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Abstract: Environmental problems such as floods require statistical analysis that takes into account the

complex nature of the data, namely observations are sampled at different spatial points in a given region for

a certain time. Thus the spatial dependence structure cannot be ignored. Extreme statistics for the design

of structures for flood protection, for the study of the structural failures such as bridges, dams, etc., for the

prediction of heat waves and others should be based on a solid theoretical framework. Max-stable processes

provide a such theory and in the last decade have emerged as fertile ground for research and a common tool

for the statistical modeling of spatial extremes. This entry provides a summary of max-stable processes.
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Introduction

Extreme value theory is the part of probability and statistics that studies and develops mathematical

models and statistical methods for describing the stochastic behavior of extremes of processes.

Extreme values of a phenomenon are those events that occur with low frequency but can have a

large impact on real life. Relevant examples include the floods of “biblical proportions” that are

affecting many countries in the world: Pakistan in July 2010, Italy in October 2010, south-eastern

Brazil, Queensland (Australia) and Sri Lanka in January 2011, and Mississippi (USA) in May 2011,

all of them causing much damage and many deaths.

The first theoretical results related to univariate random variables date back to the early twentieth

century. Over time, in the univariate case many mathematical results have been obtained, concerning

the domain of attraction (e.g. [29], Chapter 0; [16], Chapter 1), regular varying functions (e.g.

[29], Chapter 0; [16], Appendix B), etc. But also several extreme distributions have been derived,

for the maximum (or minimum) of independent and identically distributed (iid) random variables,

intermediate order statistics, exceedances over (below) high (low) thresholds, etc. See for instance

[29], Chapters 1,3 and 4; [7], Chapters 3, 4 and 7; [16], Chapters 1–5.

Given the multivariate nature of many applications, after the seventies the attention of the scientific

community moved to characterize multivariate extreme values. Imagine problems where multiple

variables are available and the data on one variable may inform us about the others. In the univariate

case “the extreme value” is a clear concept, however in high dimensions this is no longer the case

since many definitions are possible. A simple way to proceed is to extend the concept of the maximum

to “componentwise” maxima (e.g. [29], Chapter 5; [16], Chapter 6). We refer to Chapter 8 of [7] and

Chapters 5 and 7 of [18] for discussions on thresholds and point processes approaches.

Environmental problems such as floods require statistical analyses that take into account the

complex nature of the data, namely observations are sampled at different spatial points in a given

region for a certain time. Thus the spatial (or spatial-temporal) dependence structure cannot be

ignored. Space-time statistical analysis, based on the theory of continuous stochastic processes, allow

us to study this type of data properly. Clearly, the incidents previously listed are spatial (or spatial-

temporal) events belonging to extreme value theory. In order to study the stochastic behavior of these

events a theory of extremes of continuous stochastic processes is needed. Recently, such a theory has



Max-Stable Processes 3

been developed (e.g. [13]; [30]; [16], Chapter 9; [18], Chapter 7.4). This is also based on the simple

notion of maximum that in the context of continuous processes (in time or space or both) becomes

“pointwise” maximum. This entry, which summarizes this theory, is organized in the following way: in

the first section basic definitions and main results are introduced. In the second section the spectral

representation useful to derive and simulate max-stable processes is described, and in the third a

discussion on applications is provided.

Max-Stable Processes

A simple extension of the extreme value theory to the infinite-dimensional space is provided by max-

stable processes. Their definition is based on a concept of pointwise-maximum that is analogous to

that used from the theory in finite-dimensional spaces for the univariate and multivariate max-stable

distributions.

Definitions and main results

Let {Y (x)}x∈X be a stochastic process defined on X ⊆ IRd, d ∈ IN, with continuous sample paths.

Assume that n iid copies of it are available, denoted by Yi with i = 1, . . . , n and n ∈ IN. We stress, that

with x one may indicate a spatial (or temporal) index while i denotes the independent replications.

