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Abstract

We derive generalization error bounds — bounds on the expected inaccuracy of the predic-
tions — for traditional time series forecasting models. These bounds allow forecasters to select
among competing models and to guarantee that with high probability, their chosen model will
perform well without making strong assumptions about the data generating process or appealing
to asymptotic theory. Extending results from statistical learning theory, we demonstrate how
these techniques can benefit economic and financial forecasters interested in choosing models
which behave well under uncertainty and mis-specification. We provide results which apply to
many standard economic and financial forecasting tools including VARs, state space models,
linearized DSGEs, etc.

1 Introduction

Generalization error bounds are provably reliable, probabilistically valid, non-asymptotic tools for
characterizing the predictive ability of forecasting models. The theory underlying these methods is
fundamentally concerned with choosing particular functions out of some class of plausible functions
so that the resulting predictions will be accurate with high probability. While many of these
results are useful only in the context of classification problems (i.e., predicting binary variables)
and for independent and identically distributed (IID) data, this paper shows how to adapt and
extend these methods to time series models so that economic and financial forecasting techniques
can be evaluated rigorously. In particular, these methods control the expected accuracy of future
predictions based on finite quantities of data. This allows for immediate model comparisons without
appealing to asymptotic results or making strong assumptions about the data generating process
in stark contrast to AIC and similar model selection criteria frequently employed in the literature.

To fix ideas, imagine IID data ((Y1, X1), . . . , (Yn, Xn)) with (Yi, Xi) ∈ X × Y, some prediction
function f : X → Y, and a loss function ` : Y×Y → R+ which measures the cost of poor predictions.
The generalization error or risk of f is

R(f) := Eν [`(Y, f(X))] (1)

where the expectation is taken with respect to ν, the joint distribution of (Y,X). The generalization
error measures the inaccuracy of our predictions when we use f on future data, making it a very
natural criterion for model selection or as a way to provide performance guarantees. Of course, to
actually calculate it, we need knowledge of the distribution ν and a single fixed function f to use
for predictions, neither of which is common. Because explicitly calculating the risk is infeasible,
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forecasters attempt to estimate it, necessitating specific assumptions on ν. An alternative which
we employ here is to derive upper bounds which hold for large classes of models and distributions.

There are many ways to estimate the generalization error, and a comprehensive review is beyond
the scope of this paper. Traditionally, time series analysts have performed model selection by
a combination of empirical risk minimization (choosing a function by minimizing the empirical
analogue of (1)), more-or-less quantitative inspection of the residuals — e.g., the Box-Ljung test;
see [45] — and penalties like AIC. In many applications, however, what really matters is prediction,
and none of these techniques, including AIC, really work to control generalization error, especially
for mis-specified models. Empirical cross-validation is a partial exception, but it is tricky for time
series; see Racine [41] and references therein.

In economics, forecasters have long recognized the difficulties with these methods of risk es-
timation, preferring to use a pseudo-cross validation approach instead. This technique chooses a
prediction function using the initial portion of a data set and evaluates its performance on the
remainder. Athanasopoulos and Vahid [2] compare the predictive accuracy of vector autoregressive
(VAR) models with vector autoregressive moving average (VARMA) models using a training sam-
ple spanning the 1960s and 1970s and a test set spanning the 1980s and 1990s. Faust and Wright
[17] compare Greenbook forecasts produced by the Federal Reserve with the predictions of various
atheoretical methods, however they ignore periods of high volatility such as 1979–1983. Christoffel
et al. [9] compare the New Area Wide Model for Europe with a Bayesian VAR, a random walk, and
sample means. The forecasts are evaluated during the relatively stable period of the late 1990s and
early 2000s, and the models are updated yearly, giving pseudo-out-of-sample monthly forecasts.
Similarly, Del Negro et al. [13] reestimate DSGE-VARs recursively based on rolling 30 year sam-
ples before forecasting two year periods between 1985 and 2000. Smets and Wouters [46] compare
dynamic stochastic general equilibrium (DSGE) models with Bayesian VARs over a similar period.
Edge and Gurkaynak [16] argue that DSGEs (as well as statistical or judgmental methods) perform
poorly at predicting GDP or inflation. Numerous other examples of model selection and evaluation
through pseudo-out-of-sample forecast comparions can be found throughout the literature.

Procedures such as these provide approximate solutions to the problem of estimating the gener-
alization error, but they can be heavily biased toward overfitting — giving too much credence to the
observed data — and hence underestimating the true risk for at least three reasons. First, the held
out data, or test set, is used to evaluate the performance of competing models despite the fact that
it was already partially used to build those models. For instance, the structures of both exogenous
and endogenous variables in DSGEs are partially constructed so as to lead to predictive models
which fit closely to the most recent macroeconomic phenomena. The recent housing and financial
crises have precipitated numerous attempts to enrich existing DSGEs with mechanisms designed
to enhance their ability to predict just such a crisis (see for example Goodhart et al. [21], Gerali
et al. [19] and Gertler and Karadi [20]). Testing the resulting models on recent data therefore
leads to overconfident declarations about a particular model’s forecasting abilities. Second, the
distributions of the test set and the data used to estimate the model may be different, i.e., it may
be that the observed phenomena reflect only a small sampling of possible phenomena which could
occur. Models which forecast well during the early 2000s were typically fit and evaluated using
numerous occurrences of stable economic conditions, but few were built to also perform well during
periods of crisis. Finally, large departures from the normal course of events such as the recessions
in 1980–82 and periods before 1960 are often ignored as in [17]. While these periods are considered
rare and perhaps unpredictable, models which are robust to these sorts of tail events will lead to
more accurate predictions in future times of turmoil.

In contrast to the model evaluation techniques typically employed in the literature, generaliza-
tion error bounds provide rigorous control over the predictive risk as well as reliable methods of
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model selection. They are robust to wide classes of data generating processes and are finite-sample
rather than asymptotic in nature. In a broad sense, these methods give confidence bounds which
are constructed based on concentration of measure results rather than appeals to asymptotic nor-
mality. The results are easy to understand and can be reported to policy makers interested in the
quality of the forecasts. Finally, the results are agnostic about the model’s specification: it does
not matter if the model is wrong, the parameters have interpretable economic meaning, or whether
the estimation of the parameters is performed only approximately (linearized DSGEs or MCMC),
we can still make strong claims about the ability of the model to predict the future.

Our main results in Section 4 assert that for wide classes of time series models (including VARs,
state-space models, and linearized DSGEs), the expected cost of poor predictions is bounded by
the model’s in-sample performance inflated by a term which balances the amount of observed data
with the complexity of the model. The bound holds with high probability under the unknown
distribution ν assuming only mild conditions — existence of some moments, stationarity, and the
decay of temporal dependence as data points become widely separated in time. As a preview, the
following theorem provides the general form of the result.

Meta-Theorem 1.1 (Essentially). Given a time series Y1, . . . , Yn satisfying some mild conditions
and a prediction function f chosen from a class of functions F (possibly by using the observed
sample), then, with probability at least 1− η,

R(f) ≤ R̂n(f)Cν,F (η, n) (2)

where R(f) is the expected cost of making prediction errors on new samples, R̂n(f) is the average
cost of in-sample prediction errors, Cν,F (η, n) ≥ 1 balances the complexity of the model from which
f was chosen with the amount of data used to choose it.

The meaning of such results for forecasters, or for those whose scientific aims center around
prediction of empirical phenomena, is plain: they provide objective ways of assessing how good
their models really are. There are, of course, other uses for scientific models: for explanation, for
the evaluation of counterfactuals (especially, in economics, comparing the consequences of different
policies), and for welfare calculations. Even in those cases, however, one must ask why this model
rather than another?, and the usual answer is that the favored model gets the structure at least
approximately right. Empirical evidence for structural correctness, in turn, usually takes the form
of an argument from empirical success: it would be very surprising if this model fit the data so
well when it got the structure wrong. Our results, which directly address the inference from past
data-matching to future performance, are thus relevant even to those who do not aim at prediction
as such.

