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Abstract

I study the problem of a durable good monopolist who lacks commitment power

and whose marginal cost of production varies stochastically over time. When costs

do not change over time, the Coase conjecture holds: the monopolist sets an opening

price equal to marginal cost and the market outcome is competitive. Time-varying

costs modify the results on the Coase conjecture. When the distribution of consumer

valuations is discrete, the monopolist is able to exercise market power and the outcome

is ineffi cient. In contrast, with a continuous distribution the monopolist is unable to

extract additional surplus from buyers with higher valuations. Moreover, the outcome is

effi cient in this setting: the monopolist serves consumers sequentially as costs decrease,

precisely at the point in time that maximizes total surplus. The model is set up in

continuous time and the monopolist’s marginal cost evolves as a diffusion process.

Continuous time methods lead to a tractable characterization of the equilibrium.
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1 Introduction

Consider the problem of a monopolist who produces a durable good and who cannot commit

to a path of prices. For settings in which marginal costs do not change over time, Coase

(1972) argued that such a producer would not be able to sell at the static monopoly price.

After selling the initial quantity, the monopolist has the temptation to reduce prices to reach

consumers with lower valuation. This temptation leads the monopolist to continue cutting

prices after each sale. Forward looking consumers expect prices to fall, so they are unwilling

to pay a high price. Coase conjectured that these forces would lead the monopolist to post

an opening price arbitrarily close to marginal cost. The monopolist would then serve the

entire market “in the twinkling of an eye”, and the outcome would be fully effi cient. The

classic papers on durable goods monopoly (Stokey, 1981 and Gul, Sonnenschein and Wilson,

1986) provide formal proofs of the Coase conjecture: as the period length goes to zero, the

monopolist’s opening price converges to the lowest consumer valuation. In the limit, all

consumers trade immediately and the monopolist earns the same profits she would get if all

consumers had the lowest valuation (zero “excess profits”).

The purpose of this paper is to study the problem of a durable good monopolist who

lacks commitment power and whose marginal cost of production varies stochastically over

time. The assumption that marginal costs are subject to stochastic shocks is natural in many

markets. For instance, costs may vary over time as a consequence of changes in input prices.

Time-varying costs may also arise as a result of changes in productivity. An example of this

is high-tech consumer goods, whose costs of production typically fall rapidly over time (e.g.,

Conlon, 2010). Finally, fluctuations in exchange rates will also lead to time-varying costs if

the monopolist sells an imported good, or if she uses imported inputs.

Time-varying costs introduce an option value of delaying trade. The effi cient outcome

in this setting is that the monopolist serves consumers with valuation v > 0 the first time

costs fall below a threshold zv. This threshold is decreasing in the valuation, so under the

optimal outcome the monopolist serves consumers sequentially as costs decrease. Selling to

all consumers immediately is therefore inconsistent with effi ciency in this setting, so at least

one of these features of Coase’s original conjecture cannot hold.

In this paper, I show that the Coase conjecture fails to hold in its entirety when costs

are time-varying and the distribution of consumer valuations is discrete. With discrete

valuations, the monopolist can truthfully commit to delay trade with low type consumers

until costs decrease. This allows the monopolist to extract additional surplus from consumers

with higher valuations, enabling her to obtain excess profits. Moreover, the outcome in this
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setting involves ineffi ciencies in the form of delayed trade. In contrast, a generalization of

Coase’s theorem does hold when the distribution of valuations is continuous. In this case,

the monopolist has an incentive to serve the next buyer arbitrarily soon after her last sale.

This forces the monopolist’s profits down to what she would earn if all consumers had the

lowest valuation (i.e., zero excess profits), and the outcome is fully effi cient. Consumers with

higher valuations trade earlier, and end up paying higher prices.

Coase’s original arguments illustrate the forces that prevent a monopolist producer of a

durable good from exercising market power. The results in this paper show that these forces

are more general than what Coase described. In particular, these forces do not rely on serving

the entire market immediately, nor on serving every consumer at the same price. To attain

effi ciency and zero excess profits, it is enough that the monopolist cannot credibly commit

to delay trade from one sale to the next.

The model is set up in continuous time and the monopolist’s marginal cost xt evolves

as a diffusion process. Continuous time methods are especially suitable to perform the op-

tion value calculations that arise with time-varying costs, allowing me to obtain a tractable

characterization of the equilibrium. I show that the monopolist’s profits solve an ordinary

differential equation with appropriate boundary conditions. The model delivers simple ex-

pressions for the prices at which buyers are willing to trade as a function of costs, allowing

the computation of profit margins as a function of costs and the level of market penetration.

To see how time-varying costs modify the results on the Coase conjecture, consider first

a setting with two types of consumers: high types, who value the good at vH , and low types,

who value the good at vL < vH . Low type consumers buy when the price is weakly lower

than vL. After high types leave the market, the monopolist’s problem is to choose when to

sell to the remaining low valuation consumers. When costs do not change over time, it is

optimal for the monopolist to sell to low types immediately after selling to high types. This

is the force behind the Coase conjecture: high valuation consumers are not willing to pay a

high price, since they expect prices to fall rapidly after they buy. Time-varying costs give the

monopolist the option value of delaying trade with low type buyers until costs decrease. In

this case, the monopolist will only sell to low types when costs fall below a threshold zL < vL.

High valuation consumers know that it will take a non-negligible amount of time for prices

to drop to vL when costs are above zL, so they are willing to pay a higher price. In a sense,

time-varying costs provide commitment power to the monopolist.

The equilibrium dynamics with two types of buyers are as follows. If costs are initially

larger than a threshold x0 > zL, the monopolist first sells to all high valuation consumers,

and then sells to all low type buyers when costs fall below zL. When costs are initially below
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a threshold x0 < zL, the monopolist sells immediately to high and low valuation consumers

and the market closes. When costs initially lie between x0 and x0, the monopolist gradually

sells to high type buyers and continues to do so until costs either fall below xt < zL or rise

above xt > zL. The cutoffs xt and xt change over time as the level of market penetration

increases. When costs fall below xt, the monopolist sells to all remaining consumers (high

and low types) and the market closes. When costs rise above xt, the monopolist sells to all

remaining high type buyers, and then sells to low types when costs fall below zL.

The intuition for the delayed trade when x0 ∈ (x0, x0) is as follows. High type consumers

expect prices to fall rapidly to vL after they have all left the market when x0 lies in this

region. Thus, the monopolist would not be able to charge a price significantly larger than

vL if she were to sell to all high type consumers. However, the monopolist has the option

value of waiting and obtaining a larger profit margin in the future. The cutoffs x0 and x0
are such that the monopolist gets a larger payoff by waiting than by selling to all high type

consumers immediately when x0 ∈ (x0, x0). When x0 lies within this region, the monopolist

gradually sells to high type consumers at a price that leaves her indifferent between selling

now or waiting and obtaining a larger margin in the future. High valuation consumers are

willing to postpone their purchase since they expect prices to fall at a rate that compensates

their cost of delay. The cutoffs xt and xt change over time, since the gains from delaying

trade change as the number of high type consumers in the market decreases.

The equilibrium outcome is ineffi cient when costs initially lie between x0 and x0. The

monopolist serves high type consumers sequentially in this case, but the first-best outcome

is that all high valuation consumers trade immediately. In addition, the level of market

penetration at each moment in time s > 0 depends upon the entire history of costs when

x0 lies in this region. Since prices are a function of costs and market penetration, the prices

that the monopolist charges also display history dependence. Finally, the monopolist is able

to obtain excess profits, since time-varying costs allow her to extract additional surplus from

high valuation consumers. These results generalize to settings in which the distribution of

valuations takes any finite number of values.

I study markets in which the distribution of consumer valuations is continuous by analyz-

ing a sequence of models with discrete valuations that approximate the desired continuous

distribution. I show that the equilibrium outcome converges to the effi cient outcome as the

distribution becomes continuous. In the limit, the monopolist serves consumers sequentially

as costs decrease, precisely at the point in time that maximizes total surplus. Moreover,

the monopolist’s profits converge to what she would earn if all consumers had the lowest

valuation (i.e., zero excess profits).
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To see the intuition behind these results, suppose first that the distribution of valuations

is discrete, taking values v1 < ... < vn. After consumers with valuation vk leave the market,

the monopolist can truthfully commit to delaying trade with consumers with valuation vk−1
until costs decrease. This allows the monopolist to charge vk-consumers a price significantly

larger than the price vk−1-consumers are willing to pay. This commitment power disappears

as the gap between valuations becomes vanishingly small, since now the monopolist will serve

vk−1-consumers arbitrarily soon after serving consumers with valuation vk. The monopolist

is therefore unable to obtain excess profits as the distribution becomes continuous, and the

limiting equilibrium outcome is fully effi cient.

1.1 Related literature

The literature on durable goods monopoly has identified different ways in which a monopolist

can exercise market power. For instance, a durable good monopolist can ameliorate her lack

of commitment by renting her good rather than selling it (Bulow, 1982), or by introducing

best-price provisions (Butz, 1990). The Coase conjecture also fails when the monopolist faces

capacity constraints (Kahn, 1986, and McAfee and Wiseman, 2008), or when consumers use

non-stationary strategies (Ausubel and Deneckere, 1989 and Sobel, 1991). The current paper

identifies a new setting in which a dynamic monopolist can exercise market power. When

marginal costs vary over time and the distribution of valuations is discrete, a monopolist

producer of a durable good can commit to delaying trade with low valuation consumers until

costs decrease. This allows the monopolist to extract more surplus from consumers with

higher valuation, enabling her to obtain excess profits.1

This paper also shares some features with models of bargaining with one-sided incomplete

information and one-sided offers (Fudenberg, Levine and Tirole, 1985). Deneckere and Liang

(2006) study a bargaining game in which the valuation of the buyer is correlated with the

cost of the seller (see also Evans, 1989 and Vincent, 1989). They show that trade occurs

via atoms in this setting, with short periods of high probability of agreement followed by

long periods of inaction. In the current paper’s model, trade also occurs via atoms when the

distribution of types is discrete. For instance, with two types of buyers the monopolist will

first sell to all high types whenever costs are initially large, and will then sell to all low types

when costs fall below zL.

1Other papers study dynamic monopoly models in non-stationary environments. Stokey (1979) solves
the full commitment pricing path of a durable good monopolist when costs evolve deterministically over
time. Board (2008) characterizes the full commitment strategy of a durable good monopolist when incoming
demand varies over time. Biehl (2001) studies a setting in which the buyers’valuations are subject to shocks.
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Fuchs and Skrzypacz (2010) study a one-sided incomplete information bargaining model

in which a new trader may arrive according to a Poisson process. When a new trader

arrives, the seller runs a second price auction between the two potential buyers. Fuchs and

Skrzypacz (2010) show that a generalization of the Coase conjecture holds in this setting:

the seller’s inability to commit to a path of offers drives her profits down to her outside

option of waiting for the arrival of a new buyer. Moreover, the possibility of arrivals leads to

ineffi cient delays, with the seller slowly screening out high type buyers. In the current paper,

the monopolist is also unable to obtain excess profits when the distribution of valuations is

continuous. However, the equilibrium outcome is fully effi cient, with the seller serving the

different consumers exactly at the point in time that maximizes total surplus.

Finally, this paper adds to the growing literature that uses continuous time methods to

analyze strategic interactions.2 The analysis of games in continuous time presents technical

diffi culties. First, there are measurability problems related to the fact that players can con-

dition their actions on “instantaneous”events (e.g., Simon and Stinchcombe, 1989). Second,

subgame perfection has less bite when the monopolist can change her price in continuous

time, leading to a multiplicity of equilibria. The reason for this is that consumers do not

face a cost of delay after rejecting a price when the game is in continuous time, since they

can always accept a new price within the next instant. Following the recent literature on

continuous time games (e.g., Sannikov 2007, 2008), I deal with the first issue by imposing

measurability conditions on strategies that guarantee that outcomes and payoffs are well

defined. I deal with the second issue by imposing intuitive conditions on strategies that

resemble the conditions that would necessarily arise in a subgame perfect equilibrium of a

discrete time durable good monopoly game.3

2 Model

A monopolist faces a unit measure of non-atomic consumers indexed by i ∈ [0, 1]. Con-

sumers are in the market to buy one unit of the monopolist’s good. Time is continuous,

and consumers can make their purchase at any time t ∈ [0,∞). The valuations of the con-

sumers are defined by the non-increasing and left-continuous function f : [0, 1]→ [v, v] with

v > v > 0; consumer i has valuation f (i). Consumers and the monopolist are risk-neutral

2For instance, continuous time methods have been used to study the provision of incentives in dynamic
settings (Sannikov 2007, 2008), political campaigns (Gul and Pesendorfer, 2011) and dynamic markets for
lemons (Daley and Green, 2011).

3I follow a similar approach in Ortner (2011), where I study a continuous time bilateral bargaining model
in which the players’relative bargaining power varies stochastically over time.
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expected utility maximizers and discount future payoffs at rate r > 0. I assume that f is

a step function taking n values v1, ..., vn, with 0 < v1 < v2... < vn. For k = 1, .., n, let

αk = max{i ∈ [0, 1] : f (i) = vk}. That is, αk is the highest indexed consumer with valuation
vk. Section 6 considers the case in which f approximates a continuous function h.

Let B = {Bt,Ft : 0 ≤ t < ∞} be a one-dimensional Brownian motion on a probability
space (Ω,F , P ).4 The Brownian motion B drives the monopolist’s marginal cost xt,

dxt = µxtdt+ σxtBt, (1)

with x0 = x > 0, σ > 0 and |µ| < r. At time t the monopolist can produce any desired

quantity at marginal cost xt. The assumption that |µ| < r guarantees that the monopolist

will always produce on demand: under this condition it is never optimal for the monopolist

to produce when costs are low to sell in the future when costs are high.5 The constants µ and

σ measure the expected rate of change of xt and the volatility of xt, respectively. The process

xt is publicly observable and its underlying structure is common knowledge: monopolist and

consumers commonly know that xt evolves as (1). The assumption that xt evolves as (1) is

for convenience. The main results in this paper continue to hold if xt follows a more general

diffusion process (see Section 7).

A (stationary) strategy for consumer i ∈ [0, 1] is a function P : R+ → R+ that describes
the maximum price that i is willing to pay for the good given any level of marginal costs.

Suppose consumer i is still in the market at time t. Then, under strategy P (·) consumer i
purchases the good at time t if and only if the price that the monopolist charges is weakly

lower than P (xt).

Let P = P (x, i) be a strategy profile for the consumers, with P (·, i) denoting the strategy
of consumer i ∈ [0, 1]. In equilibrium, the strategy profile of the consumers must satisfy the

skimming property: for all i < j, P (x, i) ≥ P (x, j) for all x. That is, consumers with higher

valuation are willing to pay higher prices. The reason for this is that it is more costly for

consumers with higher valuation to delay their purchase: if consumers with valuation vk find

it weakly optimal to purchase at some time t given a future path of prices, then consumers

with valuation vk′ > vk will find it strictly optimal to purchase at time t. I will restrict

attention to strategy profiles such that P (x, i) is left-continuous in i and continuous in x.

