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We consider an analyst using a mathematical model of a scenario of inter-
est, who seeks to provide probabilistic forecasts for key uncertain quantities,
and some measure of sensitivity of the forecasts on parameters/exogenous
variables. There are a variety of sensitivity measures available for the asso-
ciated probabilistic sensitivity analysis, so many that an analyst may find it
difficult to choose. We seek to provide some discipline in the choice by sup-
posing an analyst anticipates evaluation of forecast quality by a scoring rule.
In this situation, the natural measure of sensitivity is information value under
this scoring rule. We show that in fact many established sensitivity measures
are already information value under a suitable scoring rule, and develop new
explicit formulas for information value under widely used scoring rules. We
also examine the question of when a sensitivity measure is information value
under some scoring rule. The analyst can then avoid sensitivity measures
that cannot be information value, and thereby provide guidance and justifi-
cation for the choice of the sensitivity measure. A numerical application in
the context of a complex forecasting problem demonstrates the approach.

Keywords: Forecast Evaluation, Information Value, Sensitivity Measures,
Decision Analysis Cycle

1 Introduction

Sensitivity analysis is recognized as an integral part of the decision analysis cycle (Howard,
1983; Clemen, 1997). In many applications, the decision-making process is informed by
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forecasts or predictions from quantitative models. For example, the Defense Advanced
Research Project Agency has launched the world-modelers program aimed at devel-
oping models to help decision making concerning national and global security1. The
Intergovernamental Panel for Climatic Change heavily relies on quantitative codes for
the identification of climate mitigation strategies (Hu et al., 2012; Marangoni et al.,
2017).
An analyst who develops or implements such a model is expected to provide a forecast
and some description of the level of uncertainty in that forecast, but is not otherwise
involved in comparing alternatives or eliciting preferences. The latter would typically be
done informally by an institution via its representative panel or agents (French, 2017).
The agents’ required forecast might be a point estimate, a quantile, or the complete
probability distribution for a key quantity Y of interest. The level of uncertainty in the
forecast is commonly conveyed in a sensitivity analysis, in which the sensitivity of Y to
uncertain model inputs (parameters or exogenous variables) is examined. The goal of a
sensitivity analysis is to identify what collections of model inputs are the drivers of the
forecast, and would therefore be candidates for additional information acquisition.
Our point of view, which has been articulated elsewhere (Felli and Hazen, 1998; Oakley,
2009), is that the preferred measure of sensitivity to a collection of X ⊂ (X1, X2, ..., Xn)
of model inputs is the information value of X, defined as the greatest reduction in
objective value one would accept to permit the choice of alternative to depend on the
hypothetically revealed value of X. Of course, this approach requires model inputs to be
treated as uncertain quantities and prior distributions assigned. Moreover, an analyst
whose forecast may be required in multiple or unanticipated decision contexts would
have no access to any specified objective function or set of alternatives, and therefore
no apparent way to compute information value. This limitation may also arise when
an institution has already selected an alternative a maximizing the expectation of an
objective Ya. Before a is fully implemented, the analyst may be asked to examine the
sensitivity of Y = Ya to model inputs for monitoring the important factors in post-
optimality (Eschbach, 1992). In this case, there is again no access to other alternatives
because the choice has already been made. Therefore no information value calculation
can apparently be made.
This may explain why analysts resort to simple techniques such as tornado diagrams,
one- and two-way analyses, that require the analyst to specify only a range of possible
values for each parameter, and yield worst-case information. When the likely impact
of parameter variations is desired rather than the worst-case scenario, the analyst must
treat input parameters as random variables and supply probability distributions, often
derived from the same data used to construct base estimates or from expert elicita-
tion. Such approaches are known as probabilistic sensitivity analysis (Felli and Hazen,
1998). A number of sensitivity indicators have been introduced, which go under the
name of probabilistic sensitivity measures. Most probabilistic sensitivity measures have
been constructed to quantify the strength of the statistical dependence between Y and
X. An analyst searching the literature would find measures based on variance, density

1http://www.darpa.mil/program/world-modelers
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separation, or cumulative distribution function separation, and recently, on quantile sep-
aration, just to mention a few. The very variety of available sensitivity measures could
be a stumbling block for the analyst: What is the right one to use?
The overarching theme of this paper is that if prior distributions are assigned, then
information value can in fact be used as a sensitivity measure in spite of the absence
of objective function or decision alternatives provided (i) the analyst treats the choice
of forecast as the decision, and (ii) the analyst anticipates that her forecast will be
evaluated by an appropriate scoring rule, and desires to maximize her expected score. A
scoring rule is a function S that assigns a score S(y, a) to each combination of forecast
report a (usually one or more point estimates or distributions) and outcome y of Y .
Scoring rules have been used on an ex-post basis to evaluate the quality of forecasts
(Gneiting and Raftery, 2007).
By appropriate scoring rule, we mean a scoring rule whose maximizing report is the true
characteristic of Y — be it mean, median, distribution or whatever — that the analyst
desires to report (or if there are multiple optimal reports, the desired true characteristic
should be one of them). This is another way of stating that the scoring rule should be
a proper scoring rule.2 Note that we do not ask the analyst to actually carry out this
maximization. The analyst has a mathematical model that specifies the joint distribution
of Y,X1, . . . , Xn, and the analyst can use it to compute any desired correct report about
Y . Rather, by choosing a proper scoring rule, it is as if the analyst’s computed report
has been obtained by maximizing the expected score. The scoring rule would not actually
be used to obtain an optimal report. The analyst would, however, use the scoring rule
to compute the value of information of collections X of model inputs, and this value
would serve as a measure of sensitivity of her forecast report to X.
Strategies (i)-(ii) have been suggested before in the context of Bayesian inference (e.g.,
Bernardo and Smith (1994)). What is new here is our suggestion that information value
under S could be used as a sensitivity measure. The analyst would characterize the
sensitivity of her forecast to model inputs X as the calculated information value of X
under S — the greatest expected score she would sacrifice to allow her forecast a to
depend on the hypothetically revealed value of X.
Perhaps surprisingly, a number of existing sensitivity measures are already information
value under an appropriate scoring rule — for instance, the variance measure is infor-
mation value under the quadratic scoring rule, as we are to see. In fact, as we will show,
information value under any scoring rule qualifies as a probabilistic sensitivity measure
under the common rationale definition of Borgonovo et al. (2016). Of equal importance,
the analyst’s choice of sensitivity measure now reduces to the choice of an appropriate
scoring rule. The properness restriction — that the scoring rule, when (hypothetically)
maximized, must produce the analyst’s desired report — can be used to eliminate a num-
ber of candidate sensitivity measures from consideration. For example, using variance
as a sensitivity measure would be inappropriate when reporting a median, because the

2Properness is usually defended based on an ex ante use of a scoring rule to motivate an expert to
truthfully report his opinion. This perspective is irrelevant to our purpose here, in which we are
merely supposing the ex-post use of a scoring rule to evaluate forecast quality.
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Figure 1: Densities for the contributing rates X1, X2 and the resulting complementary
cumulative distribution 1 − FY (y) for the forecast Y . The rate X1 has a
trapezoidal distribution on [0, 1.7] with mean 0.595, and X2 has a trapezoidal
distribution on [0, 1.2] with mean 0.78.

variance measure is information value under quadratic scoring, under which the optimal
report is the true mean.
For a hypothetical simplified example, suppose Y is the time until a critical event and it is
exponentially distributed with rate parameter λ = λ0+λ1+λ2, where λ0 is the base rate,
and λ1 = X1, λ2 = X2 are independent rate additions from two possible contributing
factors. From data, the base rate estimate is λ0 = 0.05, but the contributing rates
X1, X2 are uncertain. Experts assess the trapezoidal distributions shown in Figure
1. The analyst wishes to report a distribution for Y , and based on this information,
she derives the complementary cumulative distribution 1 − FY (y) through the above
discussed model (Figure 1). Again, this is purely a calculation based on the conditional
exponential distribution of Y given X1, X2 and their marginal trapezoidal distributions:
It is not based on maximizing any scoring rule.
The analyst is concerned about sensitivity, and calculates the variance-based measure
V{E[Y |Xi]} as a measure of sensitivity to Xi, i = 1, 2. As shown in Table 1, this
measure is 19.1% higher for X2 than for X1. However, as just mentioned, variance-based
sensitivity is information value under quadratic scoring, under which the optimal report
is the true mean. The analyst is reporting a distribution. If the analyst anticipates
that her distribution report is to be evaluated using a scoring rule, a natural choice
would be the Continuous Ranked Probability Score (CRPS), a proper scoring rule that
we discuss below, under which it is optimal to report the true distribution of Figure 1.
Information values for X1, X2 under CRPS scoring are also shown in Table 1. Here we
see that sensitivity to X2 is only 88.5% of sensitivity to X1, contrary to the impression
given by the variance-based sensitivity measure. The more appropriate choice of a CRPS
scoring rule to compute information values gives, we argue, a truer picture of sensitivity
to X1, X2 when a distribution is reported. The analyst could have realized without any
computation that the properness restriction would rule out the variance-based measure,
because it is information value under the quadratic scoring rule, whose optimal report
is the mean of Y , not the distribution of Y that she desires to report.

