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Abstract. Evidence showing that individual behavior often deviates from the clas-

sical principle of preference maximization has raised at least two important questions:

(i) How serious are the deviations? and (ii) What is the best method for extracting

relevant information from choice behavior for the purposes of welfare analysis? This

paper addresses these questions by proposing an instrument to identify the preference

relation closest to the revealed choices and evaluate the inconsistencies in terms of

the associated welfare loss. We call this instrument the swaps index.
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1. Introduction

The standard model of individual behavior is based on the maximization principle,

whereby the alternative chosen by the individual is the one that maximizes a well-

behaved preference relation over the menu of available alternatives. This has two key

advantages. The first is that it provides a simple, versatile, and powerful account of

individual behavior. The second is that it suggests the maximized preference relation

as a tool for individual welfare analysis. That is, the standard approach to welfare eco-

nomics involves the policy-maker reproducing the decisions that the individual would

have made freely, if given the chance.

Research in recent years, however, has produced increasing amounts of evidence doc-

umenting deviations from the standard model of individual behavior. Some phenomena
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that have attracted a great deal of empirical and theoretical attention, and which prove

difficult, if not impossible, to accommodate within the classical theory of choice are

framing effects, menu effects, dependence on reference points, cyclic choice patterns,

choice overload effects, etc.1 The violation in some instances of the maximization

principle raises at least two important questions:

Q.1: How serious are the deviations from the classical theory?

Q.2: What is the best way to extract from the choices of the individual relevant

information for the purposes of welfare analysis?

Properly addressing Q.1 would enable us to evaluate how accurately the classical the-

ory of choice describes individual behavior. This would shift the focus from whether

or not individuals violate the maximization principle to how close their behavior is to

this benchmark. Moreover, the ability to assess the distance between actual behavior

and behavior consistent with the maximization of a preference relation would provide a

unique means to gain a deeper understanding of actual decision-making. Furthermore,

the possibility of performing meaningful comparisons of rationality would enable eval-

uation of deviations between various alternative models of choice and hence provide a

tool to give some structure to the rapidly growing literature on alternative individual

decision-making models (see section 6 for some recent examples).

Dealing with Q.2, meanwhile, would enable us to distinguish, from an external per-

spective, alternatives that are good for the individual from those that are bad, even

when the individual’s behavior is not fully consistent with the maximization principle.

This, of course, is of prime relevance since welfare analysis is a core area of economic

research.

Although these two questions are intimately related, the literature has treated them

separately. This paper provides the first unified treatment of the measurement of

rationality and welfare. Relying on standard revealed preference data, we propose an

instrument to identify the preference relation that is closest to the revealed choices,

by evaluating inconsistencies in the data in welfare terms. We call this instrument the

swaps index.

The swaps index evaluates the inconsistency in every observation unexplained by a

preference relation in terms of the number of available alternatives in the menu that

rank higher in the preference relation than the chosen one. That is, it counts the

number of alternatives in each menu that must be swapped with the chosen alternative

1We review the relevant literature in section 6.
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in order to rationalize the individual’s choices. Thus, the swaps index is given by the

preference relation that minimizes the total number of swaps in all the observations,

weighted by their relative occurrence in the data. As in the classical approach, the

swaps index uses the revealed choices to suggest a welfare ranking, interpreted as the

best approximation to the choices of the individual, and further complements it with a

measure of its accuracy: the inconsistency value. It contributes to the measurement of

rationality in a singular fashion by evaluating inconsistent behavior in terms of welfare

loss, thereby addressing the welfare implications of irrationality.

We then study the swaps index in detail. We begin, in section 3.2 with a simple

example to illustrate the contrast between the treatment given by the swaps index

to the measurement of rationality and proposals put forward in the literature. The

example presents two scenarios that the swaps index treats as diametrically different,

but that approaches in the literature may treat counter-intuitively.

In section 3.3 we compare the swaps index approach to welfare analysis with other

proposals found in the literature. This exercise illustrates that the preference relation

resulting from the swaps index ranks every pair of alternatives in light of the complete

set of choice data, not just those observations featuring both alternatives. In principle,

therefore, we propose a welfare criterion that provides the policy-maker with a tool to

endogenize all the consequences of ranking one alternative over another.

In section 3.4 we apply the swaps index to three prominent cases, and study the

preference relation that it identifies. In the first case, the random utility models, the

decision-maker has an unambiguous true preference relation that is subject to mistakes,

and hence may generate inconsistent revealed choices. We show that the swaps index

always identifies the true underlying preference. Then we study the endowment effect,

in which decision-makers typically value an alternative more highly when they own it.

Here we show that the swaps index identifies the rational preference relation, the one

that is independent of the reference point. Finally we study β − δ time preferences

and establish that in the space of time-consistent preferences, under certain regularity

conditions, the swaps index identifies the long-run preference relation, the one governed

by the δ.

We then aim to gain a deeper understanding of the swaps index, by providing its com-

plete axiomatic characterization. In section 4 we propose seven properties that should

be satisfied by any inconsistency index relying exclusively on the endogenous informa-

tion arising from the choice data, and show that they completely characterize the swaps
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index. Remarkably, this exercise makes the swaps index the first axiomatically-founded

inconsistency measure in the literature.

In section 5, we study three novel generalizations of the swaps index, which, in

different ways, use different kinds of information exogenous to the revealed choices,

which may sometimes be available to the analyst and prove useful in the measurement

of rationality and welfare. Importantly, the three proposals have a structural analogy

with the swaps index, in that they identify the preference relation that is closest to

observed behavior by additively evaluating the inconsistency of the data, measured in

welfare terms. The first of the generalizations, which we call the non-neutral swaps

index makes use of information on the nature of the alternatives, such as their monetary

value. Based on this information, the non-neutral swaps index assigns different weights

to the various alternatives in the upper contour sets. The second generalization, which

we call the positional swaps index, is appropriate when information is available on the

cardinal utility values of the alternatives based on their position in the ranking. It then

weights an inconsistent choice by the sum of the utility value of the forgone alternatives.

This can be interpreted as the total utility loss for the inconsistent choice in that

observation. The last of our proposed indices, the general weighted index, represents a

broad generalization of the previous ones. General weighted indices are flexible enough

to evaluate the inconsistency of choice by weighting each inconsistent observation by

the possible underlying values of the alternatives, the values of the various menus

of alternatives, and using specific priors on the plausibility of the different welfare

rankings. In section 5 we provide the complete characterizations of these three cases,

which, importantly, proceed by relaxing some of the properties characterizing the swaps

index.

In section 5 we also study two classical indices within our framework, the Varian

and Houtman-Maks indices, and illustrate their structural commonality with the swaps

index in that they are part of the general weighted index. In so doing, we offer axiomatic

characterizations of these versions of Varian and Houtman-Maks. Finally, we also argue

that the recent money pump index of Echenique, Lee and Shum (2011) is fundamentally

different from the swaps index, since it is not a special case of the general weighted

index.

The organization of the rest of the paper is as follows. Section 6 offers a brief review

of the relevant literature and section 7 concludes the paper. All the proofs are contained

in the appendix.
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2. Framework

Let X be a finite set of k alternatives. Denote by O the set of all possible pairs

(A, a), where A ⊆ X and a ∈ A. We refer to such pairs as observations. Individual

behavior is summarized by the relative number of times each observation (A, a) occurs

in the data. Then, a collection of observations f assigns to each observation (A, a)

a positive real value denoted by f(A, a), with
∑

(A,a) f(A, a) = 1, interpreted as the

relative frequency with which the individual confronts menu A and chooses alternative

a. Denote by F the set of all such possible collections of observations.

Both the set of alternatives X and the collection of observations f are part of the

primitives in our exercise, and hence are taken as given. As is customary in the liter-

ature, the grand set of alternatives X is a full description of all the relevant feasible

alternatives. The collection f describes all the revealed choices of the individual, which

constitute the empirical data to be evaluated in terms of rationality and welfare. The

collection f allows for the possibility of accounting different observations with different

frequencies. This is natural in empirical applications, where exogenous variations re-

quire the decision-maker to confront the menus of alternatives in uneven proportions.

Consider, for example, the case of consumption data analysis, where the menus faced

by the consumer are dictated by prices and wealth, which do not necessarily change

uniformly. Furthermore, for the purposes of the present exercise, it is important to

take into account the relative frequencies of choices, which, as shown in section 3.4,

may, in some settings, be associated with intensities of preference, and provide crucial

information on the underlying welfare ranking.

Another key ingredient in our framework are preference relations. A preference rela-

tion P is a strict linear order on X; that is, an asymmetric, transitive, and connected

binary relation. Denote by P the set of all possible linear orders on X. The collection

of observations f is rationalizable if every single observation present in the data can be

explained by the maximization of the same preference relation. Denote by m(P,A) the

maximal element in A according to P . Then, formally, we say that f is rationalizable

if there exists a preference relation P such that m(P,A) = a for every (A, a) with

f(A, a) > 0. We will often use P f to denote a preference relation rationalizing the ra-

tionalizable collection f . Clearly, not every collection of observations is rationalizable.

An inconsistency index is a mapping I : F → R+ that measures how inconsistent, or

how far removed from rationalizability, a collection of observations is.
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3. The Swaps Index

3.1. Definition. Consider a given preference relation P and an observation (A, a)

that is inconsistent with the maximization of P . This implies that there is a number of

alternatives in A that are preferred to the chosen alternative a, according to P , but that

are nevertheless ignored by the individual. It is natural, therefore, to entertain that the

inconsistency of observation (A, a) with respect to P entails considering the number

of alternatives in A that rank higher than the chosen one, namely |{x ∈ A : xPa}|.
These are the alternatives that must be swapped with the chosen one in order to make

the choice of a consistent with the maximization of P . It then follows that, weighting

every single observation by its relative occurrence in the data, the inconsistency of f

with respect to P would be
∑

(A,a) f(A, a)|{x ∈ A : xPa}|. The swaps index IS adopts

this criterion and finds the preference relation PS that minimizes the weighted sum of

swaps. That is:

IS(f) = min
P

∑
(A,a)

f(A, a)|{x ∈ A : xPa}|.

The swaps index has several attractive characteristics that make it unique. Notably,

it enables the joint treatment of inconsistency and welfare analysis. It identifies the

preference relation closest to the revealed data, measuring its inconsistency in terms of

the associated welfare loss. It discriminates between different degrees of inconsistency

in the various choices, relying exclusively on the information contained in the choice

data, and additively considers every single inconsistent observation weighted by its rel-

ative occurrence in the data. Moreover, one can easily show that almost all collections

of observations f have a unique optimal preference relation PS.2 We now turn to the

study of various important issues relating to the swaps index.3

3.2. The Measurement of Rationality: A Comparison. We illustrate the swaps

index treatment of rationality assessment by way of a simple example, and contrast this

with other proposals in the literature. The example shows that the swaps index dis-

criminates sharply between different situations that may be treated counter-intuitively

by the inconsistency measures offered in the literature.

Consider the set of alternatives X = {1, . . . , k}, with k > 2. Suppose that the collec-

tion f is completely consistent with the preference relation P , ranking the alternatives

2Formally, PS is a mapping from F to P; in order to avoid excess notation we write PS instead of

PS(f).
3In addition, in Appendix A we deal with the computational complexity of obtaining PS in practice.