We define the process {Mn(x)}x∈X as the pointwise maximum of the underlying processes Yi, that

is Mn(x) := maxi=1,...,n Yi(x) for every x ∈ X . Therefore, the interest is in studying the limiting

process Mn(x), for n → ∞, because it may provide an approximate model in order to describe the

behavior of extremes. In particular, extreme value theory says that if there exist continuous functions

an(x) > 0 and bn(x) ∈ IR for all x ∈ X , such that

Z(x) = lim
n→∞

{

Mn(x) − bn(x)

an(x)

}

(1)

has non-degenerate marginal distributions for all x ∈ X , then this defines an extreme-value process

(e.g. [16], Chapter 9, p. 293–294). Any process Y satisfying the limit (1) is said to lie in the domain of

attaction of Z. See [16], Chapter 9, p. 311–313, for necessary and sufficient conditions on the law of

Y such that Y is in the domain of attraction of Z. Of particular interest are those limiting processes
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that are max-infinitely divisible (max-id) and max-stable because they are strongly connected with

the class of limits (1). A stochastic process Z is named max-id if for every n ∈ IN, it can be represented

as the pointwise maximum of n iid stochastic processes (e.g. [2]). A stochastic process Z is named

max-stable if for every n ∈ IN the rescaled pointwise maximum of n iid replicates of Z, has the same

law as Z. Formally, if there are sequences of functions an(x) > 0 and bn(x) ∈ IR such that for any

n ∈ IN

max
i=1,...,n

{

Zi(x) − bn(x)

an(x)

}

x∈X

D
= {Z(x)}x∈X ,

then Z is max-stable, where Zi are iid copies of it and
D
= denotes equality in distribution. Loosely

speaking, the probability of Z is invariant under the maximum operation apart from location and

scale factors. Clearly every max-stable process is max-id. Max-stable processes possess the following

important features (see [13]):

(i) All its univariate marginal distributions belong to the generalized extreme-value (GEV) class

of distributions, that is

IP(Z ≤ y) = exp

{

−
[

1 + ξ

(

y − η

ϕ

)]−1/ξ

+

}

, −∞ < y, η, ξ <∞, ϕ > 0, (2)

where (x)+ = max(x, 0) and η, σ and ξ represent respectively the location, the scale and the

shape of the distribution (see [16], Chapter 1, p. 6–12).

(ii) All its p-dimensional distributions (p ≥ 2) are multivariate max-stable distributions. These

distributions with common unit Fréchet margins, that is IP(Y ≤ y) = exp(−1/y) for y > 0,

admit the representation

H(y) = IP(Z1 ≤ y1, . . . , Zp ≤ yp) = exp {−L(y)} , L(y) =

∫

Sp−1

max
j∈I

(

wj

yj

)

dν(w) (3)

for all y = (y1, . . . , yp) ∈ IRp
+, where I := 1, . . . , p is the index set. L named the exponent

measure function represents the dependence between the p components. The exponent function

depends on an arbitrary finite measure ν, named the spectral measure, defined on the (p− 1)-

dimensional simplex Sp−1 = {w = (w1, . . . , wp) : w1 + · · · + wp = 1, wj ≥ 0, j ∈ I} but with

the constraint that it must satisfy the p moment conditions
∫

Sp−1

wj dν(w1, . . . , wp) = 1, with
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j ∈ I. This guarantees that the margins are unit Fréchet and implies that ν(Sp−1) = p. This

characterization stems from the fact that max-stable distributions are max-id and therefore they

admit a compound Poisson representation, see [29], Chapter 5, p. 251–274 and [18], Chapter 4,

p. 140–147. Assuming different types of common margins (e.g., exponential) leads to slightly

different characterizations of (3), see [27], [18], Chapter 4, p. 147–157 and [16], Chapter 6, p.

221–226.

(iii) If Z is a max-stable process then it is an extreme-value process, indeed in the definition of Mn

taking Y = Z then (1) holds.

We stress that a max-stable process with common margins can always be obtained by rescaling it.

Because

lim
n→∞

n

{

1 − IP

(

Mn(x) − bn(x)

an(x)
≤ y

)}

=

(

1 +
ξ(x)(y − η(x))

ϕ(x)

)1/ξ(x)

uniformly for x ∈ X and locally uniformly for y with ξ(x)(y − η(x))/ϕ(x) > 0, then in the case of

unit Fréchet margins, because these are members of the GEV family, with the transformation

{Z ′(x)}x∈X :=

{

(

1 +
ξ(x)(Z(x) − η(x))

ϕ(x)

)1/ξ(x)

+

}

x∈X

,

we obtain a max-stable process with such margins, where η(x), ξ(x) ∈ IR and ϕ(x) > 0 are continuous

functions in x. Similarly, one can get max-stable processes with Gumbel margins or of other types.