The remainder of this paper is structured as follows. Section 2 provides motivation and back-
ground for our results, giving intuition in the IID setting by focusing on concentration of measure
ideas and characterizations of model complexity. Section 3 gives the explicit assumptions we make
and describes how to leverage powerful ideas from time series to generalize the IID methods. Section
4 states and proves risk bounds for the time series forecasting setting, while we demonstrate how
to use the results in §5. Finally, Section 6 concludes and illustrates the path toward generalizing
our methods to more elaborate model classes.

2 Statistical learning theory

Our goal is to control the risk of predictive models, i.e., their expected inaccuracy on new data from
the same source as that used to fit the model. To orient readers new to this approach, we sketch how
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classical results in the IID setting are obtained. For simplicity, let X ⊆ Rd and Y ⊆ [−K/2,K/2].
Let f : X → Y be some function used for making predictions of Y from X.

We define a loss function ` : Y ×Y → R+ which measures the cost of making poor predictions.
Throughout, we will take

`(y, y′) =
∣∣∣∣y − y′∣∣∣∣ , (3)

where ||·|| is some appropriate norm. Then as before the risk of any predictor f ∈ F is given by

R(f) = Eν
[
||Y − f(X)||

]
, (4)

where (X,Y ) ∼ ν. The risk or generalization error measures the expected cost of using f to predict
Y from X given a new observation.

Since the true distribution ν is unknown, so is R(f), but we can attempt to estimate it based
on only our observed data. We define the training error or empirical risk of f as

R̂n(f) :=
1

n

n∑
i=1

||Yi − f(Xi)|| . (5)

In other words, the in-sample training error, R̂n(f), is the average loss over the actual training
points. Because the true risk is an expectation value, we can say that

R̂n(f) = R(f) + γn(f), (6)

where γn(f) is a mean-zero noise variable that reflects how far the training sample departs from
being perfectly representative of the data-generating distribution. By the law of large numbers, for
each fixed f , γn(f) → 0 as n → ∞, so, with enough data, we have a good idea of how well any
given function will generalize to new data.

However, economists rarely use a single function f without adjustable parameters fixed for them
in advance by theory. Rather, there is a class of plausible functions F , possibly indexed by some
parameters θ ∈ Θ, which we refer to as a model. We pick out one function (choose one particular
parameter point) from the model class by minimizing the in-sample loss. This means

f̂ = argmin
f∈F

R̂n(f) = argmin
f∈F

(R(f) + γn(f)). (7)

Tuning the parameters so that f̂ fits the training data well thus conflates predicting future data
well (low R(f̂), the true risk) with exploiting the accidents and noise of the training data (large
negative γn(f̂), finite-sample noise). The true risk of f̂ will generally be bigger than its in-sample
risk precisely because we picked it to match the data well. In doing so, f̂ ends up reproducing some
of the noise in the data and therefore will not generalize well. The difference between the true and
apparent risk depends on the magnitude of the sampling fluctuations:

R(f̂)− R̂n(f̂) ≤ sup
f∈F
|γn(f)| = Γn(F) . (8)

The main goal of statistical learning theory is to mathematically control Γn(F) by finding tight
bounds on it while making minimal assumptions about the unknown data-generating process; to
provide bounds on over-fitting. Using more flexible models (allowing more general functional forms
or distributions, adding parameters, etc.) has two contrasting effects. On the one hand, it improves
the best possible accuracy, lowering the minimum of the true risk. On the other hand, it increases
the ability to, as it were, memorize noise for any fixed sample size n. This qualitative observation —

4



a generalization of the bias-variance trade-off from basic estimation theory — can be made usefully
precise by quantifying the complexity of model classes. A typical result is a confidence bound on
Γn (and hence on the over-fitting), which says that with probability at least 1− η,

Γn(F) ≤ Φ(Ψ(F), n, η) , (9)

where Ψ(·) measures the complexity of the model F . To give specific forms of Φ(·), we need to
show that, for a particular f , R(f) and R̂n(f) will be close to each other for any fixed n without
knowledge of the distribution of the data, and we need to understand the complexity, Ψ(F), so
that we can claim R(f) and R̂n(f) will be close, not only for a particular f , but uniformly over
all f ∈ F . Together these two results will allow us to show, despite little knowledge of the data
generating process, how bad the f̂ which we choose will be at forecasting future observations.

2.1 Concentration

The first step to controlling the difference between the empirical and expected risk is to show that
for a single fixed f ∈ F , R(f)− R̂n(f) is small with high probability. This follows from a standard
Chernoff bound coupled with Hoeffding’s inequality [23].

Theorem 2.1. For any f ∈ F ,

Pν(|R(f)− R̂n(f)| ≥ ε) ≤ 2 exp

{
−2nε2

K2

}
. (10)

Proof. First, we use Hoeffding’s inequality to bound the moment generating function of the differ-
ence R(f)− R̂n(f):

E[exp{s(R(f)− R̂n(f))}] =

n∏
i=1

E
[
exp

{ s
n

[R(f)− `(Yi, f(Xi))]
}]

(11)

≤
n∏
i=1

exp

{
s2K2

8n2

}
= exp

{
s2K2

8n

}
. (12)

Now, for a fixed f , we have E[R̂n(f)] = R(f). Therefore we can apply Markov’s inequality and the
moment generating function bound:

Pν(R(f)− R̂n(f) > ε) = Pν
(

exp{s(R(f)− R̂n(f))} ≥ exp{sε}
)

(13)

≤
E
[
exp{s(R(f)− R̂n(f))}

]
exp{sε}

(14)

≤ exp{−sε} exp

{
s2K2

8n

}
. (15)

This holds for all s > 0, so we can minimize the right hand side in s. This occurs for s = 4nε/M2.
Plugging in gives

Pν(R(f)− R̂n(f) > ε) ≤ exp

{
−2nε2

K2

}
. (16)

Exactly the same argument holds for Pν(R(f) − R̂n(f) < −ε), so by a union bound, we have the
result.
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This result is quite powerful, it says that the probability of observing data which will result
in a training error much different from the expected risk goes to zero exponentially with the size
of training set. The only assumption necessary was that ||y − f(x)|| < K. In fact, even this
assumption can be removed and replaced with some moment assumptions which will be the case
for our main results.

Of course this bound holds for the single function f . Instead, we want a similar result to hold
simultaneously over all functions f ∈ F and in particular, the f̂ we choose using the training data,

i.e., we wish to bound Pν
(

supf∈F |R(f)− R̂n(f)| > ε
)

.

2.2 Capacity

For “small” models, we can simply count the number of functions in the class and apply the union
bound. Suppose that f1, . . . , fN ∈ F . Then we have

Pν

(
sup

1≤i≤N
|R(fi)− R̂n(fi)| > ε

)
≤

N∑
i=1

Pν
(
|R(fi)− R̂n(fi)| > ε

)
≤ N exp

{
−2nε2

K

}
, (17)

by Theorem 2.1. Most interesting models are not small in this sense, but given the appropriate
way of counting functions, similar results can be derived.

There are a number of measures for the size or capacity of a model. Algorithmic stability
[27, 5, 4] measures the sensitivity of the chosen function to small tweaks to the data. Similarly,
maximal discrepancy [49] asks how different the predictions could be if two functions are chosen
using two separate data sets. A more direct, functional analysis, approach leads to covering numbers
[40, 39] which partitions functions f ∈ F into equivalence classes under some metric. Rademacher
complexity [3] directly describes a model’s ability to fit random noise. We focus on a measure which
is both intuitive and powerful: Vapnik-Chervonenkis (VC) dimension [48, 49].

VC dimension starts as a result about a collection of sets.

Definition 2.2. Let U be some (infinite) set and S a finite subset of U. Let C be a family of subsets
of U. We say that C shatters S if for every S′ ⊆ S, ∃C ∈ C such that S′ = S ∩ C.

Essentially, C can shatter a set of points if it can pick out every subset of points in S. This says
somehow that C is very complicated or flexible. The largest set S that can be shattered by C is the
known as its VC dimension.