7

as 1P2P . . . Pk. Now assume two different scenarios, both involving the consistent

evidence f with a high frequency, say (1 − α), and one inconsistent observation with

a low frequency α. In scenario I we observe that the individual chooses option k from

menu X, while in scenario II we observe that the individual chooses option 2 from

menu X. Clearly, the two scenarios are inconsistent, since we are assuming that there

is sound evidence indicating that the individual should have chosen option 1 in both

scenarios. This raises the question of how inconsistent these decisions are. The swaps

index sees the two scenarios as representing markedly different situations. Scenario I

shows high inconsistency, since the individual chooses the worst possible alternative,

alternative k, ignoring all those remaining, which have, in fact, been shown to be better

than the selected alternative k. Scenario II, also shows some inconsistency with the

maximization principle, but, from the swaps index perspective, this inconsistency is

orders of magnitude lower, since it involves choosing the second best available option,

that is, option 2. Rationalization of the individual’s behavior in scenario II requires

ignoring only of alternative 1, while the case of scenario I requires ignoring of every

single alternative in X except the chosen one, k. Hence, the swaps index discriminates

between the two different scenarios in an intuitive way, offering an unambiguous answer

based on the welfare implications of the inconsistent choice.

We now turn to the treatment given to the two scenarios under the classical pro-

posals in the literature. To the best of our knowledge, the first method to measure

inconsistency of behavior was proposed by Afriat (1973). In a consumer setting, Afriat

suggests measuring the degree of relative wealth adjustment required in each budget

constraint to avoid all violations of the maximization principle. The idea is that when

a portion of the wealth is considered all budget sets shrink, thus eliminating some re-

vealed information, and thereby possibly removing some inconsistencies from the data.

Then, the degree of inconsistency of a collection of observations proposed by Afriat is

associated with the minimal wealth adjustment needed to make all the data consistent

with the maximization principle. Therefore, Afriat’s judgement of scenarios I and II

depends crucially on some external structure, such as the monetary values of the alter-

natives. The latter, of course, need not necessarily agree with the welfare ranking, and

hence may lead to conclusions contradicting the intuitive view that scenario I shows

greater inconsistency. For example, if the monetary value of option k is higher than

that of option 2, Afriat would judge scenario II more inconsistent than scenario I, since

it would require a larger wealth adjustment to remove it from the data.
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Varian (1990) extends Afriat to contemplate different relative wealth adjustments in

the different observations, and then consider the aggregated relative wealth adjustments

that would be required to prevent all the inconsistencies from being revealed. In our

example, since both scenarios involve a single inconsistent observation with the same

weight, Afriat and Varian coincide.

Houtman and Maks (1985) propose considering the minimal subset of observations

that needs to be removed from the data in order to make the remainder rationalizable.

The size of this minimal subset to be discarded suggests itself as a measure of incon-

sistency. In our example, since the sizes of the inconsistencies are identical in both

scenarios, Houtman and Maks do not discriminate between them. Dean and Martin

(2012) suggest an extension of Houtman and Maks, the HM-e index, which weights

the binary comparisons of the alternatives by their monetary values. Hence, the HM-e

index depends, like the Afriat index, on this kind of exogenous information.

Finally, rationality has also been measured by counting the number of times in the

data a consistency property, such as IIA or GARP, is violated (see, e.g., Swofford and

Whitney, 1987; Famulari, 1995). It turns out that the conclusions of this criterion in

our example depend on the specific nature of the consistent part of the collection of

observations, whereby the two scenarios may be treated alike, or scenario II may even

be regarded as more inconsistent. Recently, Echenique, Lee and Shum (2011) make

use of the monetary structure of budget sets to suggest a new measure, the money

pump index, which evaluates not only the number of times GARP is violated, but also

the severity of each violation. Their proposal is to weight every cycle in the data by

the amount of money that could be extracted from the consumer. They then consider

the total wealth lost in all the revealed cycles. The money pump index judges the two

scenarios both on the specific nature of the rationalizable collection f and, like the

Afriat index, on exogenous information on the monetary values of the alternatives.

3.3. The Measurement of Welfare: A Comparison. Let us illustrate our ap-

proach to welfare analysis by contrasting it with two pioneering proposals in the lit-

erature, Bernheim and Rangel (2009) and Green and Hojman (2009). Interestingly,

although these two papers tackle the problem from different angles, they independently

suggest the use of the same welfare notion. Let us denote by P the Bernheim-Rangel-

Green-Hojman preference, defined as xPy if and only if there is no observation (A, y)

with x ∈ A such that f(A, y) > 0. In other words, x is ranked above y in the welfare

ranking P if y is never chosen when x is available. Bernheim and Rangel show that
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whenever every menu A in X is present in the data, P is acyclic, and hence consistent

with the maximization principle.

We now examine the relationship between P and the optimal preference relation of

the swaps index PS. It turns out to be the case that the two welfare relations are

fundamentally different. That PS is not contained in P follows immediately since PS

is a linear order, while P is incomplete in general. In the other direction, and more

importantly, note that while P evaluates the ranking of two alternatives x and y by

taking into account only those menus of alternatives where both x and y are available,

PS takes all the data into consideration. Hence, PS and P may rank two alternatives

in opposite directions. A simple example illustrates this point.

Consider a collection f where: f({x, y}, x) = f({y, z}, y) = 1−2ε
2

and f({x, y, z}, y) =

f({x, z}, z) = ε, where ε is small. Clearly, zPx since x is never chosen in the presence of

z. However, to evaluate the ranking of alternatives x and z, the swaps index considers

the whole collection f . Data f({x, y}, x) = f({y, z}, y) = 1−2ε
2

signify a strong argu-

ment for the preference ranking x over y and y over z, and consequently x over z. This

preference implies that the data f({x, y, z}, y) = f({x, z}, z) = ε are not accounted

for, but rationalizes the more frequent evidence of ({x, y}, x) and ({y, z}, y). In fact,

for every sufficiently small ε such a preference is the optimal preference relation PS for

the swaps index, and hence P and PS may follow different directions.

3.4. Identifying the Underlying Preference Relation. Here we study three set-

tings, very diverse in nature, and study the preference relation that the swaps index

uncovers from the possibly inconsistent data. In a nutshell, we show that the swaps

index identifies (i) in the random utility models, the true underlying preference, the one

that is not subject to mistakes, (ii) in the endowment effect, the rational preference,

the one that is not subject to the distortion of the reference point, and (iii) in the β−δ
model, among the time-consistent preferences, the long-run preference governed by the

δ parameter.

3.4.1. Random Utility Models. Consider a situation where the decision-maker has in

mind a preference relation over the alternatives, but when the time comes to select her

preferred option, she mistakenly chooses a suboptimal alternative. Mistakes may arise

from lack of attention, errors of calculation, misunderstanding of the choice situation,
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or a ‘trembling hand’ when about to select the desired alternative, etc. This is the case

in the highly influential and widely used random utility models.4

Consider a utility function u : X → R++, that assigns to each alternative a cardinal

utility value.5 The utility function u represents the true preference relation of the

individual P u, that is xP uy if and only if u(x) > u(y). However, the true valuation of

the alternatives u(x) is subject to random shocks ε(x), resulting in the final valuation

of the alternatives as U(x) = u(x) + ε(x). That is, the valuation U(x) depends on

the true utility function u(x), but also on a random mistake variable ε(x), which, as is

customary in the literature, we assume to be continuous i.i.d. Different random utility

models assume different distributions. For example, when ε(x) is an Extreme Value

Type I random variable, we obtain the prominent Luce model.

We now formalize the way in which a random utility model generates a collection of

observations. First, let us put the case that the individual faces the menus of alterna-

tives with a certain probability distribution ρ, where ρ(A) denotes the probability of

confronting A ⊆ X. Then, each observation is generated by a draw that is indepen-

dent both of the menu and of the shocks in the alternatives contained in the menu,

with the individual choosing the alternative that maximizes U . We can now define the

collection of observations generated by the random utility model associated with the

parameters (ρ, u, ε), denoted by fρ,u,ε, as fρ,u,ε(A, a) = ρ(A)Pr[a = arg maxx∈A U(x)],

for every (A, a) ∈ O, where Pr[a = arg maxx∈A U(x)] denotes the probability by which

alternative a is the maximal alternative in A according to U .6

Our next result establishes that the swaps index identifies the true underlying pref-

erence P u for every collection of observations generated by a random utility model. It

is particularly interesting that when all the menus are present in the data, then the

swaps index uniquely identifies the preference P u.7

Theorem 1. For every collection of observations generated by a random utility model,

fρ,u,ε, the preference P u is an argument that minimizes the swaps index. Moreover,

4Classic references are Luce (1959) and McFadden (1974). More recent developments are Gul,

Natenzon and Pesendorfer (2012) and Manzini and Mariotti (2013).
5For simplicity of exposition, assume that u(x) 6= u(y) for every x, y ∈ X, x 6= y.
6Notice that, since ε(x) is continuously distributed, the probability of ties is zero and hence Pr[a =

arg maxx∈A U(x)] is well-defined.
7We obtain an equivalent result for the tremble model of mistakes (see Harless and Camerer, 1994),

where these take the form of constant probability shocks, as in the trembling hand equilibrium of

game theory. We could provide the details upon request.
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whenever ρ(A) > 0 holds for every menu A, the preference P u is the unique argument

that minimizes the swaps index.

3.4.2. Endowment Effect. There is a large literature supporting the view that a decision-

maker typically values an alternative more highly when she owns it, than otherwise; this

is the so-called endowment effect. The endowment effect has profound implications for

the understanding of the valuation of objects, contingent on property rights, and it has

been shown to play an important role in a variety of settings like the housing market,

the stock market, etc.8 Here we adapt the revealed preference model of Masatlioglu

and Ok (2005, 2013) to our setting, and show that, under certain regularity conditions,

the swaps index identifies the underlying rational preference relation.

An extended menu Ar is composed of a menu A and a reference point r ∈ A ∪ {�}.
The case of r = � 6∈ X represents the case where the decision-maker chooses without

a reference point, as in the standard rational model. The case r ∈ A represents the

case in which at the time of contemplating menu A, the decision-maker has in mind

alternative r ∈ A, which may bias the choice from A, since alternative r get an “utility

boost”. Consider then a function u : X → R and a parameter φ ∈ R+ such that, for

every extended menu Ar, the selected alternative is the argument in A that maximizes

u(x) + φδr=x. The indicator function δr=x gives a value of 1 whenever the reference

point r is the alternative x, and 0 otherwise.9 Consequently, option r gets the “utility

boost” φ if and only if r is the reference point. When there is no reference point, i.e.

r = � 6∈ X, the individual simply maximizes the standard utility function u(x). Denote

by P u the ordinal preference relation represented by u(x).

Let us denote by ρ(Ar) the probability of confronting the extended menu Ar. The col-

lection of observations generated by the endowment effect model associated with the pa-

rameters (ρ, u, φ), denoted by fρ,u,φ, is fρ,u,φ(A, a) =
∑

r∈A∪{�} ρ(Ar)δa=arg maxA u(x)+φδr=x .

We say that a collection of observations fρ,u,φ is reference-regular, if for every menu

A, and for every pair of alternatives x, y ∈ A, u(x) > u(y) implies that ρ(Ax) ≥ ρ(Ay).

Intuitively, this represents the case where stronger reference points are found more

often as reference points in the data. Our next result establishes that whenever the

8See Thaler (1980) and Kahneman, Knetsch and Thaler (1990). See also Genesove and Mayer

(2001) and Barberis and Xiong (2009).
9Let us assume that u and φ are such that for every extended menu the set of selected alternatives

is a singleton.
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collection of observations is reference-regular, the swaps index identifies the preference

P u.