The skimming property implies that at any time t there exists at ∈ [0, 1] such that

4The filtration {FBt : 0 ≤ t < ∞} is assumed to include all sets of measure zero, and is therefore
right-continuous: for every t ≥ 0, FBt = ∩s>0FBt+s.

5This assumption also guarantees that the stopping problems in equation (6) have a finite solution.
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consumers i ≤ at have already left the market, while consumers i > at are still in the market.

The cutoff at describes the level of market penetration at time t. At each time t, the level

of market penetration at and the monopolist’s marginal cost xt describe the payoff relevant

state of the game.

Given a strategy profile P, the problem of the monopolist is to choose a path of prices

to maximize her profits. Since P satisfies the skimming property, by setting a price p the

monopolist effectively chooses the level of market penetration: if the monopolist sets price p

at time t, there will be an a ∈ [0, 1] such that P (xt, i) ≥ p if and only if i ≤ a. Moreover,

the monopolist will charge P (xt, a) if consumer a is the marginal buyer at time t. Thus, I

can alternatively specify the monopolist’s problem as choosing a non-decreasing process {at}
with a0 = 0 and at ≤ 1 for all t, describing the level of market penetration at any time t.

With this specification, under strategy {at} the monopolist charges price P (xt, at) at every

time t, and at this price all consumers i ≤ at who are still in the market buy.

Remark 1 With this specification, the process {at} must satisfy the following condition:
suppose P (x, i) = p for all i ∈ [l, h] ⊆ [0, 1] and the monopolist chooses a strategy {at} such
that dat > 0 when at− ∈ (l, h) and xt = x (i.e., the monopolist makes some sales at state

(a, x) with a ∈ (l, h)). Then, in this case it must be that dat ≥ h − at−: in order to sell at
time t with at− ∈ (l, h) and xt = x the monopolist has to set a price of at most P (x, at−);

and at this price all consumers i ∈ [at− , h] will buy the good. Thus, in this case the level of

market penetration {at} jumps at time t.

Monopolist’s problem: Given a strategy profile P of the consumers, a strategy for the seller

is an Ft-progressively measurable process {at} satisfying the conditions in Remark 1 such
that a0 = 0, at is non-decreasing with at ≤ 1 for all t, and {at} is right-continuous with
left-hand limits.6 Let AP denote the set of all such processes. Given a strategy profile P of

the consumers and a strategy {at} ∈ AP, the monopolist’s discounted profits are7

Π = E

[∫
[0,∞]

e−rt (P (xt, at)− xt) dat
]
. (2)

Let Π (x, a) denote the monopolist’s future discounted profits conditional on the current

state being (x, a), and let APa,t denote the set of processes in AP such that at = a. Then, the

6These requirements on {at} together with the continuity requirements on P (x, i) guarantee that the
integrals in (2) and (3) are well-defined.

7Given the discontinuities in {at}, I use set notation in the integrals to avoid ambiguities:
∫
(s,T ]

f (at) dat

denotes the integral between time s and T , whereas
∫
[s,T ]

f (at) dat denotes the integral between s− and T .
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monopolist’s payoffs conditional on state (xt, at) are

Π (xt, at) = sup
{at}∈APat,t

E

[∫
(t,∞)

e−r(s−t) (P (xs, as)− xs) das
∣∣∣∣xt, at] . (3)

Condition (3) is the requirement that the monopolist’s strategy {at} is subgame perfect (i.e.,
time-consistent), since {at} must be optimal at every state (xt, at).

Consumer’s problem: Given a strategy of the monopolist {at} and a strategy profile P of the
consumers, the path of prices is {P (xt, at)}. The strategy P (x, i) of each consumer i must

be optimal given the path of prices {P (xt, at)}: the payoff that consumer i gets from buying
at the time strategy P (x, i) tells her to buy must be weakly larger than what she would get

from purchasing at any other point in time.

I impose two additional conditions on the consumers’strategies. First,

∀i such that f (i) = v1, P (x; i) = v1 for all x. (4)

In words, all consumers with the lowest valuation are willing to pay a price equal to their

valuation. The second condition I impose is as follows. Fix a strategy profile (P, {at}). Recall
that for k = 1, ..., n, αk is the highest indexed consumer with valuation vk. For k = 1, ..., n, let

τ (k) denote the (possibly random) time at which the monopolist starts selling to consumers

with valuation vk, i.e., τ (k) = inf{t : at > αk−1}. Then, for k = 2, ..., n,

vk − P (xt, αk) = E
[
e−r(τ(k−1)−t)

(
vk − P

(
xτ(k−1), aτ(k−1)

))∣∣xt, αk] . (5)

Equation (5) is an incentive compatibility condition stating that the price consumer αk is

willing to pay must leave her indifferent between buying at that price or waiting and buying

at the price at which consumers with valuation vk−1 start buying.

Definition 1 A strategy profile (P, {at}) is an equilibrium if:

(i) {at} is optimal for all (xt, at) given P,

(ii) For each i, P (x, i) is optimal given {at} and P, and

(iii) P satisfies conditions (4) and (5), given {at}.

On games played in continuous time: The analysis of games in continuous time presents

technical diffi culties. First, there are measurability problems related to the fact that players
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can condition their actions on “instantaneous”events (e.g., Simon and Stinchcombe, 1989).

In this paper, I deal with these issues by restricting consumers to use stationary strategies

and by restricting the strategy {at} of the monopolist to be Ft-progressively measurable.
These restrictions guarantee that payoffs and outcomes are well-defined.

Second, in continuous time durable good monopoly games the notion of subgame perfec-

tion has less bite, leading to a multiplicity of equilibria. The reason for this is that consumers

do not face a cost of delay after they reject a price when the monopolist can change prices

in continuous time, since they can always accept a new price within the next instant. To

see this, suppose that the game I described so far was in discrete time. In that case, one

can easily show that the following two conditions would hold in any SPE: (a) the monopolist

would never charge a price below the lowest consumer valuation v1 > 0 (so v1-consumers

would always accept a price of v1), and (b) the price that the last buyer with valuation vk is

willing to pay leaves her indifferent between trading at that price or delaying trade until the

purchase of the next buyer.

In this paper, I directly impose these conditions in the definition of equilibrium; see

condition (iii) in Definition 1. When players can take actions in continuous time, there are

equilibria that don’t satisfy these conditions. For example, in continuous time the strategy

profile in which the monopolist always charges a price equal to marginal cost and in which

consumers choose optimally the time at which to buy (given that prices will always be equal

to xt) satisfies conditions (i) and (ii) in Definition 1. Under this strategy profile, consumers

always reject prices higher than xt because they expect the monopolist to charge a lower

price within the next instant. Against this strategy of the consumers, the monopolist can

do no better than to charge a price equal to xt at all times. Conditions (4) and (5) should

be seen as a refinement, which rule out non-intuitive equilibria (like the one in which the

monopolist always sets price equal to marginal cost) that violate them.

3 First-best outcome

This section computes the first-best outcome. Recall that the function f : [0, 1] → [v, v]

describing the valuation of the consumers is a step function taking n values v1 < v2 < ... <

vn. To compute the effi cient outcome, consider first the problem of choosing the surplus

maximizing time at which to serve a homogeneous group of consumers with valuation vk,

Vk (x) = sup
τ∈T

E
[
e−rτ (vk − xτ )

∣∣x0 = x
]
, (6)
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where T is the set of stopping times. Let λ be the negative root of 1
2
σ2y (y − 1) + µy = r,

and for k = 1, ..., n let zk := −λ
1−λvk.

Lemma 1 The stopping time τ k = inf {t : xt ≤ zk} solves (6). Moreover,

Vk (x) =

 (vk − zk)
(
x
zk

)λ
x > zk,

vk − x x ≤ zk.

Proof. See Appendix A1.

Lemma 1 captures the option value that arises when the monopolist’s costs vary over

time. The total surplus from serving consumers with valuation vk is maximized by waiting

until costs fall below zk. One can show that ∂zk/∂µ > 0 and ∂zk/∂σ < 0, so that it is

optimal to wait longer when costs fall faster or when they are more volatile. By Lemma 1,

the first-best outcome is that the monopolist serves consumers with valuation vk at time τ k.

When x0 > zn, under the optimal outcome the monopolist serves consumers with valuation

vn the first time xt = zn. After that, the monopolists serves to consumers with valuation vn−1
the first time xt = zn−1, and so on. On the other hand, when x0 < zn the optimal outcome

is that the monopolist sells immediately to all consumers whose valuation vk is such that

x0 ≤ zk. After this initial sale, the monopolist sells to the remaining groups of consumers

sequentially as costs decrease.

4 Markets with two-types of consumers

4.1 Equilibrium

In this section, I characterize the equilibrium dynamics for markets with two types of con-

sumers. That is, I consider the case in which

f (i) =

{
v2 i ∈ [0, α] ,

v1 i ∈ (α, 1],

with v2 > v1 > 0 and α ∈ (0, 1).

By equation (4), consumers with valuation v1 will only buy when the price equals v1.

That is, ∀i ∈ (α, 1], P (x, i) = v1 for all x. Let Π (x, α) denote the monopolist’s profits when

the only consumers left in the market are those with valuation v1 (i.e., when the level of
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market penetration is α). Since all consumers with valuation v1 buy at the same instant, at

state (x, α) the problem of the monopolist is to optimally choose the time at which to sell

to all consumers remaining in the market: Π (x, α) = (1− α) supτ E[e−rτ (v1 − xτ )|x0 = x].

By Lemma 1, the solution to this problem is τ 1 = inf{t : xt ≤ z1}, and

Π (x, α) =

 (1− α) (v1 − z1)
(
x
z1

)λ
x > z1,

(1− α) (v1 − x) x ≤ z1.
(7)

For future reference, note that Π (x, α) ∈ C1 in x.
Consider next the case in which the level of market penetration is a ∈ [0, α), so there

are α− a high valuation consumers remaining in the market. To study equilibrium behavior
at these states, I proceed in two steps. First, I establish a lower bound L (x, a) on the

monopolist’s payoffs for states (x, a) with a ∈ [0, α). Second, I show that in equilibrium the

monopolist’s profits are exactly equal to this lower bound L (x, a).

Consider the strategy P (x, α) of consumer α, the highest indexed consumer with valuation

v2. After consumer α buys and leaves the market, the monopolist faces only consumers with

valuation v1. After consumer α makes her purchase, the monopolist will sell to the remaining

low valuation consumers when costs fall below the threshold z1. Therefore, by equation (5),

P (x, α) must satisfy

P (x, α) = v2 − E
[
e−rτ1 (v2 − v1)

∣∣x0 = x
]
. (8)

That is, for all x > 0 consumer α must be indifferent between buying at price P (x, α) or

waiting until costs fall below z1 and obtaining the good at price v1. Equation (8) highlights

the commitment power that time-varying costs provide to the monopolist. When xt > z1,

consumer α knows that prices will not fall to v1 until costs fall below z1, so she is willing to

pay a price strictly larger than v1 (see Figure 1 for a plot of P (x, α)).

Lemma 2 P (x, α)− x > V1 (x) for all x ∈ (z1, z2]. Moreover,

P (x, α) =

 v2 − (v2 − v1)
(
x
z1

)λ
x > z1,

v1 x ≤ z1.
(9)

Proof. See Appendix A1.

Since the strategy profile of consumers satisfies the skimming property, for all i < α,

11
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P (x, i) ≥ P (x, α) for all x. This implies that, at any time t, the monopolist can sell to all

remaining high type buyers at price P (xt, α). Therefore, for all states (x, a) with a ∈ [0, α)

the monopolist’s profits are bounded below by

L (x, a) = sup
τ∈T

E
[
e−rτ [(α− a) (P (xτ , α)− xτ ) + Π (xτ , α)]

∣∣x0 = x
]
, (10)

where P (x, α) and Π (x, α) are given by (7) and (9), respectively. That is, at states (x, a)

with a < α the monopolist can choose optimally the time τ at which to sell to the remaining

high valuation consumers at price P (xτ , α), obtaining profits of (α− a)(P (xτ , α)− xτ ) from
these sales plus a continuation payoff of Π(xτ , α).

Lemma 3 For every a ∈ [0, α), there exists x (a) ∈ (0, z1) and x (a) ∈ (z1, z2) such that

τ (a) = inf{t : xt ∈ [0, x (a)] ∪ [x (a) , z2]} is a solution to (10). Moreover, x (·) and x (·) are
continuous, with lima→α x (a) = lima→α x (a) = z1.

Proof. See Appendix A2.

To gain intuition behind the solution to (10), let g (x, a) := (α−a)(P (x, α)−x)+Π(x, α).

This implies that L (x, a) = supτ∈T E[e−rτg (xτ , a)|x0 = x]. Since P (x, α) has a convex kink

at z1 (see Figure 1) and Π (x, α) ∈ C1, g (x, a) also has a convex kink at z1. Therefore, when

x ∈ (x (a) , x (a)) the monopolist can obtain larger profits by delaying trade with high type

consumers than by serving all of them at price P (x, α) (see Figure 2). The solution to (10)

also involves delaying when costs are above z2: serving high types is too expensive when

12
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x > z2, so in this case it is optimal to wait for costs to fall.

For all x ∈ [0, x (a)] ∪ [x (a) , z2], L (x, a) = g (x, a). The proof of Lemma 3 shows that

rL (x, a) = µxLx (x, a) +
1

2
σ2Lxx (x, a) for all x ∈ (x (a) , x (a)) . (11)

The general solution to (11) is L (x, a) = Axλ + Bxκ, where λ < 0 and κ > 1 are the roots

of 1
2
σ2y (y − 1) + µy = r, and A and B are constants. There are four unknowns: A and B

and the thresholds x (a) and x (a). The four equations that determine these unknowns are

L (x (a) , a) = g (x (a) , a) , L (x (a) , a) = g (x (a) , a) , (VM)

Lx (x (a) , a) = gx (x (a) , a) , Lx (x (a) , a) = gx (x (a) , a) . (SP)

The proof of Lemma 3 shows that there exists a unique solution to this system of equations,

with x (a) < z1 < x (a) < z2.

The optimal stopping problem (10) is defined for all a ∈ [0, α). That is, for each a ∈ [0, α)

there are cutoffs x (a) and x (a) such that the solution to (10) involves stopping the first

time xt ∈ [0, x (a)] ∪ [x (a) , z2]. Lemma 3 shows that x (·) and x (·) are continuous, with
lima→α x (a) = lima→α x (a) = z1. In words, the delay region (x (a) , x (a)) shrinks as a

increases, and in the limit as a converges to α it becomes optimal to stop when xt ≤ z2. The

reason for this is that the kink that g (x, a) has at z1 gradually disappears as a increases; and

therefore delaying when x is around z1 becomes less profitable. Intuitively, the gains from

delaying trade decrease when there are fewer high type consumers remaining in the market.

13



Let (P, {at}) be an equilibrium and let Π (x, a) denote the monopolist’s profit function.

An equilibrium (P, {at}) is regular if Π (x, a) is piecewise C2,1.

