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Abstract

This paper studies repeated games of incomplete information where each player

knows his own payoffs and where the unknown state of the world can be identified

by the combined private information of all players. We obtain a condition that

is both necessary and sufficient for a Perfect Bayesian Equilibrium (PBE) folk

theorem to hold. This contrasts with the existing literature where, due to the

difficulty in keeping track of beliefs as play evolves, the analysis has focused on

either Nash equilibrium for one-sided incomplete information or has dealt with

various ex-post solution concepts. Finally, we also show the condition obtained is

also necessary and sufficient to obtain Ex-Post folk theorems.
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1 Introduction

Early studies of infinitely repeated games offered the insight that, by considering

agents who care about future payoffs, certain behaviors that seem irrational in a static

environment are optimal if the agents interaction is repeated. This insight has influenced

a range of applications, and has also led to a large number of papers proving “folk

theorems” in general environments. By a “folk theorem” we mean a theorem along the

following lines: “Approximately any payoff profile that can be generated in the game

(feasibility condition) and that gives each player at least his min-max payoff (individual

rationality condition) can be supported as the result of an equilibrium strategy”. Thus,

when analyzing the payoff predictions of a given game under a given solution concept, a

natural first step is to ask whether or not a folk theorem holds. In particular, for games

of incomplete information, one can also ask how the initial beliefs of the players affect

the set of sustainable payoffs.

We study a class of incomplete-information games and answer the question: what

conditions are both necessary and sufficient for a Perfect Bayesian Equilibrium (PBE)

folk theorem to hold? To the best of our knowledge this is the first folk theorem to be

proved for this solution concept. The underlying assumptions on the class of games are

the following: (i) full dimensionality of the complete-information games, (ii) the state of

the world can be uniquely identified by pooling together the information of all players,

(iii) all players know their own payoffs, and (iv) perfect monitoring and recall. We also

show that this condition is necessary and sufficient for a Belief-Free Equilibrium (BFE)

folk theorem to hold. An interesting corollary of these two results is that a PBE folk

theorem either holds or not independently of initial priors. Finally, we obtain a result

on the structure of the supporting strategies; in the long run, all player-types receiving

positive probability must play in the same way.

Before developing our general results further, consider the following example, grounded

in the Hotelling (1929) product differentiation model, and analyzed further in the ex-
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amples section. A monopolist produces a good at 0 marginal cost and each period his

choice variable is the price p he charges. Furthermore, this good can have different

features: for example, the good could be ice cream and the features could be different

flavors, packagings, recipes, etc. There is a representative consumer that has private

information about his preferences for different features and each period decides whether

to buy or not at the specified price.

If we assume the monopolist can only choose a price each period but cannot change

the features of the product, our results imply that, for all interesting parameter values

and regardless of the beliefs the monopolist holds about the preferences of the consumer,

a folk theorem will not hold. Indeed, a folk theorem will hold only in the uninteresting

case where the consumer does not want to buy the product, even if it is free. Intuitively,

the folk theorem fails to hold because the private information of the consumer acts on

utility by shifting it rigidly, but does not change the ordinal ranking of his preference

over action profiles: lower price is always better, regardless of the consumer’s type.

For this case, where a folk theorem fails so some feasible and individually rational

payoff profiles cannot be approximated in equilibrium, we characterize the set of payoffs

that can be approximated in Belief-Free equilibrium. Knowing that a folk theorem fails

tells us that the model makes non-trivial payoff predictions, and this result shows how

tight these predictions are. In particular, our results imply that we will have one degree

of freedom when choosing what payoff vectors can be sustained: given a type of the

consumer, we can specify any feasible and individually rational payoff for that type, but

we will then be constrained in what we can sustain for the other type(s). In contrast,

there will be no restrictions on what we can sustain for the monopolist. Appendix A.5

discusses a possible extension of this result to PBE, but this is ongoing work.

In the case where the monopolist can also change the product features each period,

there is a non-trivial set of parameter values such that the folk theorem holds. This is

because different types of consumers value different aspects of the product, and therefore

the ordinal ranking of preferences changes across the different types of consumer: some
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might prefer a high price if this is accompanied by one specific feature while another

type of consumer may prefer a lower price and another feature.

In general, two properties must be satisfied for a folk theorem to hold. First, for any

given state and any given subset of players, there must be a “separating” action that

delivers a “good” payoff in that state for that subset of players but delivers a “bad”

payoff in any other state and for all players not included in the given subset. Second,

we need an action that, uniformly across players and states, yields payoffs less than or

equal to the min max payoff.

While it should not be surprising that such a condition is sufficient to obtain a PBE

(hence BFE) folk theorem, the important fact is that the condition is also necessary.

Indeed, necessity of the condition implies that for many games the folk theorem fails.

This is in contrast with the complete-information case under perfect monitoring and

recall, where a mild full-dimensionality condition on payoffs is sufficient to have a folk

theorem. Moreover, while full-dimensionality is a generic condition (i.e., given any game

that does not satisfy it there is a game that satisfies the condition and is “arbitrarily

close” to the original game) this is not true of the condition presented here.

The first result, that our condition is necessary and sufficient to obtain a Perfect

Bayesian folk theorem, makes two important contributions. Perfect Bayesian equilib-

rium is a solution concept that introduces a degree of non-stationarity into the model,

as discussed in Section 4, and this has made it hard to analyze the set of equilibrium

payoffs that can be approximated in equilibrium. By connecting PBE to BFE through

our conditions we are able to deal with this non-stationarity in a novel way and this

allows us to obtain results that could not be obtained otherwise. Second, while most

folk theorems for other solution concepts provide only sufficient conditions for the result

to hold, our condition is also necessary; and this allows us to identify the cases where the

folk theorem fails. To show that a given model under a given solution concept produces

non-trivial payoff predictions one must first prove that the folk theorem fails, and this

is achieved with our theorem.
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The second result, that the necessary and sufficient condition for obtaining a PBE

folk theorem is also necessary and sufficient to obtain a BFE folk theorem, also has two

important implications. First, because BFE is a solution concept that does not depend

on the beliefs a player holds about the type of his rivals, whether a PBE folk theorem

holds or not is independent of the aforementioned beliefs. Second, if one adopts PBE

as the solution concept for a game, but upon checking our conditions concludes that a

folk theorem holds, strengthening the solution concept to BFE will not refine the payoff

predictions made by the model.

The third and final result, that in the long run all player-types receiving positive

probability must play in the same way, is useful for two reasons. First, as discussed in

Section 4, it provides some intuition as to why a PBE folk theorem holds if and only if

a BFE folk theorem holds. Second, it provides a basis with which to rule out certain

strategy profiles as potential equilibrium profiles. A simple proof of this result is given,

based on the results by Kalai and Lehrer (1993).

1.1 Related Literature

While the study of conditions under which a PBE folk theorem holds is new,

there are a number of studies on the equilibrium payoff set in repeated games of in-

complete information. As already mentioned, studying solution concepts like PBE that

(a) depend non-trivially on the beliefs a player holds about his rivals and (b) satisfy

sequential rationality, can lead to difficulties. Thus, most papers in the literature take

one of two routes: they either consider solution concepts that are independent of the

beliefs a player might have about his rivals, but retain sequential rationality, or they

study solution concepts that depend on these beliefs but are not sequentially rational,

such as Nash equilibrium, oftentimes also restricting the number of informed parties.

Our paper, by considering a solution concept that satisfies both (a) and (b) above, lies

between these two extremes.
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To prove that a BFE folk theorem holds if and only if a certain condition on payoff

functions holds, we use techniques developed in Fudenberg-Yamamoto (2010), hence-

forth FY. In that paper, the authors start by defining a novel solution concept, Perfect

Type-Contingent Ex-Post Equilibrium (PTXE), that coincides with BFE when there

is perfect monitoring but differs otherwise. Then they develop a linear programming

technique for analyzing what payoff profiles can be sustained under this solution concept

and, finally, they use the technique to show sufficient conditions for a PTXE folk theo-

rem to hold. Though their setting varies from ours substantially, so that our BFE folk

theorem is very different from theirs, the technique we use to prove our theorem follows

their approach closely. Indeed, rather than assuming a product information structure,

known-own-payoffs and perfect monitoring, FY assume a general partition information

model, do not impose known-own-payoffs and assume unknown monitoring. That is,

monitoring is not only imperfect but also depends, in a non-trivial way, on the unknown

state of the world; hence, this assumption neither implies nor is implied by perfect mon-

itoring. Moreover, the unknown monitoring assumption drives many of the FY results:

by endowing each player with a signal correlated with the type of his opponent, it pro-

vides an exogenous channel through which a player can learn the private information

of his rival, regardless of the rival’s action. This is not true when we consider perfect

monitoring: if a player wishes to hide his private information from his rivals he can

always play a pooling strategy and prevent any sort of updating by his opponent.

