

region) for different discount factors δ and given µ = 0.8, µ = 0.2. Bottom panel:

Specialization profiles for which an efficient XPPE exists (shaded region) for different

success probabilities (µ, µ) and δ = 0.75. Homogeneity in agents’ specialization is

crucial for efficiency

Note that the RHS in (10) is decreasing in φ. Hence, given the homogeneity of the agents, high

specialization is beneficial for incentives. Consistent with the intuition in the case of heterogeneous

agents, when agents are highly specialized (in the same project), being unfavored means an agent is

likely to miss out on precisely the type of projects he is more likely to be suited for. Hence, given that

agents are homogneous, punishments (or rewards) are more effective when specialization is high.

More generally, the results above extend to the case of arbitrary specialization profiles (φ1, φ2) ∈
(0, 1)2. Figure 8 illustrates the specialization profiles (φ1, φ2) ∈ (0, 1)2 for which an efficient XPPE

exists, for different discount factors fixing the probabilities (µ, µ) and the corresponding region for

different probabilities (µ, µ) fixing the discount factor δ. As these figures illustrate, homogeneity in

agents’ specialization is crucial for efficiency.40

7.3 Relationship to Andrews and Barron (2016) and de Clippel et al. (2017)

In Andrews and Barron (2016), a firm repeatedly contracts with one of multiple suppliers, whose

productivity (redrawn independently in each period) is observed by the principal but whose effort

is subject to moral hazard. Output (stochastic) is non-contractible, and suppliers observe only their

40Note that the role of patience and the success probabilities in determining whether efficiency is attainable is similar to

the one in the benchmark case φ = φ1 = 1− φ2.
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own relationship with the principal (i.e., monitoring is private). The principal can provide monetary

compensation, but cannot formally commit to such compensation. The paper constructs a dynamic

allocation rule that attains the principal’s first best whenever possible. Interestingly, in sharp contrast

to maximal-priority, such a rule “favors past success and tolerates past failure”. Monetary incentives

allow the principal to punish by way of withholding compensation while rewarding through future

promises. The results in the current paper show that, absent monetary incentives, such dynamics are

reversed.

In de Clippel et al. (2017) (henceforth dCER), a principal limited in her attention designs an idea-

selection mechanism to repeatedly choose among multiple agents who wish to have their ideas im-

plemented. The principal can neither commit to future decisions nor use monetary transfers in order

incentivize the agents to suggest only good ideas.41 A particular strategy profile, the “silent treat-

ment” (S-T) is studied: in each period an agent is designated as a last-resort, and his idea selected

if all other agents refrain from suggesting ideas. This agent is replaced with another as last-resort if

the latter suggests an idea which yields the principal a low profit.42 dCER study when the principal’s

first-best is “achievable” - i.e., can be obtained in a PBE when players are sufficiently patient. Hence, a

crucial difference in the approach of the current paper is the derivation of a necessary and sufficient

condition for efficiency (over all primitives, including patience), which allows to study how effective

certain allocation rules are relative to one another; in particular, to identify which allocation rules are

efficient over the widest region of primitives. A consequence of Proposition 6 is that the principal’s

strategy under the S-T (adapted to the environment of this paper), like maximal-priority, is not ef-

ficient whenever possible unless the ex-post (or, equivalently, the performance-based) restriction is

imposed.43 Also, Proposition 1 can be used to provide an additional foundation for the S-T, which

adapted to the current environment can be shown to be efficient whenever possible, under the ex-post

(equivalently, performance-based) restriction. Proposition 4 sheds light on the properties of the S-T

that permit this – the crucial feature being that dynamics are failure-driven – i.e., driven entirely by

the failures of the agent who is granted priority.

8 Concluding remarks

This paper has studied dynamic delegation to multiple heterogeneously specialized agents. In order

to delegate efficiently, the principal must incentivize the agents to reveal their private information

41In dCER, agents are symmetric in the benchmark model, and later are assumed to differ along a vertical dimension -

their ability to generate good ideas may be different.
42Such a scheme (adapted to the current environment) differs from maximal-priority in the manner in which cases of

indifference are resolved. In particular, under maximal-priority any indifference is broken in favor of the favored agent, and

both agents are incentivized to be truthful.
43dCER also consider a notion of robustness in their analysis (similar to the one introduced in Fudenberg and Yamamoto

(2010)) which differs from the one studied in the current paper.

31



over time. The analysis sheds light on the scope and shape of dynamic incentive provision when the

principal cannot commit to future decisions and cannot use monetary incentives.

The environment considered in this paper permits a precise characterization of the set of efficient

XPPE at fixed discounting, and in particular the derivation of a condition necessary and sufficient for

the existence of such equilibria. Such a characterization, as well as the focus on robust equilibria, is not

necessary in order to establish qualitatively similar results regarding the tradeoff between efficiency

and specialization. Indeed such results would continue to hold in environments more general than the

one considered here. However, such a characterization permits to study the design of delegation rules

that are efficient over the maximal primitive region and the key properties of such rules (as well as to

identify results that need not hold for other asymptotically efficient rules). It also permits to shed light

on the interaction between adverse selection and imperfect monitoring in the form of an equivalence

between robust and performance-based equilibria.

As discussed in Section 3.1, the observation that the set of equilibrium payoffs E(δ) is the largest

self-generating set does not provide a simple technique for its characterization.44 While many of the

qualitative results are expected to hold in more general settings, a necessary and sufficient condition

for the (im)possibility of efficiency might be difficult to obtain. In such settings, however, it would be

possible to adapt techniques as in Fudenberg et al. (1994) to the environment in order to bound the set

of equilibrium payoffs and completely characterize it for high δ.45

In addition, the environment I study assumes specialization as well as the arrival of projects are

both exogenous. It would be interesting to extend the environment to one in which agents’ specializa-

tion is a function of their actions and may be influenced by the principal (e.g., through recruitment or

training), or one in which the arrival of projects is endogenous and may be utilized by the principal as

an additional tool for incentive provision. Such extensions are left for future work.
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HOLMSTRÖM, B. 1984. On the theory of delegation. In Bayesian Models in Economic Theory. 115–141.

New York: North-Holland .
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Appendix

A Preliminaries

In order to describe E∗, we first adapt the recursive methods of Abreu et al. (1990) and Fudenberg

et al. (1994) to the current environment, factoring agents’ equilibrium payoffs into two components:

current-period payoffs and promised continuation values, where the latter are themselves required to

be XPPE values. Observe that in an XPPE, the set of continuation values can depend on (i) the type

of project; (ii) the vector of agents’ announcements; (iii) the identity of the agent who performs the

project; and finally (iv) whether that agent was successful or not. The promised continuation values

are therefore given by V := (Vω
0 ,Vω

1 ,Vω
2 )ω∈{A,B}, where each function

Vω
i : {0, 1}2 × {1, 2} × {S, F} → R3

+, (11)

specifies the promised continuation value of player i ∈ {0, 1, 2} given that the current project is of

type ω ∈ {A, B}, the announcements are m ∈ {0, 1}2, agent j ∈ {0, 1, 2} is assigned the project and its

outcome is y ∈ {0, S, F}.
With slight abuse of notation, denote by χ := (χω)ω=A,B the principal’s allocation policy, where

χω : {0, 1}2 → X prescribes the identity of the agent who receives the project as a function of the

agents’ announcements m = (m1, m2). Denote by χω
i (m) = 1 the decision to allocate the project of

type ω to agent i given the announcements m, and similarly by χω
i (m) = 0 the decision to withhold

the project from i. Denote byM:=(Mω
1 ,Mω

2 )ω=A,B the agents’ announcement policies, where each

functionMω
i : {α, β} → {0, 1} specifies i’s announcement mi ∈ {0, 1} as a function of his type θi and

the current type of project ω. Finally, let Z := (χ,M,V) denote the profile of the principal and the

agents’ policies.46

46Below, a collection Z is often referred to simply as a ‘policy’.
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Given (M−i, χ,V), agent i’s interim payoff when the project type is ω, the agent announces mi, his

true type is θi and he believes the other agent’s type is θ−i, is given by47

Uω
i (mi, θi; θ−i,M−i, χ,V)

:= Eθ−i χ
ω
i (mi, m−i)

(
µω

i (θi) ((1− δ)π + δVω
i ((mi, m−i), i, S)) + (1− µω

i (θi)) δVω
i ((mi, m−i), i, F)

)
+ Eθ−i χ

ω
−i (mi, m−i)

(
µω
−i(θ−i)δVω

i ((mi, m−i),−i, S) +
(
1− µω

−i(θ−i)
)

δVω
i ((mi, m−i),−i, F)

)
where m−i are the announcements generated byM−i and

µω
j (θj) :=

µ , (ω, θj) ∈ {(A, α), (B, β)}

µ , otherwise.

Similarly, given (M,V) and a project of type ω ∈ {A, B}, denote the principal’s expected payoff

when his allocation policy is χ by

Uω
0 (χ;M,V)

:= Eθ ∑
j=1,2

χω
j (m)

(
µω

j (θj) ((1− δ) + δVω
0 ((mi, m−i)j, S)) +

(
1− µω

j (θj)
)
δVω

0 ((mi, m−i), j, F)
)

,

where the expectation is taken over both agents’ types.

For each of the players i = 0, 1, 2, let Λi(Z) denote i’s ex-ante expected payoff under Z .

In an XPPE, each agent’s announcement must be optimal regardless of the other agent’s type. The

policy Z = (M, χ,V) is ex-post incentive compatible (XIC) if for all ω ∈ {A, B}, i = 1, 2, θi, θ−i ∈
{α, β} and mi ∈ {0, 1},

Uω
i (Mω

i (θi), θi; θ−i,M−i, χ,V) ≥ Uω
i (mi, θi; θ−i,M−i, χ,V) (12)

and for all ω ∈ {A, B}, χ̃ : {0, 1}2 → X,

Uω
0 (χ;M,V) ≥ Uω

0 (χ̃;M,V). (13)

The vector of values (v0, v1, v2) ∈ R3
+ is ex-post decomposable48 on V ⊆ R3

+ if there exists a policy

Z = (M, χ,V) such that the following conditions are satisfied:

• Z is XIC;

• (Vω
0 (m, j, y),Vω

1 (m, j, y),Vω
2 (m, j, y)) ∈ V, ∀ω ∈ {A, B}, j ∈ {0, 1, 2}, y ∈ {0, S, F}, m ∈ {0, 1}2;

• For each i ∈ {0, 1, 2}, vi = Λi(Z).

47Throughout the paper, continuation values are multiplied by (1− δ) in order to express them as per-period averages.
48Throughout the paper, whenever there is no confusion, the ‘ex-post’ qualification will often be omitted when referring

to ex-post decomposability (as well as ex-post E-decomposability, ex-post self-generation, etc.).
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The second condition is a feasibility condition requiring the continuation values to be elements in the

set V under consideration, whereas the third condition imposes dynamic consistency. If the above

three conditions are satisfied, the vector v ∈ R3
+ is said to be decomposed by the policy Z on V.

Given any (ω, θ1, θ2) ∈ {A, B} × {α, β}2 denote by

Q(ω, θ1, θ2) := {i ∈ {1, 2}|(ω, θi) ∈ {(A, α), (B, β)}

the set of agents suited for project ω.

A vector v ∈ R3
+ is ex-post E-decomposed by Z =(M, χ,V) on V if the following hold:

• v is decomposed by Z on V;

• For all l ∈ {1, 2}, y ∈ {S, F} and any (ω, θ1, θ2) ∈ {A, B} × {α, β}2, V satisfies

Vω
1 (Mω

1 (θ1),Mω
2 (θ2), l, y) + Vω

2 (Mω
1 (θ1),Mω

2 (θ2), l, y) = πv∗;

• For any (ω, θ1, θ2) ∈ {A, B} × {α, β}2, χ satisfies

χω
1 (Mω

1 (θ1),Mω
2 (θ2)) + χω

2 (Mω
1 (θ1),Mω

2 (θ2)) = 1;

and if Q(ω, θ1, θ2) 6= ∅ then χω
j (Mω

1 (θ1),Mω
2 (θ2)) = 1 for some j ∈ Q(ω, θ1, θ2).

The following lemma establishes some properties of the set E∗, which will be useful in its charac-

terization.