Definition 2.3 (VC dimension). The Vapnik-Chervonenkis (VC) dimension of a collection C of
subsets of U is

vcd(C) := sup{|S| : S ⊆ U and S is shattered by C}. (18)

Using VC dimension to measure the capacity of function classes is straightforward. Define the
indicator function 1A(x) to take the value 1 if x ∈ A and 0 otherwise. Suppose that f ∈ F ,
f : U→ R. Then to each f associate the set

Cf = {u ∪ a : 1(0,∞)(f(u)− b) = 1, u ∈ U, b ∈ R} (19)

and associate to F the class CF := {Cf : f ∈ F}. VC dimension is well understood for some
function classes. For instance, if F = {x 7→ γ · x : γ ∈ Rp} then vcd(F) = p + 1, i.e. it is
the number of free parameters in a linear regression plus 1. It does not always have such a nice
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correspondence with the number of free parameters however; the classic example is the model
F = {x 7→ sin(ωx) : ω ∈ R}, which has only one free parameter, but vcd(F) =∞.1

Given a model F such that vcd(F) = h, we can control the risk over the entire model. This is
one of the milestones of statistical learning theory

Theorem 2.4 (Vapnik and Chervonenkis [50]). Suppose that vcd(F) = h and 0 ≤ `(y, y′) ≤ K.
Then,

Pν

(
sup
f∈F
|R(f)− R̂n(f)| > ε

)
≤ 4GF (2n, h) exp

{
−nε

2

K2

}
, (20)

where GF (n, h) = exp{h(log x/h+ 1)}.

The proof of this theorem has a similar flavor to the union bound argument given in (17).
Essentially, GF (n, h) counts the effective number of functions in F , i.e., how many can be told
apart using only n observations. This theorem has as an immediate corollary a bound for the
expected risk. Since the probability statement holds for all functions, it holds in particular for that
function which minimizes the empirical risk, f̂ .

Corollary 2.5. For any η > 0 and any f ∈ F , with probability at least 1− η,

R(f) ≤ R̂n(f) +K

√
logGF (2n, h)− log η/4

n
. (21)

The only term that is random is the training error, hence the fact that this statement holds
with high probability. The penalty term goes to zero as n→∞. Also, the right side is very similar
to standard model selection criteria like AIC or BIC. If one assumes a normal likelihood, then the
training error behaves like the negative loglikelihood term while the remainder is the penalty. Here
however, the bound holds with high probability despite lack of knowledge of ν and it has nothing
to do with asymptotic normality: it holds for any n.

These concentration results work well for independent data. The first shows exactly how fast
averages concentrate around their expectations: exponentially fast in the size of the data. The
second result generalizes the first from a single function to entire function classes. Both results
depend critically on the independence of the random variables, however in the case of interest, we
need to be able to handle dependent data. Because time-series data are dependent, the number of
data points n in a sample Yn

1 exaggerates how much information the sample contains. Knowing
the past allows forecasters to predict future data (at least to some degree), so actually observing
those future data points gives less information about the underlying process than in the IID case.
Thus, while in Theorem 2.1 the probability of large discrepancies between empirical means and
their expectations decreases exponentially in the sample size, in the dependent case, the effective
sample size may be much less than n resulting in looser bounds.

3 Time series

In moving from the IID setting to time series forecasting, we need a number of modifications to
our initial setup. To be more explicit, we present the following notation and definitions. Rather
than observing in put out pairs (Yi, Xi), we observe a single sequence of random variables Yn

1 :=

1This result follows if we can show that for any positive integer J and any binary sequence (r1, . . . , rJ), there
exists a vector (x1, . . . , xJ) such that 1[0,1](sin(ωxi)) = ri. If we choose xi = 2π10−i, then one can show that taking

ω = 1
2

(∑J
i=1(1− ri)10i + 1

)
solves the system of equations.
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(Y1, . . . , Yn) where each Yi takes values in a measurable space Y.2 We are interested in using
functions which take past observations as inputs and predict future values of the process. Suppose,
given data from time 1 to time n, we wish to predict time n+ 1.

Since we no longer have IID data, we will need a few restrictions on the sorts of dependent
processes we can consider. We first remind the reader of the notion of (strict or strong) stationarity.

Definition 3.1 (Stationarity). A sequence of random variables Y is stationary when all its finite-
dimensional distributions are invariant over time: for all t and all non-negative integers i and j,
the random vectors Yt+i

t and Yt+i+j
t+j have the same distribution.

Stationarity does not imply that the random variables Yt are independent across time t, only that
the unconditional distribution of Yt is constant in time. From among all the stationary processes,
we will discuss only a subset thereof in which widely-separated observations are asymptotically
independent. Without this assumption, convergence of the training error to the expected risk could
occur arbitrarily slowly, preventing the derivation of finite sample results.3 The next definition
describes the nature of the serial dependence which we are willing to allow.

Definition 3.2 (β-Mixing). Consider a stationary random sequence Y∞−∞ defined on a probability

space (Ω,Σ,P). Let σji = σ(Yj
i ) be the σ-field of events generated by the appropriate collection of

random variables. Let P0 be the restriction of P to σ0−∞, Pa be the restriction of P to σ∞a , and
P0⊗a be the restriction of P to σ(Y0

−∞,Y
∞
a ). The coefficient of absolute regularity, or β-mixing

coefficient, βa, is given by
βa := ||P0 × Pa − P0⊗a||TV , (22)

where || · ||TV is the total variation norm. A stochastic process is absolutely regular, or β-mixing,
if βa → 0 as a→∞.

This is only one of many equivalent characterizations of β-mixing (see Bradley [6] for others).
This definition makes clear that a process is β-mixing if the joint probability of events which are
widely separated in time increasingly approaches the product of the individual probabilities, i.e.,
that Y is asymptotically independent. Many common time series models are known to be β-mixing,
and the rates of decay are known up to constant factors given the true parameters of the process.
Among the processes for which such knowledge is available are ARMA models [37], GARCH models
[7], and certain Markov processes — see Doukhan [14] for an overview of such results. Additionally,
functions of these processes are β-mixing, so if P could be specified by a dynamic factor model or
DSGE or VAR, the observed data would satisfy this condition.

Knowledge of βa allows us to determine the effective sample size of a given dependent data
set Yn

1 . In effect, having n dependent-but-mixing data points is like having µ < n independent
ones. Once we determine the correct µ, we can use concentration results for IID data like those in
Theorem 2.1 and 2.4 with small corrections.

4 Risk bounds

With the relevant background in place, we can put the pieces together to present our results. We
use β-mixing to find out how much information is in the data and VC dimension to measure the
capacity of the state-space model’s prediction functions. The result is a bound on the generalization

2We will take Y = Rp throughout, but this assumption is not necessary.
3In fact, Adams and Nobel [1] demonstrate that for ergodic processes, finite VC dimension is enough to give

consistency.

8



error of the chosen function f̂ . In the remainder of this section, we redefine the appropriate concepts
in the time series forecasting scenario, we state the necessary assumptions for our results, and we
derive risk bounds for wide classes of economic forecasting models.

4.1 Setup and assumptions

We observe a finite subsequence of random vectors Yn
1 from a process Y∞−∞ defined on a probability

space (Ω,Σ,P∞) such that Yi ∈ Rp. We make the following assumption on the infinite process.

Assumption A. Assume that P∞ is a stationary, β-mixing distribution with known mixing coef-
ficients βa, ∀a > 0.4

Under stationarity, the marginal distribution of Yt is the same for all t. We are mainly concerned
with the joint distribution of sequences Y n+1

1 wherein we observe the first n observations and
attempt to predict time n+ 1. For the remainder of this paper, we will call this joint distribution
P. Our results are easily extended to the case of predicting more than one step ahead, but the
notation becomes cumbersome.

We define generalization error and training error in the time series setting slightly differently
than in the IID setting. First we need an appropriate loss function. We will take the loss function
` to be some norm ||·|| on Rp, and we will consider prediction functions f : Rn×p → Rp

Definition 4.1 (Time series risk).