Essentially, the class of limiting processes (1) is characterized by the continuous functions η(x), ξ(x)

and ϕ(x), concerning the marginal distributions, and the spectral measure ν that controls (separately)

the dependence structure.

Example 1. Let {Y (x)}x∈X be a Gaussian process with mean zero and unit-variance. Consider

Y1, . . . , Yn, iid copies of it. Assume that for every pair of points xj , xj + h ∈ X , with h = xk − xj ,

the stationary correlation ρn(h) := IE{Yn(xj)Yn(xj + h)} becomes stronger with the increasing

of the sample size n. This in order to avoid getting a trivial limit distribution as shown by [32].

Specifically we suppose that ρn(h) → 1 for n → ∞, so that 4 logn(1 − ρn(h)) → λ(h) ∈ [0,∞].

For all x ∈ X , select constants an(x) ≡ an, bn(x) ≡ bn with an = 1/bn and bn =
√

2 logn −

((1/2) log logn + log(2
√
π))/

√
2 logn (e.g. [22]). Then {Z(x)}x∈X , the limit in (1), is a stationary

max-stable process with univariate Gumbel marginal distributions, that is IP(Y ≤ y) = e−e−y

, and
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p-dimensional distribution

H(y1, . . . , yp) = exp



−
p
∑

j=1

e−yjΦp−1

{

(

λ(h)

2
+
yk − yj

λ(h)

)

k∈Ij

; Λ̄j

}



 . (4)

In particular Ij := I \{j}, Φp−1 is a p − 1-dimensional Gaussian distribution with zero mean and

(p − 1) × (p − 1) partial correlation matrix Λ̄j , whose entries (k, k), (k, r) for all k, r ∈ Ij are equal

to λkk|j = 1 and

λkr,|j =
λ2

kj + λ2
rj − λ2

kr

2λkjλrj
, k 6= j, r 6= j.

The parameters λ(h) control the pairwise dependence between the couples (Z(xj), Z(xj + h)) with

j ∈ I and h ∈ X . Complete dependence is given by the boundary case λ(h) = 0, the dependence

decreases for increasing values of λ and independence is obtained for the boundary case λ(h) = ∞.
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Figure 1 Max-stable realizations based on underlying Gaussian processes, as described in Example 1. The left panel

illustrates the behavior of the rescaled maximum process (100 realizations) based on a sample size n = 105. The middle

panel shows the histogram of the marginal observations and the solid line is the kernel estimate of the density. The right

panel displays three realizations of a max-stable process corresponding to different levels of the dependence structure

(driven by λ): weak, middle and strong.

This result was first proved by [20] (see also [18], Chapter 4, Example 4.14) assuming that X is

finite, λ(h) < ∞ for all xj , xj + h ∈ X and with a slightly different parameterization. Subsequently

it was extended by [22] to a more general case, see also [24] and [4] for related results. Note, that in

(4) we have adopted the simplified representation suggested by [28]. Figure 1 illustrates some aspects
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of the process considered in Example 1 but defined for simplicity on X = [0, 1]. In particular, the

left panel shows 100 simulations (gray lines) of the rescaled maximum of underlying iid Gaussian

processes with sample sizes n = 105 and mild dependence structure. The black lines highlight the

paths for three selected realizations. The middle panel depicts the distribution of the margins which

is consistent with the limiting standard Gumbel distribution, indicating that convergence has taken

place. The right panel shows the path of the max-stable process for different levels of the dependence.

We can see that when the dependence is weak (solid black line), then the path is rough because

the process assumes quite different values also between neighboring points. Conversely, when the

dependence is strong (orange solid line), then the path is very smooth because the process takes

similar values over all the domain.

Stationary max-stable processes may be ergodic and mixing. General criteria are provided by [23]

(see also [34]) in order to verify if these properties are satisfied. Specifically, consider a max-stable

process Z with unit Fréchet margins and let χ(h) = limy→∞ IP(Z(xj + h) > y|Z(xj) > y) be the

pairwise coefficients of upper tail dependence (e.g. [32];[14]). If the couples (Z(xj), Z(xj + h)) are

asymptotically independent for large enough h, that is lim‖h‖→∞ χ(h) = 0, then Z is mixing, and if

t−1 limt→∞

∫ t

0
χ(h)dh = 0 then Z is ergodic.