Lemma 1 For any φ, δ, µ, µ, π, the set E∗ satisfies the following properties

1. If v ∈ E∗ then there exists Z such that v is E-decomposed by Z on E∗.

2. Either E∗ = ∅ or E∗ = co ({v̂, ṽ}), for some v̂, ṽ ∈
{
(v∗, v1, v2) ∈ R3

+|v1 + v2 = v∗
}

.

PROOF. For any V ⊆ R3
+, let

W(V) :=
{

v ∈ R3
+ : v is decomposable on V

}
.

The set V ⊆ R3
+ is ex-post self-generating if V ⊆ W(V).

Adapting the methodology of APS to the current environment, E can be characterized through self

generation (see Section G for the proof):

Lemma 2 E andW satisfy the following properties: (i) If V ⊂ R3 is bounded and ex-post self-generating then

W(V) ⊆ E (and in turn V ⊆ E ); (ii)W(E) = E ; (iii) If V ⊆ V
′

thenW(V) ⊆ W(V
′
); (iv) If V is compact

thenW(V) is compact; (v) LetW k(O) denote the set obtained following k iterations ofW , starting with the

feasible set O := co{~0, (v∗, πv∗, 0), (v∗, 0, πv∗)}. Then E =W∞ := ∩
k
W k(O); in particular, E is compact.
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Let v = (v0, v1, v2) ∈ E∗. Since E∗ ⊆ E = W(E) , there exists a policy Z = (M, χ,V) such that

v ∈ E∗ is decomposed by Z on E . By definition of v∗ and feasibility, Vω
1 (m, j, y) + Vω

2 (m, j, y) ≤ πv∗,

all ω ∈ {A, B}, m ∈ {0, 1}2, j ∈ {1, 2}, y ∈ {S, F}. Suppose Vω
1 (m, j, y) + Vω

2 (m, j, y) < πv∗ and

χω
j (m) > 0 for some m ∈ {0, 1}2, j ∈ {1, 2}, ω ∈ {A, B}, y ∈ {S, F}. Then since µ, µ, φ ∈ (0, 1),

dynamic consistency implies

v1 + v2 = Λ1(Z) + Λ2(Z) < πv∗,

contradicting v ∈ E∗. Therefore, without loss of generality, V can be chosen to satisfy Vω
1 (m, j, y) +

Vω
2 (m, j, y) = πv∗ for all ω ∈ {A, B}, m ∈ {0, 1}2, y ∈ {S, F}, j ∈ {1, 2}, implying v ∈ W(E∗). Simi-

larly, for any (ω, θ1, θ2) ∈ {A, B} × {α, β}2, if ∑i=1,2 χω
i (Mω

1 (θ1),Mω
2 (θ2)) < 1 or if Q = {i|(ω, θi) ∈

{(A, α), (B, β)} 6= ∅ but χω
j (Mω

1 (θ1),Mω
2 (θ2)) = 0 for all j ∈ Q then dynamic consistency must be

violated.

Part 2 follows immediately from the fact that, given the presence of a randomization device, E is

not only compact but also convex. �

Lemma 1 shows that for any set of primitives the set E∗ is either empty or a closed interval. Fur-

thermore, if E∗ is non-empty then any vector of payoffs in E∗ can be decomposed using a policy in

which allocations are efficient (i.e., each project is allocated to one of the agents, and is allocated to a

suited one whenever one exists) and continuations values are themselves efficient XPPE values.

Fixing the primitives {δ, φ, µ, µ, π}, observe that if E∗ 6= 0 then by Lemma 1 there exist minimal

and a maximal values that can be supported under an efficient XPPE:

v := min {v ∈ R+ : (v∗, v, v2) ∈ E∗}

and v := πv∗ − v.

Define Ψ : [v, 1
2 πv∗]→ [v, v] as follows. For each v ∈ [v, 1

2 πv∗],

Ψ(v) := inf {ṽ ∈ R+ : (v∗, ṽ, πv∗ − ṽ) ∈ W e (co {(v∗, v, πv∗ − v), (v∗, πv∗ − v, v)})} , (14)

where for any V ⊆ R3
+,

W e(V) :=
{

v ∈ R3
+ : v is E-decomposable on V

}
.

That is, Ψ maps any v ∈ [v, 1
2 πv∗] to the infimum of the set of values ṽ ∈ R+ such that the payoff

vector (v∗, ṽ, πv∗ − ṽ) can be E-decomposed on co {(v∗, v, πv∗ − v), (v∗, πv∗ − v, v)}.
The following must then hold.

Lemma 3 If E∗ 6= ∅ then v is a fixed-point of Ψ.

PROOF. Suppose E∗ 6= ∅. Let Z be a policy that E-decomposes (v∗, v, v) on E . By definition of v and

v, v ≤ Vω
1 (m, j, y) ≤ v. Therefore, (v∗, v, v) is E-decomposed by Z on co{(v∗, v, v), (v∗, v, v)}, hence

v ≥ Ψ(v). Suppose that v > Ψ(v), then there exists ṽ < v such that (v∗, ṽ, πv∗ − ṽ) is E-decomposable

on co{(v∗, v, v), (v∗, v, v)}, and in particular on E . By definition of v, however, (v∗, ṽ, πv∗ − ṽ) /∈ E .

Thus,W(E) 6= E , a contradiction. �
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B Proofs for Section 3 - Efficiency

Proof of Proposition 1. First, note that if v ∈ R3 is E-decomposed by a policy that satisfies XIC,

feasibility and dynamic consistency for the agents i = 1, 2, then these conditions are trivially satisfied

for the principal. Hence, we can ignore the principal’s incentives in the analysis that follows.

For any l ∈ {µ, µ}, i, j ∈ {1, 2}, ω ∈ {A, B}, m ∈ {0, 1}2, denote

ElVω
i (m, j) := lVω

i (m, j, S) + (1− l)Vω
i (m, j, F).

The following lemma shows that it is without loss of generality to restrict attention to a particular

set of policies.

Lemma 4 Suppose Z E-decomposes v ∈ R3 on V ⊆ R3. Then there exists Z ′ = (M, χ,V) that also E-

decomposes v on V such that for all ω ∈ {A, B} either

1. for all i ∈ {1, 2}, θi ∈ {α, β},m ∈ {0, 1}2, Mω
i (θi) = 1 ⇔ (ω, θi) ∈ {(A, α), (B, β)}, χω

1 (m) +

χω
2 (m) = 1, and (mi, m−i) = (1, 0)⇒ χω

i (m) = 1; or

2. for some i ∈ {1, 2}: Mω
i (θi) = 1 ⇔ (ω, θi) ∈ {(A, α), (B, β)},Mω

−i(α) =Mω
−i(β) = 1, mi = 1 ⇒

χω
i = 1 and mi = 0⇒ χω

−i = 1.

PROOF. Let θ(ω) and θ(−ω) denote the types suited and unsuited, respectively, for a project ω ∈
{A, B}. If Z = (M, χ,V) E-decomposes v on V then each project must be allocated to one of the

agents. Furthermore, at least one of the agents must reveal his type; in other words, for any ω ∈
{A, B}, for at least one of the agents j,Mω

j (α) 6=Mω
j (β). Furthermore, if for some ω ∈ {A, B} one of

the agents, say i, pools (i.e.,Mω
i (θ(ω)) =Mω

i (θ(−ω))), then regardless of i’s announcementMω
i (θi)

agent−i must be allocated the project whenever he reveals he is suited, χω
−i(Mω

−i(θ(ω)),Mω
i (θi)) = 1,

and otherwise χω
i (Mω

i (θi),Mω
−i(θ(−ω))) = 1. Finally, that Z can be modified to obtain Z ′ in which

the conditions stated in the lemma are satisfied is just a matter of relabling. �

The lemma above therefore guarantees that there will be no loss of generality in restricting atten-

tion to policies such that either (a) both agents announce truthfully, or (b) only one agent announces

truthfully, the other pools, and the project is allocated as described above.

In the analysis that follows, we consider policies Z = (M, χ,V) that, given ω ∈ {A, B}, cor-

respond to the first case in Lemma 4 above; that is, for all i ∈ {1, 2}, θi ∈ {α, β},m ∈ {0, 1}2,

Mω
i (θi) = 1 ⇔ (ω, θi) ∈ {(A, α), (B, β)}, χω

1 (m) + χω
2 (m) = 1, and (mi, m−i) = (1, 0) ⇒ χω

i (m) = 1.

This is without loss, as will be shown below.

For such policies (M,χ,V), the expected payoff of agent 1 is given by

Λ1(M, χ,V) = 1
2

ΛA
1 (M, χ,V) + 1

2
ΛB

1 (M, χ,V),
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where 1’s expected payoff for ω = A is

ΛA
1 (M, χ,V)

:= (1− φ1)(1− φ2)
(

χA
1 (0, 0)

(
(1− δ)πµ + δEµVA

1 ((0, 0), 1)
)
+
(

1− χA
1 (0, 0)

)
δEµVA

1 ((0, 0), 2)
)

+ φ1(1− φ2)
(
(1− δ)πµ + δEµVA

1 ((1, 0), 1)
)
+ (1− φ1)φ2δEµVA

1 ((0, 1), 2) (15)

+ φ1φ2
(

χA
1 (1, 1)

(
(1− δ)πµ + δEµVA

1 ((1, 1), 1)
)
+
(

1− χA
1 (1, 1)

)
δEµVA

1 ((1, 1), 2)
)

.

and similarly for ω = B,

ΛB
1 (M, χ,V)

:= φ1φ2
(

χB
1 (0, 0)

(
(1− δ)πµ + δEµVB

1 ((0, 0), 1)
)
+
(

1− χB
1 (0, 0)

)
δEµVB

1 ((0, 0), 2)
)

+ (1− φ1)φ2
(
(1− δ)πµ + δEµVB

1 ((1, 0), 1)
)
+ φ1(1− φ2)δEµVB

1 ((0, 1), 2) (16)

+ (1− φ1)(1− φ2)
(

χB
1 (1, 1)

(
(1− δ)πµ + δEµVB

1 ((1, 1), 1)
)
+
(

1− χB
1 (1, 1)

)
δEµVB

1 ((1, 1), 2)
)

,

XIC requires that agents do not have strict incentives to announce that they are suited for projects

they are not truly suited for, regardless of their beliefs about the type of the other agent. Given ω = B,

the interim payoff of agent 1 of type θ1 = α must be weakly greater when he announces m1 = 0 rather

than m1 = 1, regardless his belief about θ2 ∈ {α, β}:

UB
1 (0, α; β) = δEµVB

1 ((0, 1), 2)

≥ (1− δ)πµχB
1 (1, 1) + δχB

1 (1, 1)EµVB
1 ((1, 1), 1) + δ

(
1− χB

1 (1, 1)
)

EµVB
1 ((1, 1), 2)

= UB
1 (1, α; β), (IC1)

UB
1 (0, α; α) = (1− δ)πµχB

1 (0, 0) + δχB
1 (0, 0)EµVB

1 ((0, 0), 1) + δ
(

1− χB
1 (0, 0)

)
EµVB

1 ((0, 0), 2)

≥ (1− δ)πµ + δEµVB
1 ((1, 0), 1)

= UB
1 (1, α; α). (IC2)

Analogous XIC conditions, UB
2 (0, α; θ1) ≥ UB

2 (1, α; θ1) for beliefs θ1 = α, β, apply for agent 2.

Imposing Vω
2 (m, j, y) = πv∗ −Vω

1 (m, j, y) and χω
2 (m) = 1− χω

1 (m), these conditions can be written as

UB
2 (0, α; β) = −δEµVB

1 ((1, 0), 1)

≥ (1− δ)πµ
(

1− χB
1 (1, 1)

)
− δ

(
1− χB

1 (1, 1)
)

EµVB
1 ((1, 1), 2)− δχB

1 (1, 1)EµVB
1 ((1, 1), 1)

= UB
2 (1, α; β), (IC3)

UB
2 (0, α; α) = (1− δ)πµ

(
1− χB

1 (0, 0)
)
− δ

(
1− χB

1 (0, 0)
)

EµVB
1 ((0, 0), 2)− δχB

1 (0, 0)EµVB
1 ((0, 0), 1)

≥ (1− δ)πµ− δEµVB
1 ((0, 1), 2)

= UB
2 (1, α; α). (IC4)
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Analogous XIC conditions can be derived for ω = A; denote these by

UA
i (0, β; θ−i) ≥ UA

i (1, β; θ−i) , ∀θ−i ∈ {α, β}, i = 1, 2. (IC5)

The remaining XIC conditions guarantee that agents find it optimal to announce truthfully when

they are suited for the project (again, regardless of their belief about the other agent’s type):

Uω
i (1, θi; θ−i) ≥ Uω

i (0, θi; θ−i) ∀(ω, θi) ∈ {(A, α), (B, β)} , θ−i ∈ {α, β}, i = 1, 2. (IC6)

It can easily be verified that policies corresponding to the second case in Lemma 4 can be an-

alyzed as special cases of the conditions above; without loss of generality, if agent 2 pools, setting

χω
1 (1, 1) = 1 and χω

1 (0, 0) = 0 in (15), (16) and (IC1)-(IC6) yields the appropriate interim payoffs and

XIC constraints for the agents.