4



Table 1: Sensitivity Measures for the Example
Sensitivity Measure Sensitivity to X1 Sensitivity to X2 Ratio

Variance-based (quadratic scoring) 0.0854 0.1018 119.1%
Distribution-based (CRPS scoring) 0.0186 0.0164 88.5%

This paper makes several contributions to the literature. The first, as we have noted, is
to suggest a means for analysts to choose from among the plethora of possible sensitivity
measures for a forecast by relating potential measures to underlying proper scoring rules,
and assessing the appropriateness of such rules for the desired forecast (§6). Towards this
end, we show, as already mentioned, that information value does qualify as a sensitivity
measure (§3.1), and that several popular sensitivity measures are already information
value under known scoring rules (§4.1, §5.1). We also obtain new sensitivity measures
for reporting density and cumulative distribution functions (§4.2, §5.1, §5.2) and in
particular show that Szekely’s energy statistic is information value under the CRPS
score (§5.2).
Second, we show that other popular measures which are not information value under a
scoring rule, are nevertheless information value under a utility function that is proper
in the same sense as a scoring rule, but is not itself a scoring rule (§3.2). Third, we
supply necessary conditions for a sensitivity measure to be information value under a
given scoring rule (§3.3). Fourth, we address nullity implies independence, a desirable
property of a sensitivity measure, and show that sensitivity measures based on strictly
proper scoring rules achieve it for distribution reports (§3.1). We illustrate the findings
through an application in the context of nuclear waste management decisions aided by
a benchmark quantitative model developed by the OECD (§7).

2 Review and Basic Concepts

2.1 Related Literature

This paper connects three literature streams: the literature on information value, the
literature on sensitivity analysis, and the literature on forecasting and scoring rules.
Each of these research streams is vast in itself and a comprehensive review is forcedly
out of reach. Therefore, we lay out a synthetic overview for positioning our work with
respect to the extant literature.
The notion of information value has been introduced in Howard (1966). Intuitively, infor-
mation value is the amount of money that a decision maker is willing to pay for gathering
additional information about a given uncertainty. The properties of information value
have been extensively studied, with initial attention devoted to the relationships among
information value and its determinants (LaValle, 1968). Hilton (1981) summarizes the
findings reporting that no definitive conclusion on these relationships can usually be
drawn. Gilboa and Lehrer (1991) provide an axiomatization of information value and
identify the features that make a set function an information value function. The work
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Table 2: Examples of probabilistic sensitivity measures encompassed by the rationale
in eq. (1). In terms of notation, µ represents the mean, V the variance, f
the density, F the cumulative distribution function of random variable Y or
distribution P, possibly conditional on X.

Name Definition Inner Operator
Variance-based ηX E{V[Y ]− V[Y |X]} (µP − µQ)2

δ-importance δX
1
2E[
∫
R
∣∣fY (y)− fY |X(y)

∣∣ dy]
1

2

∫
R |fP(y)− fQ(y)| dy

Kullback-Leibler θX E[
∫
R fY |X(y) log

fY |X(y)

fY (y) dy]
∫
R fQ(y) (log fQ(y)− log fP(y)) dy

Beta-Kuiper βKu
X

E[supy∈R{FY (y)− FY |X(y)}
+ supy∈R{FY |X(y)− FY (y)}]

supy∈R{FP(y)− FQ(y)}
+ supy∈R{FQ(y)− FP(y)}

of Gilboa and Lehrer provides the starting point for our discussion about whether a
probabilistic sensitivity measure can be interpreted as information value. Hazen and
Sounderpandian (1999) compare alternative formulations and interpretations of infor-
mation value, distinguishing willingness to buy from willingness to sell information and
characterizing expected utility increase. Pflug (2006) studies the link between infor-
mation value and risk measures, showing that information value expressed as expected
utility increase satisfies the axioms of coherent risk measures of Artzner et al. (1999).
Bratvold et al. (2009) and Keisler et al. (2014) illustrate information value applications
in a variety of decision problems. Among these, of interest to this work is the application
of information value as a probabilistic sensitivity measure. This suggestion comes from
the works of Felli and Hazen (1998, 1999), who apply information value in the context
of medical decision making. Oakley (2009) extends the intuition to the sensitivity anal-
ysis complex quantitative models. This line of research continues in Strong and Oakley
(2013) and Strong et al. (2014) who obtain results that improve the efficiency in the
estimation of information value as a sensitivity measure.
More in general, the works of Rabitz and Alis (1999); Saltelli et al. (2000); Saltelli
and Tarantola (2002) and Oakley and O’Hagan (2004) have contributed in establishing
sensitivity analysis as an integral part of modelling and, over the years, a variety of
probabilistic sensitivity measures has been introduced. Table 2 reports a sample of the
available sensitivity measures, comprising variance-based sensitivity measures (Saltelli
and Tarantola, 2002), distribution-based measures using the L1-norm (Borgonovo, 2007),
the Kullback-Leibler divergence between densities (Critchfield and Willard, 1986) and
the Kuiper distance between cumulative distribution functions (Baucells and Borgonovo,
2013). Recent works study sensitivity measures based on the family of f -divergences
(Rahman, 2016), on a transformation invariant version of the Cramér-von Mises distance
(Gamboa et al., 2015) and on quantiles. In fact, quantile-based sensitivity measures are
a topical research subject – (Fort et al., 2014; Browne et al., 2017).
Due to space limitations, we cannot enter into a detailed description of all methods,
but we refer to the recent reviews of Ferretti et al. (2016); Borgonovo and Plischke
(2016) and to the handbook of Ghanem et al. (2016) for additional details. However,
it is relevant to note that probabilistic sensitivity measures have been studied mostly
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from a computational viewpoint. This was in fact required to make them available in
realistic applications (Saltelli et al., 2008). They remain much less understood from a
decision-analytic viewpoint. Research questions such as whether probabilistic sensitivity
measures are information value, or whether a null value of a sensitivity measure reassures
the analyst that the report is independent of the exogenous variable have not been
systematically addressed to date.
In our analysis, we find guidance from the following facts appearing in the literature.
Bernardo and Smith (1994) observe that variance reduction can be reinterpreted as in-
formation value under a quadratic scoring rule and the Kullback-Leibler divergence as
information value under a logarithmic score on densities. We then argue that scoring
rules can be the missing link between information value and probabilistic sensitivity
measures. Scoring rules have been introduced and have become over the years an es-
sential a tool for guiding and assessing forecasts. The works of Gneiting and Raftery
(2007), Winkler and Jose (2011), and, more recently, Gneiting and Katzfuss (2014) pro-
vide comprehensive reviews on this topic. However, the connection between scoring rules
and probability sensitivity analysis has not been fully examined in the literature and is
one of the purposes of this work.

2.2 Basic Definitions and Relevant Properties

To support the decision-making process at hand, the analyst creates or relies on a model
that forecasts the uncertain quantity of interest Y whose value depends (perhaps proba-
bilistically) on a set of uncertain exogenous variables X =(X1, X2, ..., Xn). Let PY denote
the distribution of Y . The analyst has the possibility of gathering information about
one or more exogenous variables X ⊂ X. After information has been gathered, PY |X
denotes the conditional distribution of Y. In preparation for the definition below, note
that PY |X is absolutely continuous with respect to PY . In the remainder, fY , fY |X , FY ,
FY |X , µY and µY |X are respectively the density, the cumulative distribution functions
and the mean values of PY and PY |X .
Let ζ(P,Q) be a generic operator between probability measures P and Q.

Definition 1. We call an operator ζ(·, ·) defined over pairs P,Q with Q absolutely
continuous with respect to P an inner operator, if ζ(P,Q) ≥ 0 for all such P,Q and also
ζ(P,P) = 0 for all P. We say that ξX is the probabilistic sensitivity measure with inner
operator ζ if for uncertain input parameters X ⊂ X,

ξX = E[ζ(PY ,PY |X)]. (1)

Even though Y is a random variable, the distribution PY is a non-random quantity,
whereas the conditional distribution PY |X depends on the random variable X, and is
therefore random. So the expectation E in this expression is over the random variable
X. We continue this notational convention through this paper, although in places we
use the notation EX to emphasize this point.
Definition 1 extends to models with stochastic output the common rationale of global
sensitivity measure of Borgonovo et al. (2016) and encompasses several probabilistic
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sensitivity measures, a sample of which are reported in Table 2. To illustrate, let us
consider variance-based sensitivity measures (first entry in Table 2). The inner operator
is

ζ(PY ,PY |X) = V[Y ]− V[Y |X] = (µY − µY |X)2,

and its expectation leads to the well-known expression3

ηX = E {V[Y ]− V[Y |X]} . (2)

One important property of a probabilistic sensitivity measure is whether a null value of
a sensitivity measure reassures the analyst that Y is independent of X.

Definition 2. A probabilistic sensitivity measure ξX possesses the nullity-implies-inde-
pendence property if ξX = 0 implies that X and Y are probabilistically independent.

Historically, nullity-implies-independence is a property characterizing measures of sta-
tistical dependence since the seminal work of Rényi (1959). However, this property has
a relevant decision-analytic implication. Only when nullity-implies-independence holds
is the analyst reassured that a null value of the sensitivity measure guarantees that Y
is independent of X. When nullity-implies independence fails, an indication of zero sen-
sitivity can be misleading, as potentially X could still influence Y. An example of such
effect in a business context is offered by Baucells and Borgonovo (2013) in which Y is
an investment net present value (NPV) and X is a set of cash flows.
Monotonic transformation invariance has emerged as a convenient property in estima-
tion. When the model output Y spans several orders of magnitudes, accurate estimation
of a probabilistic sensitivity measure may require a long computation and become out
of reach. This problem is often overcome using a monotonic transformation of the out-
put, such as a logarithmic transformation. Then, analysts face the problem that the
log-based uncertainty importance calculations do not readily translate back to a linear
scale (Iman and Hora, 1990, p. 402). However, if the probabilistic sensitivity measure is
transformation invariant, results on the transformed and on the original scales coincide.
This eliminates the interpretation problem, while allowing analysts to fully exploit the
accelerated numerical convergence — see (Borgonovo et al., 2014) among others.