Theorem 1 There exists a unique regular equilibrium. In this equilibrium, at every state
(x, a) with a ∈ [0, α) the monopolist’s profits are L (x, a). Moreover, for all t ≥ 0

(i) if xt > z2, the monopolist doesn’t sell (so dat = 0),

(ii) if xt ∈ [x (at) , z2], the monopolist sells to all remaining high type consumers at price

P (xt, α) (so dat = α− at−),

(iii) if xt ≤ x (at), the monopolist sells to all remaining consumers (high and low type) at

price v1 (so dat = 1− at−),

(iv) while xt ∈ (x (at) , x (at)), the monopolist gradually sells to high type consumers at price

P (xt, at) = xt − La (xt, at) (so at is continuously increasing).

Proof. See Appendix A3.

Theorem 1 shows that the monopolist’s profits are equal to the lower bound L (x, a) for

every state (x, a) with a ∈ [0, α). When xt ∈ [x (at) , z2], the monopolist sells to all remaining

high type buyers at price P (xt, α), and then sells to low types when costs drop below z1.

When xt ≤ x (at), the monopolist sells to both low and high type consumers at price v1 and

the market closes. When xt > z2, the monopolist waits for costs to decrease.

When xt ∈ (x (at) , x (at)), it is never optimal for the monopolist to sell to all remaining

high type buyers immediately: by doing this the monopolist earns g (xt, at) < L (xt, at).

On the other hand, it cannot be an equilibrium for the monopolist to wait until τ (at) :=

inf{s > t : xs /∈ (x (at) , x (at))} and sell to all high types at that time. By doing this, the
monopolist would earn E[e−r(τ(at)−t)

(
P
(
xτ(at), α

)
− xτ(at)

)∣∣xt] on each high type consumer.
In this case, for all xt ∈ (x (at) , x (at)) the marginal buyer a+t would be willing to buy at a

price P
(
xt, a

+
t

)
= v2 −E[e−r(τ(at)−t)

(
v2 − P

(
xτ(at), α

))∣∣xt]. That is, if the monopolist were
to delay sales until τ (at), the marginal buyer a+t would be willing to pay a price P

(
xt, a

+
t

)
that leaves her indifferent between buying at that price or waiting until time τ (at) and buying

at price P
(
xτ(at), α

)
. Note then that, for xt ∈ (x (at) , x (at)),

P
(
xt, a

+
t

)
− xt − E

[
e−r(τ(at)−t)

(
P
(
xτ(at), α

)
− xτ(at)

)∣∣xt]
= v2 − xt − E

[
e−r(τ(at)−t)

(
v2 − xτ(at)

)∣∣xt] > 0,
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where the inequality follows from the fact that v2− x = supτ E[e−rτ (v2 − xτ )|x0 = x] for all

xt ≤ z2 (Lemma 1). This implies that it cannot be optimal for the monopolist to delay sales

until time τ (at) when xt ∈ (x (at) , x (at)). Therefore, the monopolist must sell gradually to

high types when xt ∈ (x (at) , x (at)).

I now show how to determine the price that the monopolist charges and the rate at which

she sells when xt ∈ (x (at) , x (at)). Suppose xt ∈ (x (at) , x (at)) and let τ = inf{s > t :

xs /∈ (x (as) , x (as))}. By Theorem 1, {as} is continuously increasing in s for s ∈ [t, τ), so

das = ȧsds. At t the monopolist’s discounted profits (which by Theorem 1 are L (xt, at)) are

L (xt, at) = E

[∫
(t,τ ]

e−r(s−t) (P (xs, as)− xs) ȧsds+ e−r(τ−t)L (xτ , aτ )

∣∣∣∣xt, at] .
By the Law of Iterated Expectations, the process

Yt =

∫
[0,t]

e−rs (P (xs, as)− xs) das + e−rtL (xt, at)

= E

[∫
[0,τ ]

e−rs (P (xs, as)− xs) das + e−rτL (xτ , aτ )

∣∣∣∣Ft] , (12)

is a continuous martingale for all t < τ . By the Martingale Representation Theorem

(Karatzas and Shreve, page 182), there exists a progressively measurable process β ∈ L∗

such that dYt = e−rtβtdBt.8 Differentiating the left-hand side of (12) with respect to t and

using the fact that dYt = e−rtβtdBt gives

dYt = e−rt (P (xt, at)− xt) ȧtdt− re−rtL (xt, at) dt+ e−rtdL (xt, at)⇒
dL (xt, at) = (rL (xt, at)− (P (xt, at)− xt) ȧt) dt+ βtdBt.

Since L (x, a) ∈ C2,2 for all x ∈ (x (a) , x (a)) (Lemma A5), by Ito’s Lemma

dL (xt, at) =

(
µxtLx (xt, at) +

1

2
σ2x2tLxx (xt, at)

)
dt+ La (xt, at) ȧtdt+ σxLx (x, a) dBt.

Combining these two equations,

rL (xt, at) = (P (xt, at)− xt) ȧt + La (xt, at) ȧt + µxtLx (xt, at) +
1

2
σ2x2tLxx (xt, at) . (13)

The left-hand side of (13) is the monopolist’s expected flow payoff at state (xt, at), while the

8A process β belongs to L∗ if E[
∫ t
0
β2sds] <∞ for all t ∈ [0,∞).
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2
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right-hand side shows the sources of this flow payoff. The term (P (xt, at)− xt)ȧt represents
the flow payoff that the monopolist gets from her sales, while the term La (xt, at) ȧt represents

the drop in the monopolist’s continuation payoff due to the fact that consumers are leaving

the market at rate ȧt. Finally, the term µxtLx+ 1
2
σ2x2tLxx gives the change in the monopolist’s

continuation payoff due to changes in marginal cost.

Comparing equations (13) and (11), it follows that

P (xt, at) = xt − La (xt, at) , (14)

for all (xt, at) such that xt ∈ (x (at) , x (at)). That is, the profit margin P (xt, at) − xt that
the monopolist earns on each sale must be equal to the cost −La (xt, at) that she incurs in

terms of a lower continuation payoff. Equation (14) has the following interpretation. The

monopolist sells at rate ȧt > 0 when xt ∈ (x (at) , x (at)) . If P (xt, at)−xt > −La (xt, at), the

monopolist could increase her profits by selling at a faster rate. Similarly, if P (xt, at)− xt <
−La (xt, at) the monopolist would be better off not selling at all. Therefore, for ȧt > 0 to

be optimal, equation (14) must hold for all t such that xt ∈ (x (at) , x (at)). Since L (x, a) =

E[e−rτ(a)g(xτ(a), a)
∣∣x0 = x], it follows that −La (x, a) = E[e−rτ(a)

(
P (xτ(a), α)− xτ(a)

)∣∣x0 =

x]. Figure 3 plots the price P (x, a) = x − La (x, a) that the monopolist charges when

x ∈ (x (a) , x (a)), for different values of a.

To close the equilibrium, I need to pin down the rate ȧt at which the monopolist sells

to high valuation consumers when xt ∈ (x (at) , x (at)). In equilibrium, all high valuation

consumers must get the same payoff; otherwise, it would be profitable for a consumer who
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gets a lower payoff to mimic the strategy of one who is getting a larger payoff. Since the

monopolist serves high type buyers sequentially while xt ∈ (x (at) , x (at)), prices must evolve

in such a way that high type consumers are indifferent between purchasing at any time

s ∈ [t, τ ] (where τ = inf{s > t : xs /∈ (x (as) , x (as))}). That is, for any s, u ∈ [t, τ ], s < u,

v2 − P (xs, as) = E
[
e−r(u−s) (v2 − P (xu, au))

∣∣xs, as]⇒
e−rs (v2 − P (xs, as)) = E

[
e−ru (v2 − P (xu, au))

∣∣xs, as] . (15)

By the Law of Iterated Expectations, Ms := E[e−ru (v2 − P (xu, au))|xs, as] is a continuous
martingale. By the Martingale Representation Theorem, there exists a progressively mea-

surable process γ ∈ L∗ such that dMs = e−rsγsdBs. Differentiating (15) with respect to s

and using dMs = e−rsγsdBs, gives

d
(
e−rs (v2 − P (xs, as))

)
= −re−rs (v2 − P (xs, as)) ds− e−rsdP (xs, as) = e−rsγsdBs ⇒

dP (xs, as) = −r (v2 − P (xs, as)) ds− γsdBs. (16)

Equation (16) shows that (in expectation) prices must fall at rate −r(v2−P (xs, as)) in order

to maintain high valuation buyers indifferent. By equation (14), P (xs, as) = xs − La (xs, as)

for all s ∈ [t, τ). The proof of Lemma 3 shows that L (x, a) ∈ C2,2 for all x ∈ (x (a) , x (a)),

so P (x, a) ∈ C2,1 for all x ∈ (x (a) , x (a)). Ito’s Lemma then implies that for all s ∈ [t, τ ],

dP (xs, as) =

(
µxPx (xs, as) +

1

2
σ2x2Pxx (xs, as) + Pa (xs, as) ȧs

)
ds+ Px (xs, as)σxdBs.

Combining these two expressions and rearranging gives

ȧs =
−r (v2 − P (xs, as))− µxPx (xs, as)− 1

2
σ2x2Pxx (xs, as)

Pa (xs, as)
.

Finally, the proof of Lemma 3 also shows that La (x, a) solves

rLa (x, a) = µxLax (x, a) +
1

2
σ2x2Laxx (x, a) for all x ∈ (x (a) , x (a)).

Using this together with equation (14) gives

ȧs = −r (v2 − xs) + µxs
Pa (xs, as)

=
r (v2 − xs) + µxs
Laa (xs, as)

> 0, (17)
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where the inequality follows from the fact that L (x, a) is strictly convex in a for all x ∈
(x (a) , x (a)) (Lemma A6) and from the fact that r (v2 − x) + µx > 0 for all x < z2.9

Equation (17) gives the rate at which the monopolist sells while xt ∈ (x (at) , x (at)).

4.2 Features of the equilibrium

Failure of the Coase conjecture: In his classic paper, Coase (1972) conjectured that a
durable good monopolist would be post an initial price arbitrarily close to marginal cost. The

monopolist would then serve the entire market “in the twinkling of an eye”, and the market

outcome would be competitive. The classic papers on durable goods monopoly (Stokey, 1981

and Gul, Sonnenschein and Wilson, 1986) provide formal proofs of the Coase conjecture:

as the period length goes to zero, the monopolist’s opening price converges to the lowest

consumer valuation. In the limit, all consumers trade immediately and the monopolist earns

the same profits she would get if all consumers had the lowest valuation.

Time-varying costs introduce an option value of delaying trade. By Lemma 1, the effi -

cient outcome in this setting is that the monopolist serves consumers with valuation vk the

first time costs fall below zk. This threshold is decreasing in the valuation, so under the

optimal outcome the monopolist serves consumers sequentially as costs decrease. Selling to

all consumers immediately is therefore inconsistent with effi ciency in this setting, so at least

one of these features of Coase’s original conjecture will not hold.

With time-varying costs, the profits a monopolist would earn if all consumers had the

lowest valuation v1 are V1 (x) = supτ E[e−rτ (v1 − xτ )|x0 = x]. Say that a monopolist pro-

ducer of a durable good earns zero excess profits if her payoffs are exactly equal to V1 (x). A

natural generalization of the Coase conjecture to this paper’s setting is that the monopolist

earns zero excess profits, and the equilibrium outcome is fully effi cient.

This generalized Coase conjecture fails to hold when there are two types of consumers

in the market. First, the equilibrium is ineffi cient when x0 ∈ (x (0) , x (0)). The monopolist

sells to high type consumers at a rate given by (17) when costs initially lie within this range,

but the effi cient outcome is to serve them immediately. When x0 ∈ (x (0) , x (0)), it is never

optimal for the monopolist to sell to all remaining high types. Instead, the monopolist serves

high type buyers gradually; and these buyers are willing to postpone their purchases since

they expect prices to fall at a rate that compensates their cost of delay.

Second, time-varying costs allow the monopolist to obtain excess profits. By Lemma 2,

P (x, α)− x > V1 (x) for all x ∈ (z1, z2], so L (x, 0) ≥ g (x, 0) > V1 (x) for all x ∈ (z1, z2]. The

9One can check that rv2 > z2 (r − µ) whenever |µ| < r. Thus, rv2 − x(r − µ) > 0 for all x < z2.
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intuition for why the monopolist is able to obtain excess profits is as follows. When marginal

costs are fixed, a monopolist lacking commitment power will sell to low type consumers

immediately after selling to those with high valuation. This limits the price high valuation

buyers are willing to pay, since they expect prices to fall rapidly after they buy. With

time-varying costs, the monopolist can truthfully commit to wait and serve low valuation

consumers when costs fall below z1. If xt is large, high types know that it will take a non-

negligible amount of time for prices to drop to v1, so the monopolist is able to extract more

surplus from them.

The monopolist’s profits under full commitment areΠFC (x) = supτ E[e−rτα (v2 − xτ )|x0 =

x] when αv2 > v1. That is, a monopolist who can commit to a path of prices would find it

optimal to sell only to high types (at a price of v2) when the share of high types is large. High

type buyers would be willing to pay a price equal to v2 in this case, since the monopolist can

commit to keep prices above v2 after they purchase.10 Figure 4 shows that the monopolist

obtains a large fraction of the full commitment profits when costs vary over time.

History dependence: Suppose x0 ∈ (x (0) , x (0)) and let τ = inf{t : xt /∈ (x (at) , x (at))}.
For all s ∈ [0, τ), the rate ȧs at which the monopolist sells to high valuation consumers at

time s depends on the current marginal cost xs and on the current level of market penetration

as (see equation 17). Therefore, for all t ∈ [0, τ ] the level of market penetration at =
∫ t
0
ȧsds

depends upon the entire path of costs from time zero to t. This implies that the price

10Clearly, this strategy of the monopolistis not time-consistent: after selling to high type buyers, it is in
the monopolist’s best interest to sell to low types when costs fall below z1
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P (xt, at) that the monopolist charges at time t depends upon the path of xs up to time t.

In other words, the price that the monopolist charges at each instant in time t ∈ [0, τ ] is not

Markovian on xt, but depends upon the entire history of costs.

Upward sloping demand: Suppose x0 ∈ (x (0) , x (0)), and again let τ = inf{t : xt /∈
(x (at) , x (at))}. Consider histories in which xτ = x (aτ ). At such histories, at time τ all

high type buyers remaining in the market buy at a price P (x (aτ ) , aτ ) = P (x (aτ ) , α). Since

P (x, a) is increasing in x, under such histories a mass of consumers buys at a moment

in which prices are actually increasing. If we plotted prices and quantities sold after such

histories, we would observe that demand is (locally) upward sloping.

Rate of price changes and costs: The model in this section predicts that prices fall at
a faster rate when costs are lower. For xt ∈ [x (at) , z2], the monopolist charges a price

P (xt, α). Applying Ito’s Lemma on equation (9) gives

dP (xt, α) = −r (v2 − P (xt, α)) dt+ σxPx (xt, α) dBt, (18)

for all x ∈ [x (a) , z2]. Similarly, by equation (16) the drift of P (xs, as) is also −r(v2 −
P (xs, as)) for all xs ∈ (x (as) , x (as)). Since P (x, a) is strictly increasing in x for all x ∈
(x (a) , x (a)) and since P (x, α) is strictly increasing in x for x ∈ [z1, z2], it follows that

prices fall (on average) at a faster rate when marginal costs are lower. The intuition behind

this is as follows. Prices must evolve in such a way that high type consumers are indifferent

between purchasing at any time. High type consumers get a larger payoff from buying when

prices are low (i.e., when costs are low). Therefore, when costs are low, prices need to fall

faster to compensate high type consumers for their cost of delay.