Assuming E∗ 6= ∅, from Lemma 4, for any v ∈ [v, 1
2 πv∗],

Ψ(v) =min
(χ,V)

Λ1

s.t. (IC1)-(IC6),

χω
i (m) ∈ {0, 1}, χω

1 (m) + χω
2 (m) = 1, (ml , m−l) = (1, 0)⇒ χω

i (m) = 1,

Vω
i (m, j, y) ∈ [v, πv∗ − v],Vω

1 (m, j, y) + Vω
2 (m, j, y) = πv∗,

∀ω ∈{A, B}, m ∈ {0, 1}2, l, j ∈ {1, 2}, y ∈ {S, F}. (17)

For any v ∈ [v, 1
2 πv∗], the program on the RHS of (17) is referred to as Pv. Denote by PR

v the same pro-

gram excluding the constraints (IC6). Fixing any v ∈ [v, 1
2 πv∗], the following lemmas derive necessary

properties that any (χ,V) minimizing Λ1 must satisfy.

Lemma 5 Suppose E∗ 6= ∅. Any (χ,V) that yields a solution to PR
v satisfies Vω

1 ((1, 0), 1, y) = v, all

ω ∈ {A, B}, y ∈ {S, F}.

PROOF. Suppose VB
1 ((1, 0), 1, S) > v and consider the effect of a slight decrease in VA

1 ((1, 0), 1, S).

Such a decrease both reduces Λ1 and relaxes the constraints (IC2) and (IC3), without affecting the

remaining constraints; a contradiction. Similarly, VB
1 ((1, 0), 1, F) = VA

1 ((1, 0), 1, S) = VA
1 ((1, 0), 1, F) =

v. �

Lemma 6 Suppose E∗ 6= ∅. For any (χ,V) that yields a solution to PR
v , the constraints (IC2) and (IC3) (as

well as the analogous constraints for ω = A) must hold with equality.

PROOF. Suppose (IC2) is slack. Assume first that χB
1 (0, 0) = 0. Then (IC2) reduces to δEµVB

1 ((0, 0), 2) >

(1− δ)πµ + δv. However, EµVB
1 ((0, 0), 2) can then be decreased by a small amount without violating

the strict inequality in (IC2) or feasibility. Furthermore, such a decrease reduces Λ1, relaxes (IC4), and

does not affect the remaining constraints; a contradiction. Similarly, if χB
1 (0, 0) = 1 then (IC2) is equiv-

alent to δEµVB
1 ((0, 0), 1) > δEµVB

1 ((1, 0), 1) = δv. But then EµVB
1 ((0, 0), 1) can be reduced by a small

42



amount without violating the strict inequality in (IC2) or feasibility, which reduces Λ1, relaxes (IC4),

and does no affect the remaining constraints; a contradiction. Hence (IC2) must hold with equality.

Next, assume (IC3) is slack. Suppose χB
1 (1, 1) = 0. Then (IC3) is equivalent to δEµVB

1 ((1, 1), 2) >

(1− δ)πµ + δv. Hence EµVB
1 ((1, 1), 2) can be reduced by a small amount without violating the strict

inequality or feasibility, which decreases Λ1 and relaxes (IC1) without affecting the remaining con-

straints; a contradiction. Suppose instead that χB
1 (1, 1) = 1. Then δEµVB

1 ((1, 1), 1) > δEµVB
1 ((1, 0), 1) =

δv, and again a contradiction is obtained by considering the effects of a small decrease in EµVB
1 ((1, 1), 1).

Hence (IC3) also holds with equality.

Finally, note that a similar analysis applies for ω = A. �

Lemma 7 Suppose E∗ 6= ∅. For any (χ,V) that yields a solution to PR
v , χω

1 (1, 1) = 0, ω ∈ {A, B}.

PROOF. First, note that the fact that (IC2) holds with equality (Lemma 6) together with Lemma 5

implies

χB
1 (0, 0)

(
(1− δ)πµ + δEµVB

1 ((0, 0), 1)
)
+ δ

(
1− χB

1 (0, 0)
)

EµVB
1 ((0, 0), 2) = (1− δ)πµ + δv. (18)

Suppose χB
1 (1, 1) = 1. The previous lemmas together with (IC3) imply EµVB

1 ((1, 1), 1) = v, and

hence EµVB
1 ((1, 1), 1) = v. From (IC1),

δEµVB
1 ((0, 1), 2) ≥ (1− δ)πµ + δEµVB

1 ((1, 1), 1) = (1− δ)πµ + δv. (19)

Therefore, under χB
1 (1, 1) = 1,

ΛB
1 (M, χ,V) = φ1φ2

(
(1− δ)πµ + δv

)
+ (1− φ1)φ2 ((1− δ)πµ + δv)

+ φ1(1− φ2)δEµVB
1 ((0, 1), 2) + (1− φ1)(1− φ2) ((1− δ)πµ + δv)

≥ (1− δ)π
(

φ1µ + (1− φ1)µ
)
+ δv (20)

where the first equality follows from (16), setting χB
1 (1, 1) = 1, (18) and EµVB

1 ((1, 1), 1) = EµVB
1 ((1, 0), 1) =

v, and the inequality follows from (19).

Consider (χ,V) such that χB
1 (1, 1) = 0, and furthermore

δVB
1 ((0, 1), 2, y) = δVB

1 ((1, 1), 2, y) = (1− δ)πµ + δv,

and VB
1 ((1, 1), 1, y) = v, for all y = S, F. The policy is feasible (given v) only if (1 − δ)πµ + δv ≤

δπv∗ − δv. To see that this inequality must hold, note that from (IC3), which by Lemma 6 holds with

equality,

δv + (1− δ)πµ = χB
1 (1, 1)

(
(1− δ)πµ + δEµVB

1 ((1, 1), 1)
)
+
(

1− χB
1 (1, 1)

)
δEµVB

1 ((1, 1), 2)

≤ χB
1 (1, 1)

(
(1− δ)πµ + δ (πv∗ − v)

)
+
(

1− χB
1 (1, 1)

)
δ (πv∗ − v)

≤ (1− δ)πµ + δ (πv∗ − v) ,
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where the first inequality follows from the fact that underPR
v , VB

1 (m, j, y) ≤ πv∗− v, all m ∈ {0, 1}2, y ∈
{S, F}, j ∈ {1, 2}.

It can easily be verified that a policy with the above properties satisfies (IC1)-(IC4).49 Furthermore,

under such a policy,

ΛB
1 = φ1φ2

(
(1− δ)πµ + δv

)
+ (1− φ1)φ2 ((1− δ)πµ + δv) + φ1(1− φ2)

(
(1− δ)πµ + δv

)
+ (1− φ1)(1− φ2)

(
(1− δ)πµ + δv

)
,

= (1− δ)π
((

1− (1− φ1)φ2
)

µ + (1− φ1)φ2µ
)
+ δv

≤ (1− δ)π
(

φ1µ + (1− φ1)µ
)
+ δv

where the first equality follows from (16) (setting χB
1 (1, 1) = 0), (18), and the fact that δVB

1 ((0, 1), 2, y) =

δVB
1 ((1, 1), 2, y) = (1− δ)πµ + δv under the proposed policy.

Thus, from (20), the proposed policy yields a lower Λ1 than any policy for which χB
1 (1, 1) = 1,

which yields a contradiction.

Finally, note that an analogous argument shows that χA
1 (1, 1) = 0 also holds. �

Lemma 8 Suppose E∗ 6= ∅. For any (χ,V) that yields a solution to PR
v ,

δEµVω
1 ((1, 1), 2) = δEµVω

1 ((0, 1), 2) = (1− δ)µ + δv, ∀ω ∈ {A, B}.

PROOF. Lemmas 5-7 combined with (IC3) imply δEµVω
1 ((1, 1), 2) = (1 − δ)µ + δv. Furthermore,

combining (18) with (IC4) gives δEµVB
1 ((0, 1), 2) ≥ (1− δ)πµ + δv. Suppose δEµVB

1 ((0, 1), 2) > (1−
δ)πµ + δv, then VB

1 ((0, 1), 2, S) or VB
1 ((0, 1), 2, F) can be decreased slightly (this can be done since

it cannot be the case that VB
1 ((0, 1), 2, S) = VB

1 ((0, 1), 2, F) = v), such that the strict inequality is

maintained. This decreases Λ1 without violating any of the constraints, which gives a contradiction.

Therefore, δEµVB
1 ((0, 1), 2) = (1− δ)πµ + δv.

An analogous argument applies for ω = A. �

Lemma 9 Suppose E∗ 6= ∅. For any (χ,V) that yields a solution to PR
v , either

• δVω
1 ((1, 1), 2, S) = δVω

1 ((0, 1), 2, S) = δv; and

• δVω
1 ((1, 1), 2, F) = δVω

1 ((0, 1), 2, F) = δv +
(1−δ)µπ

1−µ ≤ δ(πv∗ − v);

or

• δVω
1 ((1, 1), 2, F) = δVω

1 ((0, 1), 2, F) = δ(πv∗ − v); and

• δVω
1 ((1, 1), 2, S) = δVω

1 ((0, 1), 2, S) = (1− δ)π + 1
µ δv− 1−µ

µ δ(πv∗ − v) ≥ δv.

49It can also easily be verified that additionally setting χB
1 (0, 0) = 0, VB

1 ((0, 0), 1, y) = v, δVB
1 ((0, 0), 2, y) = (1− δ)πµ + δv,

all y ∈ {S, F}, the constraints relevant for ω = B in (IC6) are also satisfied.
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PROOF. Consider ω = B (an analogous argument holds for ω = A). Suppose neither of the con-

ditions above hold. Then δEµVB
1 ((1, 1), 2) (or δEµVB

1 ((0, 1), 2)) can be decreased by a small amount

while keeping δEµVB
1 ((1, 1), 2) (or δEµVB

1 ((0, 1), 2)) fixed at (1− δ)πµ + δv, as required by Lemma

8, without violating any of the constraints. In particular, as δEµVB
1 ((1, 1), 2) and δEµVB

1 ((0, 1), 2) re-

main unchanged and the only constraint affected, (IC1), can be satisfied by setting δEµVB
1 ((1, 1), 2) =

δEµVB
1 ((0, 1), 2). Such a decrease strictly reduces Λ1, giving the contradiction. �

It can easily be verified that any (χ,V) that satisfies all of the constraints in PR
v and furthermore

Vω
1 ((1, 0), 1, y) = v, χω

1 (1, 1) = 0, δEµVω
1 ((1, 1), 2) = δEµVω

1 ((0, 1), 2) = (1− δ)µ + δv, (IC2) holds

with equality, and finally δEµVω
1 ((1, 1), 2) = δEµVω

1 ((0, 1), 2), all ω ∈ {A, B}, y ∈ {S, F}, also satisfies

(IC6).50 Therefore, the restriction to PR
v is without loss of generality.

The following lemma completes the proof by using the properties established above to solve for v

as a fixed-point of Ψ.

Lemma 10 E∗ 6= ∅ if and only if

φ(1− φ) ≥
µ (1− δµ)

δ
(

µ− µ
) (

1− µ
) . (21)

PROOF. Suppose E∗ 6= ∅. From Lemma 3, v = Ψ(v). From Lemma 9, if (χ,V) yields a solution to Pv

then one of the two cases considered in Lemma 9 must hold. Below, each of these cases is considered.

