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Abstract

In this paper I offer necessary and sufficient conditions for implementability

in a quasi-linear principal-agent model with arbitrary type spaces. I extend

Rochet’s Theorem by allowing the principal to observe information that may

be correlated with the agent’s type. By viewing the agent’s gains from misre-

porting as payments in a hypothetical zero-sum game, I show that an allocation

is implementable if and only if every infinitesimally detectable deviation is at

most infinitesimally profitable. This leads to generalizations of existing results,

such as revenue equivalence and implementation with moral hazard, as well as

new results altogether, such as budget balanced implementation (interim and

ex post), existence of bargaining solutions and revealed stochastic preference.
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1 Introduction

Understanding implementable allocations is an essential topic of mechanism design.

This issue has been addressed in general (e.g., Rochet, 1987; Heydenreich et al., 2009)

as well as specific contexts (e.g., Myerson, 1981; Bikhchandani et al., 2006). In this

paper I restrict attention to the quasi-linear setting but otherwise keep the model as

general as possible. I consider a principal-agent problem where the agent has some

private information—a type—which the principal solicits. To induce honest reporting,

the principal makes payments to the agent contingent on the agent’s reported type

and a signal that may be correlated with the agent’s actual type. The main result

of the paper is a characterization of implementable allocations on arbitrary type and

signal spaces without placing any restrictions on utilities (apart from integrability).

I also explore interesting extensions.

Such an extended principal-agent problem with additional signals for the principal is

interesting for at least two reasons. Firstly, it is important to understand when the

principal can exploit relevant information to induce honest reporting. For instance,

the signal may be output, other agents’ reports, even future reports in a dynamic

environment.1 It might be argued that correlation renders the problem trivial because

it leads to full surplus extraction, but this argument is flawed: Example 5 provides

a basic environment with correlation but where full surplus extraction is impossible,

rendering the implementability problem still relevant.2 Secondly, the elementary

network approach emphasized by Rochet (1987) and Heydenreich et al. (2009) does

not generalize easily. For instance, their approach cannot be used to characterize

interim implementation (as opposed to ex post) relative to the additional signal—

the subject of this paper—because the network structure on which they rely is quite

simply absent in the present context. On the other hand, the duality-based approach

that I develop in this paper to characterize implementability generalizes easily to

richer environments, including budget constraints and bargaining.3 See Section 5.

I characterize implementability with the following intuition, which I also deem to be

an important contribution of the paper because it helps to understand the economics

of incentive compatibility—just like the planner’s problem helps to understand its

decentralization through prices. Here it is:

1I develop the application to dynamic implementation in Rahman (2009).
2I provide a detailed study of full surplus extraction in Rahman (2010).
3Other extensions, such as limited liability, can be easily included in the present framework, too.
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Consider the following hypothetical zero-sum game between a principal and an agent.

The principal chooses a scheme of report- and signal-contingent money payments and

the agent chooses a reporting strategy, i.e., a probability distribution over type-report

pairs. The principal pays the agent the deviation gains from reporting according to

the chosen strategy rather than honestly. These gains arise from both changes in

the allocation (call these “gross” gains) and changes in money payments as a result

of misreporting. By definition, an allocation is implementable if for some payment

scheme the agent cannot make positive deviation gains. Since the agent can guarantee

non-negative gains by reporting truthfully, implementability is equivalent to both

the principal and agent receiving a payoff of zero, in other words, the value of this

hypothetical game is zero. If this game is finite then by the Minimax Theorem it

doesn’t matter who goes first. Hence, an allocation is implementable if and only if

for any reporting strategy for the agent there is a payment scheme that makes it

unprofitable. However, the crucial insight implied by the Minimax Theorem is that

different payment schemes may be used to discourage different reporting strategies.4

If a given strategy is detectable, i.e., the probability distribution over signals given

reported types differs from that given actual types, it is easy to find a scheme that

discourages it. A reported type-signal pair whose probability is greater than that

with the actual type-signal pair is dubbed “bad news,” and otherwise “good news.”

Now pay the agent for good news, charge him for bad news, and increase the wedge

between good and bad news until any utility gains are outweighed by associated

monetary losses. If the strategy is undetectable then the agent receives the same

expected payment as if he reported truthfully, regardless of the payment scheme.

Hence, deviation gains are non-positive if and only if gross gains are non-positive.

Call such a strategy “unprofitable.” This yields the finite version of Theorem 1: an

allocation is implementable if and only if every undetectable deviation is unprofitable.

When the set of types is infinite, Theorem 1 requires a slightly stronger condition.

Mathematically, to apply the Minimax argument above I require a version of bounded

steepness (Gale, 1967). Strategically, an allocation is interim implementable if and

only if every infinitesimally detectable deviation is at most infinitesimally profitable.

Intuitively, the problem is this. Consider a sequence of asymptotically undetectable

strategies. If their gross gains are positively bounded below then there exists an

“infinitesimal” deviation with positive profit, and this cannot be discouraged with a

payment scheme that also discourages the non-infinitesimal deviations.

4This argument is reminiscent of Hart and Schmeidler (1989). I discuss the connections below.
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A “windfall” advantage of this result is that it generalizes easily. This contrasts, for

instance, Rochet’s (1987) Theorem, which is closely related (see Proposition 4). To

illustrate this advantage, I extend Theorem 1 in a number of interesting directions.

In Section 5, I characterize budget-balanced implementation (interim and ex post),

existence of bargaining solutions even with correlated types,5 implementability with

moral hazard, revenue equivalence even if types are correlated,6 and revealed stochas-

tic preference.7 As a corollary to the duality approach explored in this paper, I also

obtain a subdifferential characterization of the set of implementing payment schemes

for a given allocation, and offer some intuition behind it.8

The paper is organized as follows. In the next section, I present the principal-agent

model and formally state Theorem 1, which characterizes implementable allocations.

I then provide four examples to illustrate the significance of every infinitesimally

detectable deviation being at most infinitesimally profitable. For instance, Example 4

shows that implementability does not require payoffs to be Lipschitz, unlike Carbajal

and Ely (2010).9 In Section 3, I prove Theorem 1 following the basic intuition above,

using duality in the form of an infinite-dimensional version of the Minimax Theorem.

In Section 4, I mostly place my results in relation to the literature. Specifically,

I discuss Rochet’s Theorem, Cremer and McLean’s characterization of full surplus

extraction, and Hart and Schmeidler’s proof of existence of correlated equilibrium

using the Minimax Theorem. I also establish revenue equivalence in this paper’s

richer setting, compare it to previous recent characterizations, and characterize the

set of implementing payments for an implementable allocation. Section 5 derives the

extensions described in the previous paragraph and Section 6 concludes. Omitted

proofs and ancillary results can be found in the appendices at the end of the paper.

5This result contrasts the work of Segal and Whinston (2009), who assume independent types.
6I characterize when there exists a unique contingent payment scheme modulo a constant. By

contrast, Heydenreich et al. (2009) only characterize unique interim expected payments assuming

that types are independent, in a similar spirit to Müller et al. (2007).
7Although in this paper I restrict attention to revealed stochastic preference under the assumption

of quasi-linearity (this assumption can be relaxed, see Afriat, 1967, p. 72), I otherwise generalize

the work of McFadden and Richter (1990) and McFadden (2005) in several ways. First, I allow for

prices, or “budgets” to vary randomly in a way that may be correlated with stochastic preferences.

This allows for a richer interpretation of stochastic preferences as those of a population. Secondly,

I do not restrict attention to compact metric type spaces.
8For a related result in the case of ex post implementation, see Kos and Messner (2009).
9Although there are similarities between Kos and Messner (2009), Carbajal and Ely (2010) and

this paper, there are also important differences. Firstly, the other papers do not allow correlated

signals. Secondly, even in their restricted setting they do not emphasize a strategic interpretation.
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2 Model

Consider the following relatively standard mechanism design environment. There is

an agent with private information and a principal who solicits this information from

the agent. The agent sends a message to the principal which may or may not be

truthful. The principal subsequently observes a verifiable signal possibly correlated

with the agent’s information, such as output or other agents’ types.

Formally, let T be an arbitrary set with typical element t, interpreted as the collection

of all types for the agent that the principal deems possible. Let X be a nonempty

set of outcomes and (Y,Y ) a measurable space of possible signals that the principal

may observe. For each type t, let p(t) be a finitely additive probability measure on

Y describing the likelihood of signals given t. Let u(t, x, y) ∈ R be the agent’s utility

from choice x when his type is t and the realized signal is y. An allocation is a map

x : T × Y → X, where x(t, y) represents the choice made by the principal when

the agent’s report is t and the realized signal is y. An incentive scheme (or simply

scheme) is a map ξ : T × Y → R, where ξ(t, y) represents the payment from the

agent to the principal when his report is t and the realized signal is y. An incentive

scheme is denominated in money, which enters the agent’s utility linearly with unit

marginal utility, as usual. A mechanism is any pair (x, ξ) as above.

The expected utility to the agent from an allocation x when his type is t—assuming

that he tells the truth—is given by

v(t) =

∫
Y

u(t,x(t, y), y)p(dy|t),

and the expected utility gain from reporting s when his type is actually t is given by

∆v(t, s) =

∫
Y

[u(t,x(s, y), y)− u(t,x(t, y), y)]p(dy|t).

For the functions above to be well-defined, we must impose some restrictions on v

and x. Otherwise, the integrals above may not exist.

Assumption 1. Both v(t) and ∆v(t, s) are well-defined and real-valued for all (t, s).

I shall maintain this assumption throughout. One way to guarantee that it holds is

to assume that v(t,x(s, y), y) is a bounded, Y -measurable function of y for all (t, s).

But this is certainly not the only way.
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Definition 1. The mechanism (x, ξ) is called incentive compatible if

∆v(t, s) ≤
∫
Y

[ξ(s, y)− ξ(t, y)]p(dy|t) ∀(t, s). (1)

An allocation x is called implementable if there exists a scheme ξ such that (x, ξ) is

incentive compatible. In this case, say ξ implements x.10

Intuitively, incentive compatibility guarantees that any utility gain with respect to

the allocation from reporting type s when the agent’s true type equals t is outweighed

by the associated loss from monetary transfers. Since the inequalities above apply

after the agent learns his type, any prior beliefs are irrelevant for implementability.

Put differently, implementability holds or fails regardless of prior beliefs.

Just as before, for the inequalities above to be well-defined, we must impose some

restrictions on ξ. Otherwise, the integrals above may not exist.

Assumption 2. Every scheme ξ satisfies the following property: ξ(t, y) is a bounded

Y -measurable function of y for all t, i.e., ξ ∈ B(Y )T .