3 Probabilistic Sensitivity Measures and Information Value

This section is divided into three parts. After showing that information value under a
scoring rule S is a probabilistic sensitivity measure according to Definition 1, we derive
the conditions under which a probabilistic sensitivity measure can be interpreted as
information value under a proper utility function. We also examine the conditions that
are necessary for a sensitivity measure to be information value under a given scoring
rule.
3WhenX is an individual variable, the probabilistic sensitivity measure in (2), ηX , is the well known first

order variance-based sensitivity measure (Saltelli and Tarantola, 2002), and coincides with Pearson’s
correlation ratio Pearson (1905). Usually, one considers the normalized version dividing the right
hand side in (2) by V[Y ].
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3.1 Information Value for Scoring Rules

A scoring rule S assigns a score S(y, a) to a forecast report a ∈ A when the outcome
is y ∈ R. The quality of a report a can be evaluated by the expected score E [S(Y, a)].
The set A of possible reports could be a subset of the reals (for point estimates such as
the mean or median), a subset of n-dimensional Euclidean space (for multiple quantile
reports), or a space of probability measures (for density or distribution reporting). We
let the context dictate what set A is appropriate.
For a proper scoring rule S, we define information value in the standard way as

εSX = EX
[
max
a∈A

E [S(Y, a)|X]

]
−max

a∈A
E [S(Y, a)] (3)

representing the greatest score improvement one would achieve by learning the value of
X.4 Here we assume the indicated maxima exist. Let aSP denote the set of reports a
that maximize the expected score5 EP [S(Y, a)], where the notation EP denotes that the
expectation is taken with Y having distribution P. Then we can write

εSX = EX
[
max
a∈A

E
[
S(Y, a)− S(Y, aSP)

∣∣X]] = EX
[
max
a∈A

EQ
[
S(Y, a)− S(Y, aSP)

]]
,

where Q = PY |X . The quantity inside the last expectation is nonnegative, and equals
zero when P = Q. It is therefore an inner operator by Definition 1. This demonstrates
the following result.

Proposition 1. Information value under a scoring rule εSX is a probabilistic sensitivity
measure (1) with inner operator

ζS(P,Q) = max
a∈A

EQ
[
S(Y, a)− S(Y, aSP)

]
. (4)

In fact, by writing ζS(P,Q) = EQ

[
S(Y, aSQ)− S(Y, aSP)

]
, it follows that ζS is the so-called

divergence function for scoring rule S (Dawid, 2007).
It is easy to see that for X probabilistically independent of Y any probabilistic sensitivity
measure ξX , including εSX , is null. In fact, when Y is independent of X, PY |X = PY
and ζ(PY ,PY |X) = ζ(PY ,PY ) = 0 for all values of X. However, as it is well known,
the converse is not true, i.e., a null information value does not guarantee that Y is
independent of X. For this, however, the following holds (see Appendix B for the
proof).

Proposition 2. Consider a strictly proper scoring rule S(y, a) in which the report a is
a probability distribution, and let εSX be the information value of X under scoring rule
S. Then εSX = 0 if and only if Y is independent of X.

4This definition of information value as score improvement may differ from the definition of information
value in monetary terms, and is only equal if S is a monetary amount and there is risk neutrality or
constant risk attitude. See Hazen and Sounderpandian (1999) for a discussion.

5We write the maximum expected score as EP
[
S(Y, aSP )

]
even though aSP may be a collection of reports.

EP
[
S(Y, aSP )

]
is defined to be the common value EP [S(Y, a)] for a ∈ aSP .
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Therefore, if the analyst is reporting the entire distribution and anticipating evaluation
under a strictly proper scoring rule S, then she is reassured that a null information value
under S implies that Y is independent of X. Thus, one way to guarantee the equivalence
of nullity and independence under a strictly proper scoring rule is to report the entire
distribution. Moreover, the necessary and sufficient condition in Proposition 2 makes a
probabilistic sensitivity measure ξX comply with the fifth requirement of Rényi (1959)’s
axioms on measures of statistical dependence.

3.2 Probabilistic Sensitivity Measures as Information Value

Our suggestion in this paper is that in problems in which a key variable Y is to be
predicted through a computer program based on input parameters/exogenous variables
X1, ..., Xn, the most appropriate sensitivity measures are measures ξX that arise as
information value εSX from a scoring rule S(Y, a) in the manner indicated in Proposition
1. In other words, ξX should be the information value of X derived from the family of
reporting problems (one for each event B)

maximize E[S(Y, aP)|B]
P ∈ P

(5)

where aP is some report about distribution P (possibly the full distribution, but possi-
bly something less, such as the mean or a quantile), and P is a suitably broad set of
distributions. Here B is some event involving X1, ..., Xn. Technically, the last statement
means that there is an underlying σ-algebra B over a probability space Ω with respect
to which X1, ..., Xn and X are measurable6, and that B is a non-null member of B.
A corollary of this point of view is that putative sensitivity measures ξX that do not
arise as information value under some scoring rule should be avoided. One way to rule
out a putative measure ξX being information value under a particular scoring rule S is
provided by Proposition 3 in the next section. But how is one to know that a sensitivity
measure ξX can never be information value under any possible scoring rule S? Currently,
this remains an open research question.
The difficulty of deriving a general negative result of this type is emphasized by the
following fact: There is a broad class of sensitivity measures ξX which are in fact infor-
mation value under some utility function that is proper in the same sense as a scoring
rule, but which may or may not actually be a scoring rule

Comment 1. Maybe we can say that it is model dependent? The Editor is sensitive to
how we state sentences about scoring rules

. We prove this result below and in Appendix B, and follow with a discussion of why
such sensitivity measures may still be less desirable.
In contrast with (5), consider a reporting problem in which (i) the report aP is the full
distribution P; (ii) instead of a scoring rule S(Y, aP), we allow a general B-measurable
utility function U(ω,P) for ω ∈ Ω; and (iii) the set P of possible reports is replaced by

6B may be only a sub-algebra of the full σ-algebra defining the probability space Ω.
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the set of conditional distributions

PB =
{
PY |A

∣∣A ∈ B, A 6= ∅
}
,

where PY |A(dy) = P(Y ∈ dy|A). In other words, we consider the family of reporting
problems

maximize E[U(P)|B].
P ∈ PB

(6)

where, as is conventional notation, U(P) is the random variable that takes on value
U(ω,P) should outcome ω ∈ Ω occur.
In direct analogy to the notion of proper scoring rule, say that utility function U is proper
if an optimal solution to this problem is P = PY |B, that is, for all non-null A,B ∈ B,

E[U(PY |A)|B] ≤ E[U(PY |B)|B].

Let ζB = ζ(PY ,PY |B), and say that utility function U is consistent with ζ if there is a
constant u0 such that for all B ∈ B

E[U(PY |B)|B] = ζB + u0. (7)

Whether there exist proper utility functions U consistent with ζ is a question that we
treat shortly. But if such U do exist, then it follows that the information value of X under
U must be ξX = E[ζ(PY ,PY |X)]. This can be seen as follows7. Consider first the report-
ing problem (6) given B = Ω. Because U is proper, the optimal report is P = PY |Ω = PY ,
and because ζΩ = ζ(PY ,PY ) = 0, and U is consistent with ξ, we have E[U(PY )] = u0.
Second, consider the reporting problem (6) given B = {X = x} ∈ B \ {∅}. Be-
cause U is proper, the optimal report is PY |{X=x} with conditional expected utility
E[U(PY |{X=x})|X = x] = ζ{X=x} + u0 = ζ(PY ,PY |{X=x}) + u0. The expected utility
in anticipation of learning X is therefore E[ζ(PY ,PY |X)] + u0 = ξX + u0. Information
value is the excess of this over the unconditional expected utility u0, which excess is ξX .
Therefore we have shown that if there is a proper utility function U consistent with ζ,
then the information value under U of any B-measurable X is ξX .
Concerning the existence of such utility functions U , we have the following result.

Theorem 1. Consider the case in which the σ-algebra B contains finitely many sets B.
Suppose the inner operator ζ(P,Q) of ξ is convex in Q. Then

1. there is a proper utility function U consistent with ζ, and consequently

2. for any such U , and any B-measurable X, the value of information X in the family
(6) of reporting problems is equal to the sensitivity measure ξX = E[ζ(PY ,PY |X)].

We suspect that the restriction that the σ-algebra B contains finitely many sets B is
not crucial to this result, because the infinite-B case is in some sense the limit of the
finite-B case. Unfortunately, at this time we do not have a proof for B infinite8.

7See Gilboa and Lehrer (1991) for the origin of this argument.
8Note because B may be only a sub-algebra of the full σ-algebra defining the probability space Ω, the

finite-B restriction does not restrict X1, ..., Xn, Y to be discrete random variables.
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The inner operators of the sensitivity measures ηX , θX , δX and βKuX (Table 2) are all
convex in their second argument Q, as we show in Appendix A. So we have the following.

Corollary 1. Under the conditions of Theorem 1, the sensitivity measures ηX , θX , δX
and βKuX are information value under the corresponding reporting problem (6).

As we show in Section 4, the sensitivity measure ηX is also information value in problem
(5) under a quadratic scoring rule. Moreover, θX is information value under a log scoring
rule, as we note in Section 5.1. However, we are unaware of any scoring rules under which
δX and βKuX are always information value for all Y,X, and conjecture there are none.
These sensitivity measures are, however information value in problem (6) under some
proper utility function, as the corollary states.
Theorem 1 unfortunately guarantees only the existence of a proper utility function
U(ω,P) consistent with ξ, with no reassurance that U derives from a scoring rule S(Y,P)
that depends on the key quantity Y . In fact, the utility function derived in the proof
of Theorem 1 has no apparent closed form. Not only that, but the utility function U
depends on the model, that is, on the joint distribution of Y,X1, . . . , Xn, through the
quantities ζB = ζ(PY ,PY |B) that appear as inputs into the consistency conditions (7).
In contrast, a scoring rule S is model independent. Sensitivity measures such as δX and
βKuX may have computational or other desirable properties. Theorem 1 then provides
the additional reassurance that these measures do behave as information value under
some U . However, the reassurance is limited because U is model dependent, and not
necessarily equal to any model-independent scoring rule S.