Rn(f) := EP

[
||Yn+1 − f(Yn

1 )||
]
. (23)

The expectation is taken with respect to the joint distribution P and therefore depends on n.
We may use some or all of the past to generate predictions. A function which takes only the most
recent d observations as inputs will be referred to as having fixed memory d. Other functions have
growing memory, i.e., one may use all the previous data to predict the next data point. For this
reason, we define two versions of the training error depending on whether or not the memory of
the prediction function f is fixed.

Definition 4.2 (Time series training error with memory d).

R̂n(f) :=
1

n− d− 1

n−1∑
i=d

∣∣∣∣Yi+1 − f(Yi
i−d+1)

∣∣∣∣ (24)

Definition 4.3 (Time series training error with growing memory (at least d)).

R̃n(f) :=
1

n− d− 1

n−1∑
i=d

∣∣∣∣Yi+1 − f(Yi
1)
∣∣∣∣ (25)

The first case is useful for standard VAR forecasting methods, while the second case as applicable
to ARMA models, DSGEs, and linear state space models. Additionally, we are writing f as a fixed
function, but the dimension of the argument changes with i. This is not an issue for functions

4Of course, in practice we do not know the data generating process, so we do not know βa. McDonald et al. [32]
shows how to estimate the mixing coefficients based on a sample from a mixing process.

9



which are linear in the data, as is the case with ARMA models, linear state-space models, and
linearized DSGEs.5 For nonlinear models, we will consider only the fixed memory version.

To control the generalization error for time series forecasting, we make one final assumption
which is more general than the bounded loss assumption we used in §2, in particular, it allows for
unbounded loss as long as we can control some moments of the risk.

Assumption B. Assume that for all f ∈ F and some q > 2,

1 ≤

(
EP

[
||Yn+1 − f(Yn

1 ))||q
])1/q

Rn(f)
< M. (26)

Assumption B is still quite general, allowing even some heavy tailed distributions. Furthermore,
with slight adjustments (see [48]), we can allow 1 < q ≤ 2. It should be noted that the lower bound
is trivially true for any loss distribution.

4.2 Fixed memory

We can now state our results giving finite sample risk bounds for the problem of time series
forecasting. We begin with the fixed memory setting before allowing the memory length to grow.

Theorem 4.4. Given a sample Yn
1 such that Assumptions A and B hold, suppose that the model

class F has a fixed memory length d < n. Let µ and a be integers such that 2µa + d ≤ n. Then,
for all ε > 0,

P

(
sup
f∈F

Rn(f)− R̂n(f)

Rn(f)
> ε

)
≤ 8 exp

{
vcd(F)

(
ln

2µ

vcd(F)
+ 1

)
− µε2

4τ2(q)M2

}
+ 2(µ− 1)βa−d,

(27)

where τ(q) = q

√
1
2

(
q−1
q−2

)q−1
.

The implications of this theorem are considerable. Given a finite effective number of observations
µ < n, we can say that with high probability, future relative prediction errors will not be much
larger than our observed training errors. It makes no difference whether the model is correctly
specified. This stands in stark contrast to model selection tools like AIC or BIC which appeal to
asymptotic results. Moreover, given some model class F , we can say exactly how much data is
required to have good control of the prediction risk. As the effective data size increases, E → 0 and
so the training error is a better and better estimate of the generalization error.

One way to understand this theorem is to visualize the tradeoff between confidence ε and
effective data µ. Consider the following, drastically simplified version of the result

P

(
sup
f∈F

Rn(f)− R̂n(f)

Rn(f)
> ε

)
≤ 8 exp

{
ln 2µ+ 1− µε2

4

}
(28)

where we have taken the VC dimension to be one and we ignore the extra penalty from the mixing
coefficient. Our goal is to minimize ε, thereby ensuring that the relative difference between the

5By nature, a DSGE is a nonlinear system of expectational difference equations, and so estimating the parameters
is nontrivial. Likelihood methods typically procede by finding a linear approximation using Taylor expansions and
the Kalman filter, though increasingly complex nonlinear methods are now an object of intense interest. See for
instance Fernández-Villaverde [18], DeJong and Dave [10] or Dejong et al. [11]
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Figure 1: Visualizing the tradeoff between confidence (ε, y-axis) and effective data (µ, x-axis). The
black curve indicates the region where the bound becomes trivial. Below this line, the probability
is bounded by 1. Darker colors indicate lower probability of the “bad” event — that the difference
in risks exceeds ε. The colors correspond to the natural logarithm of the bound on this probability.

expected risk and the training risk is small. At the same time we want to minimize the right side
of the bound so that the probability of “bad” outcomes — events such that the difference in risks
exceeds ε — is small. Of course we want to do this with as little data as possible, but the smaller
we take ε, the larger we must take µ to compensate. We illustrate this tradeoff in Figure 1.

The relative difference between expected and empirical risk is only interesting between zero and
one. By construction, it can be no larger than one since R̂n(f) ≥ 0, and due to the supremum,
events where the training error exceeds the expected risk are irrelevant. Therefore, we are only
concerned with 0 ≤ R̂(f) ≤ Rn(f), so we need only consider 0 ≤ ε ≤ 1.

The figure is structured so that movement toward the origin is preferable. We have tighter
control on the difference in risks with less data. But moving in that direction leads to an increased
probability of the bad event — that the difference in risks exceeds ε. The bound becomes trivial
below the solid black line (the bad event occurs with probability no larger than one). The desire
for the bad event to occur with low probability forces the decision boundary to the upper right.

Another way to interpret the plot is as a set of indifference curves. Anywhere in the same color
region is equally desirable in the sense that the probability of bad events is the same. So if we had
a budget constraint trading ε and data (i.e. a line with negative slope), we could optimize within
the budget set to find the lowest probability allowable.

Before we prove Theorem 4.4 we will state a corollary which appears in a form which is occa-
sionally more convenient.

Corollary 4.5. Under the conditions of Theorem 4.4, with probability at least 1 − η, for all η >
2(µ − 1)βa−d, the following bound holds simultaneously for all f ∈ F (including the minimizer of
the empirical risk f̂):

Rn(f) ≤ R̂n(f)

(1− E)+
. (29)

Here

E =
2Mτ(q)
√
µ

√
vcd(F)

(
ln

2µ

vcd(F)
+ 1

)
− ln(η′/8), (30)
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η′ = η − 2(µ− 1)βa−d, τ(q) = q

√
1
2

(
q−1
q−2

)q−1
, and (u)+ = max(u, 0).

We now prove both Theorem 4.4 and Corollary 4.5 to provide the reader with some intuition for
the types of arguments necessary. We defer proof of the remainder of the theorems in this section
to the appendix.

Proof of Theorem 4.4. The first step is to move from the actual sample size n to the effective sample
size µ which depends on the β-mixing behavior. Let a and µ be non-negative integers such that
2aµ = n. Now divide Yn

1 into 2µ blocks, each of length a. Identify the blocks as follows:

Uj = {Yi : 2(j − 1)a+ 1 ≤ i ≤ (2j − 1)a}, (31)

Vj = {Yi : (2j − 1)a+ 1 ≤ i ≤ 2ja}. (32)

Let U be the entire sequence of odd blocks Uj , and let V be the sequence of even blocks Vj . Finally,
let U′ be a sequence of blocks which are mutually independent and such that each block has the
same distribution as a block from the original sequence. That is construct U ′j such that

L(U ′j) = L(Uj) = L(U1), (33)

where L(·) means the probability law of the argument.
Let R̂U(f), R̂U′(f), and R̂V(f) be the empirical risk of f based on the block sequences U, U′,

and V respectively. Clearly R̂n(f) = 1
2(R̂U(f) + R̂V(f)). Define τ(q) as in the statement of the

theorem. Then,

P

(
sup
f∈F

Rn(f)− R̂n(f)

Rn(f)
> ε

)
= P

(
sup
f∈F

[
Rn(f)− R̂U(f)

2Rn(f)
+
Rn(f)− R̂V(f)

2Rn(f)

]
> ε

)
(34)

≤ P

(
sup
f∈F

Rn(f)− R̂U(f)

Rn(f)
+ sup
f∈F

Rn(f)− R̂V(f)

Rn(f)
> 2ε

)
(35)

≤ P

(
sup
f∈F

Rn(f)− R̂U(f)

Rn(f)
> ε

)
+ P

(
sup
f∈F

Rn(f)− R̂V(f)

Rn(f)
> ε

)
(36)

= 2P

(
sup
f∈F

Rn(f)− R̂U(f)

Rn(f)
> ε

)
. (37)

Now, apply Lemma 4.1 in Yu [52] (Lemma A.1 in Appendix A) to the indicator of the event{
supf∈F

Rn(f)−R̂U(f)
Rn(f)

> ε
}

. This allows us to move from statements about dependent blocks, to

statements about independent blocks with a slight correction. Therefore we have,

2P

(
sup
f∈F

Rn(f)− R̂U(f)

Rn(f)
> ε

)
≤ 2P

(
sup
f∈F

Rn(f)− R̂U′(f)

Rn(f)
> ε

)
+ 2(µ− 1)βa−d (38)

where the probability on the right is for the σ-field generated by the independent block sequence

12



U′. For convenience, define Rqn(f) := E [||Yn+1 − f(Yn
1 ))||q] despite the obvious abuse of notation.