Theorem 2. For every reference-regular collection of observations fρ,u,φ, the preference

P u is an argument that minimizes the swaps index. Moreover, whenever ρ(A�) > 0

holds for every menu A, the preference P u is the unique argument that minimizes the

swaps index.

3.4.3. β − δ Preferences. The standard model of time preferences uses an exponential

discount function, implying that the preferences of the decision-maker over time are

time-consistent. However, evidence shows that people tend to use greater discount

rates for the short-run than for the long-run, which has lead to the adoption in many

situations of a hyperbolic discount function. The β− δ model here studied is the most

influential model using a hyperbolic discount function.10

Let O = {o1, . . . , ok} be a set of monetary outcomes, with o1 < o2 < · · · < ok. Let

u : O → [0, 1] be a utility function over outcomes. For tractability, we assume that O is

sufficiently large and utilities are distributed uniformly.11 An alternative x = (o, t) is a

pair describing an outcome o ∈ O dated in a certain moment in time t ∈ {0, 1, . . . , T}.
Therefore, X = O × {0, 1, . . . , T}.12

In the β − δ model, the valuation of (o, t) is Uβ,δ(o, t) = u(o) whenever t = 0 and

Uβ,δ(o, t) = βδtu(o) whenever t > 0, with β, δ ∈ [0, 1].13 Denote by PUβ,δ the preference

relation over X represented by such utility function and by ρ(A) the probability of

confronting menu A ⊆ X. Then, the collection of observations generated by the β − δ
model associated with the parameters (ρ, Uβ,δ), denoted by fρ,Uβ,δ , is fρ,Uβ,δ(A, a) =

ρ(A) whenever a = arg maxx∈A Uβ,δ(x), and fρ,Uβ,δ(A, a) = 0 otherwise.

It is convenient to notice that the β−δ model departs from the standard exponential

model only in the discount function. That is, completeness and transitivity still hold,

and hence it follows immmediately that for every collection of observations fρ,Uβ,δ , the

preference PUβ,δ is an argument that minimizes the swaps index. Moreover, whenever

ρ(A) > 0 holds for every menu A, the preference PUβ,δ is the unique argument that

10See Strotz (1956) and Laibson (1997). See also O’Donoghue and Rabin (1999) and Blow and

Crawford (2013).
11Formally, this implies that |{i : u(oi) ∈ [a, b]}|/k can be approximated by (b− a).
12This is the time preference setting of Fishburn and Rubinstein (1982) and more recently of Ok

and Masatlioglu (2007).
13We assume that Uβ,δ(x) 6= Uβ,δ(y) for every x, y ∈ X.
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minimizes the swaps index. Indeed, in any case, the inconsistency associated to the

collection of observations is zero, and therefore the swaps index always identifes the

underlying preference relation PUβ,δ with no associated error.

In occasions, however, we are interested in the best preference relation within a

subset of the set of linear orders. In particular, in the present context, we wonder

about the time-consistent preference that best explains the data. That is, we aim to

judge a possibly time-inconsistent collection of observations, from the perspective of

the standard exponential time preference model. The evaluation of alternative (o, t) in

the standard discounted utility model is Vα(o, t) = αtu(o) for every t, with α ∈ [0, 1].14

Let P Vα denote the preference relation over X represented by such utility function, and

by PS the set of preference relations over X that admit such stationary representation.

Clearly, PS ⊂ P . The purpose now is to identify the preference in PS that best

approximates the data fρ,Uβδ .

In the second part of the following result we assume that there is no bias on the

different timings of the alternatives. That is, we say that the collection of observations

is time-regular if the frequency with which each time appears in the data is equal and

independent of the outcomes.

Theorem 3. For every collection of observations generated by a β − δ model, fρ,Uβ,δ ,

there exists an α ∈ [βδ, δ] such that the stationary preference relation given by α min-

imizes the swaps index in PS. Moreover, there is a T̂ such that whenever fρ,Uβ,δ is

time-regular and T > T̂ , the stationary preference relation given by δ is the unique

minimizer.

Theorem 3 establishes that, under a regularity condition, the unique preference re-

lation identified by the swaps index is the long-run preference of the β − δ model, the

one governed by δ. The proof of Theorem 3 shows that the threshold T̂ can be very

low in practice. It is shown that when fρ,Uβ,δ is a time-regular collection composed by

the binary menus T̂ = 3.

4. A Characterization of the Swaps Index

In this section we propose seven conditions that shape the treatment that an incon-

sistency index I may give to different sorts of collections of observations. We then show

14Again, assume that Vα(x) 6= Vα(y) for every x, y ∈ X.
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that the swaps index is characterized by this set of properties. As we will argue in sec-

tion 5, the first four properties are the minimal set of properties that any inconsistency

function must possess, while the appeal of the last three properties may depend on the

possible availability of additional external information on the nature of the menus, the

nature of the alternatives, or both. For the time being, when no information other than

the revealed choices is assumed to be available, we contend that all seven properties

are desirable and that any inconsistency function I should ideally satisfy them.

Continuity (CONT). I is a continuous function. That is, for every sequence {fn} ⊆
F , if fn → f , then I(fn)→ I(f).

This is the standard definition of continuity, and its justification is in turn the

standard one. Namely, it is desirable that the inconsistency value does not change

abruptly when there is a small variation in the data.

Rationality (RAT). For every f ∈ F , I(f) = 0 if and only if f is rationalizable.

Rationality imposes that a collection of observations is perfectly consistent if and

only if the collection is rationalizable. In line with the maximization principle, Ratio-

nality establishes that the minimal inconsistency level of 0 is reached only when every

single choice in the collection of observations can be explained by maximizing the same

preference relation.

Concavity (CONC). I is a concave function. That is, for every f, g ∈ F and every

α ∈ [0, 1], I(αf + (1− α)g) ≥ αI(f) + (1− α)I(g).

To illustrate that this is a desirable property in our context, take any two collec-

tions of observations f and g, and suppose that these are rationalizable when taken

separately. Clearly, a convex combination of f and g does not need to be rationaliz-

able and hence, the collection of observations αf + (1 − α)g can only take the same

or a higher inconsistency value than the combination of the inconsistency values of

the two collections separately. The same idea applies when either f or g or both are

not rationalizable. The combination of f and g can only generate the same or more

frictions with the maximization principle, and hence should yield the same or a higher

inconsistency value.

In practical data analysis, for ease of procedure, it is often desirable for the function

of study to be linear. In our context, linearity would imply that for every α ∈ [0, 1],

I(αf + (1 − α)g) = αI(f) + (1 − α)I(g). Hence, we could compute the inconsistency
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value of a combination of two collections of observations by simply combining the cor-

responding inconsistency values. However, this property is too strong to be imposed

on an inconsistency function, as the above discussion of Concavity shows. Note that

linearity and the property of Rationality are, in fact, logically inconsistent. This is

because Rationality implies that the inconsistency is 0 for the rationalizable collections

of observations. Since any collection of observations can be expressed as the combina-

tion of rationalizable collections, linearity would imply that the inconsistency of any

collection is 0, but this contradicts Rationality.

We now introduce a property, Piecewise Linearity, that solves this difficulty by min-

imally departing from the notion of linearity. Piecewise Linearity imposes linearity not

on the entire domain F , but only within subdomains of F that are organized on the

basis of rationalizable collections of observations. LetR be the set of rationalizable col-

lections of observations that assign the same relative frequency to each possible menu

of alternatives A ⊆ X. Notice that every collection r ∈ R is rationalized by a unique

preference relation P r.15 Piecewise Linearity creates as many subdomains as elements

in R, or equivalently, as preferences on X. The different collections of observations are

then organized in such subdomains. To emphasize, Piecewise Linearity implies that

every collection of observations is associated with a rationalizable collection, and thus

is judged from the perspective of a preference relation. This is most natural when one

aims to understand departures from the classical notion of rationality, as in our case.

Formally, a cover C = {Cj} of F is rationally founded if each subdomain Cj contains

one and only one element rj of R.16

Piecewise Linearity (PWL). I is a piecewise linear function with respect to a ra-

tionally founded cover C. That is, for every j, every f, g ∈ Cj and every α ∈ [0, 1],

I(αf + (1− α)g) = αI(f) + (1− α)I(g).

Continuity, Rationality, Concavity and Piecewise Linearity are four general prop-

erties that should be satisfied by every inconsistency index aiming to measure the

distance between actual behavior and the maximization of a preference relation. This

will become apparent in the next section. We now introduce three more properties

that are attractive when no information beyond the revealed data is available. To do

15The purpose here is to create a bijection between P and a set of rationalizable collections of

observations. The set R is just an intuitive way of creating this bijection, that comes without loss of

generality.
16To recall, for C to be a cover of F implies that ∪jCj = F .
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so, let us first consider the following notation. We denote by 1(A,x) the collection of

observations placing all the mass on (A, x).

Ordinal Consistency (OC). For every (A, x) ∈ O and every r, r′ ∈ R with r({a, b}, a) =

r′({a, b}, a) for all a, b ∈ A, I(α1(A,x) + (1− α)r) = I(α1(A,x) + (1− α)r′) for any suffi-

ciently small α > 0.

Consider the combinations of two rationalizable collections of observations, r and r′,

with 1(A,x). Under certain conditions, Ordinal Consistency imposes that the inconsis-

tency levels associated with the two resulting combinations should be equal. Intuitively,

whenever the two rationalizable collections are sufficiently prevalent in the respective

combinations, and their associated preference relations, P r and P r′ , coincide exactly

in the valuation of every single possible pair of alternatives in A, then the resulting

inconsistencies should be the same.

The purpose of the requirement that the rationalizable collections of observations

should be sufficiently prevalent, or equivalently, that α should be sufficiently small, is to

guarantee that 1(A,x) is judged, in both cases, from the perspective of the corresponding

rationalizable collections. This ensures that possible inconsistencies in the combined

collections are evaluated from the viewpoint of the corresponding preference relations

P r and P r′ , that coincide in the ranking of all the alternatives in A. Otherwise, if the

weight of 1(A,x) is large, the inconsistencies associated with the combined collections

α1(A,x) + (1 − α)r and α1(A,x) + (1 − α)r′ may be assessed from the standpoint of

preference relations other than P r and P r′ , in which case the inconsistencies of the

combined collections may be very different in nature. In the latter case, it would make

little sense to impose that the inconsistency index I should treat the two cases alike.

Disjoint Composition (DC). For every (A1, x), (A2, x) ∈ O with A1 ∩ A2 = {x}
and every r ∈ R, I(α1(A1∪A2,x) + (1−α)r) = I(α1(A1,x) +α1(A2,x) + (1− 2α)r) for any

sufficiently small α > 0.

Disjoint Composition establishes that, under very special circumstances, two collec-

tions of observations can be merged without affecting the inconsistency level. Take

the collections 1(A1,x) and 1(A2,x) where menus A1 and A2 share the same chosen al-

ternative x and nothing else. Suppose that these two collections are combined with a

rationalizable collection r, provided that the rationalizable collection r is sufficiently
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prevalent.17 Then, Disjoint Composition implies that the collections 1(A1,x) and 1(A2,x)

can be merged into 1(A1∪A2,x), while respecting the prevalence of r, and with no conse-

quences for the the inconsistency value.