We also borrowed insights from the literature on Nash equilibrium. Hart (1985)

proves, for two-player games with no discounting and one-sided incomplete information,

that a feasible and individually rational payoff vector can be sustained if and only if

certain incentive compatibility constraints hold. Shalev (1994) shows stronger results

for the special case of known-own-payoffs but still in a one-sided incomplete information,

no-discounting framework. In particular, for Nash equilibrium and if priors have full

support, Shalev shows the set of sustainable payoffs is independent of said priors. Cripps

and Thomas (2003) and Peski (2008) analyze similar results for Nash equilibrium and
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one-sided incomplete information but now for the case with discounting. The common

feature of these works is that the analysis of the set of sustainable payoffs is based on the

analysis of finitely revealing strategies. These are strategies where the informed party

reveals his information to the uninformed party, either through an explicitly modeled

communication device or simply through his choice of actions, but only in a finite set

of periods. These strategies are reminiscent of our asymptotically constant strategies,

which play an important role in proving our results.

The paper is organized as follows. Section 2 introduces the main notation we will

need. Section 3 presents the necessary and sufficient conditions for a game to have

a BFE folk theorem in two theorems: Theorem 1 deals with the simple case of one

informed player and many uninformed players, while Theorem 2 is the generalization to

an arbitrary number of informed payers. The former is presented as it enables a simpler

and less cumbersome presentation of the main ideas. These results, while interesting

in their own right, are also the building blocks for the results on Perfect Bayesian

Equilibrium (PBE), presented in Section 4. Theorem 4 states that if a folk theorem

holds for the PBE solution concept, then the game must satisfy the condition that

guarantees a BFE folk theorem. Schematically, we summarize these results as:

Conditions ⇔
Theorems 1,2

BFE Folk Theorem ⇒
Trivial

PBE Folk Theorem ⇒
Theorem 4

Conditions

Section 5 develops simple examples, including the product-choice game described above,

that illustrate how these results are applied. Section 6 concludes.

2 Model: Notations and general assumptions

Information and static payoffs: There is a finite set of players, N . Each of these

players is endowed with a finite action set An. An element an ∈ An is an action for player
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n and an element a ∈
∏

n∈N An is an action profile. For any set X, the set ∆(X) will

denote all probability distributions over X. In particular, we refer to elements of ∆(A)

as mixed actions. Information is modeled as a collection of finite sets {Θn : n ∈ N}, one

for each player. An element of θn ∈ Θn is player n’s type or, when the identity of the

player is relevant, we refer to it as a player-type. An element θ ∈
∏

n∈N Θn is a state.

We assume private-values: each player n ∈ N has a Bernoulli utility function

un : A × Θn → R that will be extended to payoffs over lotteries of action profiles

in a standard expected-utility fashion. We denote the utility of player n ∈ N from

lottery α ∈ ∆(A) when his type is θn as un(α|θn). We also use un(α|θ) to save notation,

but it should be understood that only the nth dimension of θ affects un.

Since we allow for the possibility that some players have no private information, it is

useful to distinguish between the players that have private information and those that

do not. Denote the set of players with private information as I ( N . Thus, players

n /∈ I have type sets Θn that are singletons. Finally, we denote with wn(θn) the minimax

payoff of player n when his type is θn; wn(θn) ≡ minα−n maxan un(an, α−n|θn).

Full dimensionality and maximal payoffs: We assume that each complete informa-

tion game G(θ) has full dimensionality. Let V (θ) be the feasible, individually rational

payoffs, V (θ) ≡ {v ∈ RN : v ∈ co{(un(a|θn))n∈N : a ∈ A}, vn ≥ wn(θn)}; we assume

that dimV (θ) = N for all θ ∈ Θ. This guarantees that the standard folk theorem

results apply in each of the complete-information games. Let ŵn(θ) = max{vn ∈ R :

(∃v−n ∈ V−n(θ)) : (vn, v−n) ∈ V (θ)}. As a consequence of the folk theorem for complete-

information games, ŵn(θ) is the (tight) upper bound on the payoff player-type θn can

obtain in any equilibrium. Finally, let V ≡
∏

θ∈Θ V (θ).

Histories, strategies and updating: For every t ∈ N, Ht ≡ At will be the set of his-

tories of length t, while H =
⋃
tHt will be the set of all possible histories. We assume

perfect monitoring and recall: at the beginning of every period t+ 1, the full history ht

of past play is known to the players. For any two histories of any two lengths, ht and h′τ ,

we can concatenate them into a history of length t+τ that starts off as ht and continues
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as h′τ . We use ht ∗ h′τ to denote the concatenated history. We use Sn to denote the set

of behavior strategies for player n, Sn : H → ∆(An), an element σn ∈ Sn is a strategy for

player n, and a vector σ ≡ (σθnn )n,θn ∈
∏

n∈N S
Θn
n is a strategy profile. Given a history

ht we define the strategy conditional on arriving at ht as σht ∈ S; σht(h
′τ ) ≡ σ(ht ∗ h′τ ).

Since at the beginning of the game the full state θ might be unknown to the players, each

player n ∈ N has a prior over the information of his rivals. It is assumed that there is a

common prior, denoted µ ∈ ∆(Θ), over the set Θ of states. The beliefs a player-type θn

has about the types of his rivals are obtained by conditioning the common prior on his

own type. We denote such beliefs by µ(·|θn) ∈ ∆(Θ−n). Finally, a strategy profile σ and

a prior µ(·|θn) induce, for each player-type θn, a distribution over states and histories

via Bayesian updating, denoted as P (·|θn) ∈ ∆(H×Θ−n).

Dynamic Payoffs: Finally, given a discount factor δ ∈ (0, 1), a history ht (pos-

sibly empty) a player-type θn ∈ Θn and a distribution P ∈ ∆(H × Θ−n), we let

Un(σht |δ, θn, P ) denote the δ discounted expected payoff to player n from following the

conditional strategy σht starting at history ht. In symbols, Un(σht |δ, θn, P (·|θn, ht)) =

(1− δ)EP (·|θn,ht){
∑

τ=0 δ
τun(σht(h

′τ )|θn)}

2.1 Equilibrium definitions

A BFE is a strategy profile such that, for each state, the state-contingent behaviors

form a subgame-perfect Nash Equilibrium (SPNE). Formally,

Definition (Belief Free Equilibrium). A strategy profile σ is a Belief-Free Equilib-

rium if, for each θ ∈ Θ, (σθnn )n∈N is a SPNE of the complete-information game G(θ)

A PBE is a strategy profile σ and beliefs µ that is both sequentially rational given

the beliefs each player holds about his rivals and where beliefs are updated using Bayes

rule whenever possible. Formally, for a fixed µ ∈ ∆(θ), say a strategy profile σ ∈ S

is sequentially rational for beliefs P ∈ ∆(Θ × H) if, for every history h ∈ H, period
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t ∈ N, player n ∈ N , state θ ∈ Θ, and deviation σ′n ∈ Sn, Un(σht|δ, θn, P (·|ht)) ≥

Un(σ′n, σht,−n|δ, θn, P (·|ht)).

Definition (Perfect Bayesian Equilibrium). Let µ ∈ ∆(Θ) be the common prior

and δ ∈ (0, 1) the common discount factor. A strategy profile σ ∈ S and beliefs P are a

(µ, δ) Perfect Bayesian Equilibrium if σ is sequentially rational for P and P is derived

from µ and σ via Bayes’ rule whenever possible.

3 A folk theorem for Belief Free Equilibrium

3.1 One informed player

The case where there is only one informed player is presented first. The condition

for a BFE folk theorem to hold is that a system of inequalities admits a solution, and

this system is smaller when there is only one informed player. Therefore, without loss

of generality, let I = {1} and notice that θ and Θ are now isomorphic to θ1 and Θ1

respectively. Hence, we drop the subscript for notational convenience.

Condition A, which is necessary and sufficient for a BFE folk theorem to hold, is an

identification condition. Given any state, there must be a collection of action profiles

that bound the payoff player 1 receives in that state (with a bound no less than the

min max payoff) while simultaneously capping his utility at the min max level for any

other state. We present it as two sub-conditions: conditions A.1 and A.2. The main

difference between A.1 and A.2 is that A.1 focuses solely on player 1 while A.2 focuses

on all players simultaneously.

Condition A.1. For any θ+ ∈ Θ, there exists an action profile αθ+ ∈ ∆(A) such that:

• u1(αθ+ |θ+) ≥ ŵ1(θ+)

• u1(αθ+ |θ) ≤ w1(θ) for all θ 6= θ+
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Condition A.1 states that an action exists which rewards player 1 (with his maximum

possible payoff) in a given state, while simultaneously punishes him (with his min max

payoff) if not. In particular, condition A.1 requires conflict of interests across the dif-

ferent types of player 1: given any two states, at least one of the most preferred actions

for player 1 in one state must not be individually rational in the other, and vice versa.