I shall also maintain this assumption throughout. Whereas Assumption 1 is relatively

uncontroversial, Assumption 2 has a little more content. It reflects a trade-off between

restrictions on p versus ξ. For the inequalities defining incentive compatibility above

to be well-defined, ξ(s) must be p(t)-integrable for all (t, s). Bounded measurability

guarantees this without imposing restrictions on p. (The literature typically assumes

this and much more, see McAfee and Reny, 1992, for instance.) On the other hand,

if we assumed that the set of all p(t)-integrable functions L(t) was the same set L for

all t then we could relax Assumption 2 by requiring only that ξ ∈ LT . Alternatively,

we might also assume that ξ ≥ 0 (or more generally that ξ is bounded below by a

given integrable function) and ξ(t) ∈ L(t) for all t, but this would require imposing

restrictions on the function u for implementability to be feasible.

My main goal is to characterize implementability, i.e., find a necessary and sufficient

condition in terms of v and p. Unfortunately, the elementary approach pioneered by

Rochet (1987) does not apply here because his characterization relies on the network

structure inherent in his environment, where Y is a singleton set. I develop below

an alternative approach based on linear duality, expressed in terms of the Minimax

Theorem to facilitate a strategic interpretation.

10This definition strictly generalizes Rochet’s, and coincides with it when Y is a singleton set.
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To this end, I will describe a zero-sum two-person game between the principal and the

agent, where the principal chooses an incentive scheme, the agent chooses a “report-

ing strategy,” and the agent’s payoff equals the expected utility difference between

the chosen strategy and reporting truthfully. I will show that implementability is

equivalent to truth-telling being a Nash equilibrium of this alternative, hypothetical

game. In this game, the agent’s pure strategies are the set of possible type-report

pairs. Since the set of types has no given structure, the only meaning mixed strategies

are convex combinations of pure strategies. Formally, the agent chooses a so-called

reporting strategy (or simply strategy) π in ∆(T × T ), the set of non-negative T × T
matrices with finite support whose entries add up to one. The amount π(t, s) may

be interpreted as the probability that the agent’s report equals s when his true type

equals t. A deviation is any reporting strategy that isn’t truthful, i.e., it lies with

positive probability conditional on some type.

Definition 2. A strategy π ∈ ∆(T × T ) is called undetectable if∑
s∈T

π(t, s)p(t) =
∑
s∈T

π(s, t)p(s) ∀t ∈ T. (2)

Otherwise, π is detectable. It is called profitable if ∆v(π) =
∑

(t,s) ∆v(t, s)π(t, s) > 0.

Intuitively, π is undetectable if the joint probability distribution over reports and the

signal coincides with that of actual types and the signal.

It is relatively easy to see that a necessary condition for implementability is that every

profitable deviation be detectable. To see this, apply any undetectable deviation to

the inequalities in (1) above. The difference in payments on the right-hand side of

(1) disappear, implying that the deviation is unprofitable.

It might be conjectured that detecting profitable deviations is not only necessary,

but also sufficient for implementability. As I argue later, this is in fact the case

when the set of types T is finite, when p(t) does not depend on t, and also when

Y is a singleton set, the latter of course being the context for Rochet’s Theorem.

However, this conjecture is generally false, hence detecting profitable deviations is

necessary but not sufficient for implementation. Examples 1–4 below illustrate this

lack of sufficiency. Intuitively, characterizing implementability requires in addition

that infinitesimally detectable deviations be at most infinitesimally profitable.

Formally, let ∆p(π) be defined pointwise by

∆p(π)(t) =
∑
s∈T

π(t, s)p(t)− π(s, t)p(s) ∀t ∈ T.
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Definition 3. Every infinitesimally detectable deviation is at most infinitesimally

profitable if “every profitable deviation is uniformly detectable,” i.e.,

D := sup
π

∆v(π)

|∆p(π)|
< +∞, 11

where π is a reporting strategy, |∆p(π)| =
∑

t ‖∆p(π)(t)‖ , and for each t, ‖∆p(π)(t)‖
is the total variation norm on the space of (bounded additive) measures on Y .

Intuitively, Definition 3 requires not only that every profitable deviation be detectable,

but also that every deviation’s profitability be uniformly bounded by its detectability.

Mathematically, it is a bounded steepness condition, ensuring that linear duality

applies to an agent’s deviation gains.

Theorem 1. A given allocation is implementable if and only if every infinitesimally

detectable deviation is at most infinitesimally profitable.

Before proving Theorem 1, let me discuss the differences between Definition 3 and

detecting profitable deviations in the context of some illustrative examples. Notice

that all the examples below (Examples 1–4) exhibit the fact that every profitable

deviation is detectable, yet implementability is impossible.

Example 1. Let T = [0, 1] and Y = {0, 1}. Define p(0) = [0], p(1) = [1] and p(t) =
1
2
[0] + 1

2
[1] for all t ∈ (0, 1), where [z] stands for Dirac measure.12 For every t ∈ (0, 1),

let πt be the strategy defined pointwise by πt(t, 0) = t
2

= πt(t, 1), πt(0, t) = t
2

=

πt(1, t) and πt(t, t) = 1− t. It is not difficult to see that |∆p(πt)| = t
2
‖[0]− [1]‖ = t,

from which it follows that |∆p(πt)| → 0 as t → 0. Define ∆v(t, 0) = 1/t for every

t ∈ (0, 1) and ∆v(r, s) = 0 for all other (r, s). Clearly, every profitable deviation

is detectable, since making any profit requires type 0 misreporting to some type

t ∈ (0, 1) with positive probability, and this is detectable. Now the profit from πt is

given by ∆v(πt) = t
2
[∆v(t, 0) + ∆v(t, 1) + ∆v(0, t) + ∆v(1, t)] = 1

2
for every t ∈ (0, 1).

As a result, D = +∞, so implementability fails by Theorem 1. Notice that this

argument fails if and only if ∆v(t, 0) is uniformly bounded above for all t.

Example 1 shows that Definition 3 and detecting profitable deviations are different

in an important, non-pathological way. Although the example above relies on ∆v

becoming unbounded, this is by no means a prerequisite for the kind of failure of

implementability that it portrays, as the next examples show.

11I adopt the following conventions: (i) zero divided by zero equals zero and (ii) any non-zero real

number divided by zero equals ±∞ depending on the sign of the numerator.
12In other words, [z](Z) = 1 if z ∈ Z and 0 otherwise.
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Example 2. Let T = [0, 1], Y = {0, 1} and p(t) = (1− t)[0] + t[1] for all t. Given y

and any finite subset of types there is only one type with largest probability over y, so

every deviation is detectable. For each k ∈ N, let tk = 1/k and define πk by πk(tk, 0) =
1
2
(1− tk) = πk(0, tk), πk(tk, 1) = 1

2
tk = πk(1, tk). (Let πk be 0 elsewhere.) By routine

calculations, |∆p(πk)| = 1
2k

(1− 1
k
) ‖[0] + [1]‖ = 1

k
(1− 1

k
). Define ∆v by ∆v(t, 0) = 1 for

all t and ∆v(t, s) = 0 for all other (t, s). Clearly, ∆v(πk) = (1− 1
k
)∆v(tk, 0) = (1− 1

k
).

Finally, lim ∆v(πk)/ |∆p(πk)| = lim(1 − 1
k
)/( 1

k
(1 − 1

k
)) = lim k = +∞. Therefore,

D = +∞ and implementability fails by Theorem 1.

Example 2 above shows that a suitable discontinuity in ∆v is sufficient to prevent

implementability. Indeed, notice that in the example ∆v(t, 0) does not tend to 0

as t → 0, even though ∆v(0, 0) = 0. However, discontinuity is not necessary for

implementation to fail, as the next example shows.

Example 3. Consider exactly the same setting and sequence {πk} as in Example

2. The only difference here is that now ∆v is defined by ∆v(0, t) =
√
t. It is easy

to see that now ∆v(πk) = (1 − 1
k
)∆v(tk, 0) = (1 − 1

k
) 1√

k
. Simple calculations show

that lim ∆v(πk)/ |∆p(πk)| = lim((1− 1
k
) 1√

k
)/( 1

k
(1− 1

k
)) = lim

√
k = +∞. Therefore,

D = +∞ and again implementability fails by Theorem 1.

Example 3 shows that a failure of Lipschitz continuity in ∆v is enough for implemen-

tation to fail. However, yet again this is not necessary. The next example highlights

that what drives all these failures is not failure of Lipschitz continuity, but rather

a lack of bounded steepness between the change in probabilities and the change in

payoffs from misreporting, as Theorem 1 shows.

Example 4. Let T = [0, 1], Y = {0, 1} and p(t) = (1− t2)[0] + t2[1] for all t. As in

Example 2, every deviation is detectable. Given k ∈ N, let tk = 1/k and πk be the

strategy defined by πk(tk, 0) = 1
2
(1 − t2k) = πk(0, tk) and πk(tk, 1) = 1

2
t2k = πk(1, tk).

By routine calculations, |∆p(πk)| = 1
k2

(1 − 1
k2

). Define ∆v by ∆v(t, 0) = t for all

t and 0 elsewhere. Clearly, ∆v(πk) = (1 − 1
k2

)∆v(tk, 0) = (1 − 1
k2

) 1
k
. After simple

calculations, lim ∆v(πk)/ |∆p(πk)| = lim((1 − 1
k2

) 1
k
)/( 1

k2
(1 − 1

k2
)) = lim k = +∞.

Therefore, D = +∞ and once again implementability fails by Theorem 1.

Example 4 exhibits a Lipschitz continuous function ∆v yet implementation fails,

even though every deviation is detectable. Intuitively, this happens here because the

“steepness” ratio of changes in payoffs (linear) to changes in probabilities (quadratic)

explodes as the deviation becomes infinitesimal. By Theorem 1, implementation is

equivalent to this steepness being uniformly bounded.
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3 Proof of Theorem 1

Below, I prove Theorem 1 in three steps. I begin by describing implementability as

the truthful equilibrium of a zero-sum two-person game. I then characterize existence

of such an equilibrium in terms of subdifferentiability of a function induced by the

game’s payoffs. Finally, I show that such subdifferentiability is equivalent to every

infinitesimally detectable deviation being at most infinitesimally profitable.

In this zero-sum game, the principal chooses a scheme ξ ∈ B(Y )T and the agent a

strategy π ∈ ∆(T × T ). I will explain later how to incorporate prior beliefs. The

principal pays the agent the following amount:

F (ξ, π) =
∑
(t,s)

π(t, s)[∆v(t, s)−
∫
Y

(ξ(s, y)− ξ(t, y))p(dy|t)].

Clearly, the integral above is well defined, and F (ξ, π) ∈ R for every (ξ, π). Intuitively,

F is (proportional to) the agent’s expected deviation gain from choosing π when the

principal chooses ξ. This defines a zero-sum two-person game.