In order to introduce our last property, let us consider the following definition. Given

a permutation σ over the set of alternatives X, for any collection of observations f

we denote by σ(f) the permuted collection of observations such that σ(f)(A, a) =

f(σ(A), σ(a)).

Neutrality (NEU). For every permutation σ and every f ∈ F , I(f) = I(σ(f)).

Neutrality imposes that the inconsistency index should be independent of the names

of the alternatives. That is, any relabeling of the alternatives should have no effect on

the level of inconsistency. Theorem 4 states the characterization result.

Theorem 4. An inconsistency index I satisfies CONT, RAT, CONC, PWL, OC, DC

and NEU if and only if it is a positive scalar transformation of the swaps index.

Remark 1. We now comment on the intuition of the main steps involved in the proof

of the sufficiency part of Theorem 4.

(i) By way of Piecewise Linearity, we start with a rationally founded cover of all

collections of observations over which the index is piecewise linear. In steps 1 to 3 in

the proof of Theorem 4, we show, using Rationality, Continuity and Piecewise Linearity,

how we can extend each of the classes of the cover to the convex hull of its closure

to obtain another rationally founded cover, over which the index is piecewise linear.

Moreover, we show that the rationalizable collections of observations are not in the

boundary of the new classes.

(ii) In step 4 we assign to each preference P and each observation (A, a), a weight

w(P,A, a). To enable this, we argue that any collection 1(A,a) can be combined with

any rationalizable collection r such that the resulting collection of observations belongs

to the same subdomain of r, provided that the rationalizable collection r is sufficiently

prevalent. That is, since r is not in the boundary of its class, there is a value αr such

that for every α ≤ αr, and every (A, a), the collection of observations α1(A,a) +(1−α)r

is in the subdomain of r. Then, we can define w(P r, A, a) =
I(αr1(A,a)+(1−αr)r)

αr
. That

is, we set the weight of the inconsistency associated with the choice of a from menu

17The intuition for the requirement that the rationalizable collection of observations r should be

sufficiently prevalent in the combined collections is analogous to that of Ordinal Consistency, discussed

above. This also applies to those of the following properties that impose this condition.
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A from the viewpoint of P r, w(P r, A, a), as the normalized value of the inconsistency

generated by 1(A,a) when combined with the rationalizable collection r at the level αr.

This guarantees that the resulting combination belongs to the subdomain of r, and

hence can be judged from the perspective of P r.

(iii) In step 5, linearity allows us to compute the inconsistency of the collection f

belonging to the subdomain of r, as I(f) =
∑

(A,a) f(A, a)w(P r, A, a). That is, we

can separate the inconsistency of f on the basis of the different observations (A, a)

and weight each of these observations by the constructed weights w(P r, A, a) and its

relative occurrence in the data f(A, a).

(iv) In step 6, by Concavity we can show that the value of f is indeed minimal across all

the preference relations, i.e., I(f) =
∑

(A,a) f(A, a)w(P r, A, a) ≤
∑

(A,a) f(A, a)w(P ′, A, a)

for any other preference P ′. We also show there that w(P r, A, a) = 0 if and only if a

is maximal in A according to P r. Since all the steps in this part of the proof use only

the four mentioned properties and the index we have represented so far takes the form

I(f) = minP
∑

(A,a) f(A, a)w(P,A, a), this gives the intuition of the characterization

of the general weighted index IG of Proposition 3, to be studied later in section 5.3.

(v) In steps 7 to 9 we show the extra implications of Ordinal Consistency, Disjoint

Composition and Neutrality, and in the final step 10 we combine all these to show that

the index must be a scalar transformation of the swaps index. Intuitively, applying

Ordinal Consistency and Disjoint Composition, we show that for every (A, a) and every

pair of preferences P and P ′ such that coincide in their ranking of all the alternatives

in A, w(P,A, a) =
∑

y∈Aw(P, {a, y}, a) =
∑

y∈Aw(P ′, {a, y}, a) = w(P ′, A, a). That

is, as long as the preference relations give the same upper contour set, the weight

does not depend on the particular preference relation and can, in fact, be additively

decomposed into the binary sets encompassing the choice from A and the elements in

the upper contour set. Finally, Neutrality shows that w(P, {x, y}, x) = w(P ′, {z, t}, z),
provided that the comparison of x and y by P is the same as the comparison of z

and t by P ′. Taking these results together, we then show that we can write I(f) =

minP
∑

(A,a) f(A, a)w(P r, A, a) = K minP
∑

(A,a) f(A, a)|{x ∈ A : xP ra}|, with K > 0,

which shows that I is a positive scalar transformation of the swaps index.

Remark 2. Piecewise Linearity organizes the collections of observations on the basis

of the rationalizable collections R, and imposes linearity within the different subdo-

mains. We have argued that this is a natural approach when one aims to understand

the distance of the revealed choices of an individual with respect to the preference
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maximization model. Here, we note that exactly the same logic can be applied to

measure their distance with respect to other models of reference. In settings involving

uncertainty, for example, one may want to measure the distance with respect to the

subset of R that satisfies independence; or, in the case of time preferences, with respect

to the subset of R that satisfies stationarity, as we have done in section 3.4.3, etc. Fur-

thermore, the same approach can be adopted for other non-rationalizable models that

might be taken as the benchmark of comparison, such as reference-dependent models,

etc. In this case, the choice datasets would be organized on the basis of the different

models of reference-dependence. Thus, we believe that our characterization exercise is

very flexible and may be helpful in settings other than the one studied here. It can be

taken as providing a framework for the axiomatic development of inconsistency indices

measuring the distance between behavior and other relevant models of choice.

5. Extensions of the Swaps Index

One of the features of the swaps index is its exclusive reliance on the endogenous

information contained in the revealed choices. This makes the swaps index particularly

interesting and amenable for use in applications. On occasions, however, the analyst

may have more information and may want to use it to assess the consistency of choice,

and identify the optimal welfare ranking. For this reason, in this section we propose

three extensions, the non-neutral swaps index, the positional swaps index and the gen-

eral weighted index, which vary in the use they make of information external to the

revealed preferences. Importantly, the three generalizations follow readily by relaxing

some of the characterizing properties of the swaps index. The general weighted index,

characterized by the first four axioms of Continuity, Rationality, Concavity and Piece-

wise Linearity, emerges as the broadest class of indices in our approach. In addition,

we also study the classical Varian and Houtman-Maks indices within our framework,

and demonstrate their structural commonality with the swaps index, in that they are

part of the general weighted index. All these characterizations contribute to a deeper

understanding of the indices. Finally, we also argue that the recent money pump index

of Echenique, Lee and Shum (2011) is fundamentally different from the swaps index,

since it is not a special case of the general weighted index.

5.1. Non-Neutral Swaps Index. Suppose that the analyst has at her disposal ad-

ditional information on the nature of the alternatives, and that she wants to use it
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in the assessment of rationality and welfare. In this case, it seems logical to argue

that it is not just the number of alternatives in the upper contour set that should be

relevant, but also their nature. For example, the analyst may consider a metric among

the alternatives, say their monetary values or an aggregation of their attributes, and

judge each alternative in the upper contour set by its distance from the chosen alter-

native. Formally, this would imply the following inconsistency index, which we call the

non-neutral swaps index,

INNS(f) = min
P

∑
(A,a)

f(A, a)
∑

x∈A:xPa

wx,a

where wx,a ∈ R++ denotes the weight of the ordered pair of alternatives x and a.

Note that with regard to the characterizing properties of Theorem 4, NEU imme-

diately loses its appeal, since now one wishes to treat different pairs of alternatives

differently, using the exogenous information that is available on them. It turns out

that the remaining six properties characterize the non-neutral swaps index.

Proposition 1. An inconsistency index I satisfies CONT, RAT, CONC, PWL, OC

and DC if and only if it is a non-neutral swaps index.

5.2. Positional Swaps Index. We now suggest another novel extension of the swaps

index, one that uses not only the endogenous information arising from the revealed

preference, but also some exogenous cardinal information on the value of the alterna-

tives. We call it the positional swaps index. Suppose that the analyst has information

on the cardinal utility values of the different alternatives, based on their position in

the ranking.18 Then, the positional swaps index evaluates an inconsistent observa-

tion according to the utility values of the foregone alternatives with respect to that

of the chosen alternative. This can be interpreted as the total utility loss due to the

inconsistent choice in that observation. Then, the positional swaps index is given by

the preference relation that minimizes the sum of utility losses. Denote by x̂(P ) the

ranking of alternative x in P . An inconsistency index is a positional swaps index if

IPS(f) = min
P

∑
(A,a)

f(A, a)
∑

x∈A:xPa

wx̂(P ),â(P )

18For example, the cardinal utility values may be modeled as random variables with a common

distribution, and then one may sort the realizations in decreasing order of magnitude to focus on the

order statistics. The expected value of the order statistics may be taken as the expected cardinal

values of the alternatives based on their ranking, as in Apesteguia, Ballester and Ferrer (2011).
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where wi,j ∈ R++ denotes the weight associated with the positions i and j.

The main distinctive feature of the positional swaps index is that it incorporates

information on the evaluation of alternatives based not on their nature but on their

position in the ranking. Hence, NEU regains its appeal. At the same time, the in-

corporation of information on the ranking of the alternatives immediately implies the

non-fulfilment of OC, since it completely disregards this type of information. As stated

in the following proposition, the elimination of OC from the system of properties char-

acterizing the swaps index characterizes the positional swaps index.

Proposition 2. An inconsistency index I satisfies CONT, RAT, CONC, PWL, DC

and NEU if and only if it is a positional swaps index.

5.3. General Weighted Index. We now present a broad generalization of the swaps

index that may incorporate the sort of information reflected by the non-neutral swaps

index, the positional swaps index, and other kinds of information, such as priors on

the plausibility of the different welfare rankings, etc. We call this index the general

weighted index. The basic purpose of general weighted indices is to consider every

possible inconsistency between an observation and a preference relation through a

weight that may depend on the nature of the menu of alternatives, the nature of

the chosen alternative, and the nature of the preference relation. Then, for a given

collection of observations f , the inconsistency index takes the form of the minimum

total inconsistency across all preference relations:

IG(f) = min
P

∑
(A,a)

f(A, a)w(P,A, a)

where w(P,A, a) = 0 if a = m(P,A) and w(P,A, a) ∈ R++ otherwise.

As argued in Remark 1, it turns out that general weighted indices are characterized

by the first four axioms used in Theorem 4.

Proposition 3. An inconsistency index I satisfies CONT, RAT, CONC and PWL if

and only if it is a general weighted index.

5.4. Varian and Houtman-Maks. Two popular measures of the consistency of be-

havior are due to Varian (1990) and Houtman and Maks (1985). In this section we

bring these two measures into our framework, and show that they belong to the class

of general weighted indices.
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As advanced in section 3.2, Varian’s inconsistency measure is the minimal sum of all

the necessary wealth adjustments needed to remove any violations of consistency. In

our setting this can be presented as

IV (f) = min
P

∑
(A,a)

f(A, a) max
x∈A:xPa

wAx

where wAx ∈ R++ denotes the weight of alternative x in menu A.19 We now argue

why IV is a proper representation of the original Varian index. First, the weights wAx

play the role of the exogenous structure implied by the monetary system in Varian’s

original setting. Specifically, given a menu A, wAx captures the necessary adjustment

required to remove option x from A. This is analogous to Varian’s approach in the

consumer setting, where the wealth adjustment required to eliminate one alternative

depends on the budget set. Second, given a preference relation P , IV by focusing on

the maximum weight wAx across all the options in the upper contour set of (A, a), gives

the maximum adjustment required to eliminate the inconsistent choice of a from the

menu A. This parallels the original approach of Varian, where the required wealth

adjustment is given by the alternative in the upper contour set that is farthest from

the original budget line. Finally, IV is defined on the basis of the preference relation

minimizing the inconsistency value
∑

(A,a) f(A, a) maxx∈A:xPaw
A
x . This captures the

search for the minimal aggregated wealth adjustment required to make the remaining

data consistent with the maximization of a preference relation.