For instance, a game where two types of player 1 have the same ordinal preferences over

pure actions violates this condition.1

Before stating condition A.2 it is first necessary to define what a J − dominated

payoff profile is. In words, a payoff v(θ) ∈ V (θ) is J-dominated by a payoff v′(θ) ∈ V (θ)

for some subset J ⊂ N if they are different, v′(θ) weakly Pareto dominates v(θ) for all

players in J , and v(θ) weakly Pareto dominates v′(θ) for the other players. Formally,

we have the following definition.

Definition (J-domination). Let θ ∈ Θ and J ⊂ N . A payoff profile v(θ) ≡ (vn(θ))n∈N ∈

V (θ) J-dominates v′(θ) ≡ (v′n(θ))n∈N ∈ V (θ) if v(θ) 6= v′(θ), vn(θ) ≥ v′n(θ) for all n ∈ J ,

and vn(θ) ≤ v′n(θ) for all n /∈ J .

Condition A.2. For any θ+ ∈ Θ, any J ⊂ N and any J-undominated profile (vi(θ
+)) ∈

V (θ+) there exists an action profile αJ,θ+ ∈ ∆(A) such that:

• un(αJ,θ+|θ+) ≥ vn(θ+) for all n ∈ J

• un(αJ,θ+|θ+) ≤ vn(θ+) for all n /∈ J

• u1(αJ,θ+|θ) ≤ w1(θ) for all θ ∈ Θ, θ 6= θ+

Condition A.2 focuses on all players simultaneously. Formally, given a state θ+, any

extreme point of V (θ+) can be approximated while simultaneously capping the utility

of player 1 in any other state with his min max payoff. By convexity of V (θ+), the

1That ordinal preferences over pure actions are independent of θ does not imply that the preferences

over lotteries, or mixed actions, are independent of type.
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same applies to any payoff in V (θ+), since any such payoff is a convex combination

of extreme points. Conceptually then, A.2 says that payoffs in game G(θ+) can be

analyzed independently of payoffs in any other game G(θ), θ 6= θ+. Given any feasible

and individually rational payoff in state θ+, we can approximate that payoff with an

action that, in any other state, is not individually rational for player 1; hence, no other

type of player 1 has incentives to mimic this action.

Condition A.2 has another important implication. By setting J = ∅, A.2 states

that there exists an action that delivers, for all player-types simultaneously, a payoff no

greater than the min max.

Theorem 1. Condition A holds if and only if for any strict, smooth subset W ⊂ V

there exists δ̄ ∈ (0, 1) such that, for any δ ≥ δ̄ W ⊂ EBFE(δ)

The following subsection offers a proof sketch of Theorem 1. Readers interested in

the other main results may skip it without loss of continuity.

3.1.1 Theorem 1 proof sketch

To give a proof sketch of Theorem 1 it is important to sketch the basic argument be-

hind FY first.2 We seek conditions under which V = limδ→1E
BFE(δ), where EBFE(δ) is

the set of BFE payoff profiles when discount factor is δ. It is straightforward to show that

limδ→1E
BFE(δ) ⊂ V ; to show the opposite inclusion requires more work. As in Abreu-

Pearce-Stacchetti (1990), heceforth APS, or Fudenberg-Levine-Maskin (1994), heceforth

FLM, any closed and convex set W ⊂ R|Θ|×N satisfying recursive conditions analogous

to the self-replication conditions in FLM will be such that W ⊂ limδ→1E
BFE(δ). Since

these sets are convex, they can be expressed as the intersection of a collection of half-

spaces; i.e., given a convex set W ⊂ R|Θ|×N , there is a collection of scores (k(λ))λ∈R|Θ|×N ,

such that W = ∩λ∈R|Θ|×N{v : v · λ ≤ k(λ)}. Formally, the vectors λ represent the nor-

mal to each of the supporting hyperplanes; intuitively, they represent the directions

2Complete proofs and more detail on FY are given in the appendix.

12



in which the hyperplanes increase. Suppose Q ⊂ R|Θ|×N is closed, convex and such

that (a) Q satisfies appropriate recursive conditions and (b) the corresponding scores,

(k∗(λ))λ∈R|Θ|×N , satisfy v · λ ≤ k∗(λ) for all v ∈ V and all λ ∈ R|Θ|×N . From (a) we

conclude Q ⊂ limδ→1E
BFE(δ); from (b), V ⊂ ∩λ∈R|Θ|×N{v : v · λ ≤ kλ} = Q. Hence,

from (a) and (b), we conclude V ⊂ limδ→1E
BFE(δ). This, and the opposite inclusion,

show V = limδ→1E
BFE(δ).

Fudenberg and Yamamoto find a set Q that satisfies (a) above and characterize the

scores {k∗(λ)}λ∈RN×Θ ; we take these scores and impose k∗(λ) ≥ max{v · λ : v ∈ V } for

each λ ∈ RN×Θ to obtain condition A.

For most directions λ ∈ RN×Θ either k∗(λ) = +∞ or k∗(λ) = max{λ · v : v ∈ V }, so

the inequality is satisfied automatically. Only three sets of directions, Λ5, Λ6, and Λ7, al-

low for k∗(λ) < max{λ·v : v ∈ V }. Condition A.1 guarantees k∗(λ) ≥ max{λ·v : v ∈ V }

for λ ∈ Λ6 and condition A.2 guarantees k∗(λ) < max{λ · v : v ∈ V } for λ ∈ Λ7. A

corollary of condition A.2 is that k∗(λ) ≥ max{λ · v : v ∈ V } for λ ∈ Λ5.

The set Λ6 is the set of directions λ ∈ R|Θ|×N \ {0} such that (a) only the informed

player has non zero weight, i.e, λθn = 0 for all n 6= 1 and all λ; and (b) there is a unique

“positive” state θ+ such that λθ
+

1 > 0.3 For these directions,

k∗(λ) = max{
∑
n,θ

λθnun(α|θ) : α ∈ ∆(A)}

We can rewrite this as

k∗(λ) = λθ
+

1 u1(α∗|θ+) +
∑
θ 6=θ+

λθ1u1(α∗|θ)

On the other hand, it is simple to show that for these directions,

max{λ · v : v ∈ V } = λθ
+

1 ŵ1(θ+) +
∑
θ 6=θ+

λθ1w1(θ)

3In general, when there is an arbitrary number of informed players, these are directions where (a)

only one player has non-zero weights, (b) he has positive weight on at least one state (c) he cannot

distinguish between two states in which his weights are positive (d) no other player can distinguish

between two states that receive non-zero weight. Details are included in the appendix.
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Comparing the expressions for k∗ and max{λ · v : v ∈ V } term-by-term shows that

condition A.1 implies k∗(λ) ≥ λ · v for all v ∈ V and all λ ∈ Λ6. Necessity is a

consequence of the linearity of the problem.

The set Λ7 is the set of directions λ ∈ RN×Θ such that (a) player 1 and at least one

other player n 6= 1 have non-zero weights (b) there is at most one state θ+ ∈ Θ such

that uninformed players receive non zero weight and (c) the informed player can only

receive positive weight in that state θ+.4 For these directions

k∗(λ) = max{
∑
n,θ

λθnun(α|θ) : α ∈ ∆(A)}

Re-writing this expression, separating the states that receive positive weight from those

that receive negative weight, and using that λ ∈ Λ7 yields the following:

k∗(λ) =
∑
θ 6=θ+

λ1(θ)u1(α|θ) +
∑

{n:λj(θ+)>0}

λn(θ+)un(α|θ+) +
∑

{n:λj(θ+)≤0}

λn(θ+)un(α|θ+)

The maximization problem max{λ · v : v ∈ V } is solved in two steps. First, if v∗ solves

the above problem for some λ ∈ Λ7, then v∗1(θ) = w1(θ) for all θ 6= θ+. Second, if v∗

solves the above problem for some λ ∈ Λ7 and J = {n : λθ
+

n > 0}, v∗(θ+) must be

J − undominated. Thus,

max{λ·v : v ∈ V } =
∑
θ 6=θ+

λ1(θ)w1(θ)+
∑

{n:λj(θ+)>0}

λn(θ+)v∗n(θ+)+
∑

{n:λj(θ+)≤0}

λn(θ+)v∗n(θ+)

Comparing the expressions for k∗(λ) and max{λ · v : v ∈ V } term-by-term shows that

condition A.2 implies k∗(λ) ≥ λ · v for all v ∈ V and all λ ∈ Λ7. Necessity is, again, a

consequence of the linearity of the problem.

The set Λ5 is the set of directions λ ∈ RN×Θ such that (a) only the informed player

4In general, these are directions where (a) at least two players receive non-zero weight, (b) at least

two states receive non zero-weight, (c) if player n receives non-zero weight at state θ, and player n′

(possibly n = n′) receives non-zero weight in state θ′, no other player n′′ 6= n, n′ can distinguish θ and

θ′ and (d) if a player n receives positive weight in state θ and a player n′ 6= n receives non zero weight

in state θ′, player n cannot distinguish θ from θ′. Again, see FY (2010) or Appendix A for details.
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receives non zero weights and (b) the informed player receives non-positive weights in

all states.5 For these directions

k∗(λ) = −min
α−1

max
a1

∑
n,θ

|λθ1|u1(a1, α−1|θ)

In contrast,

max{λ · v : v ∈ V } = −
∑
θ

|λθ1|w1(θ)

Condition A.2, when J = ∅, implies that there is an action α such that, if α is played,

all player-types receive payoffs no greater than their min max payoffs. This implies

k∗(λ) ≥ max{λ · v : v ∈ V }

for all λ ∈ Λ5.