3.3 Relationship Between Scoring Rules and Inner Operators

Previous literature has shown that a probabilistic sensitivity measure is uniquely deter-
mined by its inner operator. However the converse is not true. If any linear real-valued
function of P − Q is added to an inner operator ζ(P,Q), the resulting inner operator
generates the same sensitivity measure. For example the inner operator

ζ ′(P,Q) = (µP − µQ + k)2 − k2, (8)

differs from the inner operator for ηX in Table 2 by a multiple of (µP − µP), and also
generates the probabilistic sensitivity measure ηX . And, letting z+ = 1

2(z + |z|) denote
the positive part of z, the inner operator

ζ+(P,Q) =

∫
R

(fP(y)− fQ(y))+ dy, (9)

differs from the inner operator of δX in Table 2 by half the integral of fP(y)−fQ(y), but
it still yields δX as sensitivity measure — see Appendix B for details.
Suppose sensitivity measure ξX has inner operator ζ and is always equal to the informa-
tion value of X under some scoring rule S(y, a), that is ξX = εSX for all X. Because a
sensitivity measure does not determine its inner operator, it does not follow that ζ = ζS

uniquely. If not, then what kind of relationship must exist between ζ and S? The
following result provides a partial answer.
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Say that an inner operator ζ distinguishes between two probability measures P, Q if either
ζ(P,Q) > 0 or ζ(Q,P) > 0. Analogously, say that a scoring rule S(y, a) distinguishes
between P, Q if optimal action aP when Y has distribution P differs from optimal action
aQ when Y has distribution Q. Say that a sensitivity measure ξX is information value
under scoring rule S if, for all X, the information value of X under S is equal to ξX .
Then we have the following result.

Proposition 3. Suppose the map α 7→ ζ ((1− α)Q0 + αQ1,Q0) is a continuous function
over α ∈ [0, 1] for all distributions Q1,Q0. A necessary condition for the sensitivity
measure ξX with inner operator ζ to be information value under scoring rule S(y, a)
is that for all P, Q, the scoring rule S distinguishes between P, Q whenever the inner
operator ζ does.

As a simple example consider the sensitivity measures δX and βKuX . They fall under
Proposition 3 because their inner operators satisfy its continuity requirement. If ζ dis-
tinguishes between P, Q, then ζ(P,Q) > 0, and therefore FP 6= FQ. But note, for
example, that the quadratic scoring rule

SQuad(y, a) = −(y − a)2 (10)

has optimal report a∗ equal to the mean of Y (see Section 4). Therefore, SQuad does not
distinguish two distributions with the same mean. It follows that δX and βKuX cannot be
information value under SQuad, or for that matter, under any scoring rule that reports
only summary distribution statistics. What is needed is a scoring rule whose optimal
report is a distribution (or from which a distribution can be derived).
A related argument shows that the condition of Proposition 3 cannot be sufficient. Con-
sider any strictly proper scoring rule S whose optimal report is a distribution (e.g. the
CRPS score we discuss in Section 5.2). Because it is strictly proper, S must distinguish
any two distinct distributions. Therefore S distinguishes any two distributions that ζ
does, and this for arbitrary inner operators ζ. If this condition were sufficient, it would
follow that an arbitrary sensitivity measure ξX is information value under S, a clear
impossibility because different ζ can give non-equivalent values of ξX .

4 Sensitivity Measures and Point Estimate Reports

4.1 Bregman Scores: Reporting Mean Values

A scoring rule SB over numerical reports a ∈ R is said to be a Bregman function if there
exists a differentiable strictly convex function ψ(y) over R such that

SB(y, a) = ψ(a) + ψ′(a)(y − a)− ψ(y). (11)

The report a that maximizes E
[
SB(Y, a)

]
is µY , the expected value of Y , i.e. aS

B

Y =
E[Y ] = µY . It is also the case, under some weak regularity conditions, that any scoring
function that is maximized by the mean must be a Bregman function (Savage (1971),
Schervish (1989), and Theorem 7 of Gneiting (2011)). Information value εBX under the
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Bregman score is by Proposition 1 a probabilistic sensitivity measure with inner operator
given by (4). The following proposition provides the specifics.

Proposition 4. The information value of X under a Bregman scoring rule is given by

εBX = Eψ(µY |X)− ψ(µY ) (12)

with inner statistic

ζB(PY ,PY |X) = ψ(µY |X)− (ψ(µY ) + ψ′(µY )(µY |X − µY )). (13)

Because of the strict convexity of ψ, we have εBX > ψ(EµY |X)−ψ(µY ) = ψ(µY )−ψ(µY ) =

0 as long as µY |X 6= µY for some values of X. The only way εBX can be zero is when

µY |X = µY for all values of X. It follows that εBX need not possess the nullity-implies-
independence property, because nullity only entails µY |X = µY for all values X, which
can occur even when X and Y are dependent random variables. The literature offers
several examples of models in which µY |X = µY for all values X, even though Y is
dependent on X (see Ishigami and Homma (1990) and Plischke et al. (2013)). It is
however true that nullity implies independence for binary random variables, or when the
joint distribution of Y,X is multivariate normal. In these settings, when µY |X = µY
for all values X, then Y must be independent of X. The binary case when Y is an
indicator for some event E is indeed the most common case to which the quadratic score
(discussed next) is applied.
The most popular example of a Bregman scoring function is the quadratic score. Setting
ψ(y) = y2, we obtain the quadratic or squared error score in (10) (Gneiting, 2011).
Following Proposition 4, information value under this scoring rule is given by

εQuadX = E
[
µ2
Y |X − µ

2
Y

]
= V[µY |X ] = V[Y ]− E[V[Y |X]], (14)

so εQuadX is equal to the sensitivity measure ηX in Table 2 and is equal to the amount of
variance reduction in Y due to information X — see also Bernardo and Smith (1994, p.
300).

4.2 Piecewise Linear Score Functions and Quantile Reports

Consider a situation in which the analyst must report a particular quantile of the dis-
tribution of Y . A notable example is in finance, where the so-called value at risk (VaR),
has become a popular risk measure (see Gourieroux et al. (2000); Fermanian and Scaillet
(2005)). VaR is typically the 95th or 99th quantile of an investment risk profile. Sup-
pose the analyst anticipates her report of the p-quantile will be evaluated by a scoring
rule. As Gneiting (2011) generalizing Thomson (1979) shows, the only possible proper
rules lie in the family of generalized piece-wise linear loss functions associated with the
p-quantile (also known as the check function in quantile regression and the newsvendor
function in operations management):

SQp (y, a) = k + h ·
(
p(t(y)− t(a))+ + (1− p)(t(a)− t(y))+

)
, (15)
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where p ∈ (0, 1), t : R 7→ R is a non-decreasing function, k ∈ R and h ∈ R+ are constants.
The optimal report under SQp (y, a) is the p-quantile9 of Y (Cervera and Muñoz, 1996;
Gneiting and Raftery, 2007; Jose et al., 2009), which we denote by QY (p).

Let Ea,b[Z] =
∫ b
a zdFZ(z) denote the partial expectation of a random variable over

interval (a, b).

Proposition 5. The information value of X when the choice problem is to report the
p-quantile is given by:

εQX = h · EX
{
E−∞,QY |X(p) [t(Y )|X] + t(QY |X(p))

(
p− FY |X(QY |X(p))

)
(16)

−E−∞,QY (p) [t(Y )] + t(QY (p)) (p− FY (QY (p)))
}
.

When Y is a continuous random variable, the quantile information value becomes

εQX = h ·
(
EX
{
E−∞,QY |X(p) [t(Y )|X]

}
− E−∞,QY (p)[t(Y )]

)
. (17)

If we take a linear function t(Y ),the previous equation simplifies further into

εQX = h ·
(
EX
{
E−∞,QY |X(p)[Y |X]

}
− E−∞,QY (p)[Y ]

)
. (18)

Example 1. [Quantiles of Linear Models] In many applications, Y a linear combination
of n exogenous Xi’s, i.e.,

Y =

n∑
i=1

aiXi. (19)

Analysts deal frequently with linear models, either because the structure of the problem
is linear (e.g., when Y is a portfolio return and the Xi’s are the returns of the assets
in the portfolio or when Y is the net present value for an investment and the Xi’s are
the potential cash flows) or because a linear response surface is used to approximate the
input-output mapping. If normal distributions are appropriate to characterize beliefs
about the Xi’s, then the quantile information value can be expressed in closed form as:

εQX = hϕ(Φ−1(p))
{
σY − E

[
σY |X

]}
, (20)

where ϕ(·) and Φ are, respectively, the standard normal density and cumulative distri-
bution function and σY and σY |X are, respectively, the portolio standard deviation and
conditional standard deviation — see Appendix B for the analytical expressions and
derivation of (20). Thus, the quantile information value of X is proportional to the
decrease in standard deviation associated with the additional information provided by
the variable X under a normality assumption. Of course, this relationship may not hold
for more general distributions.

9Formally, the quantile function is defined as QY (p) = inf{y ∈ R : p ≤ F (y)}. However, when Y is
absolutely continuous and strictly increasing, then QY (p) = F−1

Y (p).
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Proposition 5 has analogs for interval estimates. To illustrate, consider a symmetric
(1 − α) × 100% interval estimate for Y . The lower bound is the α/2-quantile and the
upper bound is the 1 − (α/2)-quantile. With a = (aL, aU ), the scoring function then
is simply the sum S

Q
α/2(y, aL) + S

Q
1−(α/2)(y, aU ). Because the overall score is additively

separable in aL and aU , score maximization can be performed separately for aL and aU .
If the random variables are absolutely continuous, we can express information value for
a confidence interval as

εIntervalX = h
(
EX
{
E−∞,QY |X(α/2) [t(Y )|X] + E−∞,QY |X(1−(α/2)) [t(Y )|X]

}
−E−∞,QY (α/2)[t(Y )]− E−∞,QY (1−(α/2))[t(Y )]

)
.