Case 1. (χ,V) satisfies the following conditions: χω
1 (1, 1) = 0, (IC2) holds with equality,

δVω
1 ((1, 0), 1, y) = δVω

1 ((1, 1), 2, S) = δVω
1 ((0, 1), 2, S) = δv,

and

δVω
1 ((1, 1), 2, F) = δVω

1 ((0, 1), 2, F) = δv +
(1− δ)µπ

1− µ
≤ δv, (22)

all ω ∈ {A, B}, y ∈ {S, F}.
Such a policy (χ,V) satisfies,

δEµVω
1 ((1, 1), 2) = δEµVω

1 ((0, 1), 2) = δv +
µ(1− µ)

(1− µ)
(1− δ)π.

Therefore,

ΛB
1 = φ1φ2

(
(1− δ)πµ + δv

)
+ (1− φ1)φ2 ((1− δ)πµ + δv) + φ1(1− φ2)δEµVB

1 ((0, 1), 2)

+ (1− φ1)(1− φ2)δEµVB
1 ((1, 1), 2)

= δv + (1− δ)π

(
φ1φ2µ + (1− φ1)φ2µ + (1− φ2)

µ(1− µ)

(1− µ)

)
50This is guaranteed by the condition (18).
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and similarly

ΛA
1 = δv + (1− δ)π

(
(1− φ1)(1− φ2)µ + φ1(1− φ2)µ + φ2

µ(1− µ)

(1− µ)

)
,

which implies

v = Ψ(v) = Λ1 = δv +
1
2
(1− δ)π

(
2φ(1− φ)µ + ((1− φ)2 + φ2)µ +

µ(1− µ)

(1− µ)

)
.

Hence,

v =
1
2

π

(
µ− 2φ(1− φ)

(
µ− µ

)
+

µ(1− µ)

(1− µ)

)
and v = πv∗ − v =

1
2

π

(
µ− µ

1− µ

)
. (23)

Now, feasibility requires that (22) hold; thus, it must be the case that

δVω
1 ((1, 1), 2, F) = δVω

1 ((0, 1), 2, F) = δv +
(1− δ)µπ

1− µ
≤ δv.

It is easily verified that the latter condition holds if and only if (21) is satisfied.

Case 2. (χ,V) satisfies the following conditions: χω
1 (1, 1) = 0, (IC2) holds with equality,

δVω
1 ((1, 0), 1, y) = δv , δVω

1 ((1, 1), 2, F) = δVω
1 ((0, 1), 2, F) = δv,

and

δVω
1 ((1, 1), 2, S) = δVω

1 ((0, 1), 2, S) = (1− δ)π +
1
µ

δv−
1− µ

µ
δv ≥ δv, (24)

all ω ∈ {A, B}, y ∈ {S, F}.
Following steps similar to those for case 1, it can be shown that

v = πv∗

2µ− δ
(

µ + µ
)

2
(

µ− δµ
)


which, after some algebra, in turn implies

δVω
1 (m, 2, S) = (1− δ)π + δv

2− δ
(

2 + µ− µ
)

2µ− δ
(

µ + µ
)
 ,

all m ∈ {(0, 1), (1, 1)}. Feasibility requires that the inequality (24) hold. It can easily be shown that the

latter holds only if (21) is satisfied.

We have therefore shown that when (21) is violated, it cannot be the case that Ψ(v) = v. By Lemma

3, E∗ 6= ∅ implies (21). Furthermore, if (21) holds then the analysis above guarantees that (v∗, v, v)

with v and v defined as in (23) is E-decomposable on co {(v∗, v, v), (v∗, v, v)}. A policy (χ,V) analo-

gous to the one decomposing (v∗, v, v), switching the roles of the two agents, decomposes (v∗, v, v)
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on co {(v∗, v, v), (v∗, v, v)}. Since the constraints and payoffs are all linear in the continuation values,

any ṽ ∈ co {(v∗, v, v), (v∗, v, v)} is E-decomposable on co {(v∗, v, v), (v∗, v, v)} using convex combina-

tions of these two policies. In particular, the set co {(v∗, v, v), (v∗, v, v)} is self-generating, and hence

E∗ 6= ∅. �

Finally, Lemma 10 combined with the monotonicity of the LHS of (21) completes the proof of

Proposition 1. Q.E.D.

Proof of Proposition 2. Follows immediately from the proof of Lemma 10. Q.E.D.

Proof of Proposition 3. For any φ ∈ [ 1
2 , 1), recall that vo(φ) denotes the principal’s value under

decentralization and v∗(φ) the principal’s first-best value. Since the principal cannot commit to future

allocation decisions, in equilibrium, at any history, the principal’s continuation value v(φ) must satisfy

vo(φ) ≤ v(φ) ≤ v∗(φ).

Furthermore, as φ→ 1,

vo(φ) = φµ + (1− φ)µ→ µ and v∗(φ) = µ− (µ− µ)φ(1− φ)→ µ.

Hence, at any period and given any history, the efficiency loss v∗(φ)− v(φ) becomes arbitrarily small,

taking φ above sufficiently close to 1.

Suppose that there exists an XPPE in which, at some history, communication is fruitful: an agent

who claims to be suited for the current type of project, although he is not specialized in it, is allocated

the project given some profile of announcements. A necessary condition for the agent who receives

the project he is not specialized in to have an (ex-post) incentive to be truthful about his suitability is

that

(1− δ)µπ ≤ δ (v(φ)− v(φ)) , (25)

where v(φ) and v(φ) denote the agent’s highest and lowest feasible equilibrium values in the contin-

uation game. For any φ ∈ [ 1
2 , 1), denote by v∗(φ) and v∗(φ) the lowest and highest possible values for

an agent under a first-best allocation rule. As φ→ 1,

v∗(φ) =
1
2

(
µ + 2φ(1− φ)µ

)
π → 1

2
µπ and v∗(φ) =

1
2

µ
(
φ2 + (1− φ)2)π → 1

2
µπ.

For any φ ∈ (φ∗, 1), by definition of v∗(φ) and φ∗, v(φ) > v∗(φ) implies a strict efficiency loss: v∗(φ)−
v(φ) > 0. As argued above, however, taking φ sufficiently close to 1, v∗(φ)− v(φ) becomes arbitrarily

small.

If v(φ) ≤ v∗(φ) and v(φ) ≥ v∗(φ) then, since v∗(φ)− v∗(φ) → 0 as φ → 1, for φ sufficiently close

to 1, v(φ) − v(φ) becomes arbitrarily small. If v(φ) > v∗(φ) then the difference v(φ) − v∗(φ) must

be generated by promising the agent, with positive probability, projects that he is not suited for even

47



though the other agent is. While the gain in the agent’s valuation for each such project is µ, the loss

for the principal is µ− µ. Hence

v∗(φ)− v(φ) ≥
µ− µ

µ
(v(φ)− v∗(φ)) .

In particular, for φ sufficiently close to 1, v(φ) − v∗(φ) is made arbitrarily small. An analogous ar-

gument holds for v∗(φ) − v(φ). Since v∗(φ) − v∗(φ) → 1 as φ → 1, for φ sufficiently close to 1 the

difference v(φ)− v(φ) again becomes arbitrarily small.

Hence, there exists φo < 1 such that for all φ ∈ [φo, 1) the inequality (25) cannot be satisfied. Q.E.D.

C Proofs for Section 4 - Rules for efficient delegation

It is convenient to first prove Proposition 5, from which the proof of the first part of Proposition 4

immediately follows.

Proof of Proposition 5. By definition, in equilibrium, the values v f
i , v− f

i must satisfy the following

consistency conditions

v f
i =

1
2


ω=A

{
φi ·

(
µ
(
(1− δ)π + δv f

i

)
+ (1− µ)δv− f

i

)
+(1− φi)

(
φ−iδv f

i + (1− φ−i)
(

µ
(
(1− δ)π + δv f

i

)
+ (1− µ)δv− f

i

))
ω=B

{
+φi

(
(1− φ−i)δv f

i + φ−i
(

µ
(
(1− δ)π + δv f

i

)
+ (1− µ)δv− f

i

))
+(1− φi)

(
µ
(
(1− δ)π + δv f

i

)
+ (1− µ)δv− f

i

)


and similarly

v− f
i =

1
2


ω=A

{
φ−i
(

µδv− f
i + (1− µ)δv− f

i

)
+(1− φ−i)

(
φi
(

µ(1− δ)π + δv− f
i

)
+ (1− φi)

(
µδv− f

i + (1− µ)δv f
i

))
ω=B

{
+(1− φ−i)

(
µδv− f

i + (1− µ)δv f
i

)
+φ−i

(
(1− φi)

(
µ(1− δ)π + δv− f

i

)
+ φi(µδv− f

i + (1− µ)δv f
i

))


Subtracting and rearranging yields

v f
i = v− f

i +
(1− δ)π(µ + µ)φ(1− φ)

1− δ
(

µ− 2(1− µ)φ(1− φ)
) . (26)

Combining (26) with (5) and rearranging, the left inequality in (5) is equivalent to

φ ≤φ∗ =
1
2
+

1
2

√√√√√1− 4

 µ (1− δµ)

δ
(

µ− µ
) (

1− µ
)
,
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whereas the right inequality in (5) holds for all φ ∈ [ 1
2 , 1), which completes the proof. Q.E.D.

Proof of Proposition 4. Part 1. Follows immediately from the proof of Proposition 5. Part 2. First,

observe that the efficiency in project allocation requires that for some agent f ∈ {1, 2} (without loss

of generality, the favored agent), either (i) XIC holds for both agents, (mi, m−i) = (1, 0) implies i gets

the project, and m ∈ {(1, 1), (0, 0)} implies f gets the project; or (ii) XIC holds for the favored agent f

(but not necessarily for the other agent, − f ), m f = 1 implies f gets the project, and m f = 0 implies − f

gets the project. Note that maximal-priority corresponds to a special case of case (i). We now consider

each of these two cases, and show that the desired properties in the proposition are necessary in order

to attain efficiency whenever possible.51

Case 1. Consider the XIC constraints for the two agents, (abusing notation and) denoting by v f and

v− f the expected average continuation payoff of an agent when he is and is not favored, respectively.

Consider first the XIC constraints for the favored agent, given that he is not suited for the current

project and believes the other agent, − f , is suited for it:

µ
(

ψ− f (− f , S)δv− f + ψ f (− f , S)δv f
)
+ (1− µ)

(
ψ− f (− f , F)δv− f + ψ f (− f , F)δv f

)
≥ µ(1− δ)π + µ

(
ψ− f ( f , S)δv− f + ψ f ( f , S)δv f

)
+ (1− µ)

(
ψ− f ( f , F)δv− f + ψ f ( f , F)δv f

)
.

Rearranging, we have52

v f − v− f ≥
µ(1− δ)π

δ
(

µψ f (− f , S) + (1− µ)ψ f (− f , F)− µψ f ( f , S)− (1− µ)ψ f ( f , F)
) . (27)

Next, consider the XIC of the non-favored agent, − f , when he is not suited for the current project

and believes the favored agent is also not suited for it:

µ
(

ψ− f ( f , S)δv f + ψ f ( f , S)δv− f
)
+ (1− µ)

(
ψ− f ( f , F)δv f + ψ f ( f , F)δv− f

)
≥ µ(1− δ)π + µ

(
ψ− f (− f , S)δv f + ψ f (− f , S)δv− f

)
+ (1− µ)

(
ψ− f (− f , F)δv f + ψ f (− f , F)δv− f

)
.