We show below that IV satisfies the first four properties of the swaps index. However,

the characterization of IV requires of further structure, related to the search for the

maximum weight in a given upper contour set. To provide this further structure, let us

first consider the following definition. Take any r ∈ R and any (A, x) ∈ O, and denote

by Rr
(A,x) all rationalizable collections of observations ryz ∈ R such that the highest-

ranking alternative in X according to P ryz is y ∈ A \ {x} with r({x, y}, x) = 0, and

the second- highest-ranking alternative in X is z ∈ A. That is, the collection Rr
(A,x)

encompasses all the rationalizable collections ryz that assign the highest position in the

ranking P ryz to an alternative, y, which is in the upper contour set of (A, x) according

to the preference relation P r, while placing immediately below y an alternative z

contained in A.

19For notational convenience, let maxx∈∅ w
A
x = 0.
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Varian’s Consistency (VC). For every (A, x) ∈ O and every r ∈ R, I(α1(A,x) +(1−
α)r) = maxryz∈Rr(A,x) I(α1(A,z) + (1− α)ryz) for any sufficiently small α > 0.20

Varian’s Consistency imposes that the inconsistency that 1(A,x) generates in α1(A,x)+

(1 − α)r can be related to collections of observations in which the upper contour set

of the only inconsistency involves a single alternative y, that is ranked higher than x

according to P r. Varian’s Consistency may then make sense under the interpretation

that, for each alternative, we can think of the magnitude of the shock that must occur

for this alternative to be neither mentally nor physically available. In this sense, the

inconsistency of an observation might be related to the highest required magnitude of

shock involving the alternatives in the upper contour set.

Varian’s Consistency implies Ordinal Consistency. Ordinal Consistency establishes

the equality between the inconsistency associated with the combination of an observa-

tion (A, x) with two sufficiently prevalent rationalizable collections r and r′, whenever

these treat all the alternatives in A in exactly the same way. Clearly, the latter re-

quirement implies that the collections Rr
(A,x) and Rr′

(A,x) are exactly the same. Hence,

Varian’s Consistency implies Ordinal Consistency. However, it might be the case that

the maximum inconsistency of (A, x) in relation to Rr
(A,x) coincides with the maximum

inconsistency of (A, x) in relation to Rr′

(A,x), even if Rr
(A,x) and Rr′

(A,x) are not the same.

It is in this sense that Varian’s Consistency may lead to stronger conclusions than

Ordinal Consistency.

The following result establishes the characterization of Varian’s index IV .

Proposition 4. An inconsistency index I satisfies CONT, RAT, CONC, PWL and

VC if and only if it is a Varian index.

We now turn to the analysis of Houtman and Maks (1985). Recall from section 3.2

that Houtman and Maks’ proposal has to do with the size of the minimal subset of

observations that needs to be eliminated from the data, in order to make the remainder

rationalizable. It follows immediately that, in our setting, the Houtman-Maks index,

which we denote by IHM , is but a special case of the Varian index when wAx = 1

for every A and every x ∈ A. Consequently, the characterization of IHM must build

on that of IV , and impose some additional structure. First, notice that IHM does

not discriminate between the alternatives, and hence any relabeling of the alternatives

20Again, for notational convenience, let maxr∈∅ I(·) = 0.
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should have no effect on the level of inconsistency. This implies that Neutrality regains

its appeal. IHM , however, requires further structure:

Houtman-Maks’ Composition (HMC). For every (A1, x), (A2, x) ∈ O with A1 ∩
A2 = {x} and every r ∈ R, I(α1(A1∪A2,x) + (1 − α)r) = max{I(α1(A1,x) + (1 −
α)r), I(α1(A2,x) + (1− α)r)} for any sufficiently small α > 0.

Houtman-Maks’ Composition establishes that, under the same conditions of Disjoint

Composition, two collections of observations can be merged into one, in which case the

resulting collection of observations adopt the maximum inconsistency value of the two

collections. We can now establish the characterization result of IHM .

Proposition 5. An inconsistency index I satisfies CONT, RAT, CONC, PWL, VC,

HMC and NEU if and only if it is a scalar transformation of the Houtman-Maks index.

5.5. Non-General Weighted Indices. The third approach described in the litera-

ture for measuring the rationality of a collection of revealed data involves counting the

number of times a consistency property, say GARP, is violated (see, e.g., Swofford and

Whitney, 1987; Famulari, 1995). As argued in section 3.2, the money pump index of

Echenique, Lee and Shum (2011) weights every violation of GARP by the amount of

money that could be extracted from the consumer. We now show that this class of

measures do not belong to the class of general weighted indices.21 The intuition is very

simple. The class of general weighted indices assesses the inconsistency of the data from

the perspective of the closest preference relation to it, whereas the above-mentioned

indices measure the extent of internal consistency of the collection of observations. We

illustrate this point in what follows by way of an example that compares two situations

with the same number of cycles, but are treated differently by the general weighted

indices. Similar examples can be constructed for the case in which the severity of each

cycle is taken into account, as in Echenique, Lee and Shum (2011).22

Let X = {x, y, a1, a2, a3, a4} and consider the following two scenarios, which report

two rationalizable collections of observations that involve menus (i) in which alterna-

tives x and y are never simultaneously present, (ii) which reveal that ai is preferred

to aj whenever i < j, and (iii) that both x and y are better than any ai. In addition,

21Afriat’s index does not belong to the class of general weighted indices, either; the reason being

that it replaces additivity with the maximum across all observations.
22These examples would involve the distortion of the relative frequency of the observations involving

the cycles.
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scenario 1 accounts for observations ({x, y, ai}, x), i = 1, . . . , 4, and ({x, y, a5}, y), each

of which occurs with a frequency ε, while scenario 2 additionally reports observations

({x, y, a1}, x), ({x, y, a2}, x), ({x, y, a4}, y) and ({x, y, a5}, y) each occurring with fre-

quency ε. Clearly, the relative frequencies of cycles in the two scenarios are exactly the

same.23 In both cases it is understood that ε is relatively small, so that the rationaliz-

able datasets are sufficiently prevalent in both scenarios.

We now show how any weighted general index necessarily discriminates between

the two scenarios. Denote by f1 and f2 the collections of observations defined from

scenarios 1 and 2, respectively. Given the prevalence of the rationalizable evidence

in both scenarios, there are only two candidates to be considered as optimal prefer-

ence relations: xPyPa1P . . . Pa5 and yP ′xP ′a1P
′ . . . P ′a5. Therefore, the inconsistency

of the first scenario is IG(f1) = ε · min{w(P, {x, y, a5}, y),
∑4

i=1w(P ′, {x, y, ai}, x)}
and that of the second is IG(f2) = ε · min{w(P, {x, y, a4}, y) + w(P, {x, y, a5}, y),

w(P ′, {x, y, a1}, x) + w(P ′, {x, y, a2}, x)}.
Let us proceed by contradiction and entertain the possibility of there being a gen-

eral weighted index treating the two scenarios as equivalent, namely IG(f1) = IG(f2).

Clearly, if IG(f1) = ε ·
∑4

i=1w(P ′, {x, y, ai}, x), then IG(f2) ≤ ε · (w(P ′, {x, y, a1}, x) +

w(P ′, {x, y, a2}, x)) < IG(f1), which is a contradiction. Then, it must be the case

that IG(f1) = ε · w(P, {x, y, a5}, y). In a similar fashion, one can show that IG(f2) =

ε · (w(P ′, {x, y, a1}, x) + w(P ′, {x, y, a2}, x)), which implies that w(P, {x, y, a5}, y) =

w(P ′, {x, y, a1}, x) + w(P ′, {x, y, a2}, x). Now, since this argument can be reproduced

for any permutation of the alternatives ai, i = 1, . . . , 4, it follows that w(P, {x, y, ai}, y) =

2w(P ′, {x, y, ai}, x). Finally, note that we can also switch the roles of x and y conclud-

ing that w(P ′, {x, y, ai}, y) = 2w(P, {x, y, ai}, x), and hence, w(P, {x, y, ai}, y) = 0,

which is a contradiction. This shows that every general weighted index discriminates

between the two scenarios.

6. Related Literature

Although we have referred here and there to the related literature, it might be

more useful to provide a brief summary all in one place. This should begin with the

large empirical literature documenting deviations from the classical model of individual

behavior. It is by now well-established that individual behavior is often dependent on

the framing of the choice situation (Tversky and Kahneman, 1981), exhibits cyclic

23Therefore, one can equivalently consider the number of cycles.
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choice patterns (May, 1954), is influenced by reference points (Thaler, 1980), and

is susceptible to various sorts of menu manipulations (Iyengar and Lepper, 2000).

Reacting to this evidence, later theoretical models adopt a revealed preference approach

and expand the classical notion of rationality to incorporate, in various ways, stylized

accounts of these behavioral phenomena. Some prominent recent examples are Bossert

and Sprumont (2003, 2009), Masatlioglu and Ok (2005), Manzini and Mariotti (2007,

2012), Xu and Zhou (2007), Salant and Rubinstein (2008), Masatlioglu and Nakajima

(2012), Green and Hojman (2009), Ok, Ortoleva and Riella (2012), and Masatlioglu,

Nakajima and Ozbay (2012).

Continuing, in section 3.2 we reviewed the literature on revealed preference tests of

the maximization principle, and studied the three approaches: Afriat (1973) and Varian

(1990); Houtman and Maks (1985) and Dean and Martin (2012); and Swofford and

Whitney (1987) and Echenique, Lee and Shum (2011). Halevy, Persitz and Zrill (2012)

extend the approach of Afriat and Varian by complementing Varian’s inconsistency

index with an index measuring the misspecification with a set of utility functions.

In addition, recent empirical applications of some of these measures have provided

valuable information on the relationship between rationality and various demographics

(see Choi, Kariv, Müller and Silverman, 2013; Dean and Martin, 2012; and Echenique,

Lee and Shum, 2011). Finally, Beatty and Crawford (2011) axiomatically characterize

a relative measure of the success of a revealed preference theory.

Lastly, there is a growing number of papers dealing with individual welfare analysis,

when the individual’s behavior is inconsistent. Bernheim and Rangel (2009) add to the

standard choice data the notion of ancillary conditions, or frames. Ancillary conditions

are assumed to be observable and potentially to affect individual choice, but they are

irrelevant in terms of the welfare associated with the chosen alternative. Bernheim

and Rangel suggest a welfare preference relation that ranks an alternative as welfare-

superior to another only if the latter is never chosen when the former is available.

Chambers and Hayashi (2012) characterize an extension of Bernheim and Rangel’s

model to probabilistic settings. Manzini and Mariotti (2009) offer a critical assessment

of Bernheim and Rangel. Rubinstein and Salant (2012) propose the welfare relation

that is consistent with a set of preference relations in the sense that all the preference

relations in the set could have been generated by the cognitive process distorting that

welfare relation. Masatlioglu, Nakajima and Ozbay (2012) suggest a welfare preference

based on their limited-attention model of decision-making. Green and Hojman’s (2009)
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proposal is to identify a list of conflicting selves, aggregate them to induce the revealed

choices, and then using the aggregation rule to make the individual welfare analysis.