Summarizing, condition A implies that k∗(λ) ≥ max{v · λ : v ∈ V } for all λ, this

implies that V ⊂ lim
δ→1

EBFE(δ) and as a consequence the folk theorem holds. The converse

is due to the linearity of the problem and details are given in the appendix.

3.2 Multiple informed players

Generalizing the case of one informed player to the case of many informed players

is straightforward. Condition A requires that each type of the informed player can be

separated from the other types via state-contingent payoffs that arise from state non-

contingent actions. Since a type of the informed player is equivalent to a full state, this

condition also implies we can separate any state from any other state. Condition B

also requires this separation, but emphasizes the difference between a full state and a

type of a particular player i ∈ I. Condition B.1 requires that for each informed player

and for each of his types there exists an action that separates that type from the rest

5In general, this direction is one where (a) a unique player n has non-zero weights, (b) his weights are

non-positive and (c) no other player can distinguish between two states that receive non-zero weight.
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of his types; condition B.2 requires that for every state there has to be an action that

separates that state from the other states.

Condition B.1. For any i ∈ I and θ+
i ∈ Θ there exists an action profile α ∈ ∆(A)

such that:

• ui(α|θ+
i )− ŵi(θ+

i ) ≥ 0

• ui(α|θi)− wi(θi) ≤ 0 for all θi 6= θ+
i

Condition B.2. For any θ+ ∈ Θ, for any J ⊂ N and for any J-undominated profile

(vn(θ+)) ∈ V (θ+) there exists an action profile α ∈ ∆(A) such that:

• un(α|θ+
n )− vn(θ+) ≥ 0 for all n ∈ J

• un(α|θ+
n )− vn(θ+) ≤ 0 for all n /∈ J

• ui(α|θi)− wi(θi) ≤ 0 for all i ∈ I, θi ∈ Θi, and θi 6= θ+
i

As before, we let condition B stand for the conjunction of B.1 and B.2.

Theorem 2. Condition B holds if and only if for any strict, smooth subset W ⊂ V

there exists δ̄ ∈ (0, 1) such that, for any δ ≥ δ̄, W ⊂ EPTXE(δ)

The proof of this theorem follows step by step proof of theorem 1; the only difference

is the definition of the sets Λ5, Λ6, and Λ7. The formal argument is presented in the

appendix.

4 Perfect Bayesian Equilibrium

Although PBE has been the standard solution concept for incomplete-information

dynamic games in general, and repeated games in particular, to the best of our knowledge
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this is the first folk theorem developed for this solution concept. It has been hard

to obtain folk theorems for PBE because the existing techniques used to analyze the

equilibrium payoff-set exploit that, both in terms of continuation behaviors and payoffs

that can be supported in equilibrium, the game at any one node is indistinguishable from

the game at any other node. The difficulty in dealing with Perfect Bayesian equilibrium

is that belief updating, both on and off the path of play, breaks this indistinguishability:

since, a priori, the set of continuation behaviors and payoffs that can be sustained in

equilibrium depends on the initial beliefs that players hold, we cannot claim that the

continuation games at nodes with different posteriors are indistinguishable Thus, the

standard recursive techniques used in other works do not apply.

The main result in this section, Theorem 4, states that if a PBE folk theorem holds

for a given game then condition B must be satisfied. As a corollary, a PBE folk theorem

holds if and only if a BFE folk theorem holds. To understand, intuitively, why this

result is true, note that the main difference between these solution concepts is the type

of incentive compatibility, or non-deviation, condition imposed. In BFE we ask that

players behave in such a way that they are best responding to the strategy of their

rivals for each of their possible types. This is a “pointwise” constraint, because we are

giving appropriate incentives in a type-by-type fashion. On the other hand, the incentive

compatibility constraint implicit in PBE asks players to play a best response to their

beliefs about the play of the rivals. This is an “‘expected” or “on average” constraint.

More formally, BFE imposes that, for each player-type θn,

Un(σθnn , (σ
θn′
n′ )n′ 6=n,θn′∈Θn′

|θn, δ, P (·|θn)) ≥ Un(σ̂n, (σ
θn′
n′ )n′ 6=n,θn′∈Θn′

|θn, δ, P (·|θn))

for any σ̂n, (θn′)n′ 6=n ∈ Θ−n′ . Note that here the beliefs P (·|θn) held by player-type θn

play no role whatsoever. In contrast, PBE imposes

Un(σθnn , (σn′)n′ 6=n|θn, δ, P (·|θn)) ≥ Un(σ̂n, (σn′)n′ 6=n|θn, δ, P (·|θn))

for any σ̂n. Theorem 3, presented below, links the previous conditions through two

important claims: first, as time goes to infinity, the beliefs a player holds about his
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rivals converge to a limiting distribution; second, two player types receiving positive

probability under this limiting distribution must play in the same way. Thus, in the

limit when t→∞, all player-types that affect the PBE incentive constraints are playing

the same strategy; hence the pointwise and the average constraints coincide. Since beliefs

converge, if δ is sufficiently high, the long run payoffs dominate the (overall) expected

discounted utility for each player-type θn and this completes the argument.

Nevertheless, none of these asymptotic results are required for the case I = {1}.

Since, by definition, the informed player knows the types of his rivals, pointwise and on

average constraints coincide even in the short run, thus no asymptotic considerations

have to be made.

A sketch of the argument for this simpler case follows. Assume a PBE folk theorem

holds, pick any θ+ ∈ Θ, and consider the payoff vector v ∈ V such that (a) v1(θ+) =

ŵ1(θ+), (b) v1(θ) = w1(θ) and (c) payoffs for uninformed players are arbitrarily chosen.

Since a folk theorem holds, we can approximate this payoff with payoffs from PBE

strategies. Concretely, for each k ≥ 1, let vk ∈ V be such that (a) vk → v, (b) vk is in

the interior of V , so that there is (δk, σ
k) that supports vk as a PBE. We use the fact

that for each n 6= 1 the set Θn is a singleton to calculate

vk1(θ) = Eh{
∑
t

(1−δk)δtku1(σk
θ

1 (ht), σk−1(ht)|θ)} = Eh,θ−1{
∑
t

(1−δk)δtku1(σk
θ

1 (ht), σk−1(ht)|θ)}

We then use incentive compatibility to calculate:

vk1(θ) = Eh{
∑
t≥1

(1−δk)δtku1(σk
θ

1 (ht), σk−1(ht)|θ)} ≥ Eh{
∑
t≥1

(1−δk)δtku1(σk
θ+

1 (ht), σ−1(ht)|θ)}

where equality holds if θ = θ+. Since Bernoulli utilities are linear in probabilities, the

above expression can be re written as:

vk1(θ) ≥ u1(Eh{
∑

(1− δk)δtk(σk
θ+

1 , σk−1)(ht)}|θ)

Let αk ≡ Eh{
∑

(1−δk)δtk(σk
θ+

1 , σk−1)(ht)}. Since ∆(A) is compact, hence every sequence

has a convergent sub-sequence, αk → α for some α ∈ ∆(A), up to a sub-sequence. Thus,
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taking limits as k →∞ and noting that equality holds when θ = θ+ we get

v1(θ) ≥ u1(α|θ) with equality if θ = θ+

which, replacing v1(θ), means

• ŵ1(θ+) = u1(α|θ+)

• w1(θ) ≥ u1(α|θ) for θ 6= θ+

and this is precisely what we need for condition A.1. That condition A.2 holds is proved

in an analogous manner.

As already mentioned, the proof for the case of multiple informed parties requires

a previous result, Theorem 3. First, define the notion of an asymptotically constant

strategy:

Definition (Asymptotically Constant Strategy). A strategy profile σ is asymptot-

ically constant if for every ε > 0, for any θ, θ′ and for P -almost all histories, there exists

T ∈ N such that, for all τ ≥ T , ‖σθhτ − σθ
′

hτ‖ < ε provided P (θ|h) > 0 and P (θ′|h) > 0.

The important thing to note is that, if a strategy is asymptotically constant, then

any two player-types receiving positive probability after some (infinite) history, must

play the same strategy after that history.

Theorem 3. Let σ be a PBE of the game G(µ, δ). Then, σ is asymptotically constant.

This result is used to prove Theorem 4 below:

Theorem 4. Let µ ∈ ∆(Θ). If for any smooth, strict subset W ⊂ V there exists

δ̄ ∈ (0, 1) such that for all δ > δ̄ W ⊂ EPBE(µ, δ) then condition B holds.
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5 Examples

5.1 A public good partnership game.

The following is an example where condition A.1 fails and thus the folk theorem

fails. We also show which payoffs can, and cannot, be sustained in BFE equilibrium.