Rearranging, we have

v f − v− f ≥
µ(1− δ)π

δ
(

µψ f (− f , S) + (1− µ)ψ f (− f , F)− µψ f ( f , S)− (1− µ)ψ f ( f , F)
) . (28)

Dynamic consistency of v f and v− f in equilibrium, together with the properties of the allocation

rule X for case (i), imply the following conditions:

v f = (1− δ)π
1
2

(
µ + 2φ(1− φ)µ

)
+ δv− f

+ δ(v f − v− f )
1
2

 ψ f (− f , S) (1− 2φ(1− φ)) µ + ψ f (− f , F) (1− 2φ(1− φ)) (1− µ)

+ψ f ( f , S)
(

µ + 2φ(1− φ)µ
)
+ ψ f ( f , F)

(
(1− µ) + 2φ(1− φ)(1− µ)

) 
51Throughout the proof below, project types ω are omitted; that is, it is assumed that the same case applies for both types

of projects. It is easy to verify that this is without loss.
52Below we show that in equilibrium v f − v− f > 0. XIC then implies that the denominator in (27) is also strictly positive.
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and

v− f = (1− δ)π
1
2
(1− 2φ(1− φ)) µ + δv− f

+ δ(v f − v− f )
1
2

 ψ− f (− f , S) (1− 2φ(1− φ)) µ + ψ− f (− f , F) (1− 2φ(1− φ)) (1− µ)

+ψ− f ( f , S)
(

µ + 2(1− φ)φµ
)
+ ψ− f ( f , F)

(
(1− µ) + 2(1− φ)φ(1− µ)

) 
Using ψ f (x, y) = 1− ψ− f (x, y), subtracting and rearranging, we have

v f − v− f =
(1− δ)πφ(1− φ)

(
µ + µ

)
1− δ

 −1 + ψ f (− f , S) (1− 2φ(1− φ)) µ + ψ f (− f , F) (1− 2φ(1− φ)) (1− µ)

+ψ f ( f , S)
(

µ + 2φ(1− φ)µ
)
+ ψ f ( f , F)

(
(1− µ) + 2φ(1− φ)(1− µ)

) 
(29)

Note that the denominator in (29) is strictly positive, hence v f − v− f > 0.

Let κ := φ∗(1− φ∗)
(

µ− µ
) (

1− µ
)
+ µµ. From Proposition 1, if the MPR is to be efficient when-

ever possible, it must be the case that the difference in (29) satisfies (27)-(28) for

δ∗ =
µ

κ
.

After some algebra, it can be shown that this is the case if and only if the following conditions are

satisfied 
ψ f (− f , S)

ψ f (− f , F)

ψ f ( f , S)

ψ f ( f , F)


T


µµ + φ∗(1− φ∗)µ
(

µ− µ
)

µ(1− µ) + φ∗(1− φ∗)(1− µ)
(

µ− µ
)

µµ− φ∗(1− φ∗)µ
(

µ− µ
)

µ(1− µ)− φ∗(1− φ∗)(1− µ)
(

µ− µ
)

 ≥ κ + µ


ψ f (− f , S)

ψ f (− f , F)

ψ f ( f , S)

ψ f ( f , F)


T


µµ− φ∗(1− φ∗)µ
(

µ− µ
)

µ(1− µ) + φ∗(1− φ∗)
(

1 + µ
) (

µ− µ
)

µµ− φ∗(1− φ∗)µ
(

µ− µ
)

µ(1− µ)− φ∗(1− φ∗)(1− µ)
(

µ− µ
)

 ≥ κ + µ. (30)

Note that maximal-priority, for which

ψ f (x, y) = 1{(x,y) 6=( f ,F)},

satisfies both of these conditions with equality. It is easy to check that each of the entries multiplying

ψ f (− f , S), ψ f (− f , F), ψ f ( f , S), are positive, and that µ(1− µ)− φ∗(1− φ∗)(1− µ)
(

µ− µ
)
< 0 as

φ∗(1− φ∗) =
µ (1− δ∗µ)

δ∗
(

1− µ
) (

µ− µ
) >

µ(1− µ)

(1− µ)
(

µ− µ
) .
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Hence, the conditions (30) are only satisfied when ψ f (x, y) = 1{(x,y) 6=( f ,F)}.

Case 2. The XIC condition for the favored agent, when he is not suited for the current project and

believes the other agent, − f , is suited for it, is

µ
(

ψ− f (− f , S)δv− f + ψ f (− f , S)δv f
)
+ (1− µ)

(
ψ− f (− f , F)δv− f + ψ f (− f , F)δv f

)
≥ µ(1− δ)π + µ

(
ψ− f ( f , S)δv− f + ψ f ( f , S)δv f

)
+ (1− µ)

(
ψ− f ( f , F)δv− f + ψ f ( f , F)δv f

)
,

which gives

v f − v− f ≥
µ(1− δ)π

δ
(

µψ f (− f , S) + (1− µ)ψ f (− f , F)− µψ f ( f , S)− (1− µ)ψ f ( f , F)
) . (31)

Following arguments similar to those in case (i), we obtain

v f − v− f =
(1− δ)πφ(1− φ)

(
µ− µ

)
1− δ

 −1 + ψ f (− f , S)
(

µ− 2φ(1− φ)
(

µ− µ
))

+ ψ f ( f , S)µ

+ψ f (− f , F)
(
(1− µ) + 2φ(1− φ)

(
µ− µ

))
+ ψ f ( f , F)(1− µ)

 . (32)

As in case (i), it can now be shown that the difference in (32) satisfies (31) for δ∗ =
µ

κ if and only if
ψ f (− f , S)

ψ f (− f , F)

ψ f ( f , S)

ψ f ( f , F)


T


µµ + φ∗(1− φ∗)
(

µ− µ
) (

µ− 2µ
)

µ(1− µ) + φ∗(1− φ∗)
(

µ− µ
) (

1− µ + 2µ
)

µµ− µφ∗(1− φ∗)
(

µ− µ
)

(1− µ)µ− (1− µ)φ∗(1− φ∗)
(

µ− µ
)

 ≥ κ + µ.

The above condition is satisfied with equality when ψ f (x, y) = 1{(x,y) 6=( f ,F)}. (It can also be verified

that with such ψ, the remaining XIC for the favored agent is also satisfied.) Furthermore, it can easily

be verified that the entries multiplying ψ f (− f , S), ψ f (− f , F), ψ f ( f , S) are positive. The fact that µ(1−
µ)− φ∗(1− φ∗)(1− µ)

(
µ− µ

)
< 0 then implies that the condition above can only be satisfied when

ψ f (x, y) = 1{(x,y) 6=( f ,F)}, which concludes the proof. Q.E.D.

Proof of Corollary 1. Follows immediately from Proposition 5. Q.E.D.

D Proofs for Section 5 - Performance-based equilibria

Proof of part 1 of Proposition 6. In a performance-based equilibrium, the set of promised continuation

values can depend on (i) the project type, (ii) the identity of the agent who receives the project, and

(iii) whether that agent was successful. Promised continuation values are therefore given by V :=

(Vω
0 ,Vω

1 ,Vω
2 )ω∈{A,B}, where each function

Vω
i : {1, 2} × {S, F} → R3

+ (33)
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specifies the promised continuation value of player i ∈ {0, 1, 2} given that the current project is of type

ω ∈ {A, B}, agent j ∈ {0, 1, 2} is assigned the project and its outcome is y ∈ {0, S, F}.
With this modified definition of V , the agents’ and principal’s interim and ex-ante payoffs can be

defined analogously to the definitions of Section A.53 Moreover, The principal’s incentive constraint

remains the same as in Section A. However, since we are no longer considering XPPE, the relevant

incentive compatibility requirement for the agents is the following. The policy Z = (M, χ,V) is

incentive compatible (IC) if for all ω ∈ {A, B}, i = 1, 2, θi ∈ {α, β} and mi ∈ {0, 1},

Uω
i (Mω

i (θi), θi;M−i, χ,V) ≥ Uω
i (mi, θi;M−i, χ,V). (34)

The relevant notions of decomposability and E-decomposability can now be defined analogously

to the ones in Section A, with the above modifications of the promised continuation values and incen-

tive compatibility. The analogs of Lemmas 1-4 can be obtained using similar arguments. If E∗P 6= 0 then

there exist minimal and maximal values that can be supported under an efficient performance-based

equilibrium:

vP := min {v ∈ R+ : (v∗, v, v2) ∈ E∗P}

and vP := πv∗ − vP. We can then define Ψ̃(·) analogously to Ψ (i.e., with respect to the new definition

of E-decomposability).

As in the proof of Proposition 1, we can restrict attention to policies in which the agents are truthful.

For such policies, the expected payoff of agent 1 is given by

Λ1(M, χ,V) = 1
2

ΛA
1 (M, χ,V) + 1

2
ΛB

1 (M, χ,V),

where 1’s expected payoff for ω = A is

ΛA
1 (M, χ,V) := (1− φ1)(1− φ2)

(
χA

1 (0, 0)
(
(1− δ)πµ + δEµVA

1 (1)
)
+
(

1− χA
1 (0, 0)

)
δEµVA

1 (2)
)

+ φ1(1− φ2)
(
(1− δ)πµ + δEµVA

1 (1)
)
+ (1− φ1)φ2δEµVA

1 (2) (35)

+ φ1φ2
(

χA
1 (1, 1)

(
(1− δ)πµ + δEµVA

1 (1)
)
+
(

1− χA
1 (1, 1)

)
δEµVA

1 (2)
)

.

and similarly for ω = B,

ΛB
1 (M, χ,V) := φ1φ2

(
χB

1 (0, 0)
(
(1− δ)πµ + δEµVB

1 (1)
)
+
(

1− χB
1 (0, 0)

)
δEµVB

1 (2)
)

+ (1− φ1)φ2
(
(1− δ)πµ + δEµVB

1 (1)
)
+ φ1(1− φ2)δEµVB

1 (2) (36)

+ (1− φ1)(1− φ2)
(

χB
1 (1, 1)

(
(1− δ)πµ + δEµVB

1 (1)
)
+
(

1− χB
1 (1, 1)

)
δEµVB

1 (2)
)

,

where for any l ∈ {µ, µ}, i, j ∈ {1, 2}, ω ∈ {A, B},

ElVω
i (m, j) := lVω

i (j, S) + (1− l)Vω
i (j, F).

53For convenience, the notation from Section A is maintained throughout this this proof.
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Given ω = B, the interim payoff of agent 1 of type θ1 = α must be (weakly) greater when he

announces m1 = 0 rather than m1 = 1, that is,

UB
1 (0, α) = (1− φ2)δEµVB

1 (2) + φ2
(

χB
1 (0, 0)

(
(1− δ)πµ + δEµVB

1 (1)
)
+
(

1− χB
1 (0, 0)

)
δEµVB

1 (2)
)

,

≥ (1− φ2)
(

χB
1 (1, 1)

(
(1− δ)πµ + δEµVB

1 (1)
)
+
(

1− χB
1 (1, 1)

)
δEµVB

1 (2)
)

+ φ2
(
(1− δ)πµ + δEµVB

1 (1)
)

(ICA)

= UB
1 (1, α).

An analogous condition, UB
2 (0, α) ≥ UB

2 (1, α) apply for agent 2. Imposing Vω
2 (j, y) = πv∗ − Vω

1 (j, y)

and χω
2 (m) = 1− χω

1 (m), this condition can be written as

UB
2 (0, α) = −(1− φ1)δEµVB

1 (1) + φ1
((

1− χB
1 (0, 0)

) (
(1− δ)πµ− δEµVB

1 (2)
)
− χB

1 (0, 0)δEµVB
1 (1)

)
≥ (1− φ1)

((
1− χB

1 (1, 1)
) (

(1− δ)πµ− δEµVB
1 (2)

)
− χB

1 (1, 1)δEµVB
1 (1)

)
+ φ1

(
(1− δ)πµ− δEµVB

1 (2)
)

(ICB)

= UB
2 (1, α).

Analogous constraints can be derived for the case of ω = A and θ1 = β,

UA
i (0, β) ≥ UA

i (1, β) i = 1, 2, (ICC)

and the remaining IC constraints guarantee that agents find it optimal to truthfully announce that they

are suited for the project:

Uω
i (1, θi) ≥ Uω

i (0, θi) (ω, θi) ∈ {(A, α), (B, β)} , i = 1, 2. (ICD)

Assume E∗P 6= ∅. For any v ∈ [v, 1
2 πv∗],

Ψ̃(v) =min
(χ,V)

Λ1

s.t. (ICA)-(ICD),

χω
i (m) ∈ {0, 1}, χω

1 (m) + χω
2 (m) = 1, (ml , m−l) = (1, 0)⇒ χω

i (m) = 1,

Vω
i (j, y) ∈ [v, πv∗ − v],Vω

1 (j, y) + Vω
2 (j, y) = πv∗,

∀ω ∈{A, B}, m ∈ {0, 1}2, l, j ∈ {1, 2}, y ∈ {S, F}. (37)

Denote for any v ∈ [v, 1
2 πv∗] the program on the RHS of (37) by PP,v and by PR

P,v the same program

excluding the constraints (ICD). Fixing any v ∈ [v, 1
2 πv∗], the following lemmas derive necessary

properties that any (χ,V) minimizing Λ1 must satisfy.