P

(
sup
f∈F

Rn(f)− R̂U′(f)

Rn(f)
> ε

)
= P

(
sup
f∈F

Rn(f)− R̂U′(f)

Rn(f)

1

M
>

ε

M

)
(39)

≤ P

(
sup
f∈F

Rn(f)− R̂U′(f)

Rn(f)

Rn(f)
q
√
Rqn(f)

>
ε

M

)
(40)

= P

(
sup
f∈F

Rn(f)− R̂U′(f)
q
√
Rqn(f)

>
ε

M

)
(41)

= P

(
sup
f∈F

Rn(f)− R̂U′(f)
q
√
Rqn(f)

> τ(q)
ε

Mτ(q)

)
(42)

≤ 8 exp

{
vcd(F)

(
ln

2µ

vcd(F)
+ 1

)
− µε2

4M2τ2(q)

}
+ 2(µ− 1)βa−d,

(43)

where we have applied Theorem 5.4 in Vapnik [48] (Lemma A.2) to bound the independent blocks.
This result is Theorem 4.4. To prove the corollary, set the right hand side equal to η, taking
η′ = η − 2(µ− 1)βa−d, and solve for ε. We get that for all f ∈ F , with probability at least 1− η,

Rn(f)− R̂n(f)

Rn(f)
≤ ε. (44)

Solving the equation

η′ = 8 exp

{
vcd(F)

(
ln

2µ

vcd(F)
+ 1

)
− µε2

4M2τ2(q)

}
(45)

implies

ε =
2Mτ(q)
√
µ

√
vcd(F)

(
ln

2µ

vcd(F)
+ 1

)
− ln(η′/8) = E . (46)

The only obstacle to the use of Theorem 4.4 is knowledge of the vcdF . For some models, the
VC dimension can be calculated explicitly.

Lemma 4.6. For FAR(d) the class of AR(d) models we have

vcd(FAR(d)) = d+ 1. (47)

Lemma 4.6 applies equally to Bayesian ARs. However, this is likely too conservative as the
prior tends to restrict the effective complexity of the function class.6 For regularized methods, or
non-linear methods where the VC dimension is unknown, we can estimate the VC dimension via
simulation and make a slight correction to the risk bound. This estimated bound will also applies to
state-space models, dynamic factor models, or even dynamic stochastic general equilibrium (DSGE)
models. The simulation procedure was developed in Vapnik et al. [51] and is shown in Algorithm 1.

13



Algorithm 1 Estimate VC dimension

Given a model F and a grid of design points n1, . . . , nk, generate regression
points ξ̂(n`). Then use nonlinear least squares to estimate the VC dimen-
sion.

1: Choose a grid of integer values n1, . . . , nk.
2: for ` = 1→ k do
3: while 1 ≤ j ≤ m do
4: Generate a stationary process Z of length 2n` + d such that E[Zi] = 0 and the marginal

distribution of each element has support on Y = Rp (this can be a white noise process).
5: Define W′ := −Z2n`+d

n`+d+1. Define W := (Z2n`+d
d+1 ,W′).

6: Choose a function f̂ ∈ F using W.
7: Call Z̃ := (Zd1,W).
8: Choose a parameter b ∈ Rp as

b = argmin
b∈Rp

1

2n`

2n∑̀
i=1

1

(
sgn(f̂(Z̃i+d−1i )− b) 6= sgn(Z̃i+d+1)

)
.

For Z a vector, take sgn(Z) to be a vector of componentwise signs and take the indicator
to be the event that all the signs are the same.

9: Calculate the following error measure of the estimated function f̂ on the generated data Z

ξ̂j(n`) =

∣∣∣∣∣ 1

n`

n∑̀
i=1

1

(
sgn(f̂(Zi+d−1i )− b) 6= sgn(Zi+d)

)
−

− 1

n`

2n∑̀
i=n`

1

(
sgn(f̂(Zi+d−1i )− b) 6= sgn(Zi+d)

)∣∣∣∣∣∣ .
10: end while
11: Set ξ̂(n`) = 1

m

∑m
i=1 ξ̂j(n`).

12: end for
13: Estimate the VC dimension as

ĥ = argmin
h>0

1

k

k∑
`=1

(ξ̂(n`)− Φh(n`))
2

where

Φh(n) =


1 n < h/2

c
log 2n

h
+1

n
h
−c′′

(√
1 +

c′(n
h
−c′′)

log 2n
h
+1

+ 1

)
else,

and c = 0.16, c′ = 1.2, and c′′ = 0.15.
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The algorithm amounts to simulating data sets of different sizes many times. To use the algorithm,
choose integers k, the number of different sizes, and m, the number of replications for each size
data set, by trading off computational time and desired accuracy. Then estimate the model km
times. McDonald et al. [31] derives the accuracy of the estimate and shows how to use the result to
get generalization error bounds. This leads to the following theorem which controls the prediction
risk using estimated VC dimension.

Theorem 4.7. Choose integers k and m to produce an estimate of VC dimension using Algorithm
1 which is accurate up to some tolerance δ. Given a sample Yn

1 such that Assumptions A and B
hold, suppose that the model class F has a fixed memory length d < n. We have the following high
probability7 bound for all ε > 0:

P

(
sup
f∈F

Rn(f)− R̂n(f)

Rn(f)
> ε

)
(48)

≤ 8 exp

{
(ĥ+ δ)

(
ln

2µ

(ĥ+ δ)
+ 1

)
− µε2

4M2τ2(q)

}
(1− ϕ) + 2(µ− 1)βa−d(1− ϕ) + ϕ, (49)

where ĥ is the estimated VC dimension and

ϕ = 13 exp

{
−mkδ

2

16C

}
. (50)

For a thorough explanation of how to choose the tolerance δ and the explicit form of the constant
C, see McDonald et al. [31]. The term ϕ goes to zero exponentially quickly as k or m increase,
thus, given unlimited computational time, we essentially recover the result in Theorem 4.4 even
with the VC dimension estimated via simulation rather than known a priori. We now state a
corollary analogous to Corollary 4.5.

Corollary 4.8. Under the conditions of Theorem 4.7, the following bound holds simultaneously for
all f ∈ F (including the minimizer of the empirical risk f̂) with probability at least 1 − η, for all
η > 2(µ− 1)βa−d(1− ϕ) + ϕ

Rn(f) ≤ R̂n(f)

(1− E)+
. (51)

Here

E =
2Mτ(q)
√
µ

√
(ĥ+ δ)

(
ln

2µ

ĥ+ δ
+ 1

)
− ln

η′

8(1− ϕ)
(52)

and η′ = η − 2(µ− 1)βa−d(1− ϕ)− ϕ.