Gap vs. no gap: The literature on the Coase conjecture distinguishes two cases: (i) the case
in which there is a positive gap between the lowest consumer valuation and the monopolist’s

marginal cost, and (ii) the case in which this gap is zero. With fixed costs and a positive gap,

there is a unique equilibrium, which is stationary and satisfies the Coase conjecture (Gul,

Sonnenschein and Wilson, 1986). In the no-gap case, there are also non-stationary equilibria

in which the monopolist obtains excess profits (Ausubel and Deneckere, 1989).

With fixed costs and a positive gap, the price that the monopolist charges to high type

consumers is increasing in the gap. In this paper’s setting, we can think of v1 as measuring

the “gap”. Interestingly, with two types of consumers and time-varying costs the price that

the monopolist can charge to high type buyers may be increasing or decreasing in the gap.
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By equation (9),

∂P (x, α)

∂v1
=

1

v1
(v1 (1− λ) + λv2)

(
x

z1

)λ
for x > z1.

Thus, ∂P (x, α) /∂v1 < 0 if and only if v1 < −λ
1−λv2 = z2. That is, the price that high type

buyers are willing to pay is decreasing in v1 for low values of v1, and its increasing in v1 for

high values of v1. The price P (x, α) depends on two quantities: the time τ 1 at which the

monopolist starts selling to low type consumers, and the price v1 that the monopolist charges

at τ 1. An increase in v1 affects both of these quantities: it decreases the stopping time τ 1
and it increases the price v1 the monopolist charges at τ 1. The second effect dominates when

v1 is large, so an increase in v1 leads to an increase in P (x, α). In contrast, the first effect

dominates when v1 is low, so an increase in v1 reduces P (x, α).

It follows from equation (9) that limv1→0 P (x, α) = v2 for all x > 0. The monopolist will

wait an arbitrarily long time to sell to low type buyers when v1 is arbitrarily small. In the

limit as v1 → 0, it is as if the market was comprised only of high valuation consumers, so

the monopolist can charge them a price of v2. This implies that, as v1 → 0, the monopolist’s

profits converge to the full commitment profits ΠFC (x) = supτ E [e−rτα (v2 − xτ )|x0 = x].

Consumer heterogeneity and prices: The model in this section gives predictions about
how the degree of heterogeneity among consumers affects the evolution of prices. Let m =

αv2 + (1− α)v1 be the average valuation, so v1 = (m− αv2)/(1− α). By equation (9),

P (x, α) = v2 −
(
v2 −

m− αv2
1− α

)(
x

−λ
1−λ

m−αv2
1−α

)λ

for x > z1. (19)

By varying v2 in equation (19) we can trace how a mean-preserving change in the distribution

of valuations affects prices. Suppose x0 ≥ z2, so in equilibrium prices are P (xt, α) for all

xt ≤ z2. By equation (18), the drift of P (xt, α) is −r (v2 − P (xt, α)). Equation (19) then

implies that the drift of P (xt, α) is decreasing in v2 if and only if v2v1 <
1−αλ
−αλ . Thus, prices will

decrease at a faster rate in markets in which the degree of heterogeneity among consumers

is larger, provided v2/v1 is small.

Comparative statics with respect to σ: Equation (9) implies that ∂P (x, α) /∂σ > 0 if

and only if x > z1 exp(1/(1 − λ)). In words, at high levels of costs the monopolist is able

to charge a higher price when the volatility of xt is larger. A change in σ has two opposing

effects on P (x, α). First, a higher σ lowers the threshold z1 at which the monopolist starts
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selling to low valuation consumers. Second, a higher σ means that costs will (on average)

reach z1 faster. The second effect dominates when x ∈ (z1, z1 exp(1/(1− λ))), while the first

effect dominates when x > z1 exp(1/(1− λ)).

Comparative statics with respect to µ: By equation (9), ∂P (x, α) /∂µ > 0 if and

only if x > z1 exp(1/(1 − λ)): at high levels of costs a monopolist charges higher prices in

settings in which costs fall at a slower rate. Again, a change in µ has two opposing effects

on P (x, α). First, a higher µ raises the threshold z1 at which the monopolist starts selling

to low type consumers. Second, a higher µ means that costs will (on average) take longer to

fall to z1. The first effect dominates when x ∈ (z1, z1 exp(1/(1− λ))), while the second effect

dominates when x > z1 exp(1/(1− λ)).

5 Markets with n types of consumers

In this section, I show how the results in Section 4 generalize to settings in which the func-

tion f : [0, 1] → [v, v] describing the valuations of the consumers is a left-continuous, non-

increasing step function taking a finite number of values v1 < v2 < ... < vn. For k = 1, .., n,

let αk = max{i ∈ [0, 1] : f (i) = vk} denote the highest indexed consumer with valuation vk,
so f (i) = vk for all i ∈ (αk+1, αk]. Let αn+1 = 0.

As a first step towards analyzing this more general setting, note that at any state (x, a)

with a ≥ α3 there are either one or two types of consumers remaining in the market: con-

sumers with valuation v1 and consumers with valuation v2. Thus, for any state (x, a) with

a ≥ α3 the equilibrium outcome is the one described in Section 4. At states (x, a) with

a ≥ α2, there are only consumers with valuation v1 in the market, so the monopolist’s profits

are (1− α2)V1 (x). On the other hand, at states (x, a) with a ∈ [α3, α2) there are α2 − a

consumers with valuation v2 in the market. In this case, there are cutoffs x (a) and x (a)

such that the monopolist sells to all remaining consumers when x ≤ x (a), and sells to all

remaining consumers with valuation v2 when x ∈ [x (at) , z2]. When x ∈ (x (a) , x (a)), the

monopolist sells gradually to consumers with valuation v2 at a rate given by equation (17),

and when xt > z2 the monopolist doesn’t sell. For states (x, a) with a ≥ α3, let L (x, a)

denote the (unique) equilibrium profits of the monopolist (derived in Section 4).

Consider next states (x, a) with a ∈ [α4, α3), so that there are α3 − a consumers with

valuation v3 still in the market. Let P2 (x) = supi∈(α3,α2] P (x, i) be the highest price that a

consumer with valuation v2 is willing to pay. The analysis in Section 4 implies that P2 (x) =

P (x, α2) for all x ∈ [0, x (α3)]∪[x (α3) ,∞) (where P (x, α2) = v2−E[e−rτ1 (v2 − v1)|x0 = x]),
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and P2 (x) = x−La (x, α3) for all x ∈ (x (α3) , x (α3)). By equation (5), the strategy P (x, α3)

of consumer α3 (the highest indexed consumer with valuation v3) satisfies

P (x, α3) = v3 − E
[
e−rτ2 (v3 − P2 (xτ2))

∣∣x0 = x
]
,

where τ 2 = inf{t : xt ≤ z2} is the time at which the monopolist starts selling to consumers
with valuation v2 when the level of market penetration is α3 (i.e., when all consumers with

valuation v3 have left the market).

By the skimming property, the monopolist can sell to all remaining v3-consumers at price

P (x, α3). Therefore, at states (x, a) with a ∈ [α4, α3) her profits are bounded below by

L (x, a) = sup
τ∈T

E
[
e−rτ

(
(α3 − a) (P (xτ , α3)− xτ ) + e−rτL (xτ , α3)

)∣∣x0 = x
]
. (20)

By arguments similar to those in Lemma 3, there exists thresholds x1 (a), x1 (a), x2 (a), x2 (a)

with x1 (a) < z1 < x1 (a) and x2 (a) < z2 < x2 (a) < z3 such that

τ (a) = inf{t : xt ∈ [0, x1 (a)] ∪ [x1 (a) , x2 (a)] ∪ [x2 (a) , z3]},

is a solution to the optimal stopping problem (20). That is, the solution to (20) is such

that the monopolist sells immediately to all remaining consumers with valuation v3 at price

P (x, α3) whenever xt ∈ [0, x1 (at)] ∪ [x1 (a) , x2 (at)] ∪ [x2 (at) , z3]. On the other hand, when

xt ∈ (x1 (at) , x1 (at))∪ (x2 (at) , x2 (at)) it is optimal to delay. By arguments similar to those

in Section 4, at states (xt, at) with at ∈ [α4, α3) and xt ∈ (x1 (at) , x1 (at)) ∪ (x2 (at) , x2 (at))

the monopolist sells gradually to v3-consumers at a price equal to xt − La (xt, at). The rate

at which the monopolist sells when costs are in this region can be derived following the steps

leading to equation (17). Finally, for x > z3 the monopolist doesn’t sell.

Next, consider states (x, a) with a ∈ (α5, α4]. At such states there are α4 − a consumers
with valuation v4 still in the market. Let P3 (x) = supi∈(α4,α3] P (x, i) be the highest price

that a consumer with valuation v3 is willing to pay. From the arguments above, P3 (x) =

P (x, α3) for x ∈ [0, x1 (at)]∪ [x1 (a) , x2 (at)]∪ [x2 (at) ,∞), and P3 (x) = xt−La (xt, α4) for all

x ∈ (x1 (at) , x1 (a)) ∪ (x2 (at) , x2 (at)). By equation (5), the strategy P (x, α4) of consumer

α4 (the highest indexed consumer with valuation v4) satisfies

P (x, α4) = v4 − E
[
e−rτ3 (v4 − P3 (xτ3))

∣∣x0 = x
]
,

where τ 3 = inf{t : xt ≤ z3} is the time at which the monopolist starts selling to consumers
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with valuation v3 after all consumers with valuation v4 have left the market. The skimming

property again implies that at states (x, a) with a ∈ (α5, α4] the monopolist can sell to all

remaining consumers with valuation v4 at price P (x, α4). Therefore, at all such states the

monopolist’s profits are bounded below by

L (x, a) = sup
τ∈T

E
[
e−rτ

(
(α4 − a) (P (xτ , α4)− xτ ) + e−rτL (xτ , α4)

)∣∣x0 = x
]
.

Continuing in this way, I can extend the function L (x, a) to all a ∈ [0, 1] in such a way

that, for k = 1, ..., n and all a ∈ [αk+1, αk),

L (x, a) = sup
τ∈T

E
[
e−rτ

(
(αk − a) (P (xτ , αk)− xτ ) + e−rτL (xτ , αk)

)∣∣x0 = x
]
. (21)

Theorem 2 In any regular equilibrium, the monopolist’s profits are L (x, a) at every state

(x, a).

Proof. See Appendix A4.

Theorem 2 shows that the results in Theorem 1 extend to the case in which f : [0, 1] →
[v, v] takes any finite number of values: in this more general setting, the monopolist’s equi-

librium profits are also equal to the lower bound L (x, a).

At states (x, a) with a ∈ [αk+1, αk), consumers with valuation vk+1 and higher have

already left the market. For these states, the solution to the optimal stopping problem (21)

involves delaying when x is around z1, z2, ..., or zk−1, and when x > zk. If x < zk is in the

delay region of the optimal stopping problem (21), the monopolist sells gradually to those

consumers with valuation vk (the highest valuation remaining in the market). By arguments

similar to those in Section 4, the rate at which the monopolist sells in this case is such

that consumers with valuation vk are indifferent between buying at time t or delaying their

purchase; and the price that the monopolist charges at each instant is P (x, a) = x−La (x, a).

If x > zk, the monopolist does not sell until costs fall to zk (and at this point she sells

to all vk-consumers at price P (zk, αk)). Finally, if x lies in the stopping region of (21), the

monopolist sells to all remaining consumers with valuation vk at price P (x, αk), and the

state moves to (x, αk). At state (x, αk), the solution to the the optimal stopping problem

(21) involves delaying when x is around z1, z2, ..., or zk−2, and when x > zk−1. Again, the

monopolist sells gradually to consumers with valuation vk−1 (the highest remaining buyers

in the market) if x < zk−1 lies inside the delay region of the optimal stopping problem (21).

If x > zk−1, the monopolist waits for costs to fall, while if x lies in the stopping region of
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(21) the monopolist sells to all remaining consumers with valuation vk−1 at price P (x, αk),

and the state moves to (x, αk−1).

The equilibrium of this more general model shares many of the same features of the

two type case analyzed in Section 4. The generalized Coase conjecture also fails to hold

in this setting. First, the monopolist is able to obtain excess profits. To see this, note

that the monopolist can always sell to all consumers with valuation v2 and higher at price

P (x, α2), obtaining a margin of P (x, α2) − x. By Lemma 2, P (x, α2) − x > V1 (x) for all

x ∈ (z1, z2]. Therefore, the monopolist’s profits L (x, a) are strictly larger than (1−a)V1 (x) for

all x ∈ (z1, z2]. More generally, arguments similar to those in Lemma 2 imply that for k ≥ 2,

P (x, αk) − x > V1 (x) for all x ∈ [zk−1, zk]. Since the monopolist can sell to all consumers

with valuation vk and higher at a price of P (x, αk), this implies that L (x, a) > (1− a)V1 (x)

for all x ∈ [zk−1, zk]. Second, the equilibrium outcome also involves ineffi ciencies in the form

of delayed trade. Suppose x0 < zn lies inside the delay region of (21). In this case, the

effi cient outcome is to serve all consumers with valuation vn immediately, but the monopolist

sells to them gradually. In contrast, the outcome is fully effi cient when x0 ≥ zn: in this case,

for k = 1, ..., n the monopolist serves vk-consumers at the surplus maximizing time τ k.

The equilibrium outcome also displays history dependence when costs initially lie inside

the delay region of the optimal stopping problem (21), since the rate at which the monopolist

sells at each instant depends on the current level of marginal costs. Finally, in this more

general model there will also be histories under which a positive mass of consumers buys

after an increase in prices. Suppose xt lies within the delay region of the optimal stopping

problem (21). In this case, there will be a threshold x (at) such that all consumers with the

highest valuation in the market buy if xt increases above x (at). Since the price that the

monopolist charges is increasing in x, if costs raise rapidly above x (at) all high valuation

consumers will buy at a moment in which prices are actually going up.

6 Continuous distributions and the generalized Coase

conjecture

In this section, I study markets in which the valuations of the consumers are described

by a continuous and strictly decreasing function h : [0, 1] → [v, v], with v > v > 0. I

study this setting by considering a sequence of models with step functions {fn} such that
supi∈[0,1] |fn (i)− h (i)| → 0 as n → ∞. For simplicity, I consider approximations {fn} that
satisfy the following property: for n = 2, 3, ..., fn is a left-continuous step function taking n
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values vn1 , ..., v
n
n, with v

n
1 = v and for k = 2, ..., n, vnk = vnk−1 + (v − v)/(n− 1).11

For n = 2, 3, ..., let Ln (x, a) denote the monopolist’s profits at state (x, a) in an en-

vironment in which the valuations of the consumers are described by fn. Recall that

V1 (x) = supτ E[e−rτ (v − xτ )|x0 = x] are the profits that the monopolist would earn if

all consumers in the market had the lowest valuation v > 0.