In this hypothetical game, the principal pays the agent the deviation gain defined by

F . A pair (ξ, π) is called an equilibrium of F if it is a Nash equilibrium, i.e.,

F (ξ, π′) ≤ F (ξ, π) ≤ F (ξ′, π) ∀(ξ′, π′).

An equilibrium (ξ, π) is honest if π is honest, i.e., π(t, s) > 0 if and only if t = s. For

any such honest equilibrium, clearly F (ξ, π) = 0.

Proposition 1. x is implementable if and only if F has an honest equilibrium.

Proof. The proof is rather simple. Suppose that x is implementable with scheme

ξ. By definition, for any honest strategy π, the pair (ξ, π) is an honest equilibrium

of F that pays 0 to the agent in the hypothetical zero-sum game. Conversely, if x

is not implementable then for any ξ there is a strategy π for the agent that yields

positive profit, given by the matrix δ(t,s) that equals one at a given violated incentive

constraint (t, s) and zero elsewhere. Hence, an honest equilibrium cannot exist. �

The simple observation in Proposition 1 motivates characterizing implementability

with conditions for existence of a saddle point with zero saddle value. This approach

yields the proof of Theorem 1 that I now develop. Afterwards, I will discuss this

argument at some length.
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To this end, define two quantities:

F∗ = sup
π

inf
ξ
F (ξ, π), and F ∗ = inf

ξ
sup
π
F (ξ, π).

It is easy to see that 0 ≤ F∗ ≤ F ∗. Indeed, the first inequality follows because

given an honest strategy θ, clearly F (ξ, θ) = 0 for every ξ, and the second inequality

always holds. Intuitively, we may think of each of the quantities above as resulting

from different order of play. Thus, F∗ represents the agent’s value if he moves first,

whereas F ∗ reflects the agent’s value when the principal moves first. The next three

results should help to understand how these quantities are related to Lemma 1.

Proposition 2. F∗ = 0 if and only if every profitable deviation is detectable.

Proof. If F∗ = 0 then, given any strategy π, it follows that infξ F (ξ, π) ≤ 0. If

π is undetectable then
∑

(t,s) π(t, s)
∫

(ξ(s, y) − ξ(t, y))p(dy|t) = 0 regardless of ξ,

hence
∑

(t,s) π(t, s)∆v(t, s) ≤ 0, i.e., every undetectable deviation is unprofitable.

Conversely, if F∗ > 0 there is a deviation π with infξ F (ξ, π) > 0. If π is detectable

then there is a scheme ξ with
∑

(t,s) π(t, s)
∫

(ξ(s, y)−ξ(t, y))p(dy|t) = α > 0. Letting

β =
∑

(t,s) π(t, s)∆v(t, s), it easily follows that F (βξ/α, π) ≤ 0, a contradiction.

Therefore, π must be undetectable. �

Proposition 2 immediately delivers the finite-dimensional version of Theorem 1, i.e., if

T is finite then an allocation is implementable if and only if every profitable deviation

is detectable. This is because in the finite case the Minimax Theorem implies that

(i) F∗ = F ∗ and (ii) both sup and inf are attained. The challenge in the infinite

case is to extend this argument. Lemma 1 shows that the existence of a saddle point

for F with saddle value equal to zero characterizes implementability. In general, the

attainment of a saddle value is not enough to guarantee existence of a saddle point.

In other words, F∗ = F ∗ = 0 is not enough for implementability. What is enough for

implementability is both F∗ = F ∗ = 0 and attainment of the sup and inf, just as in

the finite case. I now show that the condition of Theorem 1 completely characterizes

these two requirements. To this end, I first introduce an important function in terms

of which implementability may be characterized.

Let ba(Y )
(T )
0 be the set of functions z from T to ba(Y )—the space of bounded, additive

measures on Y—with finite support such that
∑

t z(Y |t) = 0. For any z ∈ ba(Y )
(T )
0 ,

let h(z) = supπ infξ{F (ξ, π)−ξ ·z}. The definition of F gives h the following intuitive

equivalent representation. For any strategy π, recall that ∆p(π) is defined pointwise

by ∆p(π)(t) =
∑

s π(t, s)p(t)− π(s, t)p(s), therefore ∆p(π) ∈ ba(Y )
(T )
0 .
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Lemma 1. h(z) = supπ{∆v(π) : ∆p(π) = z}.

Proof. By definition of F , clearly F (ξ, π)− ξ · z = ∆v(π)− ξ · [z −∆p(π)]. Given z

and π, if ∆p(π) = z then infξ{F (ξ, π)− ξ · z} = ∆v(π). Otherwise, ∆p(π) 6= z then

there exists ξ such that ξ · [z − ∆p(π)] > 0. Scaling this ξ by an arbitrarily large

amount, it follows that infξ{F (ξ, π)− ξ · z} = −∞. �

Intuitively, Lemma 1 says that h(z) may be equivalently described as the supremum

of utility gains from deviations whose statistical consequences amount precisely to z.

In other words, the function h collapses the principal’s strategy to either punishing

the agent without bound for playing a strategy that differs from z or remaining unable

to prevent the agent from choosing any strategy that is statistically identical to z.

This observation quickly leads to the following result.

Lemma 2. Every profitable deviation is detectable and h is subdifferentiable at 0 if and

only if every infinitesimally detectable deviation is at most infinitesimally profitable.

Proof. Follows immediately from Lemma A.4 and observing that every infinitesimally

detectable deviation being at most infinitesimally profitable implies every profitable

deviation is detectable, which in turn is equivalent to h(0) = 0. �

Lemma 2 leads us to the proof of our main result, Theorem 1, via the Minimax

Theorem as follows. By Lemma A.3, F has an equilibrium if and only if both h and

k are subdifferentiable at zero, where k(w) = supπ infξ{F (ξ, π)−w · π} is defined for

all w ∈ U = {u ∈ RT×T : u(t, t) = 0}, and these subdifferentials characterize the set

of equilibria. Specifically, the subdifferential of h at 0 corresponds to the principal’s

equilibrium strategies, i.e., all implementing schemes (see Proposition 5 and its proof

for details). Existence of an honest equilibrium for F is now characterized as follows,

finally establishing Theorem 1.

Proposition 3. F has an honest equilibrium if and only if every profitable deviation

is detectable and h is subdifferentiable at 0.

Proof. By the observations of the previous paragraph and the fact that every prof-

itable deviation being detectable is equivalent to h(0) = 0, it remains to argue that

subdifferentiability of k at zero is implied by the structure of F . Indeed, we require

that k(w) ≥ 0 for all w, where, since we are looking for honest equilibria, an honest

strategy θ should be a subgradient of k at 0, and w · θ = 0 for all w. But this follows

from the definition of k, because F (ξ, θ)−w · θ = 0, i.e., the agent can always secure

at least zero by choosing an honest strategy. �
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4 Discussion

In this section I make several observations. I begin by relating Theorem 1 to Rochet’s

Theorem. Secondly, I compare detectability with what I’ll call convex independence,

introduced by Cremer and McLean (1988). Thirdly, I distinguish implementability

from existence of equilibrium in the spirit of Hart and Schmeidler (1989). Finally, I

revisit revenue equivalence in the richer context of this paper.

4.1 Rochet’s Theorem

On the one hand, the environment of Rochet’s Theorem is a special case of the

one studied here because Rochet restricts attention to environments where Y is a

singleton. On the other hand, both environments have in common the use of convex

duality to characterize implementability. Rochet makes use of Rockafellar’s (1966)

characterization of subdifferentials of convex functions in terms of cyclically monotone

mappings. An important insight in their argument is making essential use of the

network structure behind incentive constraints when Y is a singleton. Indeed, this

insight leads to an elementary proof of their characterization.

However, their approach cannot be applied here because this network structure is

absent. When Y is a singleton, implementability amounts to not just every infinites-

imally detectable deviation being at most infinitesimally profitable, but moreover

that every profitable deviation be detectable. This interpretation of Rochet’s cyclic

monotonicity condition in terms of detecting profitable deviations is easy to see. To

see it, recall Rochet’s Theorem: an allocation x is implementable if and only if it is

cyclically monotone, i.e., for every finite cycle (t1, . . . , tm+1) such that t1 = tm+1,

m∑
k=1

v(tk+1,x(tk))− v(tk,x(tk)) ≤ 0.

Rochet’s proof of this result (adapted from Rockafellar, 1970) is remarkable not only

for its simplicity, but also because it is constructive: if an allocation is implementable,

the proof produces an incentive scheme that implements it. To relate this cyclic

monotonicity condition with Theorem 1, I now show that a cycle can be interpreted as

an undetectable reporting strategy with rational probabilities. In so doing, I provide

another characterization of implementability in terms of permutations, which may be

thought of as undetectable “pure” reporting strategies.

13



A finite permutation (or simply permutation) is any map σ : S → S defined on some

finite subset S of T such that σ is both one-to-one and onto. A permutation σ can

be written as a strategy πσ defined by πσ(t, s) = 1/ |S| if s = σ(t) and 0 otherwise.

By virtue of σ being a permutation, for every t ∈ S (i) there exists a unique s ∈ S
such that πσ(t, s) > 0, and (ii) there exists a unique s ∈ S such that πσ(s, t) > 0.

Therefore, πσ is undetectable.

Corollary 1. The following statements are equivalent for a given allocation x:

(i) Every undetectable deviation is unprofitable.

(ii) x is cyclically monotone.

(iii) Every permutation is unprofitable.

Proof. By Rochet’s Theorem and Proposition 4 below, (i) is equivalent to (ii), and (i)

is equivalent to (iii) by linearity of ∆v(π) with respect to π ∈ ∆(T ×T ) together with

the Birkhoff-von Neumann Theorem, which states that the set of doubly stochastic

matrices is the convex hull of the set of permutation matrices. �

It is instructive to consider a more direct argument for Corollary 1: (iii) implies (i)

by the Birkhoff-von Neumann Theorem. (ii) implies (iii) because a permutation is a

finite collection of cycles, each without repetitions, and cyclic monotonicity applied to

a permutation implies that it is unprofitable. Finally, (i) implies (ii) by representing

a cycle as an undetectable reporting strategy with rational probabilities as follows.

To see this, let (t1, . . . , tm+1) be a cycle, so t1 = tm+1. Let S = {s1, . . . , s`}, with

` ≤ m, be the set of distinct elements in the cycle, and write [sj] for the number of

times that sj appears in (t1, . . . , tm). Also write [si, sj] for the number of times that

si appears immediately before sj in (t1, . . . , tm+1). Let s0 be any type that solves

[s0] = maxj[sj], and define π(t, s) = [t, s]/(`[s0]) if s 6= t and 1/` −
∑

s 6=t[t, s]/(`[s0])

otherwise. Clearly, π is a reporting strategy. To see that π is undetectable, notice

that since (t1, . . . , tm+1) is a cycle,
∑

s 6=t[t, s] =
∑

s 6=t[s, t] for every t: the outflow from

t equals the inflow to t. Finally, it is also clear that π consists of rational probabilities,

since every element of π is the difference between two rational numbers.