6Here we should mention that these risk bounds are frequentist in nature. Our meaning is that if we treat Bayesian
methods as a regularization technique and predict with the posterior mean or mode, then our results hold. However,
from a subjective Bayesian perspective, our results add nothing since all inference can be derived from the posterior.
For further discussion of the frequentist risk properties of Bayesian methods under mis-specification, see for example
Kleijn and van der Vaart [28], Müller [38] or Shalizi [43]

7Technically, the data come from the distribution P while Algorithm 1 uses some other distribution, say P1, to
generate simulated data. Therefore, the probability statement in this theorem is with respect to the product measure
P × P1. For the result to hold, we must have that P and P1 are measures over the same probability space and that
the real and simulated data are statistically independent.
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4.3 Growing memory

Of course, the vast majority of macroeconometric forecasting models have growing memory rather
than fixed memory. These model classes include dynamic factor models, ARMA models, and
linearized dynamic stochastic general equilibrium models. However, all of these models have the
property that forecasts are linear functions of past observations, and in particular, the weight placed
on the past decays exponentially under suitable conditions. For this reason, we can recover bounds
similar to our previous results even for state-space models.

Linear predictors with growing memory have the following form with 1 ≤ d < n:

Ŷn+1
d+1 = BYn

1 (53)

where

B =


bn,n bn,n−1 . . . bn,d . . . bn,1

0 bn−1,2 . . . bn−1,d . . . bn−1,1
...

. . .

0 bd,d . . . bd,1

 . (54)

With this notation, we can prove the following result about the growing memory linear predictor.

Theorem 4.9. Given a sample Yn
1 such that Assumptions A and B hold, suppose that the model

class F is linear in the data and has growing memory. Fix some 1 ≤ d < n. Then the following
bound holds simultaneously for all f ∈ F (including the minimizer of the empirical risk f̂). Let µ
and a be integers such that 2µa+ d ≤ n. Then, with high probability

P

(
sup
f∈F

Rn(f)− R̃n(f)−∆d(f)

Rn(f)
> τ(q)ε

)
≤ Φ (55)

where Φ is given by either the right hand side of (27) or by (49), and

∆d(f) = E
[
||Y1||

] ∣∣∣∣∣∣
∣∣∣∣∣∣
n−d−1∑
j=1

bn,j

∣∣∣∣∣∣
∣∣∣∣∣∣+

1

n− d− 1

n−1∑
i=d+1

∣∣∣∣∣∣
∣∣∣∣∣∣
i−d∑
j=1

bi,jyj

∣∣∣∣∣∣
∣∣∣∣∣∣ . (56)

The ∆d(f) term deserves some explanation. It arrises by approximating the growing memory
predictor with a finite sample version. The result is an implicit tradeoff: as d ↗ n, ∆d(f) ↘ 0,
but this drives µ↘ 0, resulting in fewer effective training points whereas larger d has the opposite
effect. Also, ∆d(f) depends on E

[
||Y1||

]
which is not necessarily desirable. However, Assumption

B has the consequence that E
[
||Y1||

]
≤ L < ∞. Finally, we will need

∑n
j=1 ||bi,j || to be bounded

∀n or ∆d(f)→∞ as n→∞.

Corollary 4.10. Given a sample Yn
1 such that Assumptions A and B hold, suppose that the model

class F is linear in the data and has growing memory. Fix some 1 ≤ d < n. Then the following
bound holds simultaneously for all f ∈ F (including the minimizer of the empirical risk f̂). Let µ
and a be integers such that 2µa+ d ≤ n. Then, with probability at least 1− η, for η as in Theorem
4.4 or 4.7, we have

Rn(f) ≤ R̃n(f) + ∆d(f)

(1− E)+
(57)

where E and η′ can be as in Theorem 4.4 or 4.7.
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To apply Theorem 4.9, we describe the form of the linear Gaussian state space model. We can
then show how to calculate ∆d(f) directly from the model and demonstrate that it will behave well
as n grows rather than blowing up. Consider the following linear Gaussian state space model, FSS :

yt = Zαt + εt, εt ∼ N(0, H),

αt+1 = Tαt + ηt+1, ηt ∼ N(0, Q), (58)

α1 ∼ N(a1, P1).

We make no assumptions about the dimensionality of the parameter matrices Z, T,H,Q, a1, or P1.
The only requirement is stationarity. This amounts to requiring the eigenvalues of T to lie inside
the complex unit circle. Stationarity ensures that ∆d(f) will be bounded as well as conforming to
our assumptions about the data generating process.. While vcd(FSS) is unknown in general, we
can estimate it with Algorithm 1 for any sort of forecasting model which has this form, including
linearized DSGEs.

Algorithm 2 Kalman filtering

Recursively generate minimum mean squared error predictions Ŷt using the state space model in
(58).

1: Set Ŷ1 = Za1.
2: while 1 ≤ t ≤ n do
3: Filter

vt = Yt − Ŷt, Ft = (ZPtZ
′ +H)−1,

Kt = TPtZ
′Ft, Lt = T −KtZ),

at+1 = Tat +Ktvt, Pt+1 = TPtL
′
t +Q.

4: Predict
Ŷt+1 = Zat+1.

5: end while

To forecast using FSS , one uses the Kalman filter [26]. The algorithm proceeds recursively
as shown in Algorithm 2. To estimate the unknown parameter matrices, one can proceed in one
of two ways: (1) maximize the likelihood returned by the filter; or (2) use the EM algorithm by
running the filter and then the Kalman smoother which amounts to the E-step; then maximize the
conditional likelihood using ordinary least squares. Bayesian estimation proceeds similarly to the
EM approach replacing the M-step with standard Bayesian updates. In either case, one can show
(cf. Durbin and Koopman [15]) that given the parameter matrices, the (maximum a posteriori)
forecast of yt is given by

ŷt+1 = Z

t−1∑
j=1

t∏
i=j+1

LiKjyj + ZKtyt + Z

t∏
i=1

Lia1 (59)

This yields the form of ∆d(f) for linear state space models. We therefore have the following
corollary to Theorem 4.9.
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Corollary 4.11. Suppose that our function class F corresponds to the state-space model specified
in (58). Let 1 < d < n. Then the following bound holds simultaneously for all f ∈ F : with
probability at least 1− η, for η as in Theorem 4.4 or 4.7, we have

Rn(f) ≤ R̃n(f) + ∆d(f)

(1− E)+
(60)

where E and η′ can be as in Theorem 4.4 or 4.7, and

∆d(f) = E
[
||Y1||

] ∣∣∣∣∣∣
∣∣∣∣∣∣
n−d∑
j=1

n∏
i=j+1

LiKj

∣∣∣∣∣∣
∣∣∣∣∣∣+

1

n− d− 1

n−1∑
t=d+1

∣∣∣∣∣∣
∣∣∣∣∣∣
t−d∑
j=1

t∏
i=j+1

LiKjyj

∣∣∣∣∣∣
∣∣∣∣∣∣ . (61)

It is simple to compute ∆d(f) using Kalman filter output. The corollary allows us to compute
risk bounds for wide classes of macroeconomic forecasting models. Dynamic factor models, ARMA
models, GARCH models, and even linearized DSGEs have state space representations.

5 Bounds in practice

The theory derived in the previous section is useful both for quantification of the prediction risk
and for model selection. In this section, we show how to use some of the results above. We first
estimate a simple stochastic volatility model using IBM return data and calculate the bound for the
predicted volatility using Theorem 4.9. We then discuss the principle of structural risk minimization
focusing on how to use our results to select among competing forecasting models.

5.1 Stochastic volatility model

To demonstrate how to use our results, we estimate a standard stochastic volatility model using daily
log returns for IBM from January 1962 until October 2011 which gives us n = 12541 observations.
Figure 2 shows the returns series.

The model we investigate is given by

yt = σzt exp(ρt/2), zt ∼ N(0, 1), (62)

ρt+1 = φρt + wt, wt ∼ N(0, σ2ρ), (63)

where the disturbances zt and wt are mutually and serially independent. This model is nonlinear,
but a linear approximation method can be used as in Harvey et al. [22]. We transform the model
as follows:

log y2t = κ+ ρt + ξt, (64)

ξt = log z2t − E[log z2t ], (65)

κ = log σ2 + E[log z2t ]. (66)

The noise term ξt is no longer normally distributed, but the Kalman filter will still give the minimum
mean squared linear estimate of the variance sequence ρn+1

1 . Following the transformation, the
observation variance is 3.274.