Finally, Baldiga and Green (2010) analyze the conflict between preference relations in

terms of their disagreement on choice. They then use their measure of conflict between

preference relations together with Green and Hojman’s notion of multiple selves to find

the list of multiple selves with the minimal internal conflict that will explain a given

set of choice data, and suggest this as a welfare measure.24

7. Conclusions

In this paper we propose a novel tool for the unified treatment of the measurement of

rationality and welfare, namely, the swaps index. The swaps index identifies the closest

preference relation to the revealed choices, i.e. the welfare ranking, and measures its

associated inconsistency by enumerating the total number of available alternatives

that rank above the chosen ones. The swaps index is unique in measuring rationality

in terms of welfare considerations. In addition, it is the first tool in the literature

with an axiomatic foundational analysis. With respect to welfare analysis, the swaps

index evaluates the welfare ranking of any two alternatives by considering the whole

collection of observations, and hence internalizes all the consequences of ranking one

alternative above another. Moreover, it associates an error term, the inconsistency

value, with the welfare ranking.

The swaps index relies exclusively on the endogenous information arising from the

choice data. We offer generalizations which share the main features of the swaps

index, while also being sensitive to various sorts of exogenous information that may

be available to the analyst, such as information on the nature of the alternatives, on

their cardinal utility values, etc. Our characterization of such indices provides the first

axiomatic foundations for the measurement of rationality.

We would like to conclude by pointing to possible avenues of future research. On the

technical side, it would be illuminating to extend our setting to include the possibility

of indifferences between alternatives and the consideration of uncountable sets. On the

empirical side, it would be important to investigate the practical differences between

the swaps index and some of the indices we have discussed throughout the paper. On

24There are also papers describing methods for ranking objects such as teams or journals given a

tournament matrix describing the information on the paired results of the objects (see Rubinstein,

1980; Palacios-Huerta and Volij, 2004).
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the methodological side, the next natural step would involve the axiomatic development

of rationality and welfare measures based on the revealed preference data, but also on

some other relevant behavioral data.

Appendix A. Computational Considerations

Here, we deal with the question of identifying, in practice, the closest preference

relation to the choice data, and its associated inconsistency level. Given that we have

imposed no restriction whatsoever on the nature of the collections of observations,

it is hardly surprising that the task of finding the optimal preference relation can

sometimes prove computationally complex. Fortunately, we are able to show that it is

possible to obtain good solutions by drawing upon existing techniques for addressing

computational problems formally equivalent to ours.

Computational considerations are common in the application of the various inconsis-

tency indices provided by the literature. Importantly, Dean and Martin (2012) establish

that the problem studied by Houtman and Maks is equivalent to a well-known problem

in the computer science literature, namely, the minimum set covering problem (MSCP).

Smeulders, Cherchye, De Rock and Spieksma (2012) relate Varian and Houtman and

Maks to the independent set problem (ISP). Then, one can draw from a wide range of

algorithms developed by the operations research literature to solve these problems, for

the purpose of computing the desired index in practice.

Exactly the same strategy can be adopted for the swaps index. Consider another

well-known problem in the computer science literature, the linear ordering problem

(LOP). The LOP has been related to a variety of problems, including various eco-

nomic problems, particularly the triangularization of input-output matrices for the

study of the hierarchical structures of the productive sectors in an economy.25 For-

mally, the LOP problem over the set of vertices Y , and directed weighted edges con-

necting all vertices x and y in Y with cost cxy, consists of finding the linear order

over the set of vertices Y that minimizes the total aggregated cost. That is, if we de-

note by Π the set of all mappings from Y to {1, 2, . . . , |Y |}, the LOP involves solving

arg minπ∈Π

∑
π(x)<π(y) cxy. As the following result shows, the LOP and the problem of

computing the optimal preference relation for the swaps index are equivalent.

Proposition 6.

25See Korte and Oberhofer (1970) and Fukui (1986).
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(1) For every f ∈ F one can define a LOP with vertices in X, the solution of which

provides the optimal preference for the swaps index.

(2) For every LOP with vertices in X one can define an f ∈ F , its optimal prefer-

ence being the solution to the LOP.

Intuitively, what are linear orders in the LOP are preference relations in our setting;

while the cost of having one alternative rank above another is the inconsistency that

arises from revealed data. Note that the evaluation of the inconsistency associated

with having one alternative x that ranks above another alternative y is very simple. It

is merely the sum of all values f(A, y) across all menus A where x is present. Then,

the computation of the optimal preference relation requires consideration of all the

inconsistency values associated with having one alternative that ranks above another,

exactly as in the LOP.

Proposition 6 enables the techniques offered by the literature for the solution of the

LOP to be used directly in the computation of the optimal preference relation for the

swaps index. These techniques involve an ample array of algorithms for finding the

globally optimal solution.26 Alternatively, the literature also offers methods, which,

while not computing the globally optimal solution, are much lighter in computational

intensity, and provide good approximations.27

Appendix B. Proofs

Proof of Theorem 1: Consider a collection of observations generated by a ran-

dom utility model, fρ,u,ε. Then, we can write
∑

(A,a) fρ,u,ε(A, a)|{x ∈ A : xP ua}| =∑
A∈X

∑
a∈A fρ,u,ε(A, a)|{x ∈ A : xP ua}| =

∑
A∈X ρ(A)

∑
a∈A Pr[a = arg maxx∈A U(x)]

|{x ∈ A : xP ua}| =
∑

A∈X ρ(A)
∑|A|

i=1 Pr[a
A
i = arg maxx∈A U(x)](i−1), where aAi repre-

sents the i-th best alternative in A according to P u. Consider any other preference rela-

tion P ′. It follows that
∑

(A,a) fρ,u,ε(A, a)|{x ∈ A : xP ′a}| =
∑

A∈X ρ(A)
∑|A|

i=1 Pr[a
A
i =

arg maxx∈A U(x)])(σA(i) − 1), where σA is a permutation on {1, . . . , |A|} that trans-

forms the rank of every alternative in A according to P u in the rank of the same

alternative according to P ′.

26See, e.g., Grötschel, Jünger, and Reinelt (1984); see also Chaovalitwongse et al (2011) for a good

introduction to the LOP, a review of the relevant algorithmic literature, and the analysis of one such

algorithm.
27See Brusco, Kohn and Stahl (2008) for a good general introduction and relevant references.
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We now show that the values Pr[aAi = arg maxx∈A U(x)] are decreasing in i. To

see this, consider two alternatives aAi and aAj with i < j. Given the menu A, con-

sider a realization of the error terms such that U is maximized at aAj . That is,

u(aAj )+ ε(aAj ) > u(aAi )+ ε(aAi ) and u(aAj )+ ε(aAj ) > u(aAk )+ ε(aAk ) for any other alterna-

tive aAk ∈ A \ {aAi , aAj }. Now, consider an alternative realization of the errors, where j

receives the shock ε(aAi ), i receives the shock ε(aAj ) and k receives the same shock ε(aAk ).

Clearly, now the utility of aAi is u(aAi ) + ε(aAj ) > u(aAj ) + ε(aAj ). Then, for all aAk ∈
A\{aAi , aAj }, it follows that u(aAi )+ε(aAj ) > u(aAk )+ε(aAk ). Also, since u(aAi ) > u(aAj ) we

have that u(aAi ) + ε(aAj ) > u(aAj ) + ε(aAi ). Then, the i.i.d. nature of the errors guaran-

tees that Pr[aAi = arg maxx∈A U(x)] ≥ Pr[aAj = arg maxx∈A U(x)], as desired. There-

fore, for every menu A ⊆ X we have ρ(A)
∑|A|

i=1 Pr[a
A
i = arg maxx∈A U(x)](i − 1) ≤

ρ(A)
∑|A|

i=1 Pr[a
A
i = arg maxx∈A U(x)](σA(i) − 1). This shows that P u is an argument

minimizing the swaps index.

To prove the second part of the theorem, notice first that, for any P ′ other than P u

there exists at least one pair of alternatives x, y ∈ X such that xP uy and yP ′x. Since

u(x) > u(y), and the mistakes are i.i.d, it follows that Pr[U(x) > U(y)] > Pr[U(y) >

U(x)]. Since ρ({x, y}) > 0, it follows from the conclusion of the previous paragraph

that
∑

(A,a) f(A, a)|x ∈ A : xP ua| <
∑

(A,a) f(A, a)|x ∈ A : xP ′a|, as desired.�

Proof of Theorem 2: Consider a regular collection of observations fρ,u,φ. No-

tice that from any preference relation P , we can reach P u in a sequence of sin-

gle u-improving consecutive flips, i.e., there exists a sequence of preference relations

P0 = P, P1, . . . , Pm = P u such that Pi and Pi+1 differ only in ranking two consecutive

alternatives and Pi+1 ranks these two alternatives as P u while Pi does not. To do so,

we can for instance flip consecutively the top alternative in P u from its initial position

in P to the top, then proceed with the second best alternative in P u, etc. We now

prove, by using such a sequence, that the inconsistency associated to Pi is always larger

than the inconsistency associated to Pi+1, which leads to the result.

Let y, z ∈ X such that yPiz and zPi+1y. Hence, u(z) > u(y). Define ω1 =

{(A, y) : {y, z} ⊆ A}, ω2 = {(A, z) : {y, z} ⊆ A} and ω3 = O \ (ω1 ∪ ω2). Clearly,∑
(A,a) fρ,u,φ(A, a)|{x ∈ A : xPi+1a}| ≤

∑
(A,a) fρ,u,φ(A, a)|{x ∈ A : xPia}| if and only

if
∑3

j=1

∑
(A,a)∈ωj fρ,u,φ(A, a)|{x ∈ A : xPi+1a}| ≤

∑3
j=1

∑
(A,a)∈ωj fρ,u,φ(A, a)|{x ∈ A :

xPia}|.
Notice that for any (A, a) ∈ ω3, it must be |{x ∈ A : xPia}| = |{x ∈ A : xPi+1a}|.

This is because either y or z are not in A, or, whenever both are in A, the selected
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alternative a is below or above both alternatives at the same time. Hence, the for-

mer inequality can be expressed as:
∑2

j=1

∑
(A,a)∈ωj fρ,u,φ(A, a)|{x ∈ A : xPi+1a}| ≤∑2

j=1

∑
(A,a)∈ωj fρ,u,φ(A, a)|{x ∈ A : xPia}|.

For any observation (A, a) ∈ ω1, we have |{x ∈ A : xPi+1y}| = |{x ∈ A : xPiy}| + 1

and hence fρ,u,φ(A, y) (|{x ∈ A : xPi+1y}| − |{x ∈ A : xPiy}|) = fρ,u,φ(A, y). Similarly,

for any observation (A, a) ∈ ω2, |{x ∈ A : xPi+1z}| = |{x ∈ A : xPiz}| − 1 and hence,

fρ,u,φ(A, z)(|{x ∈ A : xPiz}| − |{x ∈ A : xPi+1z}|) = fρ,u,φ(A, z). Hence, we can write

the previous inequality as:
∑

(A,a)∈ω1
fρ,u,φ(A, a) ≤

∑
(A,a)∈ω2

fρ,u,φ(A, a).