Theorem 3 For all states (x, a) ∈ R+ × [0, 1], limn→∞ L
n (x, a) = (1− a)V1 (x).

Proof. See Appendix A5.

Theorem 3 shows that the monopolist’s profits at state (x, a) converge to (1 − a)V1 (x)

in the limit as the distribution of consumer valuations becomes continuous. That is, a

monopolist producer of a durable good earns zero excess profits when she faces a continuous

distribution of consumer valuations.

To see the intuition behind Theorem 3, consider first a setting with two types of con-

sumers: high types, with valuation v, and low types, with valuation v. After high types have

left the market, the monopolist will sell to low types when costs fall below z = −λ
1−λv. In this

case, the monopolist can truthfully commit to maintain high prices until costs fall below z.

High type buyers know that prices will fall to v only when xt ≤ z. Thus, when costs are

above z they are willing to pay higher prices.

Consider next the case in which there are three types of consumers, with valuations v,

(v + v)/2 and v. After consumers with valuation v have left the market, the monopolist can

only commit to keep prices high until costs fall below −λ
1−λ

(v+v)
2
. At this point, it becomes

optimal for the monopolist to sell to consumers with intermediate valuation (v + v)/2. This

puts a limit to the price consumers with valuation v are willing to pay when xt > −λ
1−λ

(v+v)
2
,

since now they can wait until costs fall to −λ
1−λ

(v+v)
2

and obtain a lower price.

More generally, the proof of Theorem 3 shows that the price consumers are willing to

pay monotonically decreases as n→∞. In the limit as the gap between valuations becomes
vanishingly small, the monopolist’s profits fall to what she would earn if all consumers had

the lowest valuation v. In other words, the monopolist losses all commitment power when she

faces a continuous distribution of valuations, since in this case she always has an incentive to

serve the next buyer arbitrarily soon after her last sale (Figure 5 plots the prices consumers

are willing to pay for n = 2, 3, 4 and 5).

11For instance, we can construct such sequence {fn} as follows. For k = 1, ..., n, let αnk = max{i ∈ [0, 1] :
fn (i) = vnk } be the highest indexed consumer with valuation vnk . Thus, fn (i) = vnk for all i ∈ (αnk+1, αnk ].
Let fn be such that αn1 = 1 and, for k = 2, ..., n, αnk = (h−1

(
vk−1n

)
+ h−1

(
vkn
)
)/2. One can check that

supi |fn (i)− h (i)| → 0 as n→∞.
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Figure 5: Parameters: v = 1
2
, v = 1, µ = −0.02, σ = 0.2 and r = 0.05.

Corollary 1 In the limit as n→∞, the monopolist sells at price Pt = xt + V1 (xt) and the

equilibrium outcome is fully effi cient.

Corollary 1 and Theorem 1 together imply that the generalized Coase conjecture holds

when the distribution of valuations is continuous: the outcome is fully effi cient in this case,

and the monopolist is unable to obtain excess profits. To see why Corollary 1 must hold, note

first that the monopolist can always guarantee herself a profit of V1 (xt) on every consumer

by treating all of them as low types. This implies that the monopolist will never sell at a

price below xt +V1 (xt): selling at such a price would give her a profit lower than V1 (xt). On

the other hand, the monopolist’s profits would be strictly larger than V1 (xt) if she could sell

at prices strictly higher than xt + V1 (xt), contradicting Theorem 3.

With a continuous distribution the path of prices is then given by {xt + V1 (xt)} and the
monopolist’s profit margin on each sale is V1 (xt). Given this path of prices, a consumer with

valuation v ∈ [v, v] chooses optimally when to buy, solving supτ E[e−rτ (v − xt − V1 (xt))|x0 =

x]. The solution to this stopping problem is τ v = inf{t : xt ≤ −λ
1−λv}: with a continuous

distribution, a consumer with valuation v buys at time τ v. By Lemma 1, τ v is the surplus

maximizing time at which to sell to a consumer with valuation v. Thus, the limiting outcome

is fully effi cient: the monopolist serves consumers sequentially as cost decreases, precisely at

the point in time that maximizes total surplus. Consumers with higher valuations trade
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earlier, and end up paying higher prices (since x+ V1 (x) is strictly increasing in x).

Finally, in this setting we can think of the lowest valuation v as measuring the “gap”.

Note that V1 (x) = (v − z) (x/z)λ → 0 as v → 0. Therefore, when the function describing

the valuations of the consumers is continuous, the price Pt = V1 (xt) + xt at which the

monopolist sells her good converges to marginal cost xt as v goes to zero: in the no gap case,

the equilibrium outcome is competitive and the monopolist earns zero profits.

7 Conclusion

This paper studies the effect time-varying costs have on the equilibrium dynamics of an other-

wise standard durable goods monopoly model. When the distribution of consumer valuations

is discrete, time-varying costs provide commitment power to the monopolist. This allows the

monopolist to extract more surplus from consumers with higher valuations, modifying the

entire equilibrium dynamics. This commitment power disappears when the distribution of

valuations is continuous. The monopolist earns zero excess profits in this case, and the

equilibrium outcome is fully effi cient.

Continuous time methods lead to a tractable characterization of the equilibrium. The

model delivers a variety of predictions about how prices and margins relate to the different

features of the environment. For instance, the model with two types of buyers predicts that

prices fall at a faster rate when the monopolist’s costs are lower, and that prices also fall

faster in markets in which there is more heterogeneity among consumers. These and other

predictions of the model could serve as a benchmark for future empirical work on durable

goods pricing.

Throughout the paper, I assumed that costs follow a particular diffusion process. In

applications, it might be important to have flexibility regarding the choice of the cost process,

especially if we have information about how these costs actually evolve. The main the results

of the paper continue to hold if costs follow a more general process of the form12

dxt = µ (xt) dt+ σ (xt) dBt. (22)

For instance, suppose there are two types of buyers. If costs evolve as (22), we could still

compute the lower bound L (x, a) on the monopolist’s profits using the procedure of Section

4, and this lower bound would still characterize the monopolist’s equilibrium profits.

12The coeffi cients µ : R → R and σ : R → R in (22) must satisfy conditions for existence and uniqueness
of a strong solution to this stochastic differential equation; see Theorem 5.2.9 in Karatzas and Shreve (1998).
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Finally, the paper assumes that the process driving marginal costs is exogenous. However,

in many settings firms are able to influence how their costs evolve, for instance, through

investments in R&D. One way to incorporate this feature into the model is to assume that

the monopolist’s investment decisions affect the drift and/or volatility of the costs process.

Although incorporating this feature to the model would make the analysis more complex, we

could still use the methods put forward in this paper to study the dynamics of prices and

sales under this environment.

A Appendix

A.1 Proofs of Lemmas 1 and 2

Let τ y = inf{t : xt /∈ (y1, y2)} for some 0 < y1 < y2, and let τ y1 = inf{t : xt ≤ y1}.

Lemma A1 Let g be a bounded function, and let W be the solution to

rW (x) = µxW ′ (x) +
1

2
σ2x2W ′′ (x) , (A.1)

with W (y1) = g (y1) and W (y2) = g (y2). Then, W (x) = E[e−rτyg
(
xτy
)∣∣x0 = x] for all

x ∈ (y1, y2).

Proof. Let W satisfy (A.1), with W (y1) = g (y1) and W (y2) = g (y2). The general solution
to (A.1) isW (x) = Axλ+Bxκ, where λ < 0 and κ > 1 are the roots of 1

2
σ2q (q − 1)+µq = r,

and where A and B are constants determined by W (y1) = g (y1) and W (y2) = g (y2):

A =
g (y2) y

κ
1 − g (y1) y

κ
2

yκ1y
λ
2 − yλ1yκ2

, B = −g (y2) y
λ
1 − g (y1) y

λ
2

yκ1y
λ
2 − yλ1yκ2

(A.2)

Let f (x, t) = e−rtW (x). By Ito’s Lemma, for xt ∈ (y1, y2)

df (xt, t) = e−rt
(
−rW (xt) + µxW ′ (xt) +

1

2
σ2x2W ′′ (xt)

)
dt+ e−rtσxW ′ (xt) dBt,

= e−rtσxW ′ (xt) dBt,

where the second equality follows from the fact that W solves (A.1). Then,

E
[
e−rτyg

(
xτy
)∣∣x0 = x

]
= E

[
f
(
xτy , τ y

)∣∣x0 = x
]

= f (x, 0) + E

[∫ τ

0

df (xt, t)

∣∣∣∣x0 = x

]
= W (x) + E

[∫ τ

0

e−rtσxW ′ (xt) dBt

∣∣∣∣x0 = x

]
= W (x) ,

since
∫ τ
0
e−rtσxW ′ (xt) dBt is a Martingale with expectation zero.
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Corollary A1 Let g be a bounded function, and let w be a solution to (A.1) with w (y1) =
g (y1) and limx→∞w (x) = 0. Then, w (x) = E[e−rτy1g

(
xτy1

)∣∣x0 = x] for all x > y1.
Moreover, w (x) = g (y1) (x/y1)

λ for all x > y1.

Proof. Let τ y1 = inf{t : xt ≤ y1} and note that τ y = inf{t : xt /∈ (y1, y2)} → τ y1 as y2 →∞.
By monotone convergence,

W (x) = E
[
e−rτyg

(
xτy
)∣∣x0 = x

]
→

as y2→∞
E
[
e−rτy1g

(
xτy1

)∣∣x0 = x
]

= w (x) .

By Lemma A1, W (x) = Axλ + Bxκ for x ∈ (y1, y2), with A and B satisfying (A.2). Since
limy2→∞B = 0 and limy2→∞A = g (y1) /y

λ
1 , w (x) = lim y2→∞W (x) = g (y1) (x/y1)

λ.

Proof of Lemma 1. Let Vk (·) be as in the statement of the Lemma, and note that
Vk (·) ∈ C1. One can show that Vk (x) > vk − x for x > zk. Moreover, in this range Vk (·)
solves (A.1), with Vk (zk) = vk − zk and limx→∞ Vk (x) = 0. By Corollary A1, Vk (x) =
E[e−rτk(vk − xτk)|x0 = x]. One can also show that

r (vk − x) = rVk (x) > µxV ′k (x) +
1

2
σ2x2V ′′k (x) = −µx,

for all x ≤ zk. Therefore, by standard verification results Vk (·) is the solution to (6) (e.g.,
Theorem 3.17 in Shiryaev, 2008).

Remark A1 Since Vk is a solution to the optimal stopping problem (6), then e−rtVk (xt) is
superharmonic; i.e., Vk (x) ≥ E[e−rτVk (xτ )|x0 = x] for any stopping time τ (e.g., Theorem
10.1.9 in Oksendal, 2008). I will use this property repeatedly in what follows.

Proof of Lemma 2. By equation (8) and Lemma 1,

P (x, α)− x− V1 (x) = v2 − x− E
[
e−rτ1 (v2 − v1)

∣∣x0 = x
]
− E

[
e−rτ1 (v1 − xτ1)

∣∣x0 = x
]

= v2 − x− E[e−rτ1(v2 − xτ1)
∣∣x0 = x] > 0

for all x ∈ (z1, z2], since by Lemma 1, v2 − x = V2 (x) > E[e−rτ1(v2 − xτ1)|x0 = x].

A.2 Proof of Lemma 3

I divide the proof of Lemma 3 in a series of Lemmas. Lemmas A2 and A3 give properties of
solutions to equation (A.1). Lemma A4 characterizes the solution to the optimal stopping
problem (10), while Lemmas A5 and A6 prove some properties of this solution.

Lemma A2 Let U be a solution to (A.1) with U (y) = (1− a) (v − y) and U ′ (y) = −(1−a)
for some y ∈ (0, z1) and a ∈ [0, α). Then, U is strictly convex for all x > 0.

Proof. The general solution to (A.1) is U (x) = Axλ +Bxκ. Using the initial conditions,

A = y−λ (1− a)
κ (v1 − y) + y

κ− λ > 0 and B = y−κ (1− a)
− (v1 − y)λ− y

κ− λ > 0,
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where the second inequality follows from the fact that y < z1 = −v1λ/(1 − λ). Thus,
U ′′ (x) = λ(λ− 1)Axλ−2 + κ(κ− 1)Bxκ−2 > 0 for all x > 0 (since κ > 1).

Lemma A3 Let U and Ũ be two solutions to (A.1). If Ũ (y) ≥ U (y) and Ũ ′ (y) > U ′ (y) for
some y > 0, then Ũ ′ (x) > U ′ (x) for all x > y, and so Ũ (x) > U (x) for all x > y. Similarly,
if Ũ (y) ≤ U (y) and Ũ ′ (y) > U ′ (y) for some y > 0, then Ũ ′ (x) > U ′ (x) for all x < y, and
so Ũ (x) < U (x) for all x < y.

Proof. I prove the first statement of the Lemma. The proof of the second statement is
symmetric and omitted. Suppose the claim is not true, and let y1 > y be the smallest point
with U ′ (y1) = Ũ ′ (y1). Therefore, Ũ ′ (x) > U ′ (x) for all x ∈ [y, y1), so Ũ (y1) > U (y1). Since
U and Ũ solve (A1), then

Ũ ′′ (y1) =
2(rŨ (y1)− µy1Ũ ′ (y1))

σ2y21
>

2 (rU (y1)− µy1U ′ (y1))
σ2y21

= U ′′ (y1) .

But this implies that U ′ (y1 − ε) > Ũ ′ (y1 − ε) for ε small enough, a contradiction.

For all a ∈ [0, α) and all x > 0, let g (x, a) = (α−a)(P (x, α)−x)+Π(x, α), where Π(x, α)
and P (x, α) are given by equations (7) and (9). Let L(x, a) = supτ E[e−rτg (xτ , a)|x0 = x].

Lemma A4 For all a ∈ [0, α), there exists x (a) ∈ (0, z1) and x (a) ∈ (z1, z2) such that
τ (a) = inf{t : xt ∈ [0, x (a)] ∪ [x (a) , z2]} solves (10). Moreover,

(i) for all x ∈ (x (a) , x (a)) ∪ (z2,∞), L (x, a) solves (A.1), with limx→∞ L (x, a) = 0.

(ii) for all x ≤ x (a) and x ∈ [x (a) , z2], L (x, a) = g (x, a).