Because the quantile scores are additive, the interval information value is additive over
the two endpoints. To illustrate, let us refer back to Example 1. Interval information
value still remains proportional to the decrease in standard deviation σY − E[σY |X ].
We note that when we generalize this concept to a set of quantiles for the set of proba-
bilities p = (p1, . . . , , pn), the scoring function given by

SQp (y, a) =
∑
p∈p

SQp (y, a).

remains additive in each component. We can easily show for normal variates that the
property of proportionality to the decrease in standard deviation remains intact.

5 Reporting Distributions

Often an analyst is interested in the entire distribution (or density) of Y . One general
result that marks a departure between this case and the case of point estimates has been
illustrated in Section 3.1. By Proposition 2, all the sensitivity measures derived in this
section possess the nullity-implies-independence property.

5.1 Density Forecasts

Suppose the density qY of Y is the quantity of interest to the analyst (Y is assumed
absolutely continuous in this section). Then the choice set A is represented by some space
of probability densities and a possible report is a = qY . Dawid (2007) generalizes the
Bregman function to the case of density function reporting, introducing the generalized
Bregman score

S(y, q) = ψ′(q(y)) +

∫
R

[ψ(q(s))− q(s)ψ′(q(s))]ds. (21)

This family of scores is theoretically appealing and contains many well-known examples
of existing proper scoring rules. Information value under the generalized score (21)
encompasses several probabilistic sensitivity measures. First, letting ψ(q) = q − q log q,
we obtain the log scoring rule

S(y, q) = log q(y). (22)
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Applying the definition of information value and taking the expectation of ζD(PY ,PY |X),
we obtain (Bernardo and Smith, 1994) :

εKLX = EX

[ ∫
R
fY |X(y)(log fY |X(y)− log fY (y))dy

]
, (23)

which is the sensitivity measure θX introduced in Table 2, and the inner operator
ζKL(P,Q) is the well known Kullback-Leibler divergence between fY and fY |X (Kull-
back and Leibler, 1951). Bernardo (1979b) discusses how the logarithmic function plays
an important role in deriving and reporting reference posteriors in general inferential
problems.
Consider then an analyst who selects a power-based Bregman function for values s /∈
{0, 1}

ψPower(q) = ωqs, (24)

where ω = 1 for 0 < s < 1 and ω = −1 for other permissible values of s. Substituting
(24) into (21), we obtain the power scoring function (Dawid, 2007):

SPower(y, q) = ω

[
sqs−1
Y (y)− (s− 1)

∫
R
qsY (t)dt

]
. (25)

We can then determine the corresponding information value for an analyst reporting the
density of Y as

εPowerX = ωEX
[∫

R

(
qsY |X(y)− sqY |X(y)qs−1

Y (y) + (s− 1)qsY (y)
)
dy

]
. (26)

To illustrate, when s = 2, we obtain

εPower2X = EX
[∫

R

(
qY |X(y)− qY (y)

)2
dy

]
. (27)

That is, εPower2X is a probabilistic sensitivity measure whose inner operator is the L2-norm

between densities,
∫
R
(
qY |X(y)− qY (y)

)2
dy.

While not part of the family of generalized Bregman scores, pseudospherical scoring rules
are a further well known family of scores (Dawid, 2007). The score function is given by:

SSpherical(y, q; s) =
qs−1
Y (y)(∫

R q
s
Y (t)dt

)1− 1
s

.

By applying the definition of sensitivity measure in (1), we obtain the information value:

εSphericalX = EX
∫
R

 qsY |X(y)

(
∫
R q

s
Y |X(t)dt)1− 1

s

−
qY |X(y)qs−1

Y (y)

(
∫
R q

s
Y (t)dt)1− 1

s

 dy. (28)
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5.2 Distribution Forecasts

Analysts may also be interested in the entire cdf of the key variable Y . A clear example
is business planning, where decision makers consider the so-called risk-profile, namely,
the cdf of a project net present value. In well-known test cases, (e.g., Genzyme-Geltech
case study in Baucells and Borgonovo (2013)), the investment NPV is not an absolutely
continuous random variable. In this case, we need to remove the absolute continuity
assumption needed to obtain a value-of-information measure stated in the previous sec-
tion.
Scoring rules defined for distributional forecasts are not as common since elicited distri-
butions which do not have well-defined density functions are often cognitively difficult
or uncommon. However, some scoring functions that depend on distribution functions
exist and are used. A popular score used in practice is CRPS:

SCRPS(y, F ) = −
∫
R

(F (z)− 1{z ≥ y})2dz, (29)

where 1{z ≥ y} is the indicator variable of z ≥ y. This scoring rule has several interesting
properties such as strict properness and sensitivity to distance (see Jose et al. (2009)
also for a generalization).10

Proposition 6. Information value for X under CRPS is given by:

εCRPSX = E
[∫

R

(
FY (y)− FY |X(y)

)2
dy

]
. (30)

Thus, information value in this case is a probabilistic sensitivity measure based on the
Cramér-von Mises divergence (Hoeffding, 1948; Anderson, 1962). The corresponding
inner operator

ζCRPS(PY ,PY |X) =

∫
R

(
FY (y)− FY |X(y)

)2
dy (31)

is equal to one-half of the energy statistic of Szekely (1989) applied to comparing FY
with FY |X . Szekely and Rizzo (2013, 2017) highlight that the energy statistic is gaining
increasing interest in applied statistics and machine learning as a measure of dependence.

Example 2. [Example 1 Continued] Consider an analyst who is interested in learning
which of the asset returns is more informative when the entire distribution of the port-
folio return in Example 1 is of interest and scored with CRPS. Because Y is normally
distributed, we can write (Gneiting and Raftery, 2007):

SCRPS(y;µY , σY ) = σY

[
1√
π
− 2ϕ

(
y − µY
σY

)
− y − µY

σY

(
2Φ

(
y − µY
σY

)
− 1

)]
. (32)

10Sensitivity to distance roughly implies that forecasts that place more weight to states that are closer
to the outcome that materializes receive a higher score.
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Table 3: Summary of the sensitivity measures analyzed in this work, TI: Transformation-
Invariance, NIIP: Nullity-Implies-Independence Property

Sensitivity Measure Report Score TI NIIP
ηX (14) Mean Quadratic (14) No No

εQX (16) Quantile Piecewise Linear (15) No No
δX (Table 2) Density N/A Yes Yes
εKLX = θX (23) Density Log (22) Yes Yes
εPowerX (26) Density Power (24) No Yes

εSphericalX (28) Density Pseudospherical (28) No Yes
βKuX (Table 2) cdf N/A Yes Yes
εCRPSX (30) cdf CRPS (29) No Yes

Then, the information value of asset return Xi is given by:

εCRPSXi
=

∫
R
SCRPS(y;µY , σY )ν(y, µY , σY )dy −∫∫
R2

SCRPS(y;µY |Xi
, σY |Xi

)ν(y − aixi, µY |Xi
, σY |Xi

)ν(xi, µXi , σXi)dydxi,

where ν(y;µ;σ) denotes the normal density with parameters µ and σ. To illustrate, for
a portfolio of three standard normally distributed asset returns with relative weights
a1 = 4/7, a2 = 2/7 and a3 = 1/7 the information value of Xi expressed as percentage
improvement over the expected score is equal to 51% for the first asset, to 10% for second
asset and to 2.4% for the third asset. Note that for the linear combination of normal
random variables the same expected percentage improvements would be obtained if we
were to consider information value for reporting any quantile, because the quantile score
is given by (20) and because the CRPS is the weighted average of quantile scores.

6 Choosing the Right Sensitivity Measure

Here we investigate the practical (or managerial) implications of the findings in the
previous sections. Consider an analyst choosing the proper sensitivity measure for the
application at hand. Table 3 lists eight of the probabilistic sensitivity measures discussed
earlier, classified according to the type of report and its corresponding scoring rule (if
any).
What sensitivity measure to use? The analyst should first consider the best type of
report (mean, quantile(s), or distribution) to produce. This may depend on the ana-
lyst’s anticipated audience, or there may be a requirement for a specific report type.
Should the desired report include some measure of central tendency and/or a prediction
interval, then one of the first three sensitivity measures ηX , ε

Q
X in Table 3 would be appro-

priate. Although these are not transformation invariant and do not obey nullity-implies-
independence, the analyst may nevertheless support their use as sensitivity measures
by noting they are equal to information value should the report quality be evaluated
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respectively by the quadratic, log, or piecewise-linear scoring rules. Of course, if the
analyst reports, say quantiles, there would be no rationale to use ηX as the sensitivity
measure, since this is an information value under scoring rules whose optimal report is
the mean. It makes no sense to attempt to justify a sensitivity measure as information
value under a scoring rule if the optimal report under the rule differs from the analyst’s
desired report.
Should a distribution report be requested or allowed, the analyst can choose from one of
the last seven sensitivity measures in the table. All satisfy nullity-implies-independence.
Should transformation invariance be desired, there are three possibilities, δX , εKLX and
βKuX but only the Kullback-Leibler score εKLX is known to be information value under
a scoring rule, a consideration that might justify preference for its use. If transforma-
tion invariance is not crucial, then εKLX as well as three others of these seven measures

εPowerX , εSphericalX and εCRPSX could be justified as information value under a correspond-
ing scoring rule. If instead it is desired to use one of the others such as δX and βKuX ,
perhaps for computational convenience, then our Theorem 1 provides partial reassur-
ance that these are also information value, although not under any model-independent
scoring rule. And much as we have already noted, there would be no rationale to use any
of the first three sensitivity measures from the table, since they are information value
under scoring rules whose optimal report is not a distribution.
Although these rationales do not uniquely identify the appropriate sensitivity measure
under all reporting circumstances, they do narrow the field and provide reasonable jus-
tification for the measure or measures eventually chosen.