For motivation, imagine a two player partnership game, with action sets

{Work(W ), Shirk(S)}. Working has a cost c ∈ (0, 1) for player 2, and this is common

knowledge. The cost of working for player 1 is θ ∈ {c, 2} = Θ. The per capita gross

payoffs of the project are 2 if both work, 1 if only one person works and 0 if no player

works. Since we assume that, when one player works and the other shirks, both players

get the gross payoff 1, we interpret this as a partnership that produces a public good.

The payoff matrices are as follows:

c W S

W (2− c, 2− c) (1− c, 1)

S (1, 1− c) (0, 0)

and

2 W S

W (0, 2− c) (−1, 1)

S (1, 1− c) (0, 0)

It is easy to see that part of condition A.1 is satisfied. If θ+ = c then action (W,W ) sat-

isfies condition A.1: it yields ŵ1(c) = 2− c and w1(2) = 0. Yet, condition A.1 fails when

we set θ+ = 2: action profile (S,W ) yields the best possible payoff for player 1 in state 2,

but is still individually rational in state c. Thus, by virtue of theorems 1 and 4, the folk

theorem (either for BFE or PBE) fails. Intuitively, the reason why condition A.1 fails is

that payoffs are not “state contingent enough”. Indeed, the payoff from working is state

contingent because different states are equivalent to different working costs; in contrast,
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the payoff from shirking only depends on whether my rival worked or not, but not on

the state. We could think that adding a state-contingent benefit to shirking, as we do in

the next example, might solve this issue. This is only true if the state-contingent benefit

from shirking outweighs the non-contingent payoff obtained when player 1 shirks and

player 2 works. Otherwise, the non-contingent aspect of utilities dominates and makes

condition A.1 fail.

Nonetheless, using the techniques used to prove Theorem 1, we can calculate what

payoffs can still be approximated by BFE payoffs.6 For instance, if we want to approx-

imate a vector v ∈ V such that v(θ = 2) = (1, 1 − c) with BFE payoffs, we must have

v1(θ = c) ≥ 1. More generally, a necessary condition for a payoff to be approximately

sustained in BFE payoffs is to have v1(c) ≥ v1(2). It is also simple to check this con-

clusion extends to PBE. Indeed, since u1(a|c) ≥ u1(a|2) for all a ∈ A, if type c mimics

the behavior of type 2, his payoffs must be weakly larger. Thus, any PBE payoff vector

must also satisfy v1(c) ≥ v1(2).7

5.2 A private good partnership game.

Now we modify the partnership game so that condition A.1 is satisfied but condi-

tion A.2 might, depending on the cost c, be violated. Assume that if one player works

and the other shirks, only the working player gets the gross payoff of 1.8 As before,

player 1 has two types: the first type pays a cost of c if he works and his second type

pays a cost of 2 if he works, but now the second type also has a utility benefit from

shirking. He gets y if he shirks alone and x if both players shirk together. For simplicity

6See appendix A.5 for details
7A necessary and sufficient condition for v ∈ V to be approximately sustained in equilibrium is that

v1(c) ≥ v1(2) and that, for some α ∈ ∆(A), both v1(c) ≥ u1(α|c) and v1(2) ≥ u1(α|2).
8Working still has a coordination feature, in the sense that per capita payoff for the working player

increases if both work together.
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of calculations assume 0 < x < y < 2− c, so that x is player 1’s min max payoff.9 The

payoff matrices are as follows:

c W S

W (2− c, 2− c) (1− c, 0)

S (0, 1− c) (0, 0)

and

2 W S

W (0, 2− c) (−1, 0)

S (y, 1− c) (x, 0)

Condition A.1 is now satisfied because, for player 1, shirking when his rival works no

longer guarantees the non-contingent payoff. Thus, the driving force behind the desire

for shirking is no longer uniform across states.

Nonetheless, for certain parameter values, condition A.2 might not hold: for almost

all c ∈ (0, 1), θ+, and J ⊂ N , the clauses of condition A.2 are satisfied. The exception

is when J = {2} and θ+ = c. In this case, the mixture between (W,W ) and (S,W ) that

yields payoff 1 − c to player 1, is {2} − undominated. For condition A.2 to hold this

mixture must not be individually rational for player 1 in state 2. After some algebra, we

conclude that this holds if and only if y
2−c < x. In other words, this particular clause of

condition A.2 holds if working costs are sufficiently small in comparison to the relative

utility between shirking alone and shirking when the other player is shirking.

As in condition A.1, what drives this result is that, comparing θ = c to θ = 2, actions

(W,W ) and (S,W ) swap their place in the ordinal preference ranking with respect to

the min max benchmark. Yet, contrary to condition A.1, the magnitude of the change

is also important. If (S,W ) becomes “too attractive” or, alternatively, (W,W ) in state

9Yes, player 1 type 2 is rather despicable: he not only has huge working costs, he also rather enjoys

the prospect of shirking if he knows somebody else is working... even though that work does not benefit

him!
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c is not attractive enough, then condition A.2 will still fail.

Indeed, note that J domination, when J is a proper subset of N , is equivalent to

maximizing a player’s payoff subject to his rival obtaining at least some benchmark

payoff. In particular, the maximum player 2 can get in state c, while simultaneously

leaving player 1 on his individual rationality constraint, is to mix (W,W ) and (S,W )

with a weight that depends on c. While player 1 strictly prefers working to shirking,

higher values of c mean that working is less attractive; thus, a higher weight must be

assigned to (W,W ) in order to compensate the bad payoff from (S,W ). Now, assume

that this action (the one that maximized player 2 utility in state c while keeping player

1 at his min max payoff) is played in state 2. Since the high-cost type prefers shirking

to working, as opposed to the low-cost type, higher working costs mean a high weight

on the bad action. Thus, in general, we expect that the high-cost type will not mimic

the behavior of the low-cost player and in this sense the states are separated : we can

analyze extreme payoffs in the low-cost state knowing that the high cost player does not

want to mimic this action. The only case where the argument fails is the case where y,

the payoff from (S,W ), is very high. In this case, even though obtaining this payoff is

very unlikely, the reward is large enough that the high-cost type wants to take the risk.

Thus, mimicking is profitable and we can no longer analyze one state independently of

the other. Hence, if y is large enough with respect to c, condition A.2 is violated.

In short, this example shows that, for a folk theorem to hold, it is important that the

structure of the game changes from state to state: “good” actions must become “bad”

actions and vice versa, but the relative magnitude in which these changes relate to each

other is equally important.

5.3 Monopoly product-choice game

A monopolist produces a good at 0 marginal cost and a consumer, who has private

information about his preferences, decides whether or not to buy. This good has different
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features, indexed by points in the set X = [0, 1], referred to as the set of features, or

locations. We first analyze the case where, each period, the monopolist is constrained

to produce at a given location l ∈ [0, 1], so his only choice variable is price. We interpret

this as a model where changing locations has prohibitively high costs. Then we look

at the case where, each period, the monopolist is allowed to change his location, so his

new choice set is both price and location. For consistency with the finite action sets

assumption, the set of locations available for the monopolist to produce is the subset

L = {m
M

: 0 ≤ m ≤M} for some large M ∈ N. We also assume prices increase in penny

amounts and are bounded above by a large positive integer P .10 If the monopolist does

not sell to the consumer in a given period, his profit in that period is 0.

There are two types of the consumer, x, x′ ∈ L, where x < x′. If consumer type

x (resp. x′) purchases good with features y at a price p, his utility is u1(y, p| x) =

w−|x−y|−p (resp. u1(y, p|x′) = w−|x′−y|−p). The quantity w measures the utility

of receiving the product with the features he values the most at a price of 0, and the

term |x − y| represents the disutility associated from consuming a good that does not

have his most preferred features. Finally, if the consumer does not purchase the good

at a given period, his utility for that period is 0. This implies that the min max payoffs

of all player-types is 0.

5.3.1 Fixed location for the monopolist

Assume that the monopolist produces at location l ∈ L where x < l < x′, w >

|x − l|, and w > |x′ − l|. Thus, if free, both consumer types would like to buy the

specific good provided by the monopolist. Condition A.1 fails: indeed, if we set θ+ = x

then ŵ1(x) = w − |l − x|. This utility can only be achieved if the monopolist sets

price 0 and the consumer purchases, but this yields utility w − |x′ − l| > 0 to type

10The assumption of penny increments will actually be irrelevant since utilities will be linear in prices

and we are allowing the monopolist to play mixed strategies; i.e. to choose prices randomly.
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x′. Condition A.2 is violated for the cases J = {1} and J = {1, 2}. If J = {1}, the

only undominated payoff profiles at a state θ ∈ {x, x′} are those where consumer type θ

obtains his maximum utility, thus condition A.2 is violated for the same reason as is A.1.