Now notice that whenever (A, y) ∈ ω1, the frequency fρ,u,φ(A, y) is either 0 or ρ(Ay),

since y is not maximal in A according to u. By the regularity assumption, ρ(Az) ≥
ρ(Ay). Now, whenever the frequency fρ,u,φ(A, y) is equal to ρ(Ay) then the frequency

fρ,u,φ(A, z) must be at least ρ(Az), proving that for such sets, fρ,u,φ(A, y) ≤ fρ,u,φ(A, z).

Hence,
∑

(A,a)∈ω1
fρ,u,φ(A, a) ≤

∑
(A,a)∈ω2

fρ,u,φ(A, a) as desired. We have proved that

Pi+1 gives lower swaps than Pi, and by transitivity P u has minimal swaps.

Finally, notice that ρ({y, z}�) > 0 implies fρ,u,φ({y, z}, y) < fρ,u,φ({y, z}, z) and

hence the previous inequality must be strict. This makes P u to be uniquely identified.�

Proof of Theorem 3: Let u be a utility function over monetary outcomes, and

consider β, δ and the associated collection of observations fρ,Uβ,δ . Notice that whenever

β = 1, the choices correspond completely to the preference P Vδ and there are no

mistakes. From now on, we therefore assume β < 1.

We first characterize the types of mistakes that may arise when using a stationary

preference P Vα . Consider an observation (A, (o, t)) where (o, t) is not the maximizer

of P Vα in A and take an alternative (o′, t′) in A such that (o′, t′)P Vα(o, t). We show

that t 6= t′. To see this, simply notice that whenever t = t′, the choice of (o, t) leads

to u(o) > u(o′) and the fact that (o′, t′)P Vα(o, t) leads to u(o) < u(o′), a contradiction.

We divide all the possible mistakes in the following four categories.

(1) t′ > t > 0: Since the individual has chosen (o, t) over (o′, t′) it must be Uβ,δ(o, t) >

Uβ,δ(o
′, t′) or equivalently, βδtu(o) > βδt

′
u(o′). Since (o′, t′)P Vα(o, t), we have αt

′
u(o′) >

αtu(o). We can express the two inequalities as δt
′−t < u(o)

u(o′)
< αt

′−t. Notice that this

case can arise if and only if α > δ.

(2) t > t′ > 0: From the choice we have βδtu(o) > βδt
′
u(o′), while from the preference

we have αt
′
u(o′) > αtu(o). We can express these two inequalities as: αt−t

′
< u(o′)

u(o)
<

δt−t
′
. Notice that this case occurs if and only if α < δ.
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(3) t > t′ = 0: This implies both βδtu(o) > u(o′) and u(o′) > αtu(o), or equivalently:

αt < u(o′)
u(o)

< βδt. Notice that this case can only occur whenever αt < βδt. For α < βδ,

this condition holds for every t. For α ∈ [βδ, δ), this will be true only for sufficiently

large integers, and denote by ψ the first integer that meets such condition.28 For α ≥ δ

the condition is never satisfied.

(4) t′ > t = 0: This implies both u(o) > βδt
′
u(o′) and αt

′
u(o′) > u(o), or equiva-

lently: βδt
′
< u(o)

u(o′)
< αt

′
, and notice that this case can only occur whenever βδt

′
< αt

′
.

For α ≤ βδ, this condition never holds. For α ∈ (βδ, δ), this will be true only for

integers sufficiently below ψ. Finally, for α ≥ δ the condition always holds.

We prove that for every α < βδ, the stationary preference P Vβδ has less swaps than

P Vα . Notice that only mistakes of type-(2) and type-(3) apply to P Vβδ . Since both

αt−t
′
< (βδ)t−t

′
and αt < (βδ)t, any type-(2) and type-(3) mistake for P Vβδ is also a

mistake for P Vα . We now prove that for every stationary preference P Vα with α > δ,

the stationary preference P Vδ has less swaps. Notice that only mistakes of type-(4)

apply to P Vδ . Since δt < αt, any type-(4) mistake for P Vδ is also a mistake for P Vα .

This proves the first part of the theorem.

For the second part of the theorem, consider a time-regular collection fρ,Uβδ . To

provide a computation of the bound that gives a sense of the requirements in the

theorem, we consider binary menus. In the general case, the threshold would depart

from this bound. Given the previous arguments, we can assume that α ∈ [βδ, δ]. Notice

that type-(1) mistakes cannot happen for such values of α and hence, we focus on the

other three types.

We first consider the mass of mistakes of type-(2), S2(α). Fix a pair of times t

and t′. The probability of a binary menu having the alternatives dated in such times

is 1
(T+1)2

. Given t and t′, the probability of having outcomes satisfying the inequality

αt−t
′
< u(o′)

u(o)
< δt−t

′
is δt−t

′−αt−t′

2
. This follows from the assumption on the utilities being

uniformly distributed, since in this case the probability of the ratio being below 1 is 1/2,

and conditional on this the distribution is also uniform. Hence, the mass of type-(2)

mistakes for P Vα is S2(α) = 1
2(T+1)2

∑T−1
t′=1

∑T
t=t′+1(δ(t−t′)−α(t−t′)) = 1

2(T+1)2

∑T−1
i=1 (T −

i)(δi − αi).
We now consider the mass of mistakes of type-(3), S3(α). Given t and t′, the prob-

ability of having outcomes that satisfy αt < u(o′)
u(o)

< βδt is βδt−αt
2

whenever t ≥ ψ (if

28This integer obviously depends on the parameters α, β, and δ, but for notational convenience we

simply write ψ.
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ψ ≤ T ), and 0 otherwise. Consequently: S3(α) = 1
2(T+1)2

∑T
i=ψ(βδi − αi), provided

that ψ ≤ T , and zero otherwise.

Finally, we consider the mass of type-(4) mistakes, S4(α). Given t and t′, the prob-

ability of having outcomes that satisfy βδt
′
< u(o)

u(o′)
< αt

′
is αt

′−βδt′

2
whenever t < ψ

(whenever ψ does not exist, i.e., α = δ, for notational purposes just take ψ = T + 1),

and 0 otherwise. Then: S4(α) = 1
2(T+1)2

∑ψ−1
i=1 (αi − βδi).

Consider the total mistakes S(α) = S2(α) + S3(α) + S4(α). We study the derivative

of S(α) with respect to α, within the interior of the set of α-values that share the same

integer ψ. We have:

∂S(α)

∂α
=

1

2(T + 1)2
(−

T−1∑
i=1

i(T − i)αi−1 −
T∑
i=ψ

iαi−1 +

ψ−1∑
i=1

iαi−1).

Since the second term is always negative and the third is always positive, this derivative

is bounded above by the case in which ψ > T , and hence:

∂S(α)

∂α
≤ 1

2(T + 1)2
(−

T−1∑
i=1

i(T − i)αi−1 +
T∑
i=1

iαi−1) =
1

2(T + 1)2
(
T∑
i=1

i[1− (T − i)]αi−1).

Now notice that the coefficients associated to αi−1 are increasing in i and they are

all negative except for the case i = T . Hence, the derivative is bounded above by
1

2(T+1)2
αT−1(

∑T
i=1 i[1−(T−i)]), which is simply αT−1 T (4−T )

12(T+1)
. Clearly, for any value of T

greater or equal than 4, we have ∂S(α)
∂α
≤ 0. This implies that mistakes always decrease

with α and hence, the stationary preference relation that minimizes the number of

swaps is P Vδ , as desired.�

Proof of Theorem 4: That a swaps index satisfies the axioms is immediate. We

prove sufficiency of the axioms in 10 steps.

Step 1. PWL guarantees that there is a rationally founded cover C = {Cj} of F for

which the index is piecewise linear. We show that the index must also be piecewise

linear over the cover C̄ = {C̄j}, where each component C̄j is the convex hull of the closure

of Cj. The application of CONT and linearity over each component Cj guarantees

linearity over its closure. Since each element in the convex hull can be obtained as a

linear combination of elements in the closure of Cj, the repeated application of linearity

shows that the index is also linear over the convex hull of the closure of Cj.
Step 2. Here, we prove that C̄ is also rationally founded. Since for every j, Cj ⊆ C̄j,
it follows that there is at least one rj ∈ C̄j. We now prove that for every l 6= j, rl 6∈ C̄j.
Assume, by contradiction, that rl ∈ C̄j. Then, PWL and RAT guarantee that, for every
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α ∈ (0, 1), it must be that I(αrj + (1 − α)rl) = αI(rj) + (1 − α)I(rl) = 0. However,

since rj 6= rl and they put positive mass on every menu, there must exist at least

one menu B such that the respectively unique chosen alternatives in rj and rl differ.

Then, the collection of observations αrj + (1−α)rl puts positive mass on two different

observations from at least one menu B, and hence, it is not rationalizable. Then RAT

implies I(αrj + (1− α)rl) 6= 0, which is a contradiction.

Step 3. We now prove that, for each rj, there exists αrj ∈ (0, 1] such that, for every

observation (A, a), and for every α ∈ [0, αrj ], it is the case that α1(A,a) +(1−α)rj ∈ C̄j.
Proceeding by contradiction, let us assume that there exists rj, (A, a) and a sequence

of real values {αn}, with αn → 0, such that for each n, αn1(A,a) + (1 − αn)rj does

not belong to C̄j. Hence, there exists a subsequence of such real numbers {αni} with

αni → 0, for which all collections αni1(A,a) + (1− αni)rj belong to a different common

class in the cover, say C̄l 6= C̄j. Since C̄l is closed, the limit of such a subsequence of

collections, rj, also belongs to C̄l, thus contradicting step 2.

Step 4. We now associate, to every preference P and every observation (A, a), a

real-valued weight w(P,A, a). Clearly, there exists a bijection between P and the set

of rationalizable collections of observations putting equal mass on each menu R. We

then denote by Pj the preference that generates rj ∈ C̄j. Hence, for each Pj, step

3 guarantees that there exists αrj ∈ (0, 1] such that for every observation (A, a) and

for every α ∈ [0, αrj ], it is the case that α1(A,a) + (1 − α)rj ∈ C̄j. Define, for every

preference Pj and observation (A, a), the weight

w(Pj, A, a) =
I(αrj1(A,a) + (1− αrj)rj)

αrj
.

Step 5. Since C̄ is a cover of F , for every f there exists at least one component C̄j
such that f ∈ C̄j. In this step, we prove that I(f) =

∑
(A,a) f(A, a)w(Pj, A, a). By

PWL and RAT,

I(f) =
αrjI(f)

αrj
=
αrjI(f) + (1− αrj)I(rj)

αrj
=
I(αrjf + (1− αrj)rj)

αrj
.

Now, notice that αrjf + (1 − αrj)rj = αrj(
∑

(A,a) f(A, a)1(A,a)) + (1 − αrj)rj =∑
(A,a) f(A, a)(αrj1(A,a)) + (1 − αrj)rj =

∑
(A,a) f(A, a)[αrj1(A,a) + (1 − αrj)rj]. By

construction of αrj , all collections αrj1(A,a) + (1−αrj)rj belong to C̄j and by convexity

of C̄j, all convex combinations of such collections must also lie in C̄j. We can thus apply

linearity repeatedly within C̄j to obtain
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I(f) =
I(αrjf + (1− αrj)rj)

αrj
=

∑
(A,a) f(A, a)I(αrj1(A,a) + (1− αrj)rj)

αrj

=
∑
(A,a)

f(A, a)w(Pj, A, a).