By Corollary 1, (iii) also characterizes implementability. Since the set of permutations

are the extreme points of the set of doubly stochastic matrices, (iii) exploits linearity

to provide this alternative characterization by just checking for unprofitability at the

extreme points of the set of undetectable “conditional” deviations, i.e., the conditional

probabilities µ(s|t) such that
∑

s µ(s|t) = 1 for all t. Such conditional deviations µ

can be obtained easily from deviations π by writing µ(s|t) = π(t, s)/
∑

r π(t, r).

14



The next result extends the techniques developed in this paper to derive a version of

Theorem 1 when the principal’s signal y is independent of the agent’s type t. This, of

course, includes the case of Y being a singleton. A proof appears in the appendix. I

also include in the appendix a new, direct proof for when Y is a singleton that relies

on linear duality. Hence, it constitutes an alternative proof of Rochet’s Theorem.

Proposition 4. Suppose p(t) does not depend on t, Y is a singleton, or T is finite.

An allocation is implementable if and only if every profitable deviation is detectable.

Given Corollary 1, Proposition 4 directly verifies Rochet’s Theorem without resort-

ing to any network structure. This suggests the following important mathematical

observation: when Y is a singleton, the set Π of unprofitable, undetectable deviations

is closed, but it is not necessarily closed otherwise, as Examples 1–4 showed. In the

language of duality, the closedness of Π is crucial for the absence of a duality gap. To

see the role played by the network structure, notice that integrality constraints on

network flows do not bind when flows are consistent with permutations, as in assign-

ment problems, which is implicitly the case studied by Rochet. A duality gap may be

viewed as a binding infinite-dimensional “extremal” constraint (e.g., the no-gap ex-

ample in Kretschmer, 1961), so if the integrality constraint does not bind then neither

does the “extremal” constraint. On the other hand, when the integrality constraint

may bind, say because Y is not a singleton, then the “extremal” constraint must be

incorporated explicitly. This describes the mathematical content of Theorem 1.

4.2 Cremer and McLean’s Theorem

Although it might be thought that detectability of deviations is close to the notion

of convex independence by Cremer and McLean (1988), there are important distinc-

tions. This is a potentially important concern on the following grounds. Cremer and

McLean’s result is often paraphrased as “if types are correlated then one can extract

the surplus.” Hence, as soon as the conditions of Proposition 4 fail to be met, all the

surplus can be (perhaps virtually) extracted, hence the mechanism design problem

becomes uninteresting. Example 5 below shows that this is false: not only are types

correlated, but the wedge between convex independence and detectability is basic.

Example 5. Let T = {0, 1
2
, 1}, Y = {a, b}, and p(t) = tδa + (1− t)δb, where δ stands

for Dirac measure. Convex independence clearly fails, since p(1
2
) = 1

2
p(0)+ 1

2
p(1), and

hence p(1
2
) lies in the convex hull of {p(0), p(1)}, yet every deviation is detectable.
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I will discuss these two conditions next. Firstly, convex independence characterizes

surplus extraction, whereas detectability characterizes only implementability. Hence,

the latter is necessarily a much weaker condition. However, to see just how these two

conditions differ in interpretation, let me rewrite equivalent versions of each below.

As will become apparent, the essential difference between the two conditions applies

equally to the case of finitely many and infinitely many types. I will therefore assume

for expositional simplicity that the set T of types is finite in this subsection.13

Convex independence amounts to the following: p(t) /∈ conv{p(s) : s 6= t}, where, of

course, “conv” means convex hull. It is easy to see that this is equivalent to∑
s∈T

µ(s|t)p(s) = p(t) ∀t ⇒ µ(s|t) = 0 if s 6= t,

where µ(s|t) ≥ 0 for all (t, s) and
∑

s µ(s|t) = 1 for all t. Convex independence might

be interpreted as follows. If type t could become type s with probability µ(s|t) then

convex independence would mean that there is no way of becoming other types that

is indistinguishable from remaining the original type.

On the other hand, that every deviation is detectable may be written—using the

“conditional” description with µ from the previous subsection—as∑
s∈T

µ(t|s)p(s) = p(t) ∀t ⇒ µ(s|t) = 0 if s 6= t.

Intuitively, the left-hand side above means that the probability distribution induced

by truth-telling coincides with that arising from the “conditional” strategy µ, where

the prior on types is given by the uniform distribution.14

Notationally, the difference between the two conditions is subtle. For convex inde-

pendence, the antecedent says that, for every type t, the signal distribution averaged

across types with weights µ(·|t) equals p(t), whereas for detectability it says that the

signal distribution averaged across reports with weights µ(t|·) equals p(t).

However, there are important differences of interpretation. Whereas convex inde-

pendence may be interpreted as there being no statistically indistinguishable way of

becoming other types apart from always remaining the original type, detectability

may be interpreted as the requirement that there is no way of pretending to be any

other type that is statistically indistinguishable from always reporting honestly.

13For a detailed discussion of convex independence in the infinite case, see Rahman (2010).
14The uniform distribution does not matter—if it were any other, the µ’s could be adjusted to

satisfy the same system of equations as with the uniform. Details are available on request.
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4.3 Hart and Schmeidler’s Theorem

The essential use of duality in this paper—embodied by the Minimax Theorem—is

reminiscent of the work by Hart and Schmeidler (1989). Moreover, the condition that

describes whether a deviation is undetectable is remarkably close to Equation 2 of

Nau and McCardle (1990, p. 433) and Myerson (1997, p. 190). Below, I discuss some

similarities and differences between their work and the present paper.

The authors mentioned above showed that correlated equilibrium exists in a finite

game using duality.15 To paraphrase, consider a zero-sum game between a mediator

and a surrogate for the players. The mediator chooses a correlated strategy, whereas

the surrogate randomly selects a player, followed by a deviation by that player, i.e., a

(possibly mixed) recommendation-contingent plan. The mediator pays the surrogate

the sum of expected unilateral deviation gains to the players in the original game. By

the Minimax Theorem it doesn’t matter who goes first. When the mediator goes first,

the value of the game being zero means that a correlated equilibrium exists. Indeed,

in this case there is a correlated strategy that discourages all unilateral deviation

profiles simultaneously. When he moves second, he may discourage them one by

one. A player’s recommendation-contingent plan is a Markov chain with an invariant

distribution. The product of these is a strategy for the mediator that secures his

payoff to at least 0. Since the surrogate’s security payoff is also 0 by having players

always obey, the value is 0 and correlated equilibrium exists.

The previous argument had the mediator choose an allocation (or correlated strategy)

by keeping fixed utilities of the underlying game. In this paper, the principal chooses

(rather, influences) utilities via a payment scheme but keeps fixed the allocation. The

key step that every Markov chain has an invariant distribution does not apply to this

paper but its equation does. Indeed, given a deviation πi, Hart and Schmeidler and

Nau and McCardle find a probability vector pi that makes the deviation undetectable

relative to pi. Since such a pi always exists, the product measure p =
∏

i pi is optimal

for the mediator when he moves after the surrogate. On the other hand, in this

paper the vector pi is exogenously given as i’s beliefs, and only the deviations πi that

satisfy undetectability are considered feasible. Therefore, even though apparently

the same equation contributes to determining both implementability and existence

of correlated equilibrium, its interpretation and the way it is used differ in important

ways with each application.

15I extend their approach to infinite games with bounded measurable utilities in Rahman (2008).
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4.4 Revenue Equivalence Revisited

In this subsection, I recast the problem of revenue equivalence in the current con-

text, and characterize implementing incentive schemes. This extends Rochet (1987)’s

explicit derivation of an incentive scheme that implements a given allocation under

cyclic monotonicity, but does so differently, since, again, his approach relies on a

network structure that is absent here.

The results below differ from other characterizations of revenue equivalence and im-

plementing schemes in the literature, such as Heydenreich et al. (2009) and Kos and

Messner (2009). Indeed, these papers not only focus on the case of independent types

(in this case, t and y are independent), but moreover just characterize when expected

payments only differ by a constant, rather than when the entire payment schedule

is unique up to a constant. Of course, when types are independent, the most we

can hope for in terms of revenue equivalence is that expected payments differ by a

constant. On the other hand, when types are not independent or there are other ad-

ditional constraints imposed on payments, it becomes meaningful to consider revenue

equivalence in terms of the entire schedule.

Formally, say that there is revenue equivalence if for any two incentive schemes ξ and

ζ that implement a given allocation, there exists a constant c ∈ R such that

ζ(t, y) = ξ(t, y) + c.

This definition differs somewhat from others. When types are independent, the above

cited authors describe revenue equivalence as ζ(t, y) = ξ(t, y) + c(y), where y stands

for others’ types. Of course, my version is much more restrictive. Correlation amongst

types diminishes the set of functions c(y) with respect to which implementing schemes

may differ. I take this idea to the extreme and require that schemes differ only by

a constant. This may be useful, for instance, when agents exhibit risk aversion over

payments. In this case, the stronger version of revenue equivalence is required for

implementation to yield a unique payoff profile modulo a constant.

Mathematically, Theorem 1 shows that an allocation is implementable if and only if

the function h(z) = supπ{∆v(π) : ∆p(π) = z} is subdifferentiable at 0 (Section 3).

Let ∂h(0) denote the subdifferential of h at 0 and dom h = {z : h(z) > −∞} be

the effective domain of h. Next, I argue that revenue equivalence is characterized in

terms of differentiability of h. This brings together several results in the literature.
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Proposition 5. For any implementable allocation, ∂h(0) completely characterizes all

implementing payment schemes modulo a constant. Hence, revenue equivalence holds

if and only if h : dom h→ R is differentiable at 0.

Proof. Let C = {ξ ∈ B(Y )T : ∃c ∈ R s.t. ξ(t, y) = c ∀(t, y)} be the vector space of

constant schemes, and write B(Y )T/C for the quotient space of (equivalence classes

of) incentive schemes modulo constant payments. This is the dual space of ba(Y )
(T )
0 ,

defined in the paragraph just before Lemma 1. With dom h being a subset of ba(Y )
(T )
0 ,

we obtain B(Y )T/C as the space of linear functionals acting on the domain of h, and

from which derivatives are defined. Now, the function h is differentiable at 0 if and

only if its subdifferential at 0 is a singleton. By Lemma A.3, the subdifferential

characterizes the set of solutions to the dual of the linear program that describes h

in Lemma 1, i.e., the set of payment schemes, modulo a constant, that implement a

given allocation, proving the first claim. The second claim now follows. �

Proposition 5 may be interpreted as follows. Revenue equivalence is the statement

that the function h is differentiable at 0, i.e., that its directional derivatives in any

direction collapse into a single linear functional. Thus, the maximal gain associated

with shifting probability mass from one type to another must exactly coincide with

the minimal loss that shifts the probability mass back. Revenue equivalence is another

way of saying that such equality holds for every change in probability mass.