Similarly, if J = {1, 2}, the only undominated payoff profiles at a state θ ∈ {x, x′} are

those of the form (v1, v2) = (w−|θ−l|−p, p), where p ≤ w−|θ−l|. Indeed, the only way

to improve the consumer’s (resp. the monopolist’s) welfare is to reduce (resp. increase)

the price, but this harms the monopolist (resp. consumer). Moreover, these are the only

{1, 2}-undominated payoffs because any other payoff implies a probability that purchase

does not take place, but these can be dominated by having a purchase happen. Thus, if

p is small enough, condition A.2 will fail for the same reason as condition A.1 did. On

the other hand, if J = {2}, condition A.2 will hold. Indeed, the only {2}-undominated

profiles at a state θ ∈ {x, x′} are of the form (0, |θ−l|), achieved by setting p = w−|θ−l|

and having the consumer make a purchase. We now show that condition A.2 is satisfied

when J = {2} and when J = ∅. Consider the action profile where the consumer buys

the product and price is the maximum possible price P . The utility profile for playing

this action in every state is v = (w − |x − l| − P, P, w − |x′ − l| − P, P ). Thus, if P is

high enough, this action profile satisfies condition A.2 for the case J = {2} and for any

choice of θ+. For J = ∅ condition A.2 holds since any action profile where the consumer

does not purchase yields the min max payoff for all player-types.

Knowing that a folk theorem will not hold, the next step is to ask what payoffs can

be obtained in PBE or BFE. For the latter, we apply the conditions in the appendix and

conclude the following: we have one degree of freedom in specifying what to sustain in

any state, but this imposes constraints on what we can sustain in the other state. Once

we specify a payoff for a consumer type θ ∈ {x, x′}, if that payoff is generated by a price p

and a probability of purchase q, then we must give the other type of the consumer a payoff

no less than what he can achieve is he purchases at price p with probability q. Concretely,

consider any feasible, individually rational payoff vector v = (v1(x), v2(x), v1(x′), v2(x′))

and fix θ ∈ {x, x′}. Then, there are q ∈ [0, 1] and p ∈ [0, P ] such that v1(θ) = q(w −
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|θ− l| − p), and v can be approximated in BFE if and only if v1(θ′) ≥ q(w− |θ′− l| − p)

for θ′ 6= θ. For the monopolist there are no bounds on what we can approximate state-

wise. Finally, note that we can rewrite the above constraint on what the consumer might

obtain as v1(θ′) ≥ v1(θ)+q(|θ−l|−|θ′−l|). We now show that this constraint also applies

to PBE; hence the set of payoffs sustainable in PBE and BFE coincide. Indeed, assume v

is in the interior of V and that σ is a (δ, µ) PBE strategy profile that sustains v for some

(δ, µ).11 Simple calculation shows that, by mimicking the behavior of type θ, consumer

type θ′ can guarantee himself a utility level v1(θ) + q(|θ− l| − |θ′ − l|). Indeed, let σ be

such a strategy. Then σθ1 : H → [0, 1] indicates, for type θ and after each history, the

probability of purchase. Similarly, σ2 : H → ∆{0, ..., P} indicates the pricing strategy of

the monopolist. The utility of consumer type θ from following his prescribed strategy is

Eh{
∑

(1−δ)δt[σθ1(ht)(w−|θ−l|−σ2(ht))]} = v1(θ). The utility of type θ′ from mimicking

type θ is Eh{
∑

(1 − δ)δt[σθ1(ht)(w − |θ′ − l| − σ2(ht))]} ≤ v1(θ′); where the inequality

follows form the “no profitable deviation” condition. Let q = Eh{
∑

(1 − δ)δtσθ1(ht)}.

Rearranging terms shows that the constraint v1(θ′) ≥ v1(θ) + q(|θ − l| − |θ′ − l|) must

hold. Thus, the above bound for BFE sustainability also applies to PBE. In particular,

how far we are from a folk theorem, measured by the constraint on what payoffs we can

sustain, is a function of how different utility functions are.

5.3.2 Endogenous location

Assume now that the monopolist can, at each period, also choose the location at

which he will sell. Then, a PBE or BFE folk theorem holds if and only if w ≤ x′ − x.

That is, the conditions will be satisfied only when, even if free, one type of the consumer

is not willing to purchase the good corresponding to the other type. When the above

inequality is not satisfied, the conditions fail for the same reason as in the fixed-location

11By considering limits we can also extend this result to payoffs in the boundary of V , but this adds

unnecessary complications concerning limits.
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model. Condition A.1, under w ≤ x′ − x, is satisfied because the best that consumer

type x (resp. x′) can hope for is to buy the product that the monopolist produces at

location x (resp. x′) at price 0. If w ≤ x′ − x, this action profile is not individually

rational for type x′( resp. x) and thus condition A.1 holds. Condition A.2 holds for

similar reasons.

As mentioned in the introduction, the main difference between the fixed-location

model and the endogenous-location model is the effect that private information has

on utilities. Indeed, returning to the fixed-location model, assume (without loss of

generality) that |x − l| < |x′ − l|. Then, we can rewrite the model in terms of a “high

valuation consumer” (whose valuation is w − |x − l|) and a “low valuation consumer”

whose valuation is w−|x′− l|. In this model, private information acts by shifting utility

upward by the scalar amount |x′ − l| − |x − l|. In contrast, the model where location

is not fixed cannot be written in this way, and the private information of the consumer

alters his ordinal preferences rather than simply shifting utility in a rigid manner.

6 Concluding Remarks

The existing literature on repeated games under incomplete information has looked

at what payoffs can be approximated when different solution concepts are assumed. Of

these, the most prominently studied are Nash equilibrium, generally with one-sided in-

complete information, and Belief Free equilibrium. For Perfect Bayesian Equilibrium,

which is arguably the most widely used notion in applied theory, there are (to the best

of our knowledge) no known results. The difficulty in analyzing Perfect Bayesian Equi-

librium is that belief updating, both on and off the path of play, coupled with sequential

rationality, adds a non-stationarity to the model that cannot be addressed with the

existing techniques.

This paper considers the class of incomplete-information games that satisfy full di-
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mensionality, known-own-payoffs, perfect monitoring and recall, and where the state of

the world can be identified by pooling the information of all informed players together.

For this class of games we provide a necessary and sufficient condition for obtaining a

Perfect Bayesian Equilibrium folk theorem. Moreover, we show that this condition is

necessary and sufficient for obtaining a Belief-Free Equilibrium folk theorem. We first

show that the condition implies a Belief-Free folk theorem and then we show that if a

Perfect Bayesian Folk theorem holds so must the condition. The (trivial) observation

that a Belief Free folk theorem implies Perfect Bayesian folk theorem concludes the ar-

gument.

Finally, two questions are left open for future research. First, when our folk theorem

fails, using the techniques from Fudenberg-Yamamoto we derive necessary and sufficient

conditions for a specific payoff vector to be approximately sustainable in Belief Free

Equilibrium as players become more patient. Since the argument used to prove Theo-

rem 4 only relies on local approximations, it is natural to conjecture that an analogue

to Theorem 4 will hold: If a payoff v ∈ V can be approximated in Perfect Bayesian

Equilibrium, then the condition for that payoff v to be approximated in Belief-Free

equilibrium must also hold. Thus, a payoff can be sustained in Perfect Bayesian Equi-

librium if and only if it can be sustained in Belief-Free equilibrium. For the examples

provided in Section 5 we see that this conjecture is true but a formal argument is yet to

be obtained. Second, the condition for obtaining a folk theorem asks for the existence of

very specific action profiles. It is natural to conjecture that these will play an important

role in constructing the equilibrium strategies. Having understood what payoffs can be

sustained in a given game, understanding the structure of the behaviors that generate

such payoffs would give us a more complete view of the predictions made by the model.
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A Appendix

A.1 FY (2010) further details

The purpose of this appendix is to provide further details on the techniques em-

ployed in FY (2010) since most proofs build upon them. Following FY (2010), the set

of payoffs that can be sustained in a PTXE is related to the linear programs below.

Moreover, it is proved in FY that the solution to the following program is independent

of δ.

Linear Program.

k∗ (α, λ) = max
v∈RN×|Θ|

w:A→RN×|Θ|

λ · v

s.t.


vn = (1− δ)un(αθn|θn) + δwn(αθn) for all n, θ

vn ≥ (1− δ)un(an, α
θ−n
−n |θn) + δwn(an, α

θ−n
−n |θn) for all i, θ and ai ∈ Ai

λ · v ≥ λ · w (a) for all a

where α ≡ (αθ)θ∈Θ ∈ ∆(A)Θ is a type contingent mixed action measurable with

respect to the player’s information. It is clear that there is no loss of generality in

assuming that the directions λ are picked from the set Λ ≡ {λ ∈ RN×|Θ| : ‖λ‖ ≤ 1}.