Step 6. Here, we prove that, for every f ∈ F , I(f) = minP
∑

(A,a) f(A, a)w(P,A, a)

with w(Pt, A, a) = 0 if and only if aPtx for all x ∈ A \ {a}. To see the first part, and

given step 5, we only need to prove that I(f) ≤
∑

(A,a) f(A, a)w(Pt, A, a) for every

preference Pt. By CONC and RAT,

I(f) =
αrtI(f)

αrt
=
αrtI(f) + (1− αrt)I(rt)

αrt
≤ I(αrtf + (1− αrt)rt)

αrt
.

We know that for every observation 1(A,a), the collection αrt1(A,a)+(1−αrt)rt belongs

to C̄t. Convexity of this class guarantees that αrtf + (1− αrt)rt also belongs to C̄t. By

step 5, we also know that I(αrtf + (1− αrt)rt) = αrt
∑

(A,a) f(A, a)w(Pt, A, a). Hence,

I(f) ≤
∑

(A,a) f(A, a)w(Pt, A, a).

We conclude by showing that w(Pt, A, a) = 0 if and only if aPtx for all x ∈ A \ {a}.
Notice that whenever aPtx for all x ∈ A \ {a}, it is the case that rt(A, a) > 0 and

the collection αrt1(A,a) + (1 − αrt)rt is also rationalizable by Pt. Hence, by RAT,

w(Pt, A, a) = I(αrt1(A,a) + (1 − αrt)rt) = 0. Whenever aPtx does not hold for all

x ∈ A \ {a}, we have rt(A, x) > 0 for some x 6= a, and the collection αrt1(A,a) +

(1 − αrt)rt cannot be rationalized by any preference. Hence, by RAT, w(Pt, A, a) =
I(αrt1(A,a)+(1−αrt )rt)

αrt
> 0.

Step 7. We now prove that for every observation (A, x), and for every pair of

preferences Pj, Pl such that yPjz ⇔ yPlz for every y, z ∈ A, it is the case that

w(Pj, A, x) = w(Pl, A, x). Consider the rationalizable collections rj, rl ∈ R associ-

ated with preferences Pj, Pl. By OC there is a sufficiently small α > 0 such that

I(α1(A,x) + (1−α)rj) = I(α1(A,x) + (1−α)rl). Let α̂ = min{α, αrj , αrl}. The previous

equality holds for α̂, and also α̂1(A,x) + (1 − α̂)rj ∈ C̄j and α̂1(A,x) + (1 − α̂)rl ∈ C̄l.
Linearity together with step 5 guarantees that w(Pj, A, x) =

I(αrj1(A,x)+(1−αrj )rj)

αrj
=

I(α̂1(A,x)+(1−α̂)rj)

α̂
=

I(α̂1(A,x)+(1−α̂)rl)

α̂
=

I(αrl1(A,x)+(1−αrl )rl)
αrl

= w(Pl, A, x), as desired.

Step 8. Here we prove that for every (A, x) and Pj, w(Pj, A, x) =
∑

y∈Aw(Pj, {x, y}, x).

To do so, we prove that, for any two menus, A1, A2, such that A1 ∩ A2 = {x} and

A1 ∪ A2 = A, it is the case that w(Pj, A, x) = w(Pj, A1, x) + w(Pj, A2, x). The re-

cursive application of this idea, given the finiteness of X, concludes the step. To see
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this equality, consider the rj associated with Pj. By DC, there exists a sufficiently

small α such that I(α1(A,x) + (1 − α)rj) = I(α1(A1,x) + α1(A2,x) + (1 − 2α)rj). Let

α∗ = min{α, α
rj

2
}. The previous equality holds for α∗, and also the collections α∗1(A,x)+

(1−α∗)rj and α∗1(A1,x) +α∗1(A2,x) + (1− 2α∗)rj both belong to C̄j. Linearity together

with step 5 guarantees that w(Pj, A, x) =
I(αrj1(A,x)+(1−αrj )rj)

αrj
=

I(α∗1(A,x)+(1−α∗)rj)
α∗

=
I(α∗1(A1,x)

+α∗1(A2,x)
+(1−2α∗)rj)

α∗
=

I(αrj1(A1,x)
+(1−αrj )rj)

αrj
+
I(αrj1(A2,x)

+(1−αrj )rj)

αrj
= w(Pj, A1, x)+

w(Pj, A2, x).

Step 9. Here we prove that for every x, y, z, t ∈ X and Pj, Pl such that the ranking

of x (respectively, of y) in Pj is the same as the ranking of z (respectively, of t) in

Pl, w(Pj, {x, y}, y) = w(Pl, {z, t}, t). Consider the bijection σ : X → X given by the

ranking of the alternatives in the preferences. That is, to the alternative ranked at s

in Pj, we assign the alternative ranked at s in Pl. Notice, in particular, that we have

σ(x) = z and σ(y) = t and also, σ(rj) = rl. Hence, we also have σ(α1({x,y},y) + (1 −
α)rj) = α1({z,t},t) + (1−α)rl for every α ∈ [0, 1]. Let ᾰ = min{αrj , αrl}. Then we have

ᾰ1({x,y},y) + (1− ᾰ)rj ∈ C̄j and ᾰ1({z,t},t) + (1− ᾰ)rl ∈ C̄l. By NEU, I(ᾰ1({x,y},y) + (1−
ᾰ)rj) = I(ᾰ1({z,t},t) + (1 − ᾰ)rl). By using the decomposition obtained in step 5, this

is equivalent to ᾰw(Pj, {x, y}, y) = ᾰw(Pl, {z, t}, t), as desired.

Step 10. We end up by proving that I is a positive scalar transformation of the swaps

index. By step 8, and the fact proved in step 6 that w(P, {x, a}, a) = 0 whenever aPx,

we have that
∑

(A,a) f(A, a)w(P,A, a) =
∑

(A,a) f(A, a)(
∑

x∈A:xPaw(P, {x, a}, a)). By

step 7, we have that
∑

(A,a) f(A, a)w(P,A, a) =
∑

(A,a) f(A, a)|{x ∈ A : xPa}|K(P )

where K(P ) is a strictly positive real number possibly dependent on P . Finally, by

step 9, this value K(P ) is constant across different preferences, and hence we have

shown that
∑

(A,a) f(A, a)w(P,A, a) = K
∑

(A,a) f(A, a)|{x ∈ A : xPa}|. Therefore, by

step 6 we have I(f) = minP K
∑

(A,a) f(A, a)|{x ∈ A : xPa}|, which shows that I is a

positive scalar transformation of the swaps index.�

Proof of Proposition 1: It is easy to see that any non-neutral swaps index satisfies

the axioms. Notice that we can prove the converse statement by using steps 1 to 8 in the

proof of Theorem 4. By step 8 and the fact that the weight w(P, {x, a}, a) = 0 whenever

aPx, we have that
∑

(A,a) f(A, a)w(P,A, a) =
∑

(A,a) f(A, a)
∑

x∈A:xPaw(P, {x, a}, a).

By step 7, the weight w(P, {x, a}, a) is independent of P , whenever xPa, and hence

we can write
∑

(A,a) f(A, a)
∑

x∈A:xPawx,a. This, together with step 6, proves that the

index is a non-neutral swaps index. �
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Proof of Proposition 2: It is easy to see that any positional swaps index satisfies

the axioms. Notice that we can prove the converse statement by using steps 1 to

6 and steps 8 and 9 in the proof of Theorem 4. By step 8 and the fact that the

weight w(P, {x, a}, a) = 0 whenever aPx, we have that
∑

(A,a) f(A, a)w(P,A, a) =∑
(A,a) f(A, a)

∑
x∈A:xPaw(P, {x, a}, a). Now, by step 9, w(P, {x, a}, a) only depends

on the rank of alternatives x and a in P . This, together with step 6, shows that the

index is a positional swaps index. �

Proof of Proposition 4: It is easy to see that any Varian index satisfies the axioms.

Notice that we can use steps 1 to 7 in the proof of Theorem 4 to prove the converse

statement. We now define, for every menu A and every alternative y ∈ A, the weight

wAy . To do so, select any alternative z ∈ A\{y}, and set wAy (z) =
I(αryz1(A,z)+(1−αryz )ryz)

αryz
,

where αryz is defined as in step 4 of Theorem 4. We now show that this value does

not depend on the selected z. Consider then another z′ ∈ A \ {y}. Since ryz, ryz′ ∈
R
ryz′

(A,z′) = R
ryz
(A,z), VC and PWL guarantee that αwAy (z) = I(α1(A,z) + (1 − α)ryz) =

I(α1(A,z′) + (1− α)ryz′) = αwAy (z′) for any sufficiently small α.

Now, consider any preference P , its associated rationalizable collection r ∈ R and

any observation (A, x). If r(A, x) > 0, then, by step 6, w(P,A, x) = 0 = maxx∈∅w
A
x .

Assume then that r(A, x) = 0 and hence Rr
(A,x) is non-empty. By VC, there exists ᾱ

such that I(ᾱ1(A,x) + (1 − ᾱ)r) = maxryz∈Rr(A,x) I(ᾱ1(A,z) + (1 − ᾱ)ryz). Consider α̂ =

minryz∈Rr(A,x) α
ryz . Take α = min{αr, ᾱ, α̂}, where αr is again defined as in Theorem

4. By step 6 in Theorem 4, VC, and the above construction of weights, we have

that w(P,A, x) =
I(α1(A,x)+(1−α)r)

α
=

maxryz∈Rr(A,x)
I(α1(A,z)+(1−α)ryz)

α
= maxx∈A:xPaw

A
x , as

desired.�

Proof of Proposition 5: It is easy to see that the Houtman-Maks index satisfies the

axioms. Notice that we can prove the converse statement by starting from the result of

Proposition 4. We now prove that, for any menu A and any x ∈ A, we have wAx = w
{x,y}
x

for any y ∈ A \ {x}. This is trivial if |A| = 2. If |A| > 2, let A1 = {x, y} and A2 =

A\{y}. Clearly, A1∩A2 = {x}. By HMC and RAT, for a sufficiently small α, it must be

the case that wAx =
I(α1(A,x)+(1−α)ryx)

α
= max{ I(α1(A1,x)

+(1−α)ryx)

α
,
I(α1(A2,x)

+(1−α)ryx)

α
} =

I(α1(A1,x)
+(1−α)ryx)

α
= w

{x,y}
x . A direct application of NEU guarantees that w

{x,y}
x = w

{z,t}
z

for every x, y, z, t ∈ X. Hence, the index is a scalar transformation of the Houtman-

Maks index.�
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Proof of Proposition 6: For the first part, consider the collection of observa-

tions f and define, for every pair of alternatives x and y in X, the weight cxy =∑
(A,y):x∈A f(A, y). It follows that

∑
π(x)<π(y) cxy =

∑
π(x)<π(y)

∑
(A,y):x∈A f(A, y) =∑

(A,y) f(A, y)|{x ∈ A : π(x) < π(y)}|, and hence, by solving the LOP, we obtain

the optimal preference for the swaps index. To see the second part, consider the LOP

given by weights cxy, with x, y ∈ X. Let c be the sum of all weights cxy. Define

the collection of observations f given by f({x, y}, y) = cxy
c

and 0 otherwise. Since

f is defined only over binary problems,
∑

(A,a) f(A, a)|{x ∈ A : π(x) < π(a)}| =∑
({x,y},y):π(x)<π(y) f({x, y}, y) =

∑
π(x)<π(y) cxy, as desired.�
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