This observation sheds light on previous results. For the special case of ex post

implementation, Heydenreich et al. (2009) and Kos and Messner (2009) provide a

similar characterization, but again they rely on the network structure inherent in

their environment. Their results may be thought of as coming from a single agent

model with Y a singleton, deriving revenue equivalence as in the previous paragraph.

Indeed, they define revenue equivalence as ζ(t, y) = ξ(t, y) + c(y), i.e., conditional on

y, and impose ex post implementation.16

The characterization of revenue equivalence for arbitrary Y , with possible correlation

amongst types, is new, but given the duality approach followed above, shows clearly

the underlying structure behind revenue equivalence results in simpler settings that

relied on a network structure that is no longer present here.

16Heydenreich et al. (2009) briefly discuss Bayesian implementation with independent types, using

the observation from Müller et al. (2007) that with respect to interim expected payments, Bayes-

Nash implementation boils down to the same mathematical structure as ex post implementation

with a single agent. This can also be seen from Proposition 4, which characterizes implementability

in exactly the same way when Y is a singleton and when y is independent of t.
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5 Extensions

An advantage of using duality for Theorem 1 is that it extends, as I argue next. In

this section I discuss the following extensions of the model: moral hazard, revealed

stochastic preference, budget balanced implementation, bargaining with interdepen-

dent values and finally a “subdifferential” characterization of implementing incentive

schemes together with revenue equivalence.

5.1 Moral Hazard

The moral hazard problem fits easily into the framework developed above. To see this,

consider a prototypical such problem. An agent’s possible actions are described by

an arbitrary set A. The principal wants the agent to choose some fixed action a ∈ A,

but the agent may choose any action b ∈ A. Let Y be another measurable space

of verifiable output, and p(a) ∈ ∆(Y ) the conditional probability of such output.

Finally, let v(a) ∈ R be the agent’s utility from each action a.

An action a is enforceable if there is a payment scheme ξ ∈ B(Y ) such that

v(b)− v(a) ≤
∫
Y

ξ(y)[p(dy|b)− p(dy|a)] ∀b ∈ A.

A deviation in this setting is any π ∈ R(A) such that π ≥ 0 and
∑

a π(a) = 1. Such a

π is called undetectable if

p(a) =
∑
b∈A

π(b)p(b).

A deviation π is called a-profitable if
∑

b π(b)[v(b)−v(a)] > 0. Finally, say that every

infinitesimally detectable deviation is at most infinitesimally a-profitable if

sup
π

∆v(π)

|∆p(π)|
< +∞,

where ∆p(π) = ‖p(a)−
∑

b π(b)p(b)‖ and ∆v ∈ RA satisfies ∆v(b) = v(b)− v(a) for

all b ∈ A. The next result follows easily from previous ones, so its proof is omitted.

Theorem 2. An action a is enforceable if and only if every infinitesimally detectable

deviation is at most infinitesimally a-profitable.

Theorem 2 shows how implementability of an allocation is characterized in the same

manner under adverse selection as moral hazard. In each context, implementability

boils down to detecting profitable deviations from either honesty or obedience.
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5.2 Revealed Stochastic Preference

It is well-known that cyclic monotonicity characterizes rationalizable economic behav-

ior in the spirit of Afriat (1967) and others, so that Rochet’s Theorem is comparable

to Afriat’s Theorem of revealed preference. This comparison is formalized by Rochet

himself (Rochet, 1987, pp. 195–196) in a quasi-linear context.17

Briefly, recall that an allocation x : T → X is implementable if

v(t,x(t))− ξ(t) ≥ v(t,x(s))− ξ(s) ∀(t, s).

By the taxation principle, any two reports that lead to the same choice must cost

the same amount of money, i.e., x(t) = x(s) implies that ξ(t) = ξ(s) whenever x is

implementable. Hence we may rewrite the previous inequalities as

v(t,x(t))− ξ(x(t)) ≥ v(t,x(s))− ξ(x(s)) ∀(t, s).

Reinterpret v′(t) = −v(t) ∈ RX as a vector of “nonlinear prices,” x(t) as a “choice”

and t as a parameter indexing price/choice outcomes. Finally, interpret ξ′(x) = −ξ(x)

as a utility function over the range of x. By definition, there exists a quasi-linear

utility function ξ′ that rationalizes every choice x(t) given prices v′(t) if

ξ′(x(t))− v′(t,x(t)) ≥ ξ′(x(s))− v′(t,x(s)) ∀(t, s).

Now it is clear how Rochet’s Theorem and Afriat’s Theorem follow from each other.

Similarly, Theorem 1 is comparable to the work of McFadden (2005) on revealed

stochastic preference. Let us follow the previous logic in the stochastic setting. We

will think of “output” Y as a summary of uncertainty subsequent to the determination

of an agent’s type t. Thus, we now think of a random allocation x : T × Y → X,

where the randomness comes from Y . We appeal once more to the interpretation of

v(t, y) ∈ RX as a vector of “nonlinear prices,” although we now allow it to be random.

This is captured by its dependence on y. Similarly, we may think of x(t, y) as “random

choices.” Hence, y determines both prices v and choices x. In particular, these two

variables could be correlated given t. Intuitively, we are given a collection of price-

choice distributions, and ask whether or not such a distribution may be generated by

a population of quasi-linear utility maximizers, indexed by y, whose members make

choices given personalized nonlinear prices.

17However, results in the quasi-linear context can be used to derive general rationalizability results,

as Afriat (1967, p. 72) does in a neoclassical setting. See also Afriat (1963), Richter and Wong (2005).

21



Following the argument for revealed preference, we seek to interpret ξ′(t, y) = −ξ(t, y)

as a (random, expected) utility function over choices by appealing to a suitable ver-

sion of the taxation principle. Unfortunately, this principle is not available, since

implementability does not require that ξ(t, y) = ξ(s, y) whenever x(t, y) = x(s, y).

Therefore, Theorem 1 does not directly capture revealed stochastic preference. On

the other hand, Theorem 1 may be extended by imposing such restrictions on ξ. The

outcome of this exercise is documented in the next result.

Say that x is implementable as a menu if it is implementable with a scheme ξ such

that ξ(t, y) = ξ(s, y) whenever x(t, y) = x(s, y). To characterize such version of

implementability, we require further notation. Let R = {(t, s, y) : x(t, y) = x(s, y)}
be the set that indexes restrictions on ξ, and write 1R for the indicator function of

R, so 1R(t, s, y) = 1 if (t, s, y) ∈ R and 0 otherwise.

Theorem 3. An allocation x is implementable as a menu if and only if for any net

{(λδ, µδ)} such that λδ ∈ R(T×T )
+ and µδ ∈ ba(Y )(T×T ), if

lim
∑
s∈T

(λδ(t, s)p(s)−λδ(s, t)p(t))−
∑
s∈T

∫
Y

[y]1R(t, s, y)(µδ(dy|t, s)−µδ(dy|s, t)) = 0

for every t then lim ∆v(λδ) ≤ 0, where [y] stands for Dirac measure and the integral

above is vector-valued in ba(Y ).

This result follows similarly to previous results, so a proof is omitted. Theorem 3

generalizes previous results in several directions. To help describe them, think of y

as a parameter for different types of decision maker in a heterogeneous population.18

First, Theorem 3 characterizes revealed stochastic preference of a population of de-

cision makers under the following weaker assumptions: (i) it allows for “personalized

budgets” because v may depend on y and therefore is compatible with correlation be-

tween prices, choices and utility, (ii) it allows for different populations in the sample

of observed choices because p may depend on t, and (iii) it does not impose any struc-

ture on T , so is compatible with any possibly infinite set of types. This contrasts with

McFadden (2005), who in characterizing revealed stochastic preference in the infinite

case confines attention to compact metric type spaces. On the other hand, Theorem

3 is restricted by the assumption of quasi-linearity, although this assumption may be

dropped by applying Afriat’s (1967, p. 72) trick.

18The interpretation of revealed stochastic preference as a population distribution of behavior

rather than uncertain behavior by a single decision maker may be attributed to McFadden and

Richter (1990, Footnote 25, pp. 174–5).
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Adding structure to the problem reveals further insights in Theorem 3. For instance,

suppose that p(t) = p for all t, so the population does not change with observed

behavior, and x(t) 6= x(s) with positive p-probability for every pair (t, s). Intuitively,

there are no duplicate observations. Now it is easy to see that Theorem 3 boils down

to a version of Proposition 4, i.e., every profitable deviation is detectable.

Corollary 2. Suppose that p(t) = p does not depend on t and that x(t) 6= x(s) with

positive p-probability for every pair (t, s). An allocation x is implementable as a menu

if and only if every profitable deviation is detectable.

A slightly different version of Theorem 3 obtains by imposing ξ(t, y) = ξ(s, y) for all

y whenever x(t) = x(s), instead of ξ(t, y) = ξ(s, y) whenever x(t, y) = x(s, y). This

means that we may rewrite ξ as ξ(x(t), y) for every y. In other words, observed choices

may be represented as coming from a population choosing an efficient Y -contingent

allocation when individual utility functions are quasi-linear and exhibit consumption

externalities, since individuals of type y now care about the entire allocation x(t).

This is an easy exercise given the techniques developed above, hence omitted.

5.3 Budget Balanced Implementation

I will now characterize budget balanced implementation. Consider the following

multi-agent setting, where I = {1, . . . , n} is a finite set of agents, and for each i ∈ I,

Ti is a measurable space of types, T =
∏

i Ti is the product space of type profiles

with the product σ-algebra, and vi(t,x(si, t−i)) ∈ R is the utility to agent i under

allocation x : T → X when his type is ti but he reported si. For each agent i and

type ti, let pi(ti) be a finitely additive probability measure over T−i—the space of

other agents’ type profiles—that describes i’s posterior beliefs over others’ types.

An incentive scheme is now a vector ξ = (ξ1, . . . , ξn) of payment schedules, one per

agent. It is called budget balanced if
∑

i ξi(t) = 0 for every t. Say x is implementable

with budget balance if there is a budget balanced scheme that implements x for all

i. For this to be well defined I maintain Assumptions 1 and 2, so ξ ∈
∏

iB(T−i)
Ti .