Lemma 11 Suppose E∗P 6= ∅. For any (χ,V) that yields a solution to PR
P,v, (1− δ)πµ + δv ≤ δπv∗ − δv,

ω ∈ {A, B}.
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PROOF. First note that(
(1− δ)πµ + δv

) (
φ1χω

1 (0, 0) + (1− φ1) (1− χω
1 (1, 1))

)
≤ (1− δ)πµ

(
φ1χω

1 (0, 0) + (1− φ1) (1− χω
1 (1, 1))

)
+ δEµVω

1 (1)
(

φ1χω
1 (0, 0)

)
+ δEµVω

1 (1)
(
(1− φ1) (1− χω

1 (1, 1))
)

≤ δEµVω
1 (2)

(
φ1 (χω

1 (0, 0)) + (1− φ1) (1− χω
1 (1, 1))

)
≤ δ(πv∗ − v)

(
φ1 (χω

1 (0, 0)) + (1− φ1) (1− χω
1 (1, 1))

)
,

where the first and third inequalities follow from the fact that v ≤ Vω
1 (j, y) ≤ πv∗ − v and the second

from (ICB). If it is not the case that both χω
1 (1, 1) = 1 and χω

1 (0, 0) = 0 then clearly (1− δ)πµ + δv ≤
δ(πv∗ − v). Hence suppose χω

1 (1, 1) = 1 and χω
1 (0, 0) = 0.

(1− δ)πµ + δv ≤ (1− δ)πµ + δEµVω
1 (1) ≤ δEµVω

1 (2)φ2 + δEµVω
1 (2)(1− φ2) ≤ δ(πv∗ − v),

where the first and third inequalities again follow from v ≤ Vω
1 (j, y) ≤ πv∗ − v and the second from

(ICA). �

Lemma 12 Suppose E∗P 6= ∅. Any (χ,V) that yields a solution toPR
P,v satisfies Vω

1 (1, y) = v, all ω ∈ {A, B},
y ∈ {S, F}.

PROOF. Suppose VB
1 (1, S) > v. A slight decrease in VA

1 (1, S) both reduces Λ1 and relaxes the con-

straints (ICA) and (ICB), without affecting the remaining constraints; a contradiction. Similarly, VB
1 (1, F) =

VA
1 (1, S) = VA

1 (1, F) = v. �

Lemma 13 Suppose E∗P 6= ∅. For any (χ,V) that yields a solution to PR
P,v, χω

1 (1, 1) = 0, ω ∈ {A, B}.

PROOF. Consider a policy with (χ,V) such that χω
1 (1, 1) = χω

1 (0, 0) = 0, and furthermore δVω
1 (2, y) =

(1− δ)πµ + δv, and Vω
1 (1, y) = v, for all y = S, F. From Lemma 11, such a policy is feasible; further-

more, (ICA)-(ICC) are clearly satisfied and

ΛB
1 = δv + (1− δ)π

(
(φ + φ(1− φ)) µ + (1− φ)2µ

)
.

Suppose χB
1 (1, 1) = 1. It must be that VB

1 (2, y) > v for some y ∈ {S, F}.54 Hence either (ICA)

or (ICB) must hold with equality, as otherwise ΛB
1 could be decreased without violating any of the

constraints by slightly lowering VB
1 (2, y) for some y ∈ {S, F}. Suppose first that (ICA) holds with

equality and (ICB) does not. The latter implies

− χB
1 (0, 0)

(
(1− δ)πµ + δv− δEµVB

1 (2)
)
> 0,

54Recall that by Lemma 12, VB
1 (1, y) = v, y = S, F.
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which gives χB
1 (0, 0) = 1. Hence from (ICA), δEµVB

1 (2) = (1− δ)πµ + δv. We then have

ΛB
1 = φ1φ2

(
(1− δ)πµ + δv

)
+ (1− φ1) ((1− δ)πµ + δv) + φ1(1− φ2)δ

(
(1− δ)πµ + δv

)
= δv + (1− δ)π

(
φµ + (1− φ)µ

)
> δv + (1− δ)π

(
(φ + φ(1− φ)) µ + (1− φ)2µ

)
.

Therefore, a policy such as the one considered above yields strictly lower ΛB
1 . Applying an analogous

argument for ω = A gives the contradiction. Next suppose (ICA) does not hold with equality but

(ICB) does. Then the latter implies

χB
1 (0, 0)

(
(1− δ)πµ + δv− δEµVB

1 (2)
)
= 0.

If χB
1 (0, 0) = 0 then (ICB) holds regardless of VB

1 (2, y). Since (ICA) holds with strict inequality, VB
1 (2, y)

for some y ∈ {S, F} can be decreased by a small amount, decreasing ΛB
1 without violating any of the

constraints; a contradiction. Hence suppose χB
1 (0, 0) = 1. Then, from (ICA), δEµVB

1 (2) > (1− δ)πµ +

δv. Hence

ΛB
1 = φ1φ2

(
(1− δ)πµ + δv

)
+ (1− φ1) ((1− δ)πµ + δv) + φ1(1− φ2)δEµVB

1 (2)

> φ1φ2
(
(1− δ)πµ + δv

)
+ (1− φ1) ((1− δ)πµ + δv) + φ1(1− φ2)

(
(1− δ)πµ + δv

)
= δv + (1− δ)π

(
φµ + (1− φ)µ

)
> δv + (1− δ)π

(
(φ + φ(1− φ)) µ + (1− φ)2µ

)
,

which as in the previous case gives the contradiction. Finally, suppose both constraints (ICA) and

(ICB) hold in equality. If χB
1 (0, 0) = 1 then δEµVB

1 (2) = (1− δ)πµ + δv and hence

ΛB
1 = δv + (1− δ)π

(
φµ + (1− φ)µ

)
> δv + (1− δ)π

(
(φ + φ(1− φ)) µ + (1− φ)2µ

)
,

which again gives the contradiction. If χB
1 (0, 0) = 0 then (ICA) gives

(1− φ2)δEµVB
1 (2) + φ2δEµVB

1 (2) = (1− δ)πµ + δv,

hence

ΛB
1 = φ1φ2δEµVB

1 (2) + (1− φ1) ((1− δ)πµ + δv) + φ1(1− φ2)δEµVB
1 (2)

= δv + (1− δ)π
(

φµ + (1− φ)µ
)

> δv + (1− δ)π
(
(φ + φ(1− φ)) µ + (1− φ)2µ

)
,

giving the contradiction.

Therefore, it must be that χB
1 (1, 1) = 0. Analogous arguments imply χA

1 (1, 1) = 0 as well. �
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Lemma 14 Suppose E∗P 6= ∅. For any (χ,V) that yields a solution to PR
P,v, δEµVω

1 (2) = (1− δ)πµ + δv,

ω = A, B.

PROOF. We consider ω = B, analogous arguments apply for ω = A. From the previous lemma, (ICA)

and (ICB) are equivalent to (
1− χB

1 (0, 0)
) (

δEµVB
1 (2)− (1− δ)πµ− δv

)
≥0(

(1− φ1) + φ1χB
1 (0, 0)

) (
δEµVB

1 (2)− (1− δ)πµ− δv
)
≥0,

respectively. Hence δEµVB
1 (2) ≥ (1− δ)πµ + δv. Suppose δEµVB

1 (2) > (1− δ)πµ + δv. Then (ICB)

does not bind, which means (ICB) must.55 This can only be the case if χB
1 (0, 0) = 1. However, if

χB
1 (0, 0) = 1 then (ICA) holds regardless of VB

1 (2, y), and given that (ICB) does not bind at least one

of VB
1 (2, y), y ∈ {S, F}, can be reduced slightly, reducing ΛB

1 without violating any of the constraints,

giving the contradiction. �

Arguments analogous to those in Lemma 9 now imply the following.

Lemma 15 Suppose E∗ 6= ∅. For any (χ,V) that yields a solution to PR
v , one of the following holds

• δVω
1 (2, S) = δv and δVω

1 (2, F) = δv +
(1−δ)µπ

1−µ ≤ δ(πv∗ − v); or

• δVω
1 (2, F) = δ(πv∗ − v) and δVω

1 (2, S) = (1− δ)π + 1
µ δv− 1−µ

µ δ(πv∗ − v) ≥ δv.

Given the results in Lemmas 12-15, a comparison with the analysis in the proof of Proposition

1 yields that for any v the solutions to the programs (17) and (37) are identical, and hence Ψ and

Ψ̃(·) coincide. Since the sets E∗ and E∗P are entirely characterized through fixed-points of Ψ and Ψ̃(·),
respectively, the sets E∗ and E∗P coincide given any set of primitives {φ, δ, µ, µ, π}. Q.E.D.

Proof of part 2 of Proposition 6. Without the ex-post (or the performance-based) restriction, the IC

constraints imposed on a policy Z are the following. First, given ω = B, the interim payoff of agent 1

of type θ1 = α must be greater when he announces m1 = 0 rather than m1 = 1, that is,

UB
1 (0, α) = (1− φ2)δEµVB

1 ((0, 1), 2)

+ φ2
(

χB
1 (0, 0)

(
(1− δ)πµ + δEµVB

1 ((0, 0), 1)
)
+
(

1− χB
1 (0, 0)

)
δEµVB

1 ((0, 0), 2)
)

≥ (1− φ2)
(

χB
1 (1, 1)

(
(1− δ)πµ + δEµVB

1 ((1, 1), 1)
)
+
(

1− χB
1 (1, 1)

)
δEµVB

1 ((1, 1), 2)
)

+ φ2
(
(1− δ)πµ + δEµVB

1 ((1, 0), 1)
)

(ICi)

= UB
1 (1, α).

55Otherwise some VB
1 (2, y) can be decreased slightly, reducing ΛB

1 (and hence Λ1) without violating any of the constraints.
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An analogous condition, UB
2 (0, α) ≥ UB

2 (1, α) applies for agent 2. Imposing Vω
2 (j, y) = πv∗ − Vω

1 (j, y)

and χω
2 (m) = 1− χω

1 (m), this condition can be written as

UB
2 (0, α) = −(1− φ1)δEµVB

1 ((1, 0), 1)

+ φ1
((

1− χB
1 (0, 0)

) (
(1− δ)πµ− δEµVB

1 ((0, 0), 2)
)
− χB

1 (0, 0)δEµVB
1 ((0, 0), 1)

)
≥ (1− φ1)

((
1− χB

1 (1, 1)
) (

(1− δ)πµ− δEµVB
1 ((1, 1), 2)

)
− χB

1 (1, 1)δEµVB
1 ((1, 1), 1)

)
+ φ1

(
(1− δ)πµ− δEµVB

1 ((0, 1), 2)
)

(ICii)

= UB
2 (1, α).

Similar conditions apply for ω = A, and the remaining IC conditions guarantee that agents find it

optimal to announce truthfully when they are suited for the project:

Uω
i (1, θi) ≥ Uω

i (0, θi) ∀(ω, θi) ∈ {(A, α), (B, β)} , i = 1, 2.

Define decomposability, E-decomposability and self-generation analogously to the definitions in

Section A, replacing IC with XIC, and denote the set of efficient PPE values by E † (clearly, E∗ ⊆ E †).

Results analogous to those in Lemmas 1 and Lemma 2 then apply.

Below, we construct a subset of E †, which is self-generating outside of the region of primitives for

which E∗ 6= ∅.

Consider a policy Z with:Mω
i (θi) = 1⇔ (ω, θi) ∈ {(A, α), (B, β)}, (mi, m−i) = (1, 0)⇒ χω

i (m) =

1, χω
1 (0, 0) = χω

1 (1, 1) = 0 and v† := Vω
1 ((1, 0), 1, y). Furthermore, let

δVω
1 ((0, 0), 2, y) = (1− δ)πµ + δv† − ε,

y = S, F, for some 0 < ε < (1− δ)πµ, Vω
1 ((0, 1), 2, S) = Vω

1 ((1, 1), 2, S) = v†,

δVB
1 ((0, 1), 2, F) =

(1− δ)πµ

(1− µ)
+ δv† − ε

(
φ2(1− µ)− (1− φ)2(1− µ)

φ(1− µ)(1− µ)

)
and

δVB
1 ((1, 1), 2, F) =

(1− δ)πµ

(1− µ)
+ δv† − ε

(
φ(1− µ) + (1− φ)(1− µ)

(1− µ)(1− µ)

)
.