7 Application: Radioactive Waste Management

Many developed countries are dealing with the problem of long-term disposal of nuclear
waste in deep geological formations. This is a complex decision making problem with con-
sequences that reach far into the future in an intergenerational perspective. The Nuclear
Energy Agency (NEA) of the the Organization for Economic Co-Operation and Devel-
opment (OECD) established the Radioactive Waste Management Committee in 1975.
The mandate of the committee ranges from facilitating the elaboration of waste man-
agement strategies that respect societal requirements, from helping in providing common
bases to the national regulatory frameworks11. As part of this exercise, mathematical
models are developed for predicting flow and transport of radionuclides in actual geologic
formations for assessing the safety of deep repository systems of long-lived radioactive
waste (NEA, 2001). The validation of these computer codes and the quantification of
the relevant uncertainties have been identified as key-elements for ensuring the quality
of the assessment process. In 1985 the NEA started the development of a mathematical
code that could serve as a benchmark for Member Countries (OECD, 1989). The code,
later named LevelE, has since then become a benchmark for Monte Carlo simulation
and sensitivity analysis studies in general (Saltelli et al., 2008).

11https://www.oecd-nea.org/rwm/
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Table 4: Parameters and Respective Distributions for the LevelE Model (Saltelli and
Tarantola, 2002).

X Definition Distribution Range Units
X1 Containment Time to Failure Uniform [100, 1000] yr
X2 Iodine Leach Rate Log-Uniform [10−3, 10−2] mols/yr
X3 Np Chain Leach Rate Log-Uniform [10−6, 10−5] mols/yr
X4 Water Velocity Geosphere Layer I Log-Uniform [10−3, 10−1] m/yr
X5 Length Geosphere Layer I Uniform [100, 500] m
X6 Retention Factor Iodine Layer I Uniform [1, 5] -
X7 Retention Factor for NP Layer I Uniform [3, 30] -
X8 Water Velocity Geosphere Layer II Log-Uniform [10−2, 10−1] m/yr
X9 Length of Geosphere Layer II Uniform [10−2, 10−1] m
X10 Retention Factor Iodine Layer II Uniform [10−2, 10−1] -
X11 Retention Factor for NP Layer II Uniform [10−2, 10−1] -
X12 Stream Flow Rate Log-Uniform [10−2, 10−1] m3/yr

From a technical viewpoint, LevelE consists of a series of nested differential equations.
The modelled processes comprise radioactive decay, dispersion and advection through the
soil of the radionuclide 129Iodine and the chain 237Neptunium7→233Uranium7→229Thorium
— see Saltelli and Tarantola (2002, p. 703) for the detailed equations. The output of
the model is the total dose ingested by an individual at time t, calculated as sum of the
doses of the four radionuclides coming from the repository. The time spans geological
eras from 2× 104 to 2× 109 years into the future.
Parametric uncertainty has been addressed in dedicated exercises over the years and has
lead to the identification of the uncertain exogenous variables, which have been assigned
official distributions that, since then, have become the standard in subsequent numerical
experiments on the model. The distributions are listed in Table 4.
We consider the dose D (in Sievert/year) at t = 300000 years as output of interest. A
Monte Carlo simulation conducted with a quasi-random sample of size N = 218 produces
a skewed distribution of D with a 5th quantile estimate of Q̂D05 = 5.57 · 10−36, a 95th

quantile estimate of Q̂D95 = 5.03 · 10−08, a median estimate of Q̂D50 = 8.96 · 10−13 and an
expected value estimate of Ê[D] = 1.76 · 10−08.
The barplots in Figure 2 display the importance of the uncertain exogenous variables
as the forecast report varies. Each panel corresponds to an alternative report or score

function. The first three panels refer to the 5th, 50th and 95th quantiles, the fourth
panel to the quadratic score, the fifth to the logarithmic score on densities, the eight
to CRPS. The sixth and seventh panels report results for the δ and βKu sensitivity
measures.
A visual inspection of these panels suggests that the selection of the most informative
variables depends notably on which sensitivity measure and associated forecast report
the analyst selects. We give what could be the subjective impression an analyst receives
from these panels in Table 5. The fourth column in Table 5 reports the most important
variables for each forecast report. The criterion is quantitative that is, for each report, we
list the exogenous variables with sensitivity at least 33% of the most important variable.
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Figure 2: Sensitivity Measures for the Level E dose at t = 3 · 105.

Table 5: Summary of the most important uncertain exogenous variables for the dose D
at t = 300000 estimated using the LevelE code, across eight alternative prob-
abilistic sensitivity measures. The symbol ∼ denotes difference in sensitivity
within 10%, and the symbol > denotes a greater difference.

Report Scoring Rule Measure Important Variables
Fifth Quantile, Q05 Linear ε05X X4

Median, Q50 Linear ε50X X4

95th Quantile, Q95 Linear ε95X X12 > X4

Mean Quadratic εQuad
X = ηX X4 ∼ X12 > X7 > X11 ∼ X5

PDF Logarithmic εKL
X = θX X4

PDF N/A δX X4 > X12

CDF N/A βX X4 > X12

CDF CRPS εCRPS
X X4 ∼ X12
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As the table shows, there is some variability across scoring rules in the variables to
which dose D is most sensitive, although X4 and X12 are consistently highly ranked. To
return to the point of the prior section, however, note that a danger could arise should
an analyst default to a single sensitivity measure without considering the desired report
type, and without appreciating the interpretation of sensitivity as information value. For
instance, consider an analyst reporting a mean — row 4 in Table 5. If she defaults to
logarithmic sensitivity then far too few variables would be of concern compared to what
would have been reported under the quadratic score that is consistent with reporting a
mean. In the same way, suppose an analyst reporting a density defaults to the quadratic
sensitivity measure, as it is commonly used and widely recommended. Then far too
many variables would appear to be of concern (comparing rows 4 and 5 in the Table)
than if she had simply used logarithmic scoring that is consistent with a density report,
or used the δ-importance (row 6) that can be defended as information value under a
suitable proper utility function (Section 3.2). The same problem occurs if an analyst is
reporting a median or the 5th quantile — rows 1 and 2 in Table 5. These results do
confirm the suggestions of Section 6: Randomly picking a sensitivity measure exposes the
analyst to the risk of miscommunication about the most important exogenous variables.
These results also suggest there is an advantage in using a variety of sensitivity measures.
In case the choice of the forecast report is not clear or the analyst (in accordance with
the decision maker) does not feel confident enough to rely on a single report, she can
use the ensemble of results for communicating insights. To illustrate, for the Dose at
t = 300, 000 the analyst can confidently say that X4 and X12 are the two most important
variables. The analyst can also explain this assertion: Water Velocity in Layer I (X4)
plays an important role on the quantiles, on the mean as well as on the entire distribution.
Stream Flow Rate (X12) plays a more relevant role than X4 when the report is the 95th
quantile and always ranks second when the report of interest is the entire distribution
(either cdf or density). These two uncertain variables are followed by a group comprising
X5, X7 and X11, with X11 ranking fourth only under a quadratic score and thus being
overall less relevant than X5 and X7.
In either case (if attention is focused on a given report or if a holistic view on the
sensitivity measures is adopted), the analyst has a way to provide solid recommendations
about which variables are more relevant for further information collection. This has the
potential of reducing uncertainty in predictions and consequently of making the decision
process better informed. These observations, while illustrated through a case study in a
particular sector, are not restricted to the context and are applicable to generic decision
problems in which a quantitative model is used to support a decision.

8 Conclusions

This work has established a bridge between three relevant decision analysis topics that
have not been simultaneously studied so far. This synthesis yields a variety of results and
insights. First, it allows one to better characterize the conditions under which a proba-
bilistic sensitivity measure can be interpreted as information value. Second, it permits us
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to identify the value-of-information sensitivity measure consistent with a specified scor-
ing rule. Third, it provides a better understanding of various properties of probabilistic
sensitivity measures such as nullity-implies-independence. The work introduces several
new probabilistic sensitivity measures that retain a value-of-information interpretation,
and in particular, sensitivity measures related to the reporting of densities and of the
entire cdf. Among others, we prove that Szekely’s popular energy statistic is information
value consistent with the CRPS score. Some of our results give rise to broad character-
izations, such as the fact that well-known sensitivity measures based on metrics such as
the L1-norm and Kuiper metric, while unlikely in our view to be information value un-
der any model-independent scoring rule, are nevertheless information value under some
model-specific proper utility function. Our results provide discipline in the selection of
sensitivity measures for prediction problems, by giving analysts a structured rationale.
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Appendix A: Details on the Introductory Example

First, let us write the equations of the trapezoidal densities of X1 and X2:

f(x, b, µ) =

{
(1− x

b
)K0(b, µ) +

x

b
K1(b, µ) if 0 ≤ x ≤ b

0 otherwise

with K0(b, µ) = 2
b2

(2b− 3µ), andK1(b, µ) = 2
b2

(−b+ 3µ). The conditional distribution of
Y given X1 = λ1 and X2 = λ2 is

FY (y|λ1, λ2) = e−(λ0+λ1+λ2)y.

The unconditional distribution is therefore

FY (y) = EX1,X2 [e−(λ0+X1+X2)y].