Notice that I do not require vi to be uniformly bounded. A strategy profile is any

profile π = (π1, . . . , πn) of strategies for each agent i. Call any such π profitable if

∆v(π) =
∑

(i,ti,si)
∆vi(ti, si)πi(ti, si) > 0, where

∆vi(ti, si) =

∫
T−i

[vi(t,x(si, t−i))− vi(t,x(t))]pi(dt−i|ti).
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Given any vector η ∈ R(T ), let ∆p(π|η) be defined pointwise for each (i, ti) as follows:

∆pi(π|η)(ti) =
∑
si∈Ti

[πi(ti, si)pi(ti)− πi(si, ti)pi(si)]−
∑
t−i

η(ti, t−i)δt−i
,

where δt−i
is Dirac measure. Think of η as a vector of multipliers on the ex post

budget constraints. This vector η leads to a different function from h in Lemma 1

whose subdifferentiability will characterize budget balanced implementation.

To this end, I will use a condition similar to that for Theorem 1, based on the notion

of attribution introduced in the finite case by Rahman and Obara (2010). A strategy

profile π is called unattributable if η exists such that ∆pi(π|η) = 0 for every agent i.

Intuitively, for any unilateral deviation in π, the change in probabilities over reports

is the same across agents, making it impossible to statistically identify an innocent

agent (let alone the deviator). Following the proof of Theorem 1, it is straightforward

that subdifferentiability of k(z) = sup(π,η){∆v(π) : ∆p(π|η) = z} at 0 characterizes

budget balanced implementation. Just as before, an equivalent description of this

subdifferentiability is the following. Say every infinitesimally attributable strategy

profile is at most infinitesimally profitable if supπ,η ∆v(π)/ |∆p(π|η)| < +∞, where

|∆p(π|η)| =
n∑
i=1

∑
ti∈Ti

‖∆pi(π|η)(ti)‖

and the norm above is the total variation norm on B(T−i) for each (i, ti).

Theorem 4. An allocation is implementable with budget balance if and only if every

infinitesimally attributable strategy profile is at most infinitesimally profitable.

A proof of Theorem 4 is very close to Theorem 1, so it is omitted. To illustrate the

usefulness of Theorem 4, let us now characterize exactly when budget balance is a

binding constraint. Say that budget balance is not binding if for any “budget” b ∈ RT

there is an incentive scheme ξ such that
∑

i ξi(t) = b(t) for all t and∫
T−i

(ξi(si, t−i)− ξi(t))pi(dt−i|ti) ≥ 0 ∀(i, ti, si).

To understand this definition, consider a scheme ζ that implements some allocation.

If budget balance is not binding then there is an additional scheme ξ that absorbs

any budgetary surpluses and deficits from ζ without disrupting incentive constraints.

Say that detection implies attribution whenever for any strategy profile π, if π is

unattributable then every πi is undetectable. Say that detection implies attribution

asymptotically if supπ,η b · η/ |∆p(π|η)| < +∞ for every budget b ∈ RT .
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Proposition 6. Budget balance is not binding if and only if detection implies at-

tribution asymptotically. With independent types, this holds if and only if detection

implies attribution.

The proof of Proposition 6 is similar to previous ones, hence omitted.

Corollary 3. With independent types, detection implies attribution, so an allocation

is implementable with budget balance if and only if it is implementable for every agent.

Proof. By Proposition 6, it suffices to show that detection implies attribution with

independent types. If not, there exists an unattributable deviation profile π, i.e.,

such that
∑

si
(πi(si|ti) − πi(ti|si)) = η(t) for each i, and an agent i such that πi is

detectable. Hence,
∑

t η(t) = 0. By detectability, η(t) > 0 and η(s) < 0 for some pair

(t, s). But then η(s) = η(si, t−i) < 0 and η(t) = η(tj, si, t−ij) > 0, a contradiction. �

To illustrate, consider the special case of private values, where each agent’s utility is

independent of others’ types, i.e., vi(t, x) = vi(ti, x) for all x, and an ex post efficient

allocation, i.e., x∗ such that x∗(t) ∈ arg maxx
∑

i vi(ti, x) for all t ∈ T . An allocation

is ex post implementable if it is implementable when pi(ti) = [t−i] for all (i, t).

Corollary 4. With private values, x∗ is ex post implementable. Therefore, with

independent private values x∗ is implementable with or without budget balance.

Proof. By Proposition 4, we must show that every profitable deviation is detectable.

Otherwise, suppose that πi is a profitable, undetectable deviation and consider the

welfare consequences of agent i reporting according to πi instead of truthfully. Since

πi is undetectable and values are private, the expected utility to any agent j 6= i is

the same if i plays πi or if he reports truthfully. On the other hand, agent i is strictly

better off, therefore, welfare increases when agent i plays πi instead of reporting

truthfully. But this contradicts ex post efficiency. The rest follows by Corollary 3. �

I end this section by extending Rochet’s Theorem to include budget balance. In a

general environment with possibly interdependent values, I now characterize alloca-

tions that are ex post implementable with a scheme that also satisfies budget balance.

Just as with Rochet’s Theorem relative to Theorem 1, the infinitesimal qualifiers of

Theorem 4 are not necessary for budget balanced ex post implementability. A proof

of this result appears in the appendix.

Theorem 5. An allocation is ex post implementable with budget balance if and only

if profitable deviation profile is attributable.

25



5.4 Bargaining with Interdependent Values

A bargaining problem is the task of finding an incentive scheme that implements a

given allocation without violating budget balance or individual rationality, described

below. In this subsection I characterize existence of solutions to such problems.

A mechanism (x, ξ) is called individually rational if∫
T−i

[vi(t,x(t))− ξi(t)]pi(dt−i|ti) ≥
∫
T−i

vi(t,x(0))pi(dt−i|ti) ∀(i, ti),

where x(0) is the disagreement outcome, i.e., what happens when an agent decides

to opt out of the mechanism. A bargaining solution for x is any incentive scheme ξ

that implements x with budget balance and renders (x, ξ) individually rational.

The multipliers on an agent’s individual rationality constraint may be interpreted as

the probability with which the agent deviates to opting out. Therefore, in this setting

we redefine a strategy to be any πi ∈ ∆(Ti×Ti∪{0}), where πi has finite support and

πi(ti, 0) stands for the probability that agent i chooses type ti to opt out. Since 0 /∈ Ti
it is clear that every deviation where opting out has positive probability is detectable.

As before, a strategy profile π is profitable if ∆v(π) =
∑

(i,ti,si)
∆vi(ti, si)πi(ti, si) > 0,

where where the summation is indexed by i ∈ I, ti ∈ Ti and si ∈ Ti ∪ {0}, ∆vi(ti, si)

is defined as usual except that now its domain is I × Ti × Ti ∪ {0} and

∆vi(ti, 0) =

∫
T−i

[vi(t,x(0))− vi(t,x(t))]pi(dt−i|ti).

(Obviously, everything goes through just the same even if disagreement outcomes

depend on who opts out and others’ types.) The definition of attribution and its

infinitesimal counterpart is just the same as in the previous subsection, except for

the caveat that si ranges across Ti ∪ {0}.

Theorem 6. Fix an arbitrary allocation. (1) A bargaining solution exists if and only

if every infinitesimally attributable strategy profile is at most infinitesimally profitable.

(2) When types are independent, a bargaining solution exists if and only if every

profitable strategy profile is attributable.

Once again, the proof of this result is similar to previous ones, and is therefore

omitted. Theorem 6 may be contrasted with Segal and Whinston (2009) in that—

using duality—it characterizes existence of bargaining solutions even when values

are interdependent, the type space is arbitrary utility functions are not necessarily

uniformly bounded, and especially when types are correlated.
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6 Conclusion

In this paper I characterize implementability (Theorem 1) by making use of the Mini-

max Theorem, emphasizing a strategic interpretation. I also suggest some extensions

of this result. I have tried to improve upon Rochet’s Theorem both in supplying a

strategic interpretation and also generalizing its result.

Mathematically, a notable difference with Rochet’s or Rockafellar’s approach is that

they derived cyclic monotonicity in some sense by “integrating” a subdifferential

correspondence and exploiting an inherent network structure. Using Rockafellar’s

“fundamental theorem of calculus” for convex functions, Rochet constructed an im-

plementing payment scheme by integrating the utility gains function. On the other

hand, I take the alternative system of inequalities from incentive compatibility and

think of payment schemes as multipliers on the dual undetectability constraints, i.e.,

I view them as (directional) derivatives. Hence, I obtain the payment schemes by

differentiating a dual value function, rather than integrating a subdifferential corre-

spondence. A substantial obstacle in generalizing Rochet’s basic approach is that

the network structure inherent in his argument is lost when the principal observes

information above and beyond the agent’s report. However, the approach I follow in

this paper still bears a resemblance in that it hinges on duality without relying on

networks. As a result, the approach generalizes.

As a final comment, although the approach used in this paper may appear reminiscent

of linear semi-infinite programming (LSIP, see, e.g., Goberna and López, 1998), please

note that in this paper there may be both (a) infinitely many (incentive) constraints

and (b) infinitely many unknowns. Therefore, this isn’t strictly speaking LSIP.

A Preliminaries

This appendix presents ancillary results that are used in the main body of the paper.

Let us begin with Clark’s (2006) extension of The Theorem of the Alternative.

Let X and Y be ordered, locally convex real vector spaces, with positive cones X+

and Y+ and topological dual spaces X∗ and Y ∗ such that X∗∗ = X and Y ∗∗ = Y .

Let A : X → Y be a continuous linear operator with adjoint operator A∗ : Y ∗ → X∗

and fix any b ∈ Y . Finally, for any set S let S denote its closure.
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Lemma A.1 (Clark, 2006, page 479). For any b ∈ Y , there exists x ∈ X+ such that

A(x) = b if and only if A∗(y∗0) ∈ X∗+ − {A∗(y∗) : y∗(b) = 0} implies that y∗0(b) ≥ 0.

Now consider the characterization of strong duality by Gretsky et al. (2002). With

the same notation as above, a linear program is any triple (A, b, c∗) such that A is as

above, b ∈ Y and c∗ ∈ X∗. The primal is given by the linear optimization problem

sup{c∗(x) : A(x) ≤ b, x ≥ 0}, and the dual by inf{y∗(b) : A∗(y∗) ≤ c∗, y∗ ≥ 0}. Say

that there is no duality gap if the value of the primal equals the value of the dual.

Denote by V (b) the value of the primal as a function of b. The subdifferential of a

function V at b is the set ∂V (b) = {y∗ : V (y) − V (b) ≤ y∗(y − b) ∀y ∈ Y }. V is

subdifferentiable at b if ∂V (b) 6= ∅.

Lemma A.2 (Gretsky et al., 2002, page 265). Both the dual has a solution and there

is no duality gap if and only if V is subdifferentiable at b.