One can verify that given Z above, (ICi) and (ICii) hold with equality (as do the corresponding

IC’s for ω = A) and the remaining IC’s also hold (but are slack).

We now consider when (v∗, v†, πv∗ − v†) is E-decomposable on co{(v∗, v†, πv∗ − v†), (v∗, πv∗ −
v†, v†)}. For this to hold, it must be the case that both (i) Λ1 = v† and (ii) the promised continuations

specified by V are elements of co{(v∗, v†, πv∗ − v†), (v∗, πv∗ − v†, v†)}.
From (16), under Z above,

ΛB
1 = φ(1− φ)

(
δEµVB

1 ((1, 1), 2) + δEµVB
1 ((0, 0), 2)

)
+ (1− φ)2

(
(1− δ)πµ + δv†

)
+ φ2δEµVB

1 ((0, 1), 2)

= δv† + (1− δ)π

(
φ(1− φ)µ + (1− φ)2µ + φ

µ(1− µ)

(1− µ)

)
− ε

(
φ2(1− µ)

(1− µ)
+ φ(1− φ)

)
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and similarly

ΛA
1 = δv† + (1− δ)π

(
φ(1− φ)µ + φ2µ + (1− φ)

µ(1− µ)

(1− µ)

)
− ε

(
(1− φ)2(1− µ)

(1− µ)
+ φ(1− φ)

)

Solving v† = Λ1 = 1
2 ΛA

1 + 1
2 ΛB

1 , a straightforward calculation yields56

v† =
1
2

π

(
µ− 2φ(1− φ)(µ− µ) +

µ(1− µ)

(1− µ)

)
︸ ︷︷ ︸

v

− ε

2(1− µ)(1− δ)

(
(1− µ) + 2φ(1− φ)(µ− µ)

)
.

(38)

With (38) in hand, it remains to check the conditions guaranteeing that the promised continuation

values indeed fall within the set co{(v∗, v†, πv∗ − v†), (v∗, πv∗ − v†, v†)}. In particular, it must be the

case that δVω
1 ((0, 0), 2, y), δVB

1 ((0, 1), 2, F), δVB
1 ((1, 1), 2, F) ∈ [δv†, δπv∗ − δv†]. Consider the following

primitives: (δ, µ, µ, π) = ( 4
5 , 4

5 , 1
5 , 1). The threshold level of specialization beyond which E∗ = ∅ is

equal to φ∗ = 3
4 . However, taking ε = 1

100 < 4
100 = (1− δ)πµ, the above feasibility conditions are sat-

isfied for φ = 4
5 > φ∗. Hence, we have shown that, given (φ, δ, µ, µ, π) = ( 4

5 , 4
5 , 4

5 , 1
5 , 1), (v∗, v†, πv∗ −

v†) is E-decomposable on co{(v∗, v†, πv∗ − v†), (v∗, πv∗ − v†, v†)}. Analogous arguments show that

(v∗, πv∗ − v†, v†) is also E-decomposable on co{(v∗, v†, πv∗ − v†), (v∗, πv∗ − v†, v†)}. Using pub-

lic randomization, the remainder of the set co{(v∗, v†, πv∗ − v†), (v∗, πv∗ − v†, v†)} is therefore E-

decomposable on co{(v∗, v†, πv∗ − v†), (v∗, πv∗ − v†, v†)}, and hence the latter is self-generating. In

particular, we have shown that E † 6= ∅ for primitives such that E∗ = ∅. Q.E.D.

E Proofs for Section 6 - Non-discriminatory equilibria

Proof of Proposition 7. A non-discriminatory XPPE, relative to a standard XPPE, is additionally con-

strained by the requirement that Λ1 = Λ2 and Vω
1 (m, j, y) = Vω

2 (m, j, y), all (ω, m, j, y).

Suppose there exists a policy (M, χ,V) that E-decomposes (v∗, 1
2 πv∗, 1

2 πv∗) on (v∗, 1
2 πv∗, 1

2 πv∗).

Then, without loss of generality, one of the two conditions in Lemma 4 is satisfied. XIC then requires

that agents do not have incentives to claim to be suited when they are not, for any belief they may hold

about the type of the other agent. Specifically, given ω = B, and imposing symmetry in the agents’

promised continuation values,

UB
1 (0, α; β) = δEµVB((0, 1), 2)

≥ (1− δ)πµχB
1 (1, 1) + δχB

1 (1, 1)EµVB((1, 1), 1) + δ
(

1− χB
1 (1, 1)

)
EµVB((1, 1), 2) (ICI)

= UB
1 (1, α; β),

56Recall that v denotes that minimal equilibrium value in an XPPE: v = min {v ∈ R+ : (v∗, v, v2) ∈ E∗}.
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UB
1 (0, α; α) = (1− δ)πµχB

1 (0, 0) + δχB
1 (0, 0)EµVB((0, 0), 1) + δ

(
1− χB

1 (0, 0)
)

EµVB((0, 0), 2)

≥ (1− δ)πµ + δEµVB((1, 0), 1) (ICII)

= UB
1 (1, α; α).

and similarly for agent 2, imposing χω
2 (m) = 1− χω

1 (m),

UB
2 (0, α; β) = δEµVB((1, 0), 1)

≥ (1− δ)πµ
(

1− χB
1 (1, 1)

)
+ δ

(
1− χB

1 (1, 1)
)

EµVB((1, 1), 2) + δχB
1 (1, 1)EµVB((1, 1), 1)

= UB
2 (1, α; β), (ICIII)

UB
2 (0, α; α) = (1− δ)πµ

(
1− χB

1 (0, 0)
)
+ δ

(
1− χB

1 (0, 0)
)

EµVB((0, 0), 2) + δχB
1 (0, 0)EµVB((0, 0), 1)

≥ (1− δ)πµ + δEµVB((0, 1), 2) (ICIV)

= UB
2 (1, α; α).

Analogous constraints hold for ω = A.57

Clearly, the above conditions cannot jointly be satisfied when Vω(m, j, y) is the same for all (ω, m, j, y).

In particular, this implies v• < v∗ for any set of primitives {φ, δ, µ, µ, π}, which proves part 1.

We now prove part 2. Fixing primitives {φ, δ, µ, µ, π}, we have

min
{

v ∈ R+ : (
2
π

v, v, v) ∈ E•
}

= π
1
2

vo,

as the principal’s value cannot be below what she can obtain from decentralization. Denote the maxi-

mal value that can be supported under a non-discriminatory XPPE by:

v• := max
{

v ∈ R+ : (
2
π

v, v, v) ∈ E•
}

.

Modifying the definition of decomposability to include the additional symmetry requirements

Λ1 = Λ2 and Vω
1 (m, j, y) = Vω

2 (m, j, y), define Ψ• : [π 1
2 vo, v•]→ [π 1

2 vo, v•]. For each v ∈ [π 1
2 vo, v•], let

Ψ•(v) := sup
{

ṽ ∈ R+ : (
2
π

ṽ, ṽ, ṽ) ∈ W•
(

co
{
(vo,

1
2

πvo,
1
2

πvo), (
2
π

v, v, v)
})}

,

where for any V ⊆ R3
+,

W•(V) :=
{

v ∈ R3
+ : v is decomposable on V

}
.

We now characterize v• as the largest fixed-point of Ψ•(·).

57 Additional XIC constraints require that agents do not have an incentive to announce that they are not suited when they

are (again, given any belief about the other agent’s type). We henceforth ignore these constraints, which will be satisfied

given any policy that yields Ψ•(V).
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Assume (6), and let v ∈ [π 1
2 vo, v•]. It can easily be verified that given (6), it is sufficient in search of

Ψ•(v) to consider policies (M, χ,V) in which one of the two conditions in Lemma 4 is satisfied. Let58

Λ(M, χ,V) = 1
2

ΛA(M, χ,V) + 1
2

ΛB(M, χ,V),

where ΛA and ΛB are defined as in (15) and (16). Without loss of generality, we consider policies for

which the above XIC constraints hold.

Consider the following policy:

χω
1 (m) =

1 , m = (1, 0)∨(ω, m) ∈ {(B, (1, 1)), (A, (0, 0))}

0 , otherwise.

Vω(m, j, y) =

v , (ω, j) ∈ {(A, 1), (B, 2)} ∨ (ω, j, y) ∈ {(A, 2, S), (B, 1, S)}

δv− (1−δ)πµ

δ(1−µ)
, otherwise.

In words, if only one of the agents claims to be suited, then the project is allocated to that agent. If both

agents claim to be suited, indifference is broken in favor of the agent specialized in the other project.

If both agents announce they are not suited, then the project is allocated to the agent specialized in the

project. If an agent gets a project he is not suited for and fails, then the agents’ continuation drops to

δv− (1−δ)πµ

δ(1−µ)
; otherwise, agents continue to obtain the highest possible continuation v (taking v to be

exogenous).

It can be checked that if such a policy is feasible, i.e., if δv− (1−δ)πµ

(1−µ)
≥ 1

2 δπvo, then it satisfies the

above XIC constraints and furthermore yields Ψ•(v); moreover, in such a case,

Ψ•(v) = δv +
1
2
(1− δ)π

(
µφ(1− φ) + µ (1− φ(1− φ))− 2(1− φ)

µ(1− µ)

(1− µ)

)
.

Fixing v = v• and solving v• = Ψ•(v•), we obtain

v• =
1
2

π

(
µ− φ(1− φ)

(
µ− µ

)
− 2(1− φ)

µ(1− µ)

(1− µ)

)
=

1
2

π

(
v∗ − 2(1− φ)

µ(1− µ)

(1− µ)

)
=

1
2

πv•.

Finally, it can be verified that δv• − (1−δ)πµ

(1−µ)
≥ 1

2 δπvo if and only if (6) holds.59 Q.E.D.

Proof of Proposition 8. First, note that (6) guarantees that q ∈ [0, 1]. Denote by vc
i agent i’s expected

average continuation payoff at the beginning of a period in the communication phase. Similarly,

denote by vd
i agent i’s expected continuation value under decentralization. Consider the incentives of

agent 1 (the constraints for agent 2 are analogous). If the current type of project is ω = A then whether

58The subscripts are omitted given the restriction Λ1 = Λ2.
59Also note that, given (6), it must be the case that vo < v• < v∗.

60



or not agent 1 receives the project is independent of his announcement. Suppose ω = B. Regardless

of agent 1’s belief about θ2, if θ1 = β then XIC implies

m1=0, forgo project︷︸︸︷
δvc

1 ≥

m1=1, get project︷ ︸︸ ︷
(1− δ)πµ +

(
µ + (1− µ)(1− q)

)
δvc

1 + (1− µ)qδvd
1︸ ︷︷ ︸

decentralization

.

If θ1 = α, we have

m1=1, get project︷ ︸︸ ︷
(1− δ)πµ + (µ + (1− µ)(1− q)) δvc

1 + (1− µ)qδvd︸ ︷︷ ︸
decentralization

≥
m1=0, forgo project︷︸︸︷

δvc
1 .

XIC is therefore equivalent to imposing that

vd
1 +

(1− δ)πµ

δq(1− µ)
≤vc

1 ≤ vd
1 +

(1− δ)πµ

δq(1− µ)
(39)

Next, by definition the values vc
i , vd

i must satisfy the following consistency conditions

vc
1 =

1
2


φ2 ((µ + (1− µ)(1− q)) δvc

1 + (1− µ)qδvd
1

)
+(1− φ2)

((
φ1µ + (1− φ1)µ

)
(1− δ)π + δvc

1

)
+(1− φ1)

(
µ(1− δ)π + (µ + (1− µ)(1− q)) δvc

1 + (1− µ)qδvd
1

)
+φ1δvc

1


vd

i = (1− δ)π
1
2

vo
i + δvd

i = (1− δ)π
1
2

(
φµ + (1− φ)µ

)
+ δvd

i .

Subtracting and setting φ1 = 1− φ2 = φ we get

vc
1 = vd

1 +
(1− δ)π 1

2 (1− φ)2
(

µ− µ
)

1− δ
(

φ + (1− φ) (µ + (1− µ)(1− q))
) . (40)

Substituting the expression for q in (8), simple calculations confirm that the RHS of (40) is equal to the

LHS of (39); hence XIC is satisfied.

