

Department of Decision Sciences

Statistics Seminar

On a Sharper Lower Bound for a t-Percentile with an Application in Sequential Estimation

Nitis Mukhopadhyay

University of Connecticut

Thursday, 15 March 2012 12:30pm Room 3-E4-SR03 Via Rontgen 1 Milano

Abstract. We set out to compare z_{α} and $t_{\nu,\alpha}$, the upper $100\alpha\%$ points of a standard normal distribution and a Student's t_{ν} distribution respectively. We will begin with a quick proof of a well-known result, namely, for every fixed $0 < \alpha < \frac{1}{2}$ and degree of freedom ν , one has $t_{\nu,\alpha} > z_{\alpha}$.

Next, we provide a new and explicit expression $b_{\nu}(>1)$ such that for every fixed $0<\alpha<\frac{1}{2}$ and ν , we have $t_{\nu,\alpha}>b_{\nu}z_{\alpha}$. Indeed we propose to show that whatever be the fixed positive integer ν and $0<\alpha<\frac{1}{2}$, we have $t_{\nu,\alpha}>b_{\nu}z_{\alpha}$ where $b_{\nu}=\sqrt{\frac{1}{2}\nu}\Gamma\left(\frac{1}{2}\nu\right)\left\{\Gamma\left(\frac{1}{2}(\nu+1)\right)\right\}^{-1}$ which exceeds one. This is a significant improvement over the well-known result (namely, $t_{\nu,\alpha}>z_{\alpha}$) that is customarily quoted by nearly every source.

In the end, we will apply the new found inequality to draw attention to some interesting observations in a sequential fixed-width confidence interval estimation problem.

Department of Decision Sciences Department of Economics

Via Röntgen 1 - 20136Milano

Tel. 02 5836.5632 Fax 02 5836.5630