Finally, [21] has extended the result of Example 1 for spatial-temporal Gaussian processes, taking

into account also time dependence. In this case, Y (x, t) is a zero-mean, unit-variance space-time

Gaussian process with stationary correlation ρn(h, u) := IE{Yn(xj , tj)Yn(xj + h, tj + u)}, where

t > 0 is a continuous time index and u = tk − tj with tj , tk > 0. Because we no longer have

iid copies of a spatial process Yi(x), the pointwise maximum is over a dependent sequence, that is

Mn(x) := max0≤t≤n Y (x, t). However, restricting the correlation for large gaps (|u| → ∞), assuming

appropriate conditions and considering suitable normalizing sequences, [21] has shown that the

rescaled maximum process has the same limiting process as Example 1 (in the sense of the finite-

dimensional distributions).

Spectral representation and simulations

The spectral representation is a powerful tool for understanding the features of sample paths of

stationary processes; an example widely discussed is the case of stationary Gaussian processes (e.g.
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[1]). A useful aspect of such a representation is that realizations from stationary processes can be

simulated with a low computational cost. de Haan in his seminal work [13] has provided a spectral

representation for max-stable processes (see also [16], Chapter 9).

Specifically, consider the discrete and counting measures defined by

1I{Pi}(A) =







1, if Pi ∈ A,

0, if Pi /∈ A,
N(·) :=

∞
∑

i=1

1I{Pi}(·),

so that N(A) is the random number of points falling in a bounded set A ⊂ A. Let Pi := {Wi, Ui}i≥1

be an enumeration of points of a non-homogeneous Poisson process N , on the product space

A := X × (0,∞), with intensity measure dµ(w, u) = ν(dw) × u−2du, where ν is a positive finite

measure. Let also f(w;x) be a family of measurable functions, named spectral functions, such that:

∀w ∈ X , f(w;x) : X → [0,∞),

∫

X

f(w;x)ν(dw) = 1, ∀x ∈ X ,
∫

X

sup
x∈X

f(w;x)ν(dw) <∞.

Then, the stochastic process

Z(x) := max
i=1,2,...

{Ui f(Wi, x)}, x ∈ X , (5)

is a max-stable with unit Fréchet margins (see [13];[16], Chapter 9, pp. 302–306 and pp. 314–320).

The finite-dimensional distribution of (5) concerns the probability of the event {Z(xj) ≤ yj ; yj >

0, ∀j ∈ I} and it corresponds to IP(N(Ā) = 0), where A := {(ui, wi) : uif(wi;xj) ≤ yj ∀ j ∈ I}.

Hence, to derive such probability it comes to finding the product measure µ(Ā) =
∫

X

∫∞

0 1I{u >

minj yj/f(w, xj)} u−2du ν(dw) of the Poisson process and from which we get in a few steps, see [13],

the following result

IP(Z(xj) ≤ yj , ∀j ∈ I) = exp

[

−
∫

X

max
j∈I

{

f(w;xj)

yj

}

ν(dw)

]

. (6)

For practical purposes in order to obtain manageable models, we can restrict ourselves to the subclass

of stationary max-stable processes. For simplicity, in formula (6) let us consider the Lebesgue measure
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for ν and some standard classes of density functions like the Gaussian, Student-t or Laplace for f

(see [15]).

Example 2. Define f(w;xj) := φd(w − xj ; Ω), the d-dimensional Gaussian density with zero-mean

and d×d covariance matrix Ω. We name the resulting stationary process the Gaussian extreme value

process. For p ≤ d+ 1, then the distribution (6) takes the expression

H(y1, . . . , yp) = exp



−
p
∑

j=1

1

yj
Φp−1

{

(

λ(h)

2
+

log(yk/yj)

λ(h)

)

k∈Ij

; Ω̄j

}



 , (7)

where λ(h) =
√
hT Ω−1h is a dependence parameter, Ω̄j = diag(Ωj)