(iii) the cutoffs x (a) and x (a) are such that

L (x (a) , a) = g (x (a) , a) , L (x (a) , a) = g (x (a) , a) , (VM)

Lx (x (a) , a) = gx (x (a) , a) , Lx (x (a) , a) = gx (x (a) , a) . (SP)

Proof. First I show that there exists a function L (x, a) satisfying conditions (i)-(iii). I
start by showing that there exists a function L (x, a) and unique cutoffs x (a) and x (a) such
that L (x, a) solves (A1) on (x (a) , x (a)) and satisfies (iii). To see this, consider solutions
U to (A.1) with U (y) = g (y, a) = (1− a) (v1 − y) and U ′ (y) = gx (y, a) = − (1− a) for
some y < z1. By Lemma A2, such solutions are strictly convex. Since solutions to (A.1) are
continuous in initial conditions, then the solutions I’m considering are continuous in y. If y
is small enough, then U (x) will remain above g (x, a) for all x > y. On the other hand, if
y close to z1 then U will cross g (x, a) at some x̃ > y (see solutions I-IV in Figure A1). By
Lemma A3, the point x̃ moves to the right as y decreases. Let x (a) be the smallest y such
that U reaches g (x, a) for some x (a) > y. Since a solution with y < x (a) never reaches
g (x, a), it follows that U (x) ≥ g (x, a) for all x. Thus, U is tangent to g (x, a) at x (a), so
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Figure A1: Solutions to equation (A.1)

U ′ (x (a)) = gx (x (a) , a) (solution III in Figure A1). Note that U is the unique solution to
(A1) that satisfies (VM) and (SP). Hence, L (x, a) = U (x) for x ∈ [x (a) , x (a)].
By (ii), L (x, a) = g (x, a) for x ≤ x (a) and x ∈ [x (a) , z2]. By (i), L (·, a) solves (A.1) for

x > z2, with limx→∞ L (x, a) = 0 and L (z2, a) = g (z2, a). Corollary A1 then implies that

L (x, a) = E[e−rτ2g (xτ2 , a)
∣∣x0 = x] = g (z2, a) (x/z2)

λ for all x > z2.

For future reference, one can check that Lx (z2, a) = gx (z2, a); i.e., L satisfies the smooth
pasting condition at z2. Also, one can check that, for all x > z2, g (x, a) < g (z2, a) (x/z2)

λ =
E[e−rτ2g (xτ2 , a)|x0 = x].
Let L (x, a) be the (unique) function satisfying conditions (i)-(iii). Then, L (x, a) is twice

differentiable in x, with a continuous first derivative. Moreover,

−rL (x, a) + µxLx (x, a) +
1

2
σ2x2Lxx (x, a) ≤ 0, with equality on (x (a) , x (a)) ∪ (z2,∞).

(A.3)
Indeed, L (x, a) satisfies (A.3) with equality on (x (a) , x (a)) ∪ (z2,∞) since it solves (A.1)
in this region. One can also check that rL (x, a) > µxLx (x, a) + 1

2
σ2x2Lxx (x, a) for all

x ∈ [0, x (a)]∪ [x (a) , z2]. By standard verification theorems (e.g., Theorem 3.17 in Shiryaev,
2008), L (x, a) = supτ E[e−rτg (xτ , a)|x0 = x]. By Lemma A1 and Corollary A1, L (x, a) =
E[e−rτ(a)g

(
xτ(a), a

)∣∣x0 = x], so τ (a) solves (10).
Finally, note that by construction it must be that x (a) < z1 and that x (a) > z1. I now

show that x (a) < z2. Suppose by contradiction that x (a) > z2. In this case, L (x (a) , a) =
g (x (a) , a) < E [e−rτ2g (z2, a)|x0 = x (a)], contradicting the fact that L (x (a) , a) solves the
optimal stopping problem (10). Therefore, it must be that x (a) < z2.

Lemma A5 L (x, a) ∈ C2,2 for all x ∈ (x (a) , x (a)) and all a ∈ [0, α). Moreover, x (a) and
x (a) are continuous in a, with lima→α x (a) = limx→α x (a) = z1.
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Proof. By Lemma A4, L (x, a) = A (a)xλ + B (a)xκ for all x ∈ (x (a) , x (a)), where A (a),
B (a), x (a) and x (a) are determined by the system of equations (VM) + (SP). Denote this
system of equations by F (x (a) , x (a) , A (a) , B (a)) = 0. One can check that F ∈ C2 and its
Jacobian at (x (a) , x (a) , A (a) , B (a)) has a non-zero determinant. By the Implicit Function
Theorem, the functions A (a), B (a), x (a) and x (a) are all C2 with respect to a (e.g., de la
Fuente, 2000, pages 210-211). Since L (x, a) = A (a)xλ + B (a)xκ for all x ∈ (x (a) , x (a)),
this implies that L (x, a) ∈ C2,2 for all x ∈ (x (a) , x (a)).
Next, I show that lima→α x (a) = lima→α x (a) = z1. Let x := lima→α x (a) and x :=

lima→α x (a). Since x (a) < z1 and x (a) > z1 for all a (Lemma A4), it follows that x ≤ z1 ≤ x.
Let τ̂ := inf{t : xt ∈ [0, x] ∪ [x, z2]}, so τ (an) → τ̂ for every sequence {an} → α. Note
that L (x, a) ≥ g (x, a) ≥ Π (x, α) = (1− α)V1 (x) for all a ≤ α, so lima→α L (x, a) ≥
(1− α)V1 (x).
Let {an} → α. Since lima→α g (x, a) = (1− α)V1 (x), by Dominated Convergence

L (x, an) = E
[
e−rτ(an)g

(
xτ(an), an

)∣∣x0 = x
]
→

as n→∞
E
[
e−rτ̂ (1− α)V1 (x)

∣∣x0 = x
]
,

Suppose by contradiction that x < z1. Then, for x ∈ (x, x),

(1− α)E
[
e−rτ̂V1 (x)

∣∣x0 = x
]

=
(1− α) Pr (xτ̂ = x)E

[
e−rτ(x) (v1 − x)

∣∣x0 = x
]

+ (1− α) Pr (xτ̂ = x)E
[
e−rτ(x)V1 (x)

∣∣x0 = x
]

< (1− α)V1 (x) ,

where the inequality follows from Remark A1 and the fact that E[e−rτ(x)(v1− x)] < V1 (x) =
E[e−rτ1(v1 − z1)] (Lemma 1). This contradicts lima→α L (x, a) ≥ (1− α)V1 (x), so x = z1.
Suppose next that x > z1. Let W (x) = E[e−rτ̂ (P (xτ̂ , α)− xτ̂ )

∣∣x0 = x]. Since x = z1, it
follows that τ̂ = inf{t : xt ∈ [0, z1] ∪ [x, z2]}. Let Yt = e−rt(P (xt, α)− xt). By Ito’s Lemma,

dYt = e−rt
((
−r (P (xt, α)− xt) + µxt (Px (xt, α)− 1) +

σ2x2t
2

Pxx (xt, α)

)
dt+ σxtPx (xt, α) dBt

)
,

for all xt ∈ (z1, x). Equation (9) implies rP (x, α) = rv2 + µxPx (x, α) + σ2x2

2
Pxx (x, α), so

dYt = e−rt (−r (v2 − xt)− µxt) dt+ e−rtσxtPx (xt, α) dBt.

Therefore, for x ∈ (z1, x),

W (x) = E [Yτ̂ |x0 = x] = Y0 + E

[∫ τ̂

0

e−rt (−r (v2 − xt)− µxt) dt
∣∣∣∣x0 = x

]
.

One can check that −r (v2 − x) < µx for all x < x < z2, so W (x) < Y0 = P (x, α)− x.
For each a ∈ [0, α), let W (x, a) = E[e−rτ(a)

(
P
(
xτ(a), α

)
− xτ(a)

)∣∣x0 = x]. Pick a se-
quence {an} → α, and note that τ (an) → τ̂ as n → ∞. By dominated Convergence,
W (x, an) → W (x) as n → ∞. Fix x ∈ (z1, x). Since W (x) < P (x, α) − x, there exists N
such thatW (x, an) < P (x, α)−x for all n > N . On the other hand, E[e−rτ(an)V1

(
xτ(an)

)∣∣x0 =
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x] ≤ V1 (x) for all x (see Remark A1). Therefore, for n > N

L (x, an) = E
[
e−rτ(an)

(
(α− an)

(
P
(
xτ(an), α

)
− xτ(an)

)
+ (1− α)V1

(
xτ(an)

))∣∣x0 = x
]

< (α− an) (P (x, α)− x) + (1− α)V1 (x) = g (x, an) ,

which contradicts the fact that L (x, an) = supτ E [e−rτg (xτ , an)|x0 = x]. Thus, x = z1.

Proof of Lemma 3. Follows directly from Lemmas A4 and A5.

Lemma A6 L (x, a) is strictly convex in a for all x ∈ (x (a) , x (a)).

Proof. I first show that x′ (a) > 0 and x′ (a) < 0. For a ∈ [0, α), let W (x, a) =
E[e−rτ(a)(P

(
xτ(a), α

)
− xτ(a))

∣∣x0 = x] and U (x, a) = E[e−rτ(a)V1
(
xτ(a)

)∣∣x0 = x], so L (x, a) =
(α− a)W (x, a) + (1− α)U (x, a). By Lemma A1, U (x, a) solves (A.1) with U (x (a) , a) =
v1 − x (a) = V1 (x (a)) and U (x (a) , a) = (v1 − z1) (x (a) /z1)

λ = V1 (x (a)). Note that
Ux (x (a) , a) < −1 and Ux (x (a) , a) > V ′1 (x (a)). To see this, note that V1 (x) also solves
(A.1) for x ≥ z1, with V1 (z1) = v1 − z1 and V ′1 (z1) = −1. Suppose by contradiction that
Ux (x (a) , a) ≥ −1. By Lemma A2, U is strictly convex, so U ′ (x) > −1 and U (x) > v1 − x
for all x > x (a). Lemma A3 then implies that U (x, a) > V1 (x) for all x > x (a), a con-
tradiction to the fact that U (x (a) , a) = V1 (x (a)). Hence, Ux (x (a) , a) < −1. Similarly,
if Ux (x (a) , a) ≤ V ′1 (x (a)) then by Lemma A3 U (x, a) > V1 (x) for all x < x (a), which
contradicts U (x (a) , a) = V1 (x (a)). Hence, Ux (x (a) , a) > V ′1 (x (a)). Since Lx (x (a) , a) =
gx (x (a) , a) = − (1− a) and Lx(x (a) , a) = gx(x (a) , a) = (α − a)(Px(x (a) , α) − 1) + (1 −
α)V ′1(x (a)), it follows that Wx (x (a) , a) > −1 and Wx (x (a) , a) < Px (x (a) , α)− 1.
Let a′ < a. The analysis above implies that,

(α− a′)Wx (x (a) , a) + (1− α)Ux (x (a) , a) > gx (x (a) , a′)

(α− a′)Wx (x (a) , a) + (1− α)Ux (x (a) , a) < gx (x (a) , a′) .

Let F (x) = (α− a′)W (x, a) + (1− α)U (x, a). Since W (x, a) and U (x, a) both solve (A.1)
for all x ∈ (x (a) , x (a)) (Lemma A1), then so does F . Moreover, F (x (a)) = g (x (a) , a′) and
F (x (a)) = g (x (a) , a′). Thus, by Lemma A1 F (x) = E[e−rτ(a)g

(
xτ(a), a

′)∣∣x0 = x].
Suppose by contradiction that x (a′) ≥ x (a). Let H be the solution to (A.1) with

H(x (a)) = g(x (a) , a′) = (1 − a′)(v1 − x (a)) and H ′(x (a)) = gx(x (a) , a′) = −(1 − a′).
By Lemma A2, H is strictly convex, so H ′ (x) > −(1 − a′) for all x > x (a). Since F solves
(A.1) with F (x (a)) = g(x (a) , a′) and F ′(x (a)) > gx(x (a) , a′), it follows by Lemma A3
that F ′(x) > H ′ (x) = −(1 − a′) for all x ≥ x (a) and F (x) > H (x) > g (x, a′) for all
x ∈ (x (a) , z1). By Lemma A4, L (x, a) solves (A.1) on (x (a′) , x (a′)), with L (x (a′) , a′) =
g (x (a′) , a′) and Lx (x (a′) , a′) = gx (x (a′) , a′). The arguments above together with Lemma
A3 then imply that F (x) > L (x, a′) for all x > x (a′), a contradiction to the fact that
L (x, a′) = supτ E [e−rτg (xτ , a

′)|x0 = x]. Thus, it must be that x (a′) < x (a).
Similarly, suppose that x (a′) ≤ x (a). By a symmetric argument, one can show that

L (x (a′) , a′) = g (x (a′) , a′) ≤ F (x (a′)) and Lx (x (a′) , a′) = gx (x (a′) , a′) > Fx (x (a′)).
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Lemma A3 then implies that F (x) > L (x, a′) for all x < x (a′), contradicting the fact that
L (x, a′) = supτ E [e−rτg (xτ , a

′)|x0 = x]. Thus, it must be that x (a′) > x (a).
Finally, I show that L (x, a) is strictly convex in a for all x ∈ (x (a) , x (a)). Take a′ < a <

α, and let aγ = γa+(1−γ)a′ for some γ ∈ (0, 1). Note that g(x, aγ) = γg(x, a)+(1−γ)g(x, a′).
Moreover, x (a′) < x (aγ) < x (a) and x (a′) > x (aγ) > x (a). Therefore,

L (x, aγ) = γE
[
e−rτ(a

γ)g(xτ(aγ), a)
∣∣x0 = x

]
+ (1− γ)E

[
e−rτ(a

γ)g(xτ(aγ), a
′)
∣∣x0 = x

]
< γL (x, a) + (1− γ)L (x, a′) ,

for all x ∈ (x (a) , x (a)), so L (x, a) is strictly convex in a on (x (a) , x (a)).

A.3 Proof of Theorem 1

The proof of Theorem 1 is organized as follows. Lemmas A7 and A8 establish conditions
that hold in any regular equilibrium. Using these conditions, Lemma A9 provides a partial
characterization of the monopolist’s equilibrium payoff. Finally, Lemma A10 establishes that
in any regular equilibrium the monopolist’s payoff are equal to L (x, a).

Lemma A7 Let ({at} ,P) be an equilibrium. Then,

(i) for all t such that xt < z2 and at < α, the monopolist always sells (i.e., dat > 0),

(ii) for all t such that xt > z2 and at < α, the monopolist doesn’t sell (i.e., dat = 0).