For the next two results, we need some definitions. Let f : X × Y → R ∪ {±∞}
be any function. Let domf = {(x, y) : |f(x, y)| < ∞}. Write dom1f and dom2f

for the projections of domf on X and Y , respectively. Say that f is closed if both

{x′ : f(x′, y) ≥ c} and {y′ : f(x, y′) ≤ c} are closed sets for every c ∈ R, x ∈ dom1f

and y ∈ dom2f . The function f is concave-convex if it is concave with respect to x

for all y ∈ dom2f and convex with respect to y for all x ∈ dom1f .

Lemma A.3 (Ioffe and Tikhomirov, 1968, page 84). Let f : X × Y → R∪ {±∞} be

a closed concave-convex function, and define the following functions on X∗ and Y ∗:

h(z) = inf
y∈dom2f

sup
x
{x · z − f(x, y)} and k(w) = sup

y
inf

x∈dom1f
{f(x, y) + y · w}.

For f to have a saddle point it is necessary and sufficient that ∂h(0) 6= ∅ 6= ∂k(0).

The set of saddle points coincides with the product ∂h(0)× ∂k(0).

Since subdifferentiability is such a prominent criterion in the results above, I docu-

ment below a test for it that will be prove useful. The test is given by the notion of

“bounded steepness,” which may be attributed to Gale (1967).

Lemma A.4 (Gretsky et al., 2002, page 267). Let f : Y → R ∪ {+∞} be a proper

convex function on a normed linear space Y , and suppose that f(b) < +∞. The

function f is subdifferentiable at b if and only if f has bounded steepness at b, i.e.,

the quotients
f(b)− f(y)

‖y − b‖
are bounded above.

28



B Proof of Proposition 4

I prove Proposition 4 with the next two results.

Lemma 3. F has an honest equilibrium if and only if for every net {λδ} ⊂ R(T×T )
+ ,

lim ∆p(λδ) · ξ = 0 ∀ξ ∈ B(Y )T ⇒ lim sup ∆v(λδ) ≤ 0, (3)

where ∆p(λδ) · ξ =
∫
Y

∑
(t,s) ξ(t, y)[λδ(t, s)p(dy|s)− λδ(s, t)p(dy|t)] for each scheme ξ

and ∆v(λδ) =
∑

(t,s) ∆v(t, s)λδ(t, s) for every ∆v ∈ U .

Proof. I will show that (3) is the dual of implementability. Let X = B(Y )T/C×RT×T

with [B(Y )T/C]+ = B(Y )T/C and Y = RT×T . Given ξ ∈ B(Y )T/C, σ ∈ RT×T and

(t, s) ∈ T × T , define A(ξ, σ)(t, s) =
∫
Y
ξ(s, y) − ξ(t, y)p(dy|t) − σ(t, s). Clearly,

A : X → Y is a continuous linear operator. By Lemma A.1, there exists (ξ, σ) ∈ X+

such that A(ξ, σ) = ∆v if and only if ∆v(µ0) ≥ 0 for any µ0 ∈ R(T×T ) for which a

net {(λδ, µδ)} ⊂ Y ∗+ × Y ∗ exists with ∆v(µδ) = 0 for all δ, ∆p(µ0) = lim−∆p(µδ)

and µ0 = limλδ − µδ, where ∆p(µ)(t) =
∑

s µ(t, s)p(t) − µ(s, t)p(s) for all t. Since

∆p is continuous and linear, ∆p(µ0) = lim ∆p(λδ) − ∆p(µδ) = −∆p(µδ), therefore

lim ∆p(λδ) = 0. Since ∆v is also a continuous linear functional of µ and ∆v(µδ) = 0,

applying the same argument that derived ∆p(λδ) → 0 yields the dual condition

lim ∆p(λδ) = 0 ⇒ lim sup ∆v(λδ) ≤ 0. Finally, since convergence in ba(Y )(T ) is

defined with respect to the weak∗ topology, (3) follows. �

We now establish the last lemma we need to prove Proposition 4.

Lemma 4. Let λ ∈ R(T×T )
+ and suppose that p(t) does not depend on t. The equation

∆p(λ) = 0 implies that ∆v(λ) ≤ 0 if and only if (3) holds for every net {λδ}.

Proof. Necessity follows by restricting attention to constant nets. For sufficiency,

consider a net {λδ} with lim ∆p(λδ) · ξ = 0 for all ξ but lim sup ∆v(λδ) = 1. Without

loss, take a convergent subsequence, {λm}, by picking λm with |∆v(λm)− 1| < 1/m.

Define the vector µm ∈ ba(Y )(T ) pointwise by µm(t) =
∑

s λm(t, s)p(s)− λm(s, t)p(t)

for every t. Let us consider the following three cases.

– Case 1a: Suppose that supp λm does not depend on m.

Let Sm = {t : λm(t, s) > 0 for some s} ∪ {t : λm(s, t) > 0 for some s} be the set of

types to which λm gives positive weight. By hypothesis, and Sm = S is independent

29



of m and |S| <∞. Consider the cone C = {λ ∈ RS×S
+ : ∆p(λ) = 0}. Since this cone

is finitely generated, it is closed. Therefore, by the Theorem of the Alternative, there

does not exist λ ≥ 0 such that ∆p(λ) = 0 in ba(Y )S and ∆v(λ) > 0 if and only if

there is a scheme ξ ∈ B(Y )S that implements x assuming that the type space is S.

Applying Lemma 3, the result now follows.

– Case 1b: Suppose that supp µm does not depend on m but supp λm does.

Let supp µm = T0, which, by hypothesis, does not depend on m. Clearly, T0 ⊂ Sm.

If T0 = Sm then we are in Case 1a, and we are done. Otherwise, Sm \ T0 6= ∅. Let

λ0m(t, s) = λm(t, s) if either t or s (or both) belong to Sm \ T0 and 0 otherwise, and

let λ1m = λm − λ0m. Consider the following optimization problem:

Vm = min
ηm≥0

∥∥λ1m − ηm∥∥1 s.t.∑
s∈T0

ηm(t, s)p(s)− ηm(s, t)p(t) +
∑

s∈Sm\T0

λm(t, s)p(s)− λm(s, t)p(t) = 0 ∀t ∈ T0.

If types are independent, i.e., p(t) does not depend on t, then this problem has a

feasible solution and we may avoid reference to y without any loss of generality.

Indeed, for any vector b ∈ RT0 , by the Theorem of the Alternative η ≥ 0 exists

such that
∑

s η(t, s) − η(s, t) = b(t) for all t if and only if
∑

t b(t) = 0, and clearly∑
t∈T0

∑
s∈Sm\T0 λm(t, s)−λm(s, t) =

∑
(t,s) λ

1
m(t, s)−λ1m(s, t) = 0.19 Taking the dual

of this problem, manipulating it and applying strong duality yields

Vm = max
ζ∈RT0

∑
t∈T0

ζ(t)
∑
s∈Sm

λm(t, s)− λm(s, t) s.t. − 1 ≤ ζ(t)− ζ(s) ≤ 1 ∀(t, s).

But this dual problem is easily solved, yielding Vm = 1
2

∑
t |
∑

s λm(t, s)− λm(s, t)|.
Since T0 is finite, it follows that µm → 0 in norm, hence Vm → 0. If a subsequence

exists such that for every k there is (t, s) such that ∆v(t, s) = −∞ and λmk
(t, s) > 0

then we are done, so suppose not, i.e., for m sufficiently large, ∆v(t, s) > −∞ for

all (t, s) such that λm(t, s) > 0. Finally, if ηm is an optimal primal solution then

∆v(λm) = ∆v(λ0m + ηm + λ1m − ηm) ≤ ∆v(λ1m − ηm) ≤ ‖∆v‖∞ ‖λ1m − ηm‖1 → 0,

where the first inequality follows because by construction λ0m + ηm is undetectable,

and we are assuming that ∆v(λ) ≤ 0 for every undetectable λ. But this contradicts

the original hypothesis that ∆v(λm)→ 1, and the claim is established for this case.

19Notice that the conclusion that the problem above is feasible does not necessarily follow if types

fail to be independent. For instance, in the setting of Example 1, suppose that λm(t, s) = 1 if t and

s both belong to {0, 12 , 1} and s = t± 1
2 , otherwise λm(t, s) = 0.
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– Case 2 : Suppose that supp µm depends on m.

If supp µm = Tm has a subsequence {Tmk
} that does not depend on k then we are back

to Case 1, so suppose not, i.e., there is a subsequence {Tmk
} with Tmk

\
⋃
`<k Tm`

6= ∅
for all k. Without loss, assume that this is the sequence with which we began.

Construct {tm} with to innovations in Tm, i.e., tm ∈ Tm yet tm /∈ Tk for all k < m.

By taking a subsequence if necessary, without loss {λm} satisfies ‖µm(tk)‖ < 2−m for

all k ≤ m. Let ξ(tm, y) = [1Pm(y) − 1Nm(y)]/ ‖µm(tm)‖ for all m and all y, where

Pm and Nm are the positive and negative sets in a Hahn decomposition of Y relative

to µm (see, e.g., Folland, 1999, for a definition of Hahn decomposition), and 1X(y) is

the indicator function of X ⊂ Y . (If t /∈ {tm} then ξ(t, y) = 0.) For every m ∈ N,

ξ · µm =
m∑
k=1

ξ(tk) · µm(tk) = 1 +
∑
k<m

ξ(tk) · µm(tk)

> 1−
∑
k<m

2−m · 2k = 1−
∑
k<m

2k−m = 1− (1− 2−m) ≥ 1/2.

Hence, it is not the case that ∆p(λm) · ξ → 0 for all ξ, so (3) follows vacuously. �

Let me make a few remarks about this proof. The proof of Proposition 4 is useful for

two reasons. Firstly, Lemma 3 shows how the dual, alternative system of inequalities

that are equivalent to implementability generalizes from the finite case to the arbitrary

case. Secondly, Lemma 4 reconciles Theorem 1 with Rochet’s Theorem by showing

that when types are independent we revert back to the requirement of detecting prof-

itable deviations to characterize implementability. Hence, the additional requirement

of infinitesimally detectable deviations being at most infinitesimally profitable loses

its bite in this setting.

It is interesting to note that the independence assumption is used to prove Lemma 4

only in Case 1b. In the other two cases, the assumption is not necessary, and in fact

not used. This observation reveals the structure of the examples used to illustrate

the differences between Theorems 1 and Rochet’s Theorem. There, the sequence of

deviations constructed fit into Case 1b, i.e., the support of µm was independent of

m but the support of πm crucially was not. As a final remark, note that the duality

used to establish Case 1b can be used to provide a dual characterization of when

detecting profitable deviations implies its infinitesimal counterpart. Namely, as long

as the primal problem of Case 1b is feasible, or equivalently its dual is bounded, we

obtain the result that detecting profitable deviations implies that every infinitesimally

detectable deviation is at most infinitesimally profitable.
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C An Alternative Proof of Rochet’s Theorem

Let us prove directly that an allocation is implementable (with Y a singleton) if and

only if every profitable deviation is detectable. First, assume that T is a finite set.