−1Ωj is a d × (p − 1) matrix

with Ωj = (xj1
T
p−1 − Xj)

T Ω−1(xj1
T
p−1 − Xj)), Xj = {xk}k∈Ij

∈ IRd×(p−1) and 1p−1 = (1, . . . , 1)T

is the vector of p − 1 ones, see [19]. In this example given the specific form of λ(h), the dependence

between the components Z(x1), Z(x2), . . . of the process is controlled by the covariance matrix Ω of

the Gaussian density. The bivariate case of distribution (7) was derived originally from [33] who also

suggested the use of this process for modeling spatial extremes. Within this setting, several models

can be obtained for different types of applications: if d = 2 we get bivariate or trivariate spatial or

bivariate spatial-temporal models, if d = 3 we get up to quadrivariate spatial or trivariate spatial-

temporal models. However, to date the analytical expression of the associated density function is

known at the most for a trivariate spatial or bivariate spatial-temporal model, see [19].

Example 3. Define f(w;xj) := t2(w − xj ; Ω), the 2-dimensional standard Student-t density with

2(α− 1) (α > 1) degrees of freedom and scale matrix Ω, where ω11 = ω22 = ω and ω12 = 0. We name

the resulting stationary process the Student-t extreme value process. Then, [15] showed that (6) in

the bivariate case takes the expression,

H(yj , yk) = exp{−L(yj, yk)}, L(yj, yk) =















































1/yk, 0 < yk < r−α
+ yj,

IP{T∈B1}
yj

+
IP{T∈Bc

1
}

yk
, r−α

+ yj ≤ yk < yj,

2IP{T1≤‖h‖/2}
y , yj = yk =: y,

IP{T∈Bc
v}

yj
+ IP{T∈Bv}

yk
, yj < yk < r−α

− ,

1/yj, yk ≥ r−α
− yj ,
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where T := (Tj , Tk) is a random vector with t-distribution and

r± = 1 + z/2 ±
√

z(1 + z/4), z =
‖h‖2

2(α− 1)ω2
,

Bv =

{

u ∈ IR2 : ‖zv‖2 ≤ v‖h‖2

(1 − v)2
− 2(α− 1)ω2

}

, zv = u− hv

1 − v
, v =

(

yj

yk

)1/α

.

In this example, the dependence between the components of the process is controlled by the scale

matrix Ω and the degrees of freedom α of the t density.

We refer to [15] for another example based on the Laplace density. The dependence structure of

these max-stable processes is based on the dependence of the underlying spectral functions, which

in these examples are probability density functions, where their contribution in (5) is deterministic.

However, definition (5) can be extended considering a measurable random spectral function, see [30].

More precisely, let {W (x)}x∈X be a non-negative random process on X , such that for a suitable

measure ν we have

∫

W (x) ν(dw) = τ ∈ (0,∞), ∀x ∈ X ,
∫

sup
x∈X

W (x) ν(dw) <∞,

and consider W1,W2, . . ., iid copies of it. Let Pi := {Ui}i≥1 be points of a non-homogeneous Poisson

process on (0,∞) with intensity measure dµ(u) = τ−1u−2du, then

Z(x) := max
i=1,2,...

{UiWi(x)}, x ∈ X , (8)

is a stationary max-stable process with unit Fréchet margins, see also [16], Chapter 9, pp. 307–308.

In definition (8) the max-stable process is based on independent processes with the same correlation,

which control the dependence structure of the process.

Example 4. Define W (x) := max{0, Y (x)}, the positive part of a stationary Gaussian process, with

mean zero , unit-variance and correlation ρ(h). In this case τ = 1/
√

2π. With this particular choice

[30] has defined, applying (8), the stationary process Z(x) named the extremal Gaussian and has
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shown that the finite-dimensional distribution (6) in the bivariate case takes the expression,

H(yj , yk) = exp

[

−1

2

(

1

yj
+

1

yk

)

{

1 +

(

1 − 2yjyk(ρ(h) + 1)

(yj + yk)2

)1/2
}]

.

The dependence of Z(x) is controlled by the correlation of the underlying Gaussian process Y (x).

Specifically, the random pair (Z(xj), Z(xk)) for ρ(h) = −1 is independent, instead for ρ(h) > −1 is

positively dependent and finally for ρ(h) = 1 is completely dependent.