Proof. (i) Suppose that at < α and dat = 0 while xt < z2. Let τ̃ = inf{s > t : das > 0}, so
τ̃ > 0. In this case, the price at which the marginal buyer a+t is willing to buy satisfies

P
(
xt, a

+
t

)
= v2 − E

[
e−r(τ̃−t) (v2 − P (xτ̃ , aτ̃ ))

∣∣xt, at] .
That is, at time t the marginal buyer a+t is willing to pay a price that leaves her indifferent
between buying at that price, or waiting until τ̃ and getting the good at price P (xτ̃ , aτ̃ ). The
monopolist gets a profit of E[e−r(τ̃−t)(P (xτ̃ , aτ̃ )− xτ̃ )

∣∣xt, at] from selling to consumer a+t at
time τ̃ . The monopolist gets P

(
xt, a

+
t

)
− xt from selling to a+t at time t. Note that,

P
(
xt, a

+
t

)
− xt − E[e−r(τ̃−t)(P (xτ̃ , aτ̃ )− xτ̃ )

∣∣xt, at]
= v2 − xt − E[e−r(τ̃−t)(v2 − xτ̃ )

∣∣xt, at] > 0,

where the last inequality follows from the fact that v2 − x = supτ E[e−rτ (v2 − xτ )|x0 = x]
for all x ≤ z2. Thus, the monopolist is better off selling to consumer a+t at t, a contradiction
to the assumption that ({at} ,P) is an equilibrium.
(ii) Suppose the monopolist sells while xt > z2. Let τ (α) denote the time at which

consumer α buys and recall that τ 2 = inf{t : xt ≤ z2}. Let τ = min {τ (α) , τ 2}. Since all
high valuation consumers must get the same payoff in equilibrium, the price the monopolist
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charges at any time s ∈ [t, τ ] must be such that

P (xs, as) = v2 − E
[
e−r(τ−s) (v2 − P (xτ , aτ ))

∣∣xs, as] .
If τ (α) < τ 2, then aτ = α. After time τ (α), the monopolist sells to low type consumers
when costs fall below z1. Recall that τ 1 = inf{t : xt ≤ z1}. By equation (5), it follows that

P (xτ , α) = v2 − E
[
e−r(τ1−τ) (v2 − v1)

∣∣xτ] = v2 − E
[
e−r(τ2−τ) (v2 − P (xτ2 , α))

∣∣xτ] ,
since P (xτ2 , α) = v2 − E

[
e−r(τ1−τ2) (v2 − v1)

∣∣xτ2]. By the law of iterated expectations,
P (xs, as) = v2−E

[
e−r(τ2−s) (v2 − P (xτ2 , α))

∣∣xs, as] = v2−E
[
e−r(τ2−s) (v2 − P (xτ2 , aτ2))

∣∣xs, as] ,
for s < τ , since in this case aτ2 = α. On the other hand, if τ (α) ≥ τ 2, then

P (xs, as) = v2 − E
[
e−r(τ2−s) (v2 − P (xτ2 , aτ2))

∣∣xs, as] .
The profits that the monopolist gets from selling to high valuation consumers between

time t and τ are Et[e−r(s−t)
∫ τ
t

(P (xs, as)−xs)das]. If instead the monopolist waits until time
τ 2 and sells to all consumers i ∈ [at, aτ2 ] at that instant, her profits areEt[e

−r(τ2−t)(P (xτ2 , aτ2)−
xτ2)(aτ2 − at)]. Note that for all s ∈ [t, τ 2)

P (xs, as)− xs − Es
[
e−r(τ2−s) (P (xτ2 , aτ2)− xτ2)

]
= v2 − Es

[
e−r(τ2−s) (v2 − P (xτ2 , aτ2))

]
− xs − Es

[
e−r(τ2−s) (P (xτ2 , aτ2)− xτ2)

]
= v2 − xs − Es

[
e−r(τ2−s) (v2 − xτ2)

]
< 0,

since τ 2 solves supτ E [e−rτ (v2 − xτ )]. Hence, the monopolist is better off by delaying sales
until time τ 2, contradiction the fact that ({at} ,P) is an equilibrium.

Lemma A8 Let ({at} ,P) be a regular equilibrium and let Π (x, a) denote the monopolist’s
equilibrium profits. If as is continuously increasing in s ∈ [t, τ ] for some τ > 0, then
P (xs, as) = xs − Πa (xs, as) for all s ∈ [t, τ ].

Proof. Let ({at} ,P) be a regular equilibrium. Suppose as is continuously increasing for
s ∈ [t, τ ], with ȧs = das/ds. Then,

Π (xt, at) = Et

[∫
(t,τ ]

e−r(s−t) (P (xs, as)− xs) ȧsds+ e−r(τ−t)Π (xτ , aτ )

]
.

By the Law of iterated expectations, the process

Yt =

∫
[0,t]

e−rs (P (xs, as)− xs) das + e−rtΠ (xt, at) (A.4)

= E

[∫
[0,τ ]

e−rs (P (xs, as)− xs) das + e−rτΠ (xτ , aτ )

]
,
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is a martingale. The Martingale Representation Theorem implies that there exists a process
βt ∈ L∗ such that dYt = e−rtβtdBt. Differentiating (A.4) with respect to t yields

dYt = e−rt (P (xs, as)− xs) ȧtdt− re−rtΠ (xt, at) dt+ e−rtdΠ (xt, at)⇒
dΠ (xt, at) = rΠ (xt, at) dt− (P (xt, at)− xt) ȧtdt+ βtdBt.

One the other hand, since Π ∈ C2,1 Ito’s Lemma implies that

dΠ (xt, at) =

(
µxtΠx (xt, at) +

1

2
σ2x2tΠxx (xt, at)

)
dt+ Πa (xt, at) ȧtdt+ σxtΠx (xt, at) dBt.

Combining these two equations gives

rΠ (xt, at) = µxtΠx (xt, at) +
1

2
σ2x2Πxx (xt, at) + (P (xt, at)− xt + Πa (xt, at)) ȧt. (A.5)

Suppose that P (xs, as) 6= xs−Πa (xs, as) on a set of positive measure in s ∈ [t, τ ], and let
{bs} ∈ APat,t be a process such that ḃs = ȧs for all s such that P (xs, as) = xs−Πa (xs, as), and
ḃs > ȧs (ḃs < ȧs) for all s such that P (xs, as) > xs−Πa (xs, as) (P (xs, as) < xs−Πa (xs, as)).
Let Ut denote the monopolist’s profits from following strategy {bs} on s ∈ [t, τ ], so

Ut = Et

[∫ τ

t

e−r(s−t) (P (xs, bs)− xs) ḃsds+ e−r(τ−t)Π (xτ , bτ )

]
. (A.6)

By Ito’s Lemma, under process {bs}

de−r(s−t)Π (xs, bs) = e−r(s−t)
( (
−rΠ (xs, bs) + µxsΠx (xs, bs) + 1

2
σ2x2sΠxx (xs, bs)

)
ds

+Πa (xs, bs) ḃsds+ σxsΠx (xs, bs) dBs

)
.

Therefore,

Et
[
e−r(τ−t)Π (xτ , bτ )

]
= Π (xt, at)+Et

[∫ τ

t

e−r(s−t)
(
−rΠ (xs, bs) + µxsΠx (xs, bs) +
1
2
σ2x2sΠxx (xs, bs) + Πa (xs, bs) ḃs

)
ds

]
.

Since P (xs, as) 6= xs−Πa (xs, as) on a set of positive measure in s ∈ [t, τ ], the equation above
together with (A.6) gives

Ut = Et

[
Π (xt, at) +

∫ τ
t
e−r(s−t) (P (xs, bs)− xs + Πa (xs, bs)) ḃsds+∫ τ

t
e−r(s−t)

(
−rΠ (xs, bs) + µxsΠx (xs, bs) + 1

2
σ2x2sΠxx (xs, bs)

)
ds

]
> Π (xt, at) ,

a contradiction to the fact that ({at} ,P) is an equilibrium. Thus, in equilibrium it must be
that P (xs, as)− xs + Πa (xs, as) = 0 for all s ∈ [t, τ ].

Corollary A2 Let ({at} ,P) be a regular equilibrium and let Π (x, a) be the monopolist’s
profits. Then, Π (x, a) solves (A.1) at states (x, a) with a < α such that (i) x > z2, or (ii)
{at} is continuously increasing at time s when (xs, as) = (x, a).
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Proof. (i) Let (x, a) be such that a < α and x > z2. By Lemma A7, at such a state the
monopolist will not sell until costs fall below z2, so Π (x, a) = E[e−rτ2Π (z2, a)|x0 = x]. Thus,
by Corollary A1 Π (x, a) solves (A.1).
(ii) Suppose (x, a) is such that {at} is continuously increasing at time s when (xs, as) =

(x, a). By the arguments in the proof of Lemma A8, Π (x, a) solves (A.5). Moreover, by
Lemma A8 P (x, a) = x− Πa (x, a), so Π (x, a) solves (A.1).

Lemma A9 Let ({at} ,P) be a regular equilibrium and let Π (x, a) be the monopolist’s profits.
Let (x, a) with a < α be such that {at} is continuously increasing at time s when (xs, as) =
(x, a). Then, there exists x∗ (a) < x < x∗ (a) with either x∗ (a) ≤ z2 or x∗ (a) =∞ such that
{at} jumps at t if at− = a and xt ∈ {x∗ (a) , x∗ (a)}. Moreover,

Π (y, a) = E
[
e−rτ

∗(a)
((
P
(
xτ∗(a), aτ∗(a)

)
− xτ∗(a)

)
daτ∗(a) + Π

(
xτ∗(a), a+ daτ∗(a)

))∣∣x0 = y
]
,

(A.7)
for all y ∈ (x∗ (a) , x∗ (a)), where τ ∗ (a) = inf{t : xt /∈ (x∗ (a) , x∗ (a))} and where daτ∗(a)
denotes the jump of {at} at state

(
xτ∗(a), a

)
.

Proof. Note first that for every such state (x, a) there must exist y (a) < x such that at
jumps when xt = y (a) and at− = a < α. To see this, suppose by contradiction that at
is continuous at time s when (xs, as) = (y, a) for every y < x. By Corollary A2 Π (y, a)
solves (A1) for all y ≤ x, so Π (y, a) = Ayλ + Byκ for some constants A and B. If A 6= 0
or B 6= 0, Π (·, a) explodes as y → 0 or as y → ∞, which cannot occur in equilibrium.
Otherwise, A = B = 0 implies that Π (y, a) = 0 for all y ≤ x, which cannot occur either
since Π (y, a) ≥ L (y, a) > 0. Thus, there must exist y (a) < x such that at jumps to some
a′ > a when xt = y (a) and at− = a. Let x∗ (a) denote the supremum over all such y (a).
If at is continuous for all y > x∗ (a) whenever at = a, then by Corollary A2 Π (y, a) solves
(A1) for all y > x∗ (a). Thus, Π (y, a) = Ayλ + Byκ for all y > x∗ (a). Since κ > 1, in
this case it must be that B = 0; otherwise, Π (y, a) would explode as y → ∞. Since {at}
jumps to a′ when xt = x∗ (a) and at− = a, it follows that Π(x∗ (a) , a) = (P (x∗ (a) , a′) −
x∗ (a))(a′ − a) + Π(x∗ (a) , a′). Thus, Corollary A1 implies that Π (y, a) satisfies (A.7) (with
x∗ (a) = ∞). Otherwise, there exists y (a) > x such that {at} jumps to some ã > a when
xt = y (a) and at− = a. By Lemma A7, y (a) ≤ z2. Let x∗ (a) be the infimum over all
such y (a), so x∗ (a) ≤ z2. In this case, Π (y, a) solves (A1) for all y ∈ (x∗ (a) , x∗ (a)), with
Π (y, a) = (P (y, a) − x)daτ∗(a) + Π

(
y, a+ daτ∗(a)

)
whenever y ∈ {x∗ (a) , x∗ (a)}. Thus, by

Lemma A1 Π (y, a) satisfies (A.7) for all y ∈ (x∗ (a) , x∗ (a)).

Lemma A10 Let ({at} ,P) be a regular equilibrium, and let Π (x, a) denote the monopolist’s
profits. Then, Π (x, a) = L (x, a) for all states (x, a) with a < α.

Proof. By the arguments in the main text, Π (x, a) ≥ L (x, a) for all states (x, a) with
a < α. By Lemma A9, for all (x, a) such that {at} is continuously increasing at time s
when (xs, as) = (x, a), there exists x∗ (a) < x < x∗ (a) such that dat = at − at− > 0 when
at− = a and xt ∈ {x∗ (a) , x∗ (a)}. Moreover, Π (x, a) satisfies (A.7) for all x ∈ (x∗ (a) , x∗ (a)).
Suppose that {at} jumps to α when at− = a and xt ∈ {x∗ (a) , x∗ (a)}, so Π (x, a) = (P (x, α)−
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x)(α− a) + Π(x, α) = g (x, a) for x ∈ {x∗ (a) , x∗ (a)}. Thus,

Π (x, a) = E[e−rτ
∗(a)g

(
xτ∗(a), a

)∣∣x0 = x] ≤ L (x, a) = sup
τ
E[e−rτg (xτ , a)

∣∣x0 = x],

for all x ∈ (x∗ (a) , x∗ (a)), so Π (x, a) = L (x, a) for all such states (x, a).
Suppose next that dat = ã − a < α − a when at− = a and xt = x∗ (a) or xt = x∗ (a).

Thus, Π (xt, a) = (P (xt, ã)−xt)(ã−a)+Π (xt, ã) when xt ∈ {x∗ (a) , x∗ (a)}. By Lemma A7,
the monopolist must continue selling gradually after at jumps (since x∗ (a) < x∗ (a) ≤ z2).
By Lemma A8, it must be that P (xt, ã

+) = xt−Πa (xt, ã). Note that prices cannot jump at
time t. If prices jumped down at t, then those consumers who buy at t− would be strictly
better off by delaying their purchase an instant, which cannot occur in equilibrium. Thus, it
must be that P (xt, ã) = P (xt, ã

+). By Lemma A9, Π(xt, ã) satisfies (A.7), so

P (xt, ã)− xt = −Πa (xt, ã) = E[e−r(τ
∗(ã)−t)(P

(
xτ∗(ã), aτ∗(ã)

)
− xτ∗(ã))

∣∣xt].
That is, the margin that the monopolist gets from selling to consumers [a, ã] at state (xt, a)
with xt ∈ {x∗ (a) , x∗ (a)} is the same as the expected discounted margin she gets at state
(x, ã) with x ∈ {x∗ (ã) , x∗ (ã)}. Since Π (xt, a) = (P (xt, ã)− xt)(ã− a) + Π (xt, ã) and since
Π (xt, ã) satisfies (A.7),

Π (xt, a) = E

[
e−r(τ

∗(ã)−t)
( (

P
(
xτ∗(ã), aτ∗(ã)

)
− xτ∗(ã)

) (
daτ∗(ã) + ã− a

)
+Π

(
xτ∗(ã), aτ∗(ã)

) )∣∣∣∣xt] , (A.8)

where daτ∗(ã) denotes the jump of {at} when as− = ã and xs ∈ {x∗ (ã) , x∗ (ã)}. There are
two possibilities: (i) aτ∗(ã) = α with probability 1, so daτ∗(ã) = α − ã; or (ii) aτ∗(ã) =
â < α, so daτ∗(ã) = â − ã < α − ã. In the first case, daτ∗(ã) + ã − a = α − a, so
(P (xτ∗(ã), α) − xτ∗(ã))(daτ∗(ã) + ã − a) + Π(xτ∗(ã), aτ∗(ã)) = g(xτ∗(ã), a). Using (A.8), this
implies that Π (xt, a) = E[e−rτ

∗(ã)g
(
xτ∗(ã), a

)∣∣x0 = x] ≤ L (xt, a), so Π (xt, a) = L (xt, a).
In the second case, aτ∗(ã) = â < α. Since xτ∗(ã) ≤ z2, by Lemma A7 the monopolist must
continue selling gradually after {at} jumps. Then, by Lemma A9,

Π
(
xτ∗(ã), aτ∗(ã)

)
= E

[
e−r(τ

∗(â)−τ∗(ã))
( (

P
(
xτ∗(â), aτ∗(â)

)
− xτ∗(â)

) (
daτ∗(â) + â− ã)

)
+Π

(
xτ∗(â), aτ∗(â)

) )∣∣∣∣xτ∗(ã)] .
(A.9)

Moreover, the same arguments as above also imply that

P
(
xτ∗(ã), aτ∗(ã)

)
− xτ∗(ã) = E[e−r(τ

∗(â)−τ∗(ã))(P
(
xτ∗(â), aτ∗(â)

)
− xτ∗(â))

∣∣xτ∗(a)].
Using this equation and (A.9) in (A.8), it follows that

Π (xt, a) = E
[
e−r(τ̂−t) ((P (xτ̂ , aτ̂ )− xτ̂ ) (daτ̂ + â− a) + Π (xτ̂ , aτ̂ ))

∣∣xt] ,
for some stopping time τ̂ . Again, there are two possibilities: (i) aτ̂ = α with probability 1 (so
daτ̂ = α− â), or (ii) aτ̂ < α. In case (i), (P (xτ̂ , aτ̂ )−xτ̂ )(daτ̂ + â− a) + Π(xτ̂ , aτ̂ ) = g(xτ̂ , a),
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so Π (xt, a) = E[e−r(τ̂−t)g(xτ̂ , a)
∣∣xt] ≤ L (xt, a). Hence, Π (xt, a) = L (xt, a). In case (ii), we

can again repeat the same argument. Eventually, we’ll get to a point at which a jumps to α,
so Π (xt, a) = E[e−r(τ−t)g (xτ , a)

∣∣xt] for some stopping time τ . Hence Π (xt, a) = L (xt, a).