Lemma 5. If T is a finite set then an allocation x is implementable if and only if

every profitable deviation is detectable.

Proof. By the Theorem of the Alternative (see, e.g., Rockafellar, 1970, page 198), a

scheme ξ ∈ RT exists such that v(t,x(s))− v(t,x(t)) ≤ ξ(s)− ξ(t) for every t, s ∈ T
if and only if there does not exist a vector λ ≥ 0 satisfying (i)

∑
s λ(s, t) =

∑
s λ(t, s)

for all t ∈ T , and (ii)
∑

(t,s) λ(s, t)[v(t,x(s)) − v(t,x(t))] > 0. Each of these two

conditions on λ is independent of λ(t, t) for all t ∈ T , so assume without loss of

generality that λ(t, t) = max{
∑

s 6=r λ(s, r) : r ∈ T} −
∑

s 6=t λ(s, t) for all t ∈ T . Now

λ is proportional to a doubly stochastic matrix—in other words, a reporting strategy,

call it π—which satisfies (i) and (ii) if and only if λ satisfies (i) and (ii). But (i) is

just the requirement that π be undetectable, and (ii) states that π is profitable. �

Now suppose that T is not necessarily finite. We begin with some preliminaries.

Any λ ∈ R(Z×Z) is given by a finite support {(z11, z21), . . . , (z1m, z2m)} and a vector

(λ1, . . . , λm). We will describe it instead by the subset {z : z = zik for some i, k} of

Z with, say, n elements, denoted by suppZ g = {z1, . . . , zn} together with the n× n
matrix (λ11, . . . , λ1n, . . . , λn1, . . . , λnn) defined by λk` = λi if (zk, z`) = (z1i, z2i) and 0

if no such i exists. Clearly, both descriptions are equivalent.

Write ∆v(t, s) = v(t,x(s)) − v(t,x(t)) and ∆v(λ) =
∑

(t,s) λ(t, s)∆v(t, s) as usual.

Define the linear operator D : R(T×T ) → R(T ) as follows. Given λ ∈ R(T×T ), let

Dλ =
∑

(k,`) λk`(etk − et`) and Dλ(f) =
∑

(k,`) λk`[f(tk)− f(t`)] for all f ∈ RT .

Lemma 6. The following are equivalent:

(i) For every λ ∈ R(T×T )
+ , Dλ = 0 implies that ∆v(λ) ≤ 0.20

(ii) There exists a net {ξδ} such that ∆v(t, s) ≤ lim infδ ξδ(s)− ξδ(t) for all (t, s).

Proof. Let X = R(T×T ) and Y = R(T ) × R. Let A : X → Y be the operator defined

pointwise by A(λ) = (Dλ,∆v(λ)). Since R(T×T )
+ is a cone, (i) fails if and only if there

exists λ ∈ R(T×T )
+ such that Dλ = 0 and ∆v(λ) = 1, i.e., A(λ) = (0, 1).

200 ∈ R(T ) denotes the zero functional such that 0(f) = 0 for all f ∈ RT .
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Clearly, A is linear and continuous, so by Lemma A.1, A(λ) = (0, 1) if and only if

given any number ε, incentive scheme ξ and net {(wδ, ξδ) ∈ RT×T
+ × RT},

ξ(s)− ξ(t) + ε∆v(t, s) = limwδ(t, s)− [ξδ(s)− ξδ(t)] ∀(t, s) ⇒ ε ≥ 0.

Since wδ ≥ 0, this condition is equivalent to

ξ(s)− ξ(t) + ε∆v(t, s) ≥ lim sup−[ξδ(s)− ξδ(t)] ∀(t, s) ⇒ ε ≥ 0.

Rearranging, multiplying by −1 and replacing without any loss of generality ξδ with

ξδ + ξ yields the equivalent condition

−ε∆v(t, s) ≤ lim inf ξδ(s)− ξδ(t) ∀(t, s) ⇒ ε ≥ 0.

Hence, (i) holds if and only if there exists a number ε > 0 and a net {ξδ} such that

ε∆v(t, s) ≤ lim inf ξδ(s)−ξδ(t) for all (t, s). This last requirement is clearly equivalent

to (ii) by dividing both sides by ε and replacing ξδ with εξδ, as claimed. �

It is easy to see that (i) is necessary and sufficient for every undetectable deviation

to be unprofitable. Indeed, given t ∈ T let ft ∈ RT be the indicator function of

t, i.e., ft(s) = 1 if s = t and 0 otherwise. For sufficiency, if λ ∈ R(T×T )
+ satisfies∑

` λk` = 1 for all k then λ is a reporting strategy. If Dλ = 0 then
∑

k λk` = 1, too,

since Dλ(ft`) =
∑

k λk` − λ`k for every t` ∈ suppT λ, so λ is undetectable. Finally,

it is clear that λ(w) ≤ 0 is equivalent to λ being unprofitable. For necessity, every

λ ∈ R(T×T )
+ is proportional to a reporting strategy, and the value of Dλ is determined

by Dλ(ft`) for every t` ∈ suppT λ, so if it is doubly stochastic then Dλ = 0.

The last step in our proof is to show that (ii) implies ex post implementability.

Lemma 7. The following statements are equivalent:

(i) There exists a net {ξδ} such that ∆v(t, s) ≤ lim infδ ξδ(s)− ξδ(t) for all (t, s).

(ii) There exists an incentive scheme ξ such that ∆v(t, s) ≤ ξ(s)− ξ(t) for all (t, s).

Proof. That (ii) implies (i) is immediate. For the converse, without loss of generality

we may fix any t0 ∈ T and assume that ξδ(t0) = 0 for all δ in the net, since it will

not affect the any of the differences ξδ(s)− ξδ(t). By hypothesis,

∆v(t, t0) ≤ lim inf ξδ(t) ≤ lim sup ξδ(t) = − lim inf −ξδ(t) ≤ −∆v(t0, t) ∀t ∈ T.

Hence, ξ(t) = lim inf ξδ(t) is bounded. Since the lim inf function is superadditive, it

follows that lim inf ξδ(s) − ξδ(t) + lim inf ξδ(t) ≤ lim inf ξδ(s) for every (t, s). Hence,

lim inf ξδ(s) − ξδ(t) ≤ ξ(s) − ξ(t). By (i), ∆v(t, s) ≤ lim inf ξδ(s) − ξδ(t). Collecting

these last two inequalities finally yields ∆v(t, s) ≤ ξ(s)− ξ(t), as required. �
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D Proof of Theorem 5

If T is finite then the result follows by a similar argument to the one used to prove

Lemma 5. Let R = {(i, si, t) : i ∈ I, si ∈ Ti and t ∈ T}. By a similar argu-

ment to that of Lemma 6, there exists a net of incentive schemes {ξδ} such that

both vi(t,x(si, t−i)) − vi(t,x(t)) ≤ lim infδ ξ
δ
i (s) − ξδi (t) for every (i, ti, si, t−i) and

limδ

∑
i ξ
δ
i (t) = 0 for all t (call this condition (∗)) if and only if for every λ ∈ R(R)

+

and η ∈ R(T ), the system of equations given by
∑

si
[λi(si, t)−λi(ti, si, t−i)] = η(t) for

every (i, t) implies
∑

(i,si,t)
λi(si, t)[vi(t,x(si, t−i))−vi(t,x(t))] ≤ 0 (call this condition

(∗∗)). Clearly, (∗∗) is equivalent to (ii). To see this, just divide every λi(si, t) by

Λ = max(i,t)

∑
si
λi(si, t) (if this equals zero then there’s nothing to prove), as well as

η(t), and replace λi(ti, t) with Λ−
∑

si
λi(si, t) for every (i, t). Now λ is proportional

(with weight Λ) to an unattributable deviation profile that is also unprofitable. That

(ii) implies (∗∗) is obvious. It remains to prove that (∗) is equivalent to (i). Again,

that (i) implies (∗) is obvious. Conversely, let {ξδ} be a net that satisfies (∗). Fix any

t0 ∈ T . Given (i, t, δ), define the net {ζδ} by ζδi (t) = ξδi (t) +
∑

j 6=i ξ
δ
j (t

0
i , t−i). By (∗),

limδ ζ
δ
i (t

0
i , t−i) = 0 for all t−i, and vi(t,x(si, t−i)) − vi(t,x(t)) ≤ lim infδ ζ

δ
i (s) − ζδi (t)

for every (i, ti, si, t−i). Hence, following the proof of Lemma 7, the scheme ζ defined

by ζi(t) = lim infδ ζ
δ
i (t) ∈ R for every (i, t) ex post implements x. Let {ζγ} be a

subnet of {ζδ} such that limγ ζ
γ
i (t) = ζi(t) for all (i, t). One such subnet exists by

definition of lim inf. Finally, for every i1 ∈ I and t ∈ T let

ζ0i1(t) = ζi1(t)−
∑
i2 6=i1

ζi2(t
0
i1
, t−i1) +

∑
i3 6=i2

ζi3(t
0
i1
, t0i2 , t−i1i2)− · · ·+

∑
in 6=in−1

ζin(t0−in , tin).

Clearly, ζ0 ex post implements x because ζ does, too, since for all (i, t), ζ0i (t) equals

ζi(t) plus something that does not depend on ti. By construction, it is easy to see

that the scheme ζ0 also satisfies budget balance, since∑
i1∈I

ζ0i1(t) =
∑
i1∈I

ζi1(t)−
∑
i2 6=i1

ζi2(t
0
i1
, t−i1) +

∑
i3 6=i2

ζi3(t
0
i1
, t0i2 , t−i1i2)− · · ·+

∑
in 6=in−1

ζin(t0−in , tin)

= lim
∑
i1∈I

ζγi1(t)−
∑
i2 6=i1

ζγi2(t
0
i1
, t−i1) +

∑
i3 6=i2

ζγi3(t
0
i1
, t0i2 , t−i1i2)− · · ·+

∑
in 6=in−1

ζγin(t0−in , tin)

= lim
∑
i1∈I

ξγi1(t) +
∑
i2 6=i1

ζγi2(t
0
i1
, t−i1)−

∑
i2 6=i1

ζγi2(t
0
i1
, t−i1) + · · ·

−
∑

in 6=in−1

ζγin(t0−in , tin) +
∑

in 6=in−1

ζγin(t0−in , tin) +
∑
j 6=in

ξγj (t0) = 0.

Therefore, ζ0 ex post implements x with budget balance.
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