Example 5. Define W (x) := exp{Y (x) − ω(x)/2}, the exponent of a Gaussian process with mean

zero, variance ω(x) = Var(x), stationary increments and from which has been subtracted a suitable

drift term. Hence, in this case τ = 1. Stationarity of the increments {Y (xj +h)−Y (xj)}h∈X (meaning

that their distribution depends only on h and not on the choice of xj) implies that the distribution of

Y (x) is completely characterized by the variogram 2γ(h) = IE(Y (xj +h)−Y (xj))
2. With this setting

[24] have named Brown–Resnick (associated to the variogram 2γ) the resulting family of stationary

processes (8). They have shown that the distribution (6) also depends only on the variogram γ, taking

the form

H(y1, . . . , yp) = exp



−
p
∑

j=1

1

yj
Φp−1







(

√

2γ(h)

2
+

log(yk/yj)
√

2γ(h)

)

k∈Ij

; Λ̄j









 . (9)

Observe, that taking the transformation y 7→ log(y) we can switch from (8) to the representation

used by [24], who considered a Poisson process on IR with intensity e−udu, hence deriving a max-

stable process with Gumbel margins and distribution (4), but where λ(h) =
√

2γ(h). So (4) and

(9) are equivalent but the former is stated on the Gumbel scale and the latter on the Fréchet. The

Brown–Resnick is quite a wide class of processes. Indeed, if Y is also stationary and γ is bounded,

then we obtain the family presented in Example 4. If Y is a fractional Brownian motion with Y (0)=0

and γ(h) = ‖h‖α for some α ∈ (0, 2], then we obtain a family of isotropic processes. In particular,

when α = 1 and x ∈ IR then Y is a standard Brownian motion and we obtain the process introduced

by [4] (see also [17]). When α = 2, then we obtain the family described in Example 2 for the

particular case that the matrix Ω is equal to the identity. Finally, [24] (see also [22]) have shown

that a Brown–Resnick process (associated to the variogram 2γ) can be obtained, as described in

Example 1, taking a zero-mean, unit-variance Gaussian process {Y (x)}x∈X with correlation function
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ρn(h) = exp(−2γ(h)/4 logn), h ∈ X . Thus, considering γ(h) = ‖h‖α then Y has a stable type

correlation or in other words a Gaussian process with stable correlation ρn(h) has approximately the

semivariogram ‖h‖α. Finally, [23] have provided conditions for the ergodicity and mixing of Brown–

Resnick processes. The latter is satisfied iff lim‖h‖→∞ γ(h) = ∞ given that χ(h) = Φ(−
√

γ(h)/2).

Furthermore, [23] have also shown that there are ergodic, but not mixing Brown–Resnick processes.
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Figure 2 Graphical illustration of the spectral representation mechanism. The left panel shows the maximum of

finitely many Gaussian densities (see Example 2) obtained according to construction (5). The right panel displays the

maximum of finitely many iid Gaussian processes (see Example 4) obtained according to construction (8).

Figure 2 illustrates graphically the spectral representation in the simple case that X = [0, 1]. The

left panel displays a max-stable path obtained by (5) and with the spectral function of Example 2. The

grey solid lines symbolize many evaluations of the Gaussian density with variance ω = 0.05 rescaled

by Fréchet random factors and the solid black line depicts the pointwise maximum computed over

all these replications. Observe that increasing ω we obtain a smoother path of the process because

of its stronger dependence, whereas decreasing ω decreases the dependence of the process and its

path appears to be much rougher. The right panel shows a max-stable path obtained with (8) and

the spectral function of Example 4. The grey lines display the positive part of Gaussian process

replications with stable correlation function (with scale and power parameters equal to 1 and 0.8)

rescaled by Fréchet random factors. The resulting max-stable process is delineated by the black

lines. In this case increasing or decreasing the parameters of the correlation function we can obtain
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processes with smoother or rougher paths and hence with stronger or weaker dependence. However,

with definition (8), we obtain more flexible processes as a result of the more complex dependence

structure allowed from the stochastic spectral functions. Simulations of max-stable processes based
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Figure 3 Simulations of max-stable processes on X = [0, 1]2. The panels display realizations attained from an