Finally, note that the principal’s value vJR under JR is

vJR = (1− δ)v∗ + q (1− φ) (1− µ) δvo + (1− q (1− φ) (1− µ)) δvJR,

which gives, using (8),

vJR =
v∗(1− δ) + δ (q (1− φ) (1− µ) vo)

1− δ (1− q (1− φ) (1− µ))
= v•.

Q.E.D.
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F Proofs for Section 7 - Extensions

Proof of Proposition 9. Suppose that projects are allocated according to maximal-priority. For each

agent i, denote by v f (+) (v f (−)) the continuation value at the beginning of a period in which he is

chosen to be the favored agent, and given that the previous period announcements of the two agents

were the same (differed). Similarly, denote by v− f (+) and v− f (−) agent i’s continuation value when

agent −i is the favored agent. It is easy to verify that these values are equal to

v f (+) =
1
2

µ(1− δ)π +

(
1
2
− ρ(1− ρ)

)(
µ(1− δ)π +

(
µ + µ

)
δv f (+) +

(
2−

(
µ + µ

))
δv− f (+)

)
+ ρ(1− ρ)

(
(1 + µ) δv f (−) + (1− µ) δv− f (−)

)
(41)

v f (−) = 1
2

µ(1− δ)π + ρ(1− ρ)
(

µ(1− δ)π +
(

µ + µ
)

δv f (+) +
(

2−
(

µ + µ
))

δv− f (+)
)

+

(
1
2
− ρ(1− ρ)

)(
(1 + µ) δv f (−) + (1− µ) δv− f (−)

)
(42)

and similarly

v− f (+) = ρ(1− ρ)
(

µ(1− δ)π + (1− µ) δv f (−) + (1 + µ) δv− f (−)
)

+

(
1
2
− ρ(1− ρ)

)((
2−

(
µ + µ

))
δv f (+) +

(
µ + µ

)
δv− f (+)

)
(43)

v− f (−) =
(

1
2
− ρ(1− ρ)

)(
µ(1− δ)π + (1− µ) δv f (−) + (1 + µ) δv− f (−)

)
+ ρ(1− ρ)

((
2−

(
µ + µ

))
δv f (+) +

(
µ + µ

)
δv− f (+)

)
(44)

Assume ω = A. We consider the interim incentive constraints of an agent i to announce truthfully,

given any belief the agent may hold about agent −i’s current type, when he expects −i to be truth-

ful in the continuation game. Consider first the incentives of agent i when he is the favored agent.

Regardless of i’s type, if he believes θ−i = β , i’s XIC is satisfied, as he expects to receive the project

regardless of his announcement.60 Suppose then that i believes θ−i = α. If θi = β, then XIC implies

that

δv f (−) ≥ µ
(
(1− δ)π + δv f (−)

)
+ (1− µ)δv− f (−),

whereas if θi = α, XIC requires

µ
(
(1− δ)π + δv f

i (+)
)
+ (1− µ)δv− f

i (+) ≥ δv f
i (+).

60In an ex-post equilibrium, each agent believes the other is truthful in the continuation game, regardless of past an-

nouncements. Hence, i’s announcement in this case is irrelevant as it affects neither the current period allocation nor the

continuation game.
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Consider next i’s incentives when −i is the favored agent. Regardless of i’s type, if he believes θi = α,

i’s XIC is satisfied, since he does not expect to receive the project regardless of his announcement.

Suppose i believes θ−i = β. If θi = β then XIC requires

µδv− f
i (+) + (1− µ)δv f

i (+) ≥ µ(1− δ)π + δv− f
i (+),

and finally if θi = α then XIC implies

µ(1− δ)π + δv− f
i (−) ≥ µδv− f

i (−) + (1− µ)δv f
i (−).

Denote v(ξ) := v f (ξ)− v− f (ξ) for each ξ ∈ {−,+}. Rearranging these condition, it is easily verified

that XIC is equivalent to

v(ξ) ≥
µ(1− δ)π

δ(1− µ)
, ∀ξ ∈ {−,+} (45)

v(−) ≤ µ(1− δ)π

δ(1− µ)
and v(+) ≤ µ(1− δ)π

δ(1− µ)
. (46)

We now derive conditions under which, given (41)-(44), (45), (46) are satisfied. Subtracting (44) from

(42) and (43) from (41) gives

v(−) = (1− δ)πρ(1− ρ)
(

µ + µ
)
+ δv(+)2ρ(1− ρ)

(
µ + µ− 1

)
+ δv(−) (1− 2ρ(1− ρ)) µ,

v(+) = (1− δ)π

(
1
2
− ρ(1− ρ)

)(
µ + µ

)
+ δv(−)2ρ(1− ρ)µ + δv(+) (1− 2ρ(1− ρ))

(
µ + µ− 1

)
.

Solving for v(−) and v(+) we have

v(−) =
ρ(1− ρ)(1− δ)π

(
µ + µ

)
1− δ

(
2µ + µ− 1

)
(1− 2ρ(1− ρ)) + δ2µ (1− 4ρ(1− ρ))

(
µ + µ− 1

) , (47)

v(+) =
(1− δ)π

(
µ + µ

)
1
2 [(1− 2ρ(1− ρ))− δµ (1− 4ρ(1− ρ))]

1− δ
(

2µ + µ− 1
)
(1− 2ρ(1− ρ)) + δ2µ (1− 4ρ(1− ρ))

(
µ + µ− 1

) . (48)

After some algebra, it can be verified that v(+) ≤ µ(1−δ)π
δ(1−µ)

and v(−) ≤ µ(1−δ)π
δ(1−µ)

are satisfied without

further assumption. Furthermore, note that v(+) ≥ v(−). Hence (45)-(46) are equivalent to

v(−) ≥
µ(1− δ)π

δ(1− µ)
. (49)

Combining (47) with (49) and rearranging yields

1− 2ρ(1− ρ)

2ρ(1− ρ)
≤

δ(1− µ) 1
2

(
µ + µ

)
− µ + δ2µµ

(
µ + µ− 1

)
µ− δµ

(
2µ + µ− 1

)
+ δ2µµ

(
µ + µ− 1

) , (50)

which gives the result.
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Part 2. Consider a history in which each of the agents has a type that differs from his specialization.

XIC requires that for at least one of the agents,

(1− δ)µ ≤ δ
(

vFB(−, ρ)− vFB(−, ρ)
)

, (51)

where vFB(−, ρ) and vFB(−, ρ) denote an agent’s highest and lowest feasible continuation values un-

der a first-best delegation rule (beginning at the current history in which the agents’ types differ).

However, for ρ sufficiently close to 1, vFB(−, ρ) − vFB(−, ρ) becomes arbitrarily small. Hence, for

sufficiently large ρ, (51) cannot be satisfied. Q.E.D.

Proof of Proposition 10. Follows from arguments analogous to those in the proof of Proposition 1.

Q.E.D.

G Ex-post self-generation and factorization

In this section, we show that the set of XPPE E can be characterized through self-generation using

the methodology of APS. The key is that when V ⊂ R3
+ is ex-post self-generating,61 the continua-

tion payoffs used in the decomposition of v ∈ V have the property that for any outcome (ω, m, j, y),

(Vω(m, j, y)) can in turn be generated using actions in which announcements are XIC. In this way, the

strategy profile that is constructed by using the generation conditions is guaranteed to be XIC in each

period. In addition, note that E 6= ∅ for any set of primitives, as a communication-free XPPE exists

for any set of primitives.

Lemma 16 (i) If V ⊂ R3 is bounded and ex-post self-generating then W(V) ⊆ E (and in turn V ⊆ E );

(ii) W(E) = E ; (iii) If V ⊆ V
′

then W(V) ⊆ W(V
′
); (iv) If V is compact then W(V) is compact;

(v) Let W k(O) denote the set obtained following k iterations of W , starting with the feasible set O :=

co{~0, (v∗, πv∗, 0), (v∗, 0, πv∗)}. Then E =W∞ := ∩
k
W k(O); in particular, E is compact.

PROOF. Part (i). Let v ∈ V. We construct an XPPE that yields payoffs v. Since v ∈ W(V), there exist

Z = (M̃, χ̃, Ṽ) that decomposes v on V. Fix the allocation and announcement rules in the first period

as χ|h0 = χ̃, M|h0 = M̃ and for each h1 = (ω1, m1, x1, y1) fix v|h1 = Ṽω1((m11, m21), x1, y1) ∈ V.

Subsequent play can then be prescribed recursively using v|ht as the state variable. The fact that V is

bounded and δ ∈ (0, 1) guarantees that payoffs are continuous at infinity, hence the strategy profile

constructed above (and continuation strategies) yields v as the average payoff (and continuation pay-

offs v|ht ). That the strategy profile is indeed an XPPE then follows since (i) by construction, at each

period agents do not benefit from deviating from their announcements regardless of their belief about

61As in the previous sections, whenever there is no confusion we omit the ‘ex-post’ qualification when referring to ex-post

decomposability and ex-post self generation.
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the other agent’s current type, and (ii) the one-shot deviation principal can be applied since payoffs

are continuous at infinity.

Part (ii). Since E is bounded, if it is self-generating then W(E) ⊆ E , thus W(E) = E . Hence it

suffices to show E ⊆ W(E). Let v ∈ E , and denote by σ = (M, χ) (where M and χ denote the

agents’ and the principal’s strategies) an XPPE that yields the value profile v = U(σ). Let M̃ =M1,

χ̃ = χ1 and Ṽω(m, x, y) = U(σ|h1), for any h1 ∈ H1. Consider the policy Z = (M̃, χ̃, Ṽ). Since σ is an

XPPE, σ|h1 is also an XPPE, hence each Ṽω(m, x, y) ∈ E . Furthermore, Λ(Z) = v. Finally, since σ is

an XPPE, agents have no profitable deviation from their period-1 announcements, regardless of their

beliefs about the other agent’s type. Hence Z is XIC. Thus, Z decomposes v on E and v ⊆ W(E).
Let v ∈ W(V). Then v is decomposed by some Z on V, and so also on V

′
; hence v ∈ W(V

′
),

proving part (iii). Part (iv) follows from the observation that the constraints involve weak inequalities,

the set of continuation payoffs is compact, and utility functions as well as constraint functions are all

bounded and continuous.

Part (v). The set of feasible payoffs O = co{~0, (v∗, πv∗, 0), (v∗, 0, πv∗)} is compact. Any payoff

vector that is decomposable on O is also feasible, implyingW(O) ⊆ O. Since E = W(E), and using

parts (iii) and (iv), we have

E ⊆ W∞ ⊆ ... ⊆ W(O) ⊆ O,

where eachW k(O), k ∈ N, is non-empty and compact, as isW∞ (thatW∞ is nonempty follows from

the fact that (i) E 6= ∅, as a communication-free XPPE always exists, and (ii) E ⊆ W∞). It remains

to show that W∞ is self-generating (which together with the fact that it is bounded and a superset

of E implies W∞ = E ). Let v ∈ W∞. Then v ∈ W k(O) for any k. Hence, for any k there exists

Z k = (Mk, χk,V k) such that Λ(Z k) = v and promised continuation values under Z k are feasible

with respect toW k−1(O). Taking convergent subsequences if necessary, assume {Z k}k converges to

Z∗ = (M∗, χ∗,V∗). We complete the proof by showing that Z∗ decomposes v onW∞. Suppose that

there exists an outcome (ω, m, x, y) such that the promised continuation V∗,ω(m, x, y) /∈ W∞. Then, by

the compactness ofW∞, there exists ε > 0 such that Bε(V∗,ω(m, x, y)) ∩W∞ = ∅ (where Bε(ṽ) ⊂ R3

denotes the closed ball of radios ε with center ṽ ∈ R3). On the other hand, there exists k̂ such that for all

k > k̂, V k,ω(m, x, y) ∈ Bε(V∗,ω(m, x, y)), which in turn implies that Bε(V∗,ω(m, x, y)) ∩W k(O) 6= ∅ for

any k < k̂. Thus {Bε(V∗,ω(m, x, y))} ∪ {W k(O)}∞
k=1 is a collection of subsets of a compact topological

space that satisfies the finite intersection property, which implies Bε(V∗,ω(m, x, y)) ∩W∞ 6= ∅, giving

the contradiction. Hence V∗,ω(m, x, y) ∈ W∞ for all outcomes (ω, m, x, y), andW∞ is self generating,

completing the proof. �
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