To match the data to the model, we let yt be the log returns and remove 688 observations where
the return was 0 (i.e., the price did not change from one day to the next). Using the Kalman filter,
the negative log likelihood is given by

L(Yn
1 |κ, φ, σ2ρ) ∝

n∑
t=1

logFt + v2tF
−1
t .
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Figure 2: Daily log returns for IBM

Minimizing this gives estimates κ = −9.72, φ = 0.993, and σ2ρ = 0.006. Taking the loss function to
be root mean squared error gives a training error of 1.823.

To actually calculate the bound, we need a few assumptions. First, we take βa = exp{−(1 +
2a)}. Such an exponential rate could be easily obtained if the data were generated by an ARMA
process [37] and is common in the literature on mixing (cf. [34, 52]). Second, we take q = 3 and
M = 2. These choices can be justified by assuming that the distribution of Yn+1−f(Yn

1 ) is standard
normal. Then

∣∣∣∣yi+1 − f(Yi
1)
∣∣∣∣
2

has a χ distribution with one degree of freedom, in which case the

qth normalized moment Mq, is given in [24] as

Mq = π
q−1
2q Γ1/q

(
q + 1

2

)
. (67)

Using this formula, we get M3 = 1.46, but we use 2 for convenience.
Combining these assumptions with the estimated VC dimension for the stochastic volatility

model will allow us to calculate a bound for the prediction risk. Using Algorithm 1 for appropriately
chosen m and k gives an estimated VC dimension ĥ = 3 give or take δ = 1 and confidence ϕ < 0.01.
However, for d = 2, we have that the VC dimension can be no larger than 3, thus, we may use
Corollary 4.11 with η as in Corollary 4.5, i.e., we can take the VC dimension to be 3. Finally,
taking µ = 846, a = 7, and d = 2, we calculate ∆2(f) = 0.776 + 0.844 = 1.62. The result is the
bound

Rn(f) ≤ 9.81 (68)

with probability at least 0.85. In other words, the bound is much larger than the training error,
but this is to be expected: the data is highly correlated and so despite the fact that n is large, the
effective sample size µ is relatively small.

For comparison, we also computed the bound for forecasts produced with an AR(2) model (with
intercept) and with the mean alone. The results are shown in Table 1. The stochastic volatility
model reduces the training error by 5% over predicting with the mean, an increase which is marginal
at best. But the resulting risk bound clearly demonstrates that given the small effective sample
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Model Training error Risk bound AIC BIC

SV 1.82 9.81 0.959 0.959
AR(2) 1.88 5.37 0.987 0.988
Mean 1.91 3.46 1 1

Table 1: This table shows the training error and risk bounds for 3 models. AIC and BIC are given
as ratios to the Mean, the smaller the value, the more support for that model.

size, this gain may be spurious: it is likely that the stochastic volatility model is simply over-fitting.

5.2 Structural risk minimization

Our presentation so far has focused on choosing one function f̂ from a model F and demonstrating
that the prediction risk Rn(f̂) is well characterized by the training error inflated by a complexity
term. The procedure for actually choosing f̂ has been ignored. Common ways of choosing f̂ are
frequently referred to as empirical risk minimization or ERM: approximate the expected risk Rn(f)
with the empirical risk R̂n(f), and choose f̂ to minimize the empirical risk. Many likelihood based
methods have exactly this flavor. But more frequently, forecasters have many different models in
mind, each with a different empirical risk minimizer. Regularized model classes (ridge regression,
lasso, Bayesian methods) implicitly have this structure — altering the amount of regularization
leads to different models F . Or one may have many different forecasting models from which the
forecaster would like to choose the best. This scenario leads to a generalization of ERM called
structural risk minimization or SRM.

Given a collection of models F1,F2, . . . each with associated empirical risk minimizers f̂1, f̂2, . . .,
we wish to use the function which has the smallest risk. Of course different models have different
complexities, and those with larger complexities will tend to have smaller empirical risk. To choose
the best function, we therefore penalize the empirical risk and select that function which minimizes
the penalized version. Model selection tools like AIC or BIC have exactly this form, but they
rely on specific knowledge of the data likelihood and use asymptotic approximations to derive an
appropriate penalty. In contrast to these methods, we have derived finite sample bounds for the
expected risk. This leads to a natural procedure for model selection — choose the predictor which
has the smallest bound on the expected risk.

The generalization error bounds in section 4 allow one to perform model selection via the
SRM principle without knowledge of the likelihood or appeals to asymptotic results. The penalty
accounts for the complexity of the model through the VC dimension. Most useful however is that
by using generalization error bounds for model selection, we are minimizing the prediction risk.

If we want to make the prediction risk as small as possible, we can minimize the generalization
error bound simultaneously over models F and functions within those models. This amounts to
treating VC dimension as a control variable. Therefore, by minimizing both the empirical risk and
the VC dimension, we can choose that model and function which has the smallest prediction risk,
a claim which other model selection procedures cannot make [49, 30].

6 Conclusion

This paper demonstrates how to control the generalization error of common macroeconomic fore-
casting models — ARMA models, vector autoregressions (Bayesian or otherwise), linearized dy-
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namic stochastic general equilibrium models, and linear state space models. The results we derive
give upper bounds on the risk which hold with high probability while requiring only weak assump-
tions on the true data generating process. These bounds are finite sample in nature, unlike standard
model selection penalties such as AIC or BIC. Furthermore, they do not suffer the biases inherent
in other risk estimation techniques such as the pseudo-cross validation approach often used in the
economic forecasting literature.

While we have stated these results in terms of standard economic forecasting models, they
have very wide applicability. Theorems 4.4 and 4.7 apply to any forecasting procedure with fixed
memory length, linear or non-linear. This covers even nonlinear DSGEs as long as the forecasts are
based on only a fixed amount of past data. The unknown parameters can still be estimated using
the entire data set. The results in Theorem 4.9 applies only methods whose forecasts are linear in
the observations, but a similar result could conceivably be derived for nonlinear methods as long
as the dependence of the forecast on the past decays in some suitable way.

The bounds we have derived here are the first of their kind for time series forecasting methods
typically used in economics, but there are some results for other types of forecasting methods as in
Meir [34] and Mohri and Rostamizadeh [35, 36]. Those results require bounded loss functions as
in the IID setting, making them less general than our results, as well as turning on specific forms
of regularization which are more rare in economics. For another view on this problem, McDonald
et al. [33] shows that using stationarity alone to regularize an AR model leads to bounds which are
much worse than those obtained here, despite the stricter assumption of bounded loss.

Rather than deriving bounds theoretically, one could attempt to estimate bounds on the risk.
While cross-validation is difficult, nonparametric bootstrap procedures may do better. A fully non-
parametric version is possible using the circular bootstrap reviewed in Lahiri [29]. Bootstrapping
lengthy out-of-sample sequences for testing fitted model predictions yields intuitively sensible esti-
mates of Rn(f), however, there is no theory that supports the coverage claim. Also, while models
like VARs can be fit quickly to simulated data, general state-space models, let alone DSGEs, require
large amounts of computational power.

Computational concerns also constrain our ability to estimate VC dimension via Algorithm 1.
While we can estimate vcd(F) to arbitrary precision, the algorithm requires the model to be fit
m × k times. For DSGE models, this is infeasible, even with appropriate parallelization and high
quality maximization routines. Another possible tack would be to use the DSGE to regularize a
VAR or VARMA model. Using the DSGE as a source of prior information as in Del Negro and
Schorfheide [12] may lead to a simpler procedure to estimate the VC dimension of an equivalent but
computationally more difficult model. Another possible simplification along the same lines could
use the methods of Juselius and Franchi [25] to convert the DSGE into a set of implementable
restrictions on a cointegrated VAR.