extremal Gaussian process (top panels) and a Brown–Resnick process (bottom panels). The top panels are obtained

using a stable correlation function exp(−(‖h‖/β)α). The bottom are obtained using a semivariogram (‖h‖/β)α . The

parameters are set to α = 1 for the left panels, α = 2 for the right panels and β = 0.5. The processes are plotted with

standard Gumbel margins

on (5) and (8), as those of Figure 2, in practice are necessarily obtained by a finite number of points

of the Poisson process N . Because N with intensity measure dµ(u) = u−2du can be generated by

the points Ui = (
∑i

m=1Ei)
−1, with Ei exponentially distributed, that is IP(Y ≤ y) = 1 − e−y, and

since these form an increasing sequence so that Ui goes to zero rapidly for increasing i, then the
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maximum of only finitely many terms may be sufficient. For practical purposes one can follows this

simple algorithm based on the stopping rule proposed by [30]: (i) generate {Ei,Wi}, (ii) compute

Z(x) = maxi
m=1{UmWm(x)} (or Z(x) = maxi

m=1{Umf(Wm, x)}), repeat steps (i) and (ii) while the

condition Z(x) ≥ CUi is not satisfied, where C is a positive constant. If Y is uniformly bounded by C

then the simulation is exact, otherwise an approximate simulation can be obtained selecting C such

that IP(Y (x) > C) is small. We refer to [25] for a discussion on the simulation of the Brown–Resnick

process.

Figure 3 shows some realizations from the max-stable processes of Examples 4 and 5. Those on

the top panels are generated from an extremal Gaussian process and those on the bottom from a

Brown-Resnick process. Specifically, the simulations of the top left and right panels are attained using

a stable correlation function exp(−(‖h‖/β)α) while for the bottom left and right panels using the

semivariogram (‖h‖/β)α. In both cases we set respectively the parameters α = 1, α = 2 and β = 0.5

We can see comparing the top with the bottom panels that for the same parameter values the extremal

Gaussian process involves a stronger dependence than the Brown–Resnick. Instead comparing the left

with the right panels we can see that for increasing values of α the dependence structure in both

cases increases.

Applications

For practical purposes the utility of max-stable processes is that apart from the parameters that

characterize the upper tail of the marginal distributions, they allow, through the parameters of

some dependence functions, the modeling of the spatial dependence at extreme levels. We focus our

attention on the case where X ⊂ IR2. For instance, Examples 2-5 are concrete max-stable processes

that provide simple models for statistics of spatial extremes that can be used for applications. These

models depend on few parameters that measure the strength of the tail dependence as a function of the

distance between locations. A simple way to summarize the dependence between extremes is through

the extremal coefficient (e.g. [33];[31]). In particular, let Z be a stationary max-stable process with

unit Fréchet margins. Then a measure of extremal dependence for Z at a pair of locations separated
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by h is given by the extremal coefficient function, θ(h) ∈ [1, 2], that comes from the condition

IP(Z(xj) ≤ y, Z(xj+h) ≤ y) = exp

(

−θ(h)
y

)

, θ(h) =

∫

X

max {f(w;xj), f(w;xj + h)} ν(dw), ∀y > 0,

where f is the spectral function either of (5) or (8). We recall that the coefficient of upper tail

dependence is related to the extremal coefficient function by χ(h) = 2 − θ(h). For every fixed h,

(Z(xj), Z(xj + h)) are asymptotically independent if θ(h) = 2 (χ(h) = 0) and completely dependent

if θ(h) = 1 (χ(h) = 1), instead they may become asymptotically independent as ‖h‖ → ∞. With

the models of Examples 2 and 5 we obtain θ(h) = 2Φ(λ(h)/2), where respectively λ(h) =
√
hT Ω−1h

and λ(h) =
√

2γ(h), and thus θ(h) → 2 as ‖h‖ → ∞ iff λ(h) → ∞, where in the latter case this

means that the variogram needs to be unbounded. Whereas with the model of Example 4 we obtain

θ(h) = 1 +
√

(1 − ρ(h))/2 and thus lim‖h‖→∞ θ(h) ≤ 1 + 1/
√

2, then the asymptotic independence

can not be reached.