As we assume independence, we obtain

FY (y) = e−λ0yL1(y)L2(y),

where Li(y) = EXi [e
−Xiy], i = 1, 2. The conditional distributions of Y given X1 or X2

are

FY (y|X1 = λ1) = e−(λ0+λ1)yL2(y) and FY (y|X2 = λ2) = e−(λ0+λ2)yL1(y) .

Let us consider that the analyst chooses a quadratic scoring rule, i.e., a variance based
sensitivity measure, as we are to see. Then as we show in Section 4, value of information
is given by

εQuad
Xi

= VXi [E[Y |Xi]]. (33)
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We then need to compute E[Y |Xi], i = 1, 2. This conditional expectation is given for
X1 by

E[Y |X1 = λ1] = EX2 [(λ0 + λ1 +X2)−1]. (34)

Let now K2(v) = EX2 [(v +X2)−1]. By substituting (34) into (33) one obtains

εQuad
X1

= EX1 [K2(λ0 +X1)2]− EX1 [K2(λ0 +X1)]2.

For the second contributing rate X2 one proceeds analogously.
For εCRPS

X1
we obtain:

εCRPS
1 = E[

∫ ∞
0

(FY (y)− FY (y|X1))2dy

=

∫ ∞
0

E[(FY (y)− FY (y|X1))2]dy =

∫ ∞
0

E[V{FY (y|X1)}]dy.

The last term of the previous equality is given by

V{FY (y|X1)} = E[FY (y|X1)2]−FY (y)2 = e−2λ0yE[e−2X1y]L2(y)2−e−2λ0yL2(y)2L1(y)2

= e−2λ0yL2(y)2[L1(2y)− L1(y)2],

so that

εCRPS
1 =

∫ ∞
0

e−2λ0yL2(y)2[L1(2y)− L1(y)2]dy. (35)

The expressions in (34) and (35) are easily implemented in a software such as Mathcad,
Matlab, Mathematica (the first two are used by the authors). For the parameterization
described in Section 1, one obtains the values of the sensitivity measures in Table 1.

Appendix B: Proofs

Proof of Proposition 2

We can write εSX = EX [ζS(PY ,PY |X)], where

ζS(PY ,PY |X) = EY [S(Y, a∗(X))− S(Y, a∗)|X].

We also know that ζS(PY ,PY |X) is greater than or equal to zero for all values of X.
Then, if the scoring rule is strictly proper, a∗(X) = FY |X and a∗ = FY must maximize
the expected score. Therefore,

ζS(PY ,PY |X) = EY [S(Y, FY |X)− S(Y, FY )|X].

We already know εSX = 0 if Y,X are independent, because εSX is a sensitivity mea-
sure. Conversely, suppose that εSX = 0. Then, the nonnegativity of ζS(PY ,PY |X) forces

ζS(PY ,PY |X) to be zero for almost all X. That is, for almost all X, EY [S(Y, FY |X)|X] =
EY [S(Y, FY )|X]. Now, because S is strictly proper, the distribution FY |X is, for each
value X, the unique maximizer of EY [S(Y, FY |X)|X]. Therefore FY |X = FY for almost
all X, which shows that Y and X are independent.
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Proof of Theorem 1

For brevity, let uB be the random variable U(PY |B) for B ∈ B, so that E[uB|A] =
E[U(PY |B)|A]. Because the σ-algebra B contains only finitely many sets, it has a finite
basis B1, ..., Bm of mutually exclusive and collectively exhaustive event sets. Because uB
is B-measurable, it follows that uB has only finitely many values, one for each Bi, and
can be regarded as a vector. Let πA be the vector of conditional probabilities given A,
having in the same way one value pi|A for each Bi. Then E[uB|A] = πA · uB . To reduce
notation clutter, we take all statements A ∈ B below to mean A ∈ B \ {∅}. Then the
assumptions that U is proper and consistent with ζ can be written

πA · uB ≤ ζA + u0 A ∈ B,A 6= B
πB · uB = ζB + u0.

(36)

Our goal is to show that this system has a solution, implying the existence of a proper
utility function consistent with ζ.
Following Ch.1 in Stoer and Witzgall (1970), we use the Kuhn-Fourier Theorem to write
down necessary and sufficient conditions for this system to have a solution. The possible
legal linear combinations of the system (36) are∑

A∈B
A 6=B

VAπA +WπB ≤
∑
A∈B
A 6=B

VA(ζA + u0) +W (ζB + u0) (37)

where VA ≥ 0 for all A, VA > 0 for some A, and

WπB = W (ζB + u0) (38)

with W∈ R.
A legal linear combination of a system of equations and inequalities is a legal linear
dependence if its left side is zero but not all VA and W are zero. The Kuhn-Fourier
Theorem states that the system (36) has a solution if and only if every legal linear
dependence is always true. For (37), this means that if VA ≥ 0 all A, VA > 0 for some
A, and W ∈ R then∑

A∈B
A 6=B

VAπA +WπB = 0⇒
∑
A∈B
A 6=B

VA(ζA + u0) +W (ζB + u0) ≥ 0. (39)

For (38), this means that for W 6= 0

WπB = 0⇒W (ζB + u0) = 0. (40)

The last implication is vacuously true, since πB is never zero for B 6= ∅. Consider then
(39). Note that

∑
A∈B
A 6=B

VAπA > 0, because VA > 0 for some A. Therefore, in the premise

of (39), W must be strictly negative. Replace W by its negative and solve on both sides
of (39) to get the following equivalent version of (39):

πB =
∑
A∈B
A 6=B

VAπA ⇒ ζB + u0 ≤
∑
A∈B
A 6=B

VA(ζA + u0), (41)

26



where now we are using new VA equal to the old VA/(−W ). Multiply each side of the
premise to (41) by a vector of ones to obtain 1 =

∑
A∈B
A 6=B

VA. Therefore, the scalar u0 on

the right side of (41) cancels, and (41) is equivalent to

πB =
∑
A∈B
A 6=B

VAπA ⇒ ζB ≤
∑
A∈B
A 6=B

VAζA, (42)

for every collection {VA|A ∈ B, A 6= B} with VA ≥ 0 and
∑

A∈B
A 6=B

VA. = 1. If we can

demonstrate this, then it follows that the system (36) has a solution.
So suppose VA ≥ 0 and

∑
A∈B
A 6=B

VA. = 1, and the premise of (42) holds. In terms of the

variables pi|B mentioned at the beginning of this proof, this premise is equivalent to

pi|B =
∑
A∈B
A 6=B

VApi|A i = 1, ...,m

Therefore

PY |B(dy) =
∑
i

PY |Bi
(dy)pi|B =

∑
i

PY |Bi
(dy)

∑
A∈B
A 6=B

VApi|A

=
∑
A∈B
A 6=B

VA
∑
i

PY |Bi
(dy)pi|A =

∑
A∈B
A 6=B

VAPY |A(dy)

Then invoking the convexity of ζ in its second argument, we have

ξB = ζ(PY ,PY |B) = ζ(PY ,
∑
A∈B
A 6=B

VAPY |A) ≤
∑
A∈B
A 6=B

VAζ(PY ,PY |A) =
∑
A∈B
A 6=B

VAξA.

Therefore the conclusion of (42) holds, and we have demonstrated (42). Therefore, the
system (36) has a solution.

Proofs of Convexity Claims for Corollary 1

For the sensitivity measure ηX , we have

ζη(P,Q) = (µP − µQ)2 =

(
µP −

∫
R
yQ(dy)

)2

.

This is a convex quadratic function of a linear function Q 7→
∫
R yQ(dy), hence is convex.

For the sensitivity measure δX , we have

ζL1(P,Q) =
1

2

∫
R
|fP(y)− fQ(y)| dy.
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This is a composition of mappings fQ 7→ |fP − fQ| 7→ 1
2

∫
R |fP(y)− fQ(y)| dy, which is a

linear functional (on a space of functions) following a convex function (from a space of
densities to a function space) of fQ. Hence the composition is convex in fQ.
For the sensitivity measure θX , we have

ζKL(P,Q) =

∫
R+

fQ(y) (ln fQ(y)− ln fP(y)) dy =

∫
R+

fQ(y) ln fQ(y)dy−
∫
R+

fQ(y) ln fP(y)dy.

The second term in this difference is linear in fQ, so the overall function will be convex
in fQ if the first term is. Note that the first term is a composition fQ 7→ fQ · ln g 7→∫
R+ fQ(y) ln fQ(y)dy, which is a linear function following the transformation fQ 7→ fQ ·

ln fQ, and the latter is convex because its pointwise analog y 7→ y · ln y is convex, as
may be verified by checking the second derivative. Therefore the overall transformation
is convex in fQ.
For the sensitivity measure βKS , we have

ζKS(P,Q) = sup
y∈R
|FP(y)− FQ(y)| ,

which is a composition FQ 7→ |FP − FQ| 7→ supy∈R |FP(y)− FQ(y)|, that is, a linear
function following a convex function of FQ. The composition is therefore convex. For
sensitivity measure βKu, ζKu(P,Q) is convex in FQ by the same logic as for ζKS(P,Q).

Calculations for Equations (8) and (9) in Section 3.3

For the inner operator in (8), we have:

η′X = EX
[
ζ ′η(PY ,PY |X )

]
= EX

[
(µY − µY |X + k)2 − k2

]
= EX

[
(µY − µY |X)2 + 2k(µY − µY |X)

]
EX
[
(µY − µY |X)2

]
+ 2kEX

[
µ− µY |X

]
= EX

[
(µY − µY |X)2

]
+ 0 = ηX .

for arbitrary Y,X.
For the inner operator in (9), because z+ = 1

2 (z + |z|), we have for any Y,X

EX [ζ+(PY ,PY |X )] = EX
[∫

R

(
fY (y)− fY |X(y)

)+
dy

]
= EX

[∫
R

(
1

2

∣∣fY (y)− fY |X(y)
∣∣+

1

2

(
fY (y)− fY |X(y)

))
dy

]
= EX

[
1

2

∫
R

∣∣fY (y)− fY |X(y)
∣∣] dy + 0 = δX .