Proof of Theorem 1. Lemma A10 shows that in any regular equilibrium the monopolist’s
profits are given by L (x, a) for all x. Thus, the monopolist sells to all high type consumers
when xt ∈ [0, x (at)] ∪ [x (at) , z2] (and also to low type consumers when xt ≤ x (at)). By
Lemma A7, the monopolist must sell at a positive rate while xt ∈ (x (at) , x (at)). The
arguments in the text pin down the rate at which the monopolist sells and the price she
charges when xt ∈ (x (at) , x (at)).

A.4 Proof of Theorem 2

The proof of Theorem 2 is a generalization of the proof of Theorem 1. Suppose that there
are n ≥ 3 types of consumers in the market. Here I provide a sketch of the arguments. Note
that when a ≥ α3, the only consumers left in the market are those with valuations v1 and
v2. By Theorem 1, in any regular equilibrium the monopolist’s profits are equal to L (x, a)
for states (x, a) with a ≥ α3.
Consider next states (x, a) with a ∈ [α4, α3), so there are α3−a consumers with valuation

v3 in the market (if there are only three types of consumers in the market, let α4 = 0). Let
P2 (x) = supi∈(α3,α2] P (x, i) be the highest price a consumer with valuation v2 is willing to
pay. By equation (5), the strategy P (x, α3) of consumer α3 (the highest indexed consumer
with valuation v3) satisfies

P (x, α3) = v3 − E
[
e−rτ2 (v3 − P2 (xτ2))

∣∣x0 = x
]
,

where τ 2 = inf{t : xt ≤ z2} is the time at which the monopolist starts selling to consumers
with valuation v2 when the level of market penetration is α3. By the skimming property, the
monopolist can always sell to all consumers with valuation v3 at price P (x, α3). Therefore,
at states (x, a) with a ∈ [α4, α3) the monopolist’s profits are bounded below by

L (x, a) = sup
τ∈T

E
[
e−rτ

(
(α3 − a) (P (xτ , α3)− xτ ) + e−rτL (xτ , α3)

)∣∣x0 = x
]
. (A.10)

Let x (α3) and x (α3) be the cutoffs that characterize the solution to the optimal stopping
problem (10) when a = α3 (i.e., when all consumers with valuation v3 have left the market).
The first thing to note is that the solution to (A.10) is such that it is optimal to continue
when xt ∈ (x (α3) , x (α3)). The reason for this is that the expected payoff from delaying
when xt ∈ (x (α3) , x (α3)) is larger when a < α3 than when a = α3, since in the former case
there are more high valuation consumers to sell to.13

Using arguments similar to those in Lemma A4, one can show that the solution to (A.10)

13This can be proved formally using the arguments in the proof of Lemma A6, where I show that the
cutoffs x (a) and x (a) of the solution to (10) satisfy x′ (a) > 0 and x′ (a) < 0.
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is of the form

τ (a) = inf{t : xt ∈ [0, x1 (a)] ∪ [x1 (a) , x2 (a)] ∪ [x2 (a) , z3]}, (A.11)

with x1 (a), x1 (a), x2 (a), x2 (a) such that x1 (a) < z1 < x1 (a) and x2 (a) < z2 < x2 (a) < z3.
That is, the solution to (A10) involves delaying when x is around z1 or z2 and when x > z3.
Using arguments similar to those in Lemma A5 the thresholds x1 (a) , x1 (a) , x2 (a) and x2 (a)
are continuous in a, with lima→α3 x2 (a) = lima→α3 x2 (a) = z2, and lima→α3 x1 (a) = x (α3)
and lima→α3 x1 (a) = x (α3) (where x (α3) and x (α3) are the cutoffs that characterize the
solution to (10) when a = α3). In addition, L (x, a) ∈ C2,2 for all x ∈ (x1 (a) , x1 (a)) ∪
(x2 (a) , x2 (a)).
Next, by arguments similar to those in Lemma A7 the monopolist will always sell to

consumers with valuation v3 at states (xt, at) with xt ≤ z3 and at ∈ [α4, α3), and will never
sell to them when xt > z3. Moreover, arguments similar to those in Lemma A8 imply that
in any regular equilibrium, P (xs, as) = xs − Πa (xs, as) whenever the monopolist is selling
at a continuous rate (i.e., whenever dat = ȧtdt). Finally, by arguments similar to those in
Lemma A10, in any regular equilibrium the monopolist’s profits must be equal to L (x, a) at
all states (x, a) with a ∈ [α4, α3).
At states (xt, at) with at ∈ [α4, α3) the equilibrium dynamics are as follows. If xt >

z3, the monopolist doesn’t sell and waits for costs to decrease. When xt ∈ [x2 (at) , z3],
the monopolist sells immediately to all remaining consumers with valuation v3, and then
equilibrium play continuous as in the case with two consumers. When xt ∈ [x1 (at) , x2 (at)],
the monopolist sells immediately to all remaining consumers with valuation v3; however, since
z2 > x2 (at) and x1 (at) > x (α3) (where x (α3) is the cutoff that describes the solution to
the optimal stopping problem L (x, a) at state (x, α3)), in this case the monopolist also sells
to all consumers with valuation consumers v2. When xt ≤ x1 (at) the monopolist sells to all
remaining consumers at price v1 and the market closes. Finally, when xt ∈ (x1 (at) , x1 (at))∪
(x2 (at) , x2 (at)), the monopolist sells gradually to consumers with valuation v3 at a rate that
leaves them indifferent between purchasing at t or delaying their purchase. One can derive
this rate in a way similar to the derivation of equation (17) in the main text.
Consider next state (x, a) with a ∈ [α5, α4), at which there are α4 − a consumers with

valuation v4 in the market (if there are only four types of consumers in the market, let
α5 = 0). Let P3 (x) = supi∈(α4,α3] P (x, i), and let P (x, α4) be the strategy of consumer α4
(i.e., the last consumer with valuation v4). By equation (5), it must be that

P (x, α4) = v4 − E
[
e−rτ3 (v4 − P3 (xτ3))

∣∣x0 = x
]
,

where τ 3 = inf{t : xt ≤ z3} is the time at which the monopolist starts selling to consumers
with valuation v3 when a = α4. Since the monopolist can sell to all consumers with valuation
v4 at price P (x, α4), at states (x, a) with a ∈ [α5, α4) her profits are bounded below by

L (x, a) = sup
τ∈T

E
[
e−rτ ((α4 − a) (P (xτ , α4)− xτ ) + L (xτ , α4))

∣∣x0 = x
]
.
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Repeating the same arguments as above, one can show that in any regular equilibrium the
monopolist’s profits must be given by L (x, a) at all states (x, a) with a ∈ [α5, α4). More
generally, for k ≥ 5 one can extend L (x, a) for all x ∈ [αk+1, αk) in a similar way, and show
that in any regular equilibrium the monopolist’s profits are L (x, a) for all a ≥ [αk+1, αk).

A.5 Proof of Theorem 3

For each valuation vkn, let z
n
k = −λ

1−λv
n
k . For n = 2, 3, ..., define the function P n (x) as follows.

For x ≤ zn1 , P
n (x) = vn1 = v. For k = 2, .., n, and x ∈ (znk−1, z

n
k ], let P n (x) = P (x, αnk).

That is, for all x ∈ (znk−1, z
n
k ], P n (x) is equal to the price at which consumer αnk is willing

to trade (where αnk is the highest indexed consumer with valuation v
n
k ). By equation (5), for

k = 2, .., n and x ∈ (znk−1, z
n
k ],

P n (x) = P (x, αnk) = vnk − E[e−rτ
n
k−1
(
vnk − P

(
znk−1, α

n
k−1
))∣∣x0 = x]

= vnk − E[e−rτ
n
k−1
(
vnk − P n

(
znk−1

))∣∣x0 = x], (A.12)

where for k = 1, 2, ..., n, τnk = inf{t : xt ≤ znk} is the time at which the monopolist starts
selling to buyers with valuation vnk when v

n
k is the highest valuation remaining in the market.

Lemma A11 For k = 2, ..., n and x ∈ (znk−1, z
n
k ],

P n (x) = vnk −
k−1∑
j=1

(
vnj+1 − vnj

)( x

znj

)λ
. (A.13)

Proof. The proof is by induction. By equation (9), P n (x) = vn2 − (vn2 − vn1 ) (x/zn1 )λ for
x ∈ (zn1 , z

n
2 ], so the statement is true for k = 2. Suppose the statement is true for l = 2, .., k−1.

Equation (A.12), Corollary A1 and the induction hypothesis then imply that

P n (x) = vnk −
(
vnk − P n

(
znk−1

))( x

znk−1

)λ
= vnk −

k−1∑
j=1

(
vnj+1 − vnj

)( x

znj

)λ
.

for x ∈ (znk−1, z
n
k ].

Recall that vn1 = v and vnn = v for all n. Let z := −λ
1−λv = znn and z := −λ

1−λv = zn1 .

Lemma A12 P n (x)− x→ V1 (x) uniformly on [0, z] as n→∞.

Proof. I first show that limn→∞ P
n (x) = V1 (x) + x for all x ∈ [0, z]. Note first that, for all

n, P n (x) − x = v1 − x = V1 (x) for all x ≤ z1. Next, fix x ∈ (z1, z] with x ∈ (znk−1, z
n
k ] for

some k ≤ n, and let v (x) = 1−λ
−λ x. Recall that v

n
j+1− vnj = (v − v) /(n− 1). Equation (A.13)
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and the fact that x/znj = v (x) /vnj then imply that

P n (x) = vnk −
k−1∑
j=1

v − v
n− 1

(
v (x)

vnj

)λ
.

Note that znk = −λ
1−λv

n
k → x as n→∞, so vnk → v (x). Since (v (x) /v)λ is Riemann integrable,

lim
n→∞

P n (x) = v (x)−
∫ v(x)

v

(
v (x)

v

)λ
dv = x+ (v − z)

(
x

z

)λ
= x+ V1 (x) .

Finally, since P n (x) is increasing in x for all x ∈ [0, z] and since limn→∞ P
n (x) = V1 (x) + x

in this range, it follows that P n (x) converges uniformly to V1 (x) + x as n → ∞. Thus,
P n (x)− x converges uniformly to V1 (x).

Proof of Theorem 3. I prove that, for all x, Ln (x, 0) → V1 (x) as n → ∞. The proof
that Ln (x, a)→ (1− a)V1 (x) as n→∞ for a > 0 is symmetric and omitted. Note first that
Ln (x, 0) ≥ V1 (x) for all x, since at any state (x, 0) the monopolist can wait until time τ 1 and
sell to all consumers at price v1, obtaining a profit of E[e−rτ

n
1 (v1 − xτn1 )

∣∣x0 = x] = V1 (x).
Consider next the case in which x0 = x ≥ z. In this case, in equilibrium the monopolist

sells to consumers with valuation vnk at time τ
n
k = inf{t : xt ≤ znk} (for k = 1, ..., n), at a

price P (znk , α
n
k) = P n (znk ). Recall that for k = 1, ..., n, αnk = max{i : fn (i) = vnk}, and let

αnk+1 = 0. Thus, the monopolist’s profits are

Ln (x, 0) = E

[
n∑
k=1

e−rτ
n
k (P n (zk)− zk)

(
αnk − αnk+1

)∣∣∣∣∣x0 = x

]
.

Since P n (x)− x→ V1 (x) uniformly on [0, z] as n→∞, for every η > 0 there exists N such
that P n (x)− x− V1 (x) < η for all n > N and all x ∈ [0, z]. Thus, for n > N ,

Ln (x, 0) < E

[
n∑
k=1

e−rτ
n
kV1 (zk) dαk

∣∣∣∣∣x0 = x

]
+ η =

n∑
k=1

dαkE
[
e−rτ

n
kV1 (zk)

∣∣x0 = x
]

+ η,

(A.14)
where dαk = αk − αk+1 (so

∑n
k=1 dαk = 1). Note further that for x ≥ z and k = 1, 2, .., n,

E
[
e−rτ

n
kV1 (znk )

∣∣x0 = x
]

= E
[
e−rτ

n
kE
[
e−r(τ

n
1−τnk)

(
v1 − xτn1

)∣∣∣xτnk]∣∣∣x0 = x
]

= E
[
e−rτ

n
1
(
v1 − xτn1

)∣∣x0 = x
]

= V1 (x) .

Using this and the fact
∑n

k=1 dαk = 1 in (A.14) gives V1 (x) ≤ Ln (x, 0) < V1 (x) + η for all
n > N . Therefore, limn→∞ L

n (x, 0) = V1 (x) for all x ≥ z.
Consider next the case with x < z. Suppose by contradiction that there exists x < z

such that Ln (x, 0) 9 V1 (x) as n→∞. Since Ln (x, 0) ≥ V1 (x) for all n, there exists N and
γ > 0 such that Ln (x, 0) > V1 (x) + γ for all n > N . Fix y ≥ z and let τx := inf{t : xt ≤ x}.
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Since the monopolist can always delay trade until time τx, for all n > N it must be that

Ln (y, 0) ≥ E[e−rτxL (x, 0)
∣∣x0 = y]

> E[e−rτxV1 (x)
∣∣x0 = y] + E[e−rτxγ

∣∣x0 = y]

= E[e−rτxE
[
e−r(τ1−τx) (v1 − xτx)

∣∣xτx]∣∣x0 = y] +
(y
x

)λ
γ = V1 (y) +

(y
x

)λ
γ,

a contradiction to limn→∞ L
n (y, 0) = V1 (y) (since y ≥ z). Therefore, limn→∞ L

n (x, 0) =
V1 (x) for all x < z.
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