Therefore, if daily or hourly data of rainfalls, temperatures or other environmental quantities are

recorded at several sites spread over a region and for a certain time-period, then sequences of block-

maxima (the maximum on a time-window such as a month, a year, etc) can be calculated, one for

each site, and one of the models here described can be fitted to the data (e.g., annual maxima). Once

the parameters that control the dependence have been estimated, such as the matrix Ω for model (7),

the coefficients of some correlation function ρ(h) for model (4) or the coefficients of the semivariogram

γ(h) for model (5), the extremal coefficient function can be determined and the tail dependence as

a function of the distance can be assessed. If the hypothesis of stationarity in space is reasonable

then the dependence for distances between locations for which data have not been observed can be

interpolated.

However, extreme value problems also typically concern the extrapolation of larger values of those

observed from the data of the available period. This has to do with the computation of the return

level, yT (x), associated with the return period, T > 0, namely the value that satisfies the equation

IP(Z(x) > yT (x)) = 1/T for each x ∈ X (e.g [7], p. 49). Since the margins are GEV distributed, then

the functions η(x), ψ(x) and ξ(x) need to be estimated in order to derive the return levels. [26] have

discussed an estimation method for the joint estimate of the marginal and dependence parameters

with max-stable processes. Also they have proposed using the information on the dependence to
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calculate the conditional return values, so that given a fixed extreme event in a particular site one

can estimate extreme events for other sites (possibly more extreme than the observed maxima).

Alternatively, [5] and [11] proposed to determine extreme quantiles using max-stable processes and

simulations. Estimation methods for max-stable processes, based on the likelihood have been discussed

by [26] and [11], whereas other approaches have been discussed by [33], [31], [15] and [10]. A review of

different methods has been provided by [12]. Applications of max-stable processes to rainfall problems

have been discussed by [33], [6], [8], [31], [5] and [26], while on extreme temperatures by [11], extreme

snow depths by [3] and windspeeds by [9].
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[20] Hüsler, J. and Reiss, R.-D. (1989). Maxima of normal random vectors: between independence

and complete dependence Statistics & Probability Letters, 7, 283–286.

[21] Kabluchko, Z. (2009). Extremes of space-time Gaussian processes. Stochastic Processes and

their Applications, 119, 3962–3980.

[22] Kabluchko, Z. (2010). Extremes of independent Gaussian processes. Extremes, DOI:

10.1007/s10687-010-0110-x.

[23] Kabluchko, Z. and Schlather, M. (2010). Ergodic properties of max-infinitely divisible processes.

Stochastic Processes and their Applications, 120, 281–295.

[24] Kabluchko, Z., Schlather, M. and de Haan, L. (2009). Stationary max-stable fields associated

to negative defined functions. Annals of Probability, 37, 2042–2065.

[25] Kabluchko, Z., Oesting, M. and Schlather, M. (2011). Simulation of Brown-Resnick processes.

Extremes, DOI 10.1007/s10687-011-0128-8



18 Max-Stable Processes

[26] Padoan, S. A., Ribatet, M. and Sisson, S. A. (2011). Likelihood-Based Inference for Max-Stable

Processes. Journal of the American Statistical Association, Theory & Methods, 105, 263–277.

[27] Pickands, J. (1981). Multivariate extreme value distributions. Proceedings of the 43rd Session

of the International Statistical Institute, 859–878.

[28] Nikoloulopoulos, A. K., Joe, H. and Li, H. (2009). Extreme value properties of multivariate t

copulas. Extremes, 12, 129–148.

[29] Resnick, S. I. (1983). Extreme Values, Point Processes and Regular Variation, 1st Edition,

Springer Verlag, New York.

[30] Schlather, M. (2002). Models for stationary max-stable random fields. Extremes, 5, 33–44.

[31] Schlather, M. and Tawn, J. A. (2003). A dependence measure for multivariate and spatial

extreme values: Properties and inference. Biometrika, 90, 139–156.

[32] Sibuya, M. (1960). Bivariate extreme statistics. Annals of the Institute of Statistical

Mathematics, 11, 195–210.

[33] Smith, R. L. (1990). Max-stable processes and spatial extremes. Unpublished manuscript.

[34] Stoev, S. (2008). On the ergodicity and mixing of max-stable processes. Stochastic Processes

and their Applications, 118, 1679–1705.