Henceforth, we make this normalization. Letting k∗(λ) ≡ supα k
∗(λ, α) we construct the

half-spaces K(λ) ≡ {v ∈ RN×|Θ| : λ · v ≤ k∗(λ)}, and the corresponding set supported

by them Q ≡ ∩λK(λ). Letting EPTXE(δ) be the set of equilibrium payoffs that can be

achieved in a PTXE when the discount factor is δ, we can state Proposition 1 from FY

(2010):

FY(2010) Proposition 1. If dimQ = N × |Θ| then limδ→1E
PTXE(δ) = Q

An important remark regarding this proposition is that limδ→1E
PTXE(δ) ⊂ Q always

holds, regardless of the dimensionality condition. This will be useful in proving our
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characterization theorem.

Finally, Proposition 6 from FY characterizes the value k∗(λ) for each λ. To state

this Proposition, we first define an appropriate partition of theset Λ. Note that we state

the partition in terms of our information model. The generalization to an arbitrary

information model can be found in FY.

• Λ1 ≡ {λ ∈ Λ : ∃θ such that (λθn)n 6= 0 and (∀θ′ 6= θ)(λθ
′
n )n = 0}

• Λ2 ≡ {λ ∈ Λ : (∃n, n′ ∈ N)(i ∈ I)(∃θ, θ′)(θi 6= θi) such that λθn 6= 0 and λθ
′

n′ 6= 0}

• Λ3 ≡ {λ ∈ Λ : (∃i ∈ I, n ∈ N)(∃θ, θ′ ∈ Θ)(θi 6= θ′i) such that λθi > 0, λθ
′
n 6= 0}

• Λ4 ≡ {λ ∈ Λ : (∃i ∈ I)(θ′, θ′′)(θ′i 6= θ′′i ) such that λθ
′
i , λ

θ′′
i > 0 and (λθn)θ∈Θ =

0 for all n 6= i}

• For i ∈ I Λ5(i) ≡ {λ ∈ Λ : (λθi )θ∈Θ ≤ 0, (λθi )θ∈Θ 6= 0(λθn)θ∈θ = 0 for all n 6=

i and (∀n 6= i)(θ, θ′ ∈ Θ)(λθi 6= 0 and λθ
′
i 6= 0 implies θn = θ′n)}

• Λ5 ≡ ∪i∈IΛ5(i)

• Λ6 ≡ {λ ∈ Λ : (∃i ∈ I)(∃θ′ ∈ Θ) such that λθ
′
i 6= 0(λθn)θ∈Θ = 0 for all n 6= i(λθ

′′
i >

0, λθ
′′′
i > 0 imply θ′′i = θ′′′i ) and (λθ

′′
i 6= 0, λθ

′′′
i 6= 0 imply θ′′n = θ′′′n ) for all n 6= i}

• Λ7 ≡ {λ ∈ Λ : (∃n′, n′′ ∈ N)(θ′, θ′′ ∈ Θ) such that ((λθn′)θ∈Θ 6= 0, (λθn′′)θ∈Θ 6=

0)((λθ
′
n )n∈N , (λ

θ′′
n )n∈N 6= 0)(λθ

′′′

l 6= 0, λθ
′′′′

l′ 6= 0, n 6= l, n 6= l′, θ′′′ 6= θ′′′′ implies θ′′′n =

θ′′′′n )(λθ
′′′
n > 0, λθ

′′′′

l 6= 0, n 6= l, θ′′′ 6= θ′′′′ implies θ′′′n = θ′′′′n )}

• Λ0 = ∪j∈{1,...,4}Λj

It is simple to check that ∪t=1,...,7Λt = Λ.
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FY(2010) Proposition 7.

k∗(λ) =



max{λ · v : v ∈ V } if λ ∈ Λ1

∞ if λ ∈ Λ2 ∪ Λ3 ∪ Λ4

maxα−i minαi
∑

θ∈Θ λ
θ
iui(αi, α−i|θ) if λ ∈ Λ5(i)

maxα{λ · u(α)} if λ ∈ Λ6 ∪ Λ7

Notice the score is always large enough in directions Λ0, in the sense that λ · v ≥

max{λ · v : v ∈ V } for all λ ∈ Λ0. Hence, our interests lie in the remainder Λ \Λ0 direc-

tions. Finally, for the case of one sided incomplete information, we will need FY propo-

sition 8. Let V U = co{u(a|·) : a ∈ A} and V ∗U = {v ∈ V U : (∀n)(∃α−n)(∀θ)vn(θ) ≥

maxan un(an, α−n|θ)}.

FY(2010) Proposition 8. If V ∗U has dimension |Θ|+N − 1 then dimQ = N

These propositions, adapted to our information model, are the building blocks we

need to construct the proofs of our main theorems. One can also generalize the in-

formation model and prove the following: if the joint information of all players does

not identify the state, then achieving a folk theorem is impossible. Indeed, consider a

generalized information model where states are elements ω of a set Ω. Each player n

is endowed with a partition, possibly a trivial one if the player is uninformed, of Ω,

denoted πn. Let θn(ω) ∈ πn denote all states that belong to the same cell of πn as

ω. These represent all states that, when the true state is ω, cannot be distinguished

from ω. Alternatively, states ω, ω′ cannot be distinguished by a player n if and only if

θn(ω) = θn(ω′). Our information model is the special case where Ω is a subset of an

N-dimensional space, the partitions πn are sections along the nth dimension and the fact

that player n cannot distinguish ω from ω′ is the equality ωn = ω′n. The known-own-

payoffs condition is simply that θn(ω′) = θn(ω) implies un(·|ω) = un(·|ω′). We can now

prove that, under the known own payoffs condition, if a game admits a folk theorem
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then, for every ω ∈ Ω, {ω} = ∩n∈Nθn(ω). Proceed by contradiction. Assume there is

a state ω ∈ Ω such that {ω, ω′} ⊂ ∩nθn(ω), where ω′ 6= ω. Then, there exists some

informed player i ∈ I, such that {ω, ω′} ⊂ θi(ω) ∩j 6=i θj(ω). Pick λ ∈ R|Ω|×N such that

λi(ω) = p > 0 > qi = λi(ω
′), λj(ω

′) = qj for some j 6= i and zero otherwise. Then,

λ ∈ Λ7. By adjusting the relative sizes of p and qi one can check that a necessary condi-

tion for k∗(λ) ≥ max{λ ·v : v ∈ V } to hold for all p, qi and qj is that, for some α ∈ ∆(A),

ui(α|ω) ≥ ŵi(ω) and ui(α|ω′) ≤ wi(ω
′). The known-own-payoffs condition implies that

ui(α|ω) = ui(α|ω′) and wi(ω) = wi(ω
′). Thus ŵi(ω) ≤ wi(ω). This a contradiction with

the full dimensionality of V (ω).

A.2 Proof of Theorem 1

The proof of theorem 1 will build upon two lemmas. The first, shows that condition

A.1 is equivalent to having a high score in directions Λ6 ∪ Λ7. The second, shows that

condition A.2 implies a high score in direction Λ5.

Lemma A.1. Condition A holds if and only if, for every λ ∈ Λ6∪Λ7, k∗(λ) ≥ maxv∈V λ·

v

Proof. (⇒) Take λ ∈ Λ7. In particular, there is θ∗ ∈ Θ such that (a) if λθn > 0 for some

n ∈ N and θ ∈ Θ then θ = θ∗ and (b) if λθn 6= 0 for some n 6= 1 and θ ∈ Θ then θ = θ∗.

Let J = {n : λθ
∗
n > 0}. Pick αJ as in condition A.2. Note that the problem maxv∈V λ · v

will admit a solution v∗ such that v∗(θ) = w1(θ) for all θ 6= θ∗ and (v∗n(θ∗))n will be

J-undominated. Let v∗ be such a solution. Then:

k∗(λ) = max

{∑
θ 6=θ∗

λ1(θ)u1(α′|θ) +
∑
n∈J

λn(θ∗)un(α′|θ∗) +
∑
n/∈J

λn(θ∗)un(α′|θ∗) : α′ ∈ ∆(A)

}
≥
∑
θ 6=θ∗

λ1(θ)w1(θ) +
∑
n∈J

λn(θ∗)vn(θ∗) +
∑
n/∈J

λn(θ∗)vn(θ∗)

= max{λ · v : v ∈ V }
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Hence, for all λ ∈ Λ7 we get k∗(λ) ≥ max{λ · v : v ∈ V ∗}

Now take λ ∈ Λ6. That is, λn = 0, for n 6= 1, λ1 6= 0, and there are θ, θ′ such that

λ1(θ) > 0 > λ1(θ′).12 Let θ+ = θ. Pick αθ+ as in condition A.1. Then:

k∗(λ) = max{
∑
θ′′∈Θ

λ1(θ′′)u1(α|θ′′) : α ∈ ∆(A)}

≥ λ1((θ+))ŵ1(θ+) +
∑
θ′′ 6=θ+

λ1((θ′′))w1(θ′′)