Proof of Proposition 3

To prove Proposition 3, we first prove the following result.
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Proposition 7. Consider a scoring rule S(y, a) and suppose aSP is the set of optimal
reports whenever Y has distribution P. A necessary condition for the sensitivity measure
ξX with inner operator ζ to be, for all X, the value εSX of information X under scoring
rule S is that for all distributions Q1,Q0, and all α with 0 < α < 1,

aSQ0
= aSQ1

⇒ ζ ((1− α)Q0 + αQ1,Q0) = ζ ((1− α)Q0 + αQ1,Q1) = 0. (43)

The proof of the above proposition is divided into two steps. First, we state and prove
the following lemma:

Lemma 1. If aSX does not depend on X, then εSX = 0.

Proof of Lemma 1 Suppose aSX = a0 for all X, that is, a = a0 optimizes E[S(Y, a)|X]
regardless of X. Then a = a0 must also optimize E[E[S(Y, a)|X]]. But the latter is equal
to E[S(Y, a)]. Therefore a = a0 and a = aS are both optimizers of E[S(Y, a)], so that
E[S(Y, a0)] = E[S(Y, aS)]. Consequently εSX = E[S(Y, a0)]− E[S(Y, aS)] = 0. �
We now prove Proposition 7. As in the statement of the proposition, let Q0 and Q1 be
arbitrary distributions over the possible values of Y such that aSQ0

= aSQ1
, and let

P = (1− α)Q0 + αQ1.

for 0 < α < 1. Let X be a binary variable with α = P (X = 1) = 1 − P (X = 0),
and suppose Y has conditional distributions PY |X=0 = Q0, and PY |X=1 = Q1. Then

PY = P. Under scoring rule S, the optimal report set given X = 1 is aSQ1
and the

optimal report set given X = 0 is aSQ0
. Because these two sets are by hypothesis the

same, the information value of X under score S must be zero according to the lemma.
Suppose the information value of X under S is equal to the sensitivity measure ξX . We
therefore have

0 = ξX = E[ζ(PY ,PY |X)] = (1− α)ζ(P,Q0) + αζ(P,Q1)

for 0 < α < 1, as desired.�
We can then prove Proposition 3. The necessary condition of the proposition is equivalent
to a simplified version of (43), namely to

aSQ0
= aSQ1

=⇒ ζ(Q0,Q1) = ζ(Q1,Q0) = 0 (44)

which we now demonstrate. The continuity hypothesis of the proposition implies

lim
α↑1

ζ ((1− α)Q0 + αQ1,Q0) = ζ (Q1,Q0) .

Then from (43), because ζ ((1− α)Q0 + αQ1,Q0) = 0 for all α ∈ (0, 1), we obtain
ζ (Q1,Q0) = 0. Similarly, the continuity hypothesis of the proposition implies

lim
α↓0

ζ ((1− α)Q0 + αQ1,Q1) = ζ (Q0,Q1) ,

whence we obtain for a similar reason ζ (Q0,Q1) = 0.
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Proof of Proposition 4

By definition and because the optimal action under Bregman scoring is the mean,

εBX = EX
[
E[ψ(µY |X) + ψ′(µY |X)(Y − µY |X)− ψ(Y )|X]

− E[ψ(µY ) + ψ′(µY )(Y − µY )− ψ(Y )]
]

= EX
[
E[ψ(µY |X)] + ψ′(µY |X)E[(Y − µY |X)]− E[ψ(Y )|X]]

− E[ψ(µY )]− ψ′(µY )E[(Y − µY )] + E[ψ(Y )]
]

= EX
[
E[ψ(µY |X)] + 0− E[ψ(Y )|X]]− E[ψ(µY )]− 0 + E[ψ(Y )]

]
= EX [ψ(µY |X)]− E[ψ(Y )]− E[ψ(µY )] + E[ψ(Y )] = EX [ψ(µY |X)]− ψ(µY ).

Also from Proposition 1, we have

ζB(PY ,PY |X) = E
[
SB(Y, µY |X)− SB(Y, µY )

∣∣X]
= E

[
ψ(µY |X) + ψ′(µY |X)(Y − µY |X)− ψ(Y )

− (ψ(µY ) + ψ′(µY )(Y − µY )− ψ(Y ))
∣∣X]

= E
[
ψ(µY |X)− (ψ(µY ) + ψ′(µY )(Y − µY ))

∣∣X]
= ψ(µY |X)− (ψ(µY ) + ψ′(µY )(µY |X − µY ))

as desired.

Proof of Proposition 5

By definition, we have:

E[SQp (Y, a)] = h

∫ ∞
−∞

[
p(t(y)− t(a))+ + (1− p)(t(a)− t(y))+

]
dFY (y)

= h

[
p

∫ ∞
a

(t(y)− t(a)) dFY (y) + (1− p)
∫ a

−∞
(t(a)− t(y)) dFY (y)

]
= h

[
p (Ea,∞[t(Y )]− t(a) (1− FY (a))) + (1− p)

(
t(a)FY (a)− E−∞,a[t(Y )]

) ]
= h

[
pEa,∞[t(Y )]− (1− p)E−∞,a[t(Y )] + t(a) (FY (a)− p)

]
Substituting a∗ = QY (p) and using the identity Eb,∞(g(Z)) = E(g(Z)) − E−∞,b(g(Z))
yields

E[SQp (Y, a∗)] = h
[
(1− p)E−∞,QY (p)

Y [t(Y )]− pEQY (p),∞[t(Y )] + t(QY (p)) (p− F (QY (p)))
]

= h
[
E−∞,QY (p)[t(Y )]− pE[t(Y )] + t(QY (p)) (p− FY (QY (p)))

]
.
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An analogous expression holds for the conditional r.v. Y |X. Inserting these into (3), we
get

εQX = hEX
{
E−∞,QY |X(p) [t(Y )|X]− pE [t(Y )|X] + t(QY |X(p))

(
p− FY |X(QY |X(p))

)}
− h

{
E−∞,QY (p) [t(Y )]− pE [t(Y )] + t(QY (p)) (p− FY (QY (p)))

}
= hEX

{
E−∞,QY |X(p) [t(Y )|X] + t(QY |X(p))

(
p− FY |X(QY |X(p))

)}
− h

{
E−∞,QY (p) [t(Y )] + t(QY (p)) (p− FY (QY (p)))

}
,

which completes the proof.

Derivation for Equation (20)

The conditional and unconditional densities of Y in (19) are

fY (y) = ν(y,mY , σY ) and fY |X(y, xi) = ν(y − aixi,mY |X(xi), σY |X), (45)

where ν(y,mY , σY ) is the normal density with mean mY =
∑n

`=1 a`µ` and variance
σ2
Y = aΣaT , and ν(y−aixi,mY |X(xi), σY |X) is the normal density with meanmY |X(xi) =
n∑̀
=1

a`

[
µ` + (xi − µi)

σi,`
σi,i

]
, variance σ2

Y |X = aΣY |XaT , with ΣY |X =

[
σ`,s−

σ`,i ·σi,s
σi,i

]
`,s=1,2,...,n

.

Then, because the normal distribution is a member of the location-scale family, we can
write QY (α) = µY + Φ−1(α)σY and by Winkler et al. (1972)

E−∞,z(Y ) = µY Φ
(
z−µY
σY

)
− σY ϕ

(
z−µY
σY

)
. (46)

Substituting this into (18), we obtain (20).

Derivation for Equations (26) and (28)

For (26),

εPowerX = EXE[SPower(Y, q)|X]− E[SPower(Y, q)]

= EX
[∫

R
ω

[
sqs−1
Y |X(y)− (s− 1)

∫
R
qsY |X(t)dt

]
sqY |Xdy

]
−
∫
R
ω

[
sqs−1
Y (y)− (s− 1)

∫
R
qsY (t)dt

]
sqY dy

= ωEX
[∫

R

(
qsY |X(y)− sqY |X(y)qs−1

Y (y) + (s− 1)qsY (y)
)
dy

]
,

which is the desired result. Similarly, for (28), we have:

εSphericalX = EXE[SSpherical(Y, q)|X]− E[SSpherical(Y, q)]

= EX

[∫
R

(
qY |X(y)

‖qY |X‖s

)s−1

qY |X(y)dy

]
−
∫
R

(
qY (y)

‖qY ‖s

)s−1

dy,

where ‖q‖s = (
∫
q(y)sdy)1/s and which gives us (28).
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Proof of Proposition 6

By definition of information value, we have

εCRPSX = EX
{

max
F∈A

E
[
SCRPS(Y, F )

∣∣X]}−max
F∈A

E
[
SCRPS(Y, F )

]
.

and by strict properness, the two maximizers are F = FY |X and F = FY , respectively.
Then

εCRPSX = EX
{
EY

[
SCRPS(Y, FY |X)

∣∣X]}− EY [SCRPS(Y, FY )]

= E
{
EY

[
SCRPS(Y, FY |X)− SCRPS(Y, FY )

∣∣X]}
= EX

{
EY

[∫
R

(FY (z)− 1{z ≥ Y })2 dz −
∫
R

(
FY |X(z)− 1{z ≥ Y }

)2
dz

∣∣∣∣X]}
= EX

{
EY

[∫
R

(
F 2
Y (z)− F 2

Y |X(z)− 2
(
FY (z)− FY |X(z)

)
· 1{z ≥ Y }

)
dz

∣∣∣∣X]}
= EX

{∫
R

(
F 2
Y (z)− F 2

Y |X(z)− 2
(
FY (z)− FY |X(z)

)
· FY |X(z)

)
dz

}
= E

{∫
R

(
FY (z)− FY |X(z)

)2
dz

}
.
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