While our results are a crucial first step to the analysis of time series forecasts, many avenues
remain for future exploration. To gain a more complete picture of the performance of time series
forecasting algorithms, we would ideally wish to derive minimax lower bounds (cf. Tsybakov [47]).
These would give us an idea of the smallest risk we could hope to achieve using any forecasting
model in some larger model class. We could then ask whether any of the common models actually
in use can approach this minimum. Another possible avenue is to target not the ex ante risk of
the forecast, but the ex post regret: how much better might our forecasts have been, in retrospect
and on the actually-realized data, had we used a different prediction function from the model F
[8, 42]? Remarkably, we can find forecasters which have low ex post regret, even if the data came
from an adversary trying to make us perform badly. If we target regret rather than risk, we can
actually ignore mixing, and even stationarity [44].

An increased recognition of the abilities and benefits of statistical learning theory can be of

21



tremendous aid to financial and economic forecasters. The results presented here represent an
initial yet productive foray in this direction. They allow for principled model comparisons as well
as high probability performance guarantees. Future work will only serve to sharpen our ability to
measure predictive power.
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A Auxiliary results

Lemma A.1 (Lemma 4.1 in [52]). Let φ be a measurable function with respect to the block sequence
U uniformly bounded by M . Then,

|E[φ]− Ẽ[φ]| ≤Mβa(µ− 1), (69)

where the first expectation is with respect to the dependent block sequence, U, and Ẽ is with respect
to the independent sequence, U′.

This lemma essentially gives a method of applying IID results to β-mixing data. Because the
dependence decays as we increase the separation between blocks, widely spaced blocks are nearly
independent of each other. In particular, the difference between expectations over these nearly
independent blocks and expectations over blocks which are actually independent can be controlled
by the β-mixing coefficient.

Lemma A.2 (Theorem 5.4 in Vapnik [48]). Under Assumption B,

P

(
sup
f∈F

Rn(f)− R̂n(f)
q
√
Rqn(f)

> τ(q)ε

)
≤ 4 exp

{
vcd(F)

(
ln

2n

vcd(F)
+ 1

)
− nε2

4

}
. (70)

Lemma A.3 (Theorem 1.4 in McDonald et al. [31]). Choose δ > 4√
2mk

max{24c1, 29}. Let ρ > 0.

Set

ϕ = 13 exp

{
− mkδ2

16c2c3

}
. (71)

Then, for any classifier f ∈ F where F has estimated VC dimension ĥ, we have

P

(
sup
f∈F

∣∣∣Rn(f)− R̂n(f)
∣∣∣ > ρ

)
≤ 4GF (ĥ+ δ, 2n) exp{−nρ2}(1− ϕ) + ϕ. (72)

Here GF (h, n) = exp(h(log(n/h) + 1)) and c1, c2, c3 are given in [31].

B Proofs of results in §4
Proof of Lemma 4.6. The VC dimension of a linear classifier f : Rd → {0, 1} is d (cf. Vapnik [49]).
Real valued predictions have an extra degree of freedom.
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Proof of Theorem 4.7 and Corollary 4.8. By Theorem 4.4 and Lemma A.3, we have

P

(
sup
f∈F

Rn(f)− R̂n(f)

Rn(f)
> ε

)
(73)

≤ 8 exp

{
(ĥ+ δ)

(
ln

2µ

(ĥ+ δ)
+ 1

)
− µε2

4M2τ2(q)

}
(1− ϕ) + 2(µ− 1)βa−d(1− ϕ) + ϕ. (74)

Therefore, solving the equation

η′ = 8 exp

{
(ĥ+ δ)

(
ln

2µ

ĥ+ δ
+ 1

)
− µε2

4M2τ2(q)

}
(1− ϕ) (75)

implies

ε =
2Mτ(q)
√
µ

√
(ĥ+ δ)

(
ln

2µ

ĥ+ δ
+ 1

)
− ln

η′

8(1− ϕ)
= E . (76)

The remainder follows analogously to the proof of Theorem 4.4.

Proof of Theorem 4.9 and Corollary 4.10. Let F be indexed by the parameters of the state-space
model above such that it creates predictions via the Kalman filter. Let F ′ be the same class of
models, but predictions are made based on a filter sample truncated to have memory d. Then, for
any f ∈ F , and f ′ ∈ F ′

Rn(f)− R̃n(f) ≤ (Rn(f)−Rn(f ′)) + (Rn(f ′)− R̂n(f ′)) + (R̂n(f ′)− R̃n(f)). (77)

We will need to handle all three terms. The first and third terms are similar. Let B be as above
and define the truncated linear predictor to have the same form but with B replaced by

B′ = B− B̃ (78)

with

B̃ =



0 . . . 0 bn,n−d−1 bn,n−d−2 . . . bn,2 bn,1
0 . . . 0 0 bn−1,n−d−2 . . . bn−1,2 bn−1,1

. . .
...

0 . . . 0 bd+1,1

0 . . . 0 0


. (79)

Then notice that we can write

R̂n(f ′)− R̃n(f) ≤ |R̂n(f ′)− R̃n(f)| (80)

=

∣∣∣∣∣ 1

n− d− 1

n−1∑
i=d

∣∣∣∣Yi+1 − biY
i
i−d+1

∣∣∣∣− 1

n− d− 1

n−1∑
i=d

∣∣∣∣Yi+1 − b′iY
i
i−d+1

∣∣∣∣∣∣∣∣∣ (81)

≤ 1

n− d− 1

n−1∑
i=d

∣∣∣∣(bi − b′i)Y
i
i−d+1

∣∣∣∣ (82)
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by the triangle inequality where bi is the ith row of B and analogously for b′i. Therefore we have

R̂n(f ′)− R̃n(f) ≤ 1

n− d− 1

n−1∑
i=d

∣∣∣∣∣∣b̃iYi
i−d+1

∣∣∣∣∣∣ =
1

n− d− 1

n−1∑
i=d

∣∣∣∣∣∣
∣∣∣∣∣∣
i−d∑
j=1

bi,jyj

∣∣∣∣∣∣
∣∣∣∣∣∣ (83)

For the case of the expected risk, we need only consider the first rows of B and B′. Using
linearity of expectations and stationarity we have

Rn(f)−Rn(f ′) ≤ E
[
||Y1||

] ∣∣∣∣∣∣
∣∣∣∣∣∣
n−d−1∑
j=1

bn,j

∣∣∣∣∣∣
∣∣∣∣∣∣ . (84)

Then,
Rn(f)− R̃n(f)−∆d(f) ≤ Rn(f ′)− R̂n(f ′) (85)

where

∆d(f) = E
[
||Y1||

] ∣∣∣∣∣∣
∣∣∣∣∣∣
n−d−1∑
j=1

bn,j

∣∣∣∣∣∣
∣∣∣∣∣∣+

1

n− d− 1

n−1∑
i=d

∣∣∣∣∣∣
∣∣∣∣∣∣
i−d∑
j=1

bi,jyj

∣∣∣∣∣∣
∣∣∣∣∣∣ (86)

Divide through by Rn(f) and take the supremum over F and F ′

sup
f∈F

Rn(f)− R̃n(f)−∆d(f)

Rn(f)
≤ sup

f ′∈F ′,f∈F

Rn(f ′)− R̂n(f ′)

Rn(f)
. (87)

Finally, we have

sup
f∈F , f ′∈F ′

Rn(f ′)

Rn(f)
≤ 1 (88)

since F ′ ⊆ F . So,

sup
f ′∈F ′,f∈F

Rn(f ′)− R̂n(f ′)

Rn(f)
= sup

f ′∈F ′,f∈F

Rn(f ′)− R̂n(f ′)

Rn(f ′)

Rn(f ′)

Rn(f)
(89)

≤ sup
f ′∈F ′

Rn(f ′)− R̂n(f ′)

Rn(f ′)
. (90)

Now,

P

(
sup
f∈F

Rn(f)− R̃n(f)−∆d(f)

Rn(f)
> ε

)
≤ P

(
sup
f ′∈F ′

Rn(f ′)− R̂n(f ′)

Rn(f ′)
> ε

)
. (91)

Since F ′ is a class with finite memory, we can apply Theorem 4.4 and Corollary 4.5 to get the
results.

Proof of Corollary 4.11. This follows immediately from Corollary 4.10 and (59).
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