= max{λ · v : v ∈ V }

Hence, for all λ ∈ Λ6 we get k∗(λ) ≥ max{λ · v : v ∈ V ∗}. Hence, we get k∗(λ) ≥

max{λ · v : v ∈ V } for all λ ∈ Λ6 ∪ Λ7

(⇐) First, note that for any v ∈ V the function gv : Λ×∆(A)→ R defined by g(λ, α) =∑
i

∑
θ λi(θ)[ui(α|θ)− vi(θ)] is linear in each component and almost periodic over Λ′ ×

∆(A) for any convex Λ′ ⊂ Λ. Thus, by Fan’s minimax theorem, infλ∈Λ′ maxα{g(λ, α)} =

maxα infλ∈Λ′{g(λ, α)} for any convex Λ′ ⊂ Λ. We now use this to show condition A must

hold. Pick θ+ ∈ Θ arbitrarily and v ∈ V such that v1(θ+) = ŵ1(θ+), v1(θ) = w1(θ) for

θ 6= θ+. Let λ ∈ Λ6 be such that (λn)n6=1 = 0, λ1(θ+) = p > 0, λ1(θ) = qθ < 0 for all

θ 6= θ+. Then, for any α ∈ ∆(A):∑
θ

λ1(θ)[u1(α|θ)− v(θ)] =p[u1(α|θ+)− v1(θ+)] +
∑
θ 6=θ+

qθ[u1(α|θ)− v1(θ)]

max
α∈∆(A)

∑
θ

λ1(θ)[u1(α|θ)− v1(θ)] =k∗(λ(p, q))− λ(p, q) · v ≥ 0

inf
p,q
{k∗(λ(p, q))− λ(p, q) · v} = max

α∈∆(A)
inf
(p,q)

∑
θ

λ1(θ)[u1(α|θ)− v(θ)] ≥ 0

where the second line follows from the characterization of k∗ and the fact that k∗(λ)−

maxv∈V λ · v ≥ 0 and the last line follows from Fan’s min max theorem. Thus, there

must be an α∗ such that
∑

θ λ1(p, q)(θ)[u1(α∗|θ)− v(θ)] ≥ 0 for all p, q. Letting p→∞,

12If there were no negative-weight states, this woud be a direction in Λ1.
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qθ → 0 for all θ we conclude u1(α∗|θ+)− ŵ1(θ+) ≥ 0 and letting qθ → −∞ for some θ,

qθ′ → 0 for all θ 6= θ′ and p → 0 we conclude u1(α∗|θ+) − w1(θ+) ≤ 0. Let αθ+ ≡ α∗.

This action satisfies condition A.1.

Let θ∗ ∈ Θ, J ⊂ N and v(θ∗) a J-undominated payoff vector. Extend this vector to

RN×Θ by setting v1(θ) = w1(θ) for θ 6= θ∗ and arbitrarily for the other players. Choose

λ ∈ Λ7 such that λn(θ∗) = p(n) > 0 for n ∈ J , λn(θ∗) = q(n) < 0 for n /∈ J , λn(θ) = 0

for all n 6= 1 and θ 6= θ∗. Furthermore, let λ1(θ) = q(1, θ) < 0 for all θ 6= θ∗. Following

the same logic as before:∑
θ

∑
n

λn(θ)[un(α|θ)− vn(θ)] =
∑
n∈J

p(n)[un(α)− vn(θ∗)] +
∑
n/∈J

q(n)[un(α)− vn(θ∗)]

+
∑
θ 6=θ∗

q(1, θ)[u1(α|θ)− v1(θ)]

k∗(λ(p, q))− λ(p, q) · v ≥0

inf
p,q
{k∗(λ(p, q))− λ(p, q) · v} = max

α∈∆(A)
inf
(p,q)

∑
θ

∑
n

λn(θ)[un(α|θ)− v(θ)] ≥ 0

Thus, there must be α∗ such that for all (p, q),
∑

n λn(θ)[un(α∗|θ) − v(θ)] ≥ 0. By

adjusting the sizes of p, q in turns we obtain [un(α∗)− vn(θ∗)] ≥ 0 for n ∈ J , [un(α∗)−

vn(θ∗)] ≤ 0 for n /∈ J and [u1(α∗|θ)− w1(θ)] ≤ 0 for all θ 6= θ∗.

Lemma A.2. If condition A.2 holds, then k∗(λ) ≥ λ · v for all v ∈ V and all λ ∈ Λ5

Proof. Let condition A.2 hold, and pick J = ∅. Thus, there must exists α∗ such that,
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for all θ ∈ Θ and all n ∈ N , un(α∗|θ) ≤ wn(θ). Then:

k∗(λ) = max
α2

min
α1

{
∑
θ

λ1(θ)u1(α1, α2|θ)}

= −min
α2

max
α1

{
∑
θ

|λ1(θ)|u1(α1, α2|θ)}

=−
∑
θ

|λ1(θ)|min
α2

max
α1

{u1(α1, α2|θ)}

= max{λ · v : v ∈ V }

where the next to last equality follows from the existence of the uniform min max action.

Armed with these lemmas, we can easily prove the main theorem in this section.

Before proceeding recall proposition 8 from FY.

FY(2010) Proposition 8. If V ∗U has dimension |Θ|+N − 1 then dimQ = N

In condition A.2, set θ∗ arbitrarily and J = ∅. Then, condition A implies the

existence of a uniform min max action. This, and the fact that each V (θ) is fully

dimensional, implies V ∗U is fully dimensional.

Theorem 1. Condition A holds if and only if for any strict, smooth subset W ⊂ V

there exists δ̄ ∈ (0, 1) such that, for any δ ≥ δ̄ W ⊂ EPTXE(δ)

Proof. ⇒ If condition A holds then V ∗U has dimension |Θ|+N−1 and thus dimQ = N .

Moreover, for all λ ∈ Λ, k∗(λ) ≥ maxv∈V λ · v. Hence, by virtue of FY proposition

1, for any strict, smooth, compact subset W ⊂ V there exists δ ∈ (0, 1) such that

W ⊂ EPTXE(δ).

⇐ Assume that for any strict, smooth subset W ⊂ V there exists δ ∈ (0, 1) such

that W ⊂ EPTXE(δ). Denote with V ◦ the relative interior of V . For any v ∈ V ◦

let B̄ ⊂ V be a closed ball containing v. B is a smooth strict subset of V . Thus,

v ∈ B̄ ⊂ limδ→1E
PTXE(δ) ⊂ Q by assumption. Since this holds for any v ∈ V ◦, it
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follows that V ◦ ⊂ Q and thus supv∈V v · λ ≤ k∗(λ). By virtue of lemma A, condition A

must then hold.

A.3 Proof of Theorem 2

Lemma B.1 below is analogous to Lemma A.1 and shows that condition B is

equivalent to a high enough score in directions Λ6 ∪ Λ7.

Lemma B.1. Condition B holds if and only if, for every λ ∈ Λ6∪Λ7, k∗(λ) ≥ maxv∈V λ·

v

Proof. (⇒) Take λ ∈ Λ7. Then, there is at most one state θ+ ∈ Θ in which players are

allowed positive weights. Let J = {n : λn(θ+) > 0}.13 Pick αJ as in condition B.2.

Note that the problem maxv∈V {λ · v} will admit a solution v∗ such that v∗n(θ) = wn(θn)

for all θn 6= θ∗n and (v∗n(θ+))n will be J-undominated. Let v∗ be such a solution. Then:

k∗(λ) = max{
∑
n∈J

λn(θ+)un(α′|θ+) +
∑
n/∈J

λn(θ+)un(α′|θ+) +
∑
i∈I

∑
θi 6=θ+

i

λ(θi, θ
+
−i)ui(α

′|θi) : α′ ∈ ∆(A)}

≥
∑
i

∑
θi 6=θ∗i

λi(θi, θ
∗
−i)wi(θi) +

∑
n∈J

λn(θ∗)v∗n(θ∗) +
∑
n/∈J

λn(θ∗)v∗n(θ∗)

= max{λ · v : v ∈ V }

Hence, for all λ ∈ Λ7 we get

k∗(λ) ≥ max{λ · v : v ∈ V ∗}

Now take λ ∈ Λ6. That is, there exists i ∈ I such that λθi > 0 > λθ
′
i for some θ, θ′ ∈ Θ,

13Recall that possibly λ ≤ 0 and thus J = ∅.
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and λn = 0, for n 6= i. Let θ+ = θ. Pick α as in condition B.1. Then:

k∗(λ) = max{
∑
θ′′∈Θ

λi((θ
′′))ui(α

′|θ′′) : α′ ∈ ∆(A)}

≥λi(θ+)ŵi(θ
+
i ) +

∑
θ′′ 6=θ+

λi((θ
′′))wi(θ

′′
i )

= max{λ · v : v ∈ V }

Hence, for all λ ∈ Λ6 we get k∗(λ) ≥ max{λ · v : v ∈ V ∗} and thus, we get k∗(λ) ≥

max{λ · v : v ∈ V } for all λ ∈ Λ6 ∪ Λ7

(⇐) As before, note that for any v ∈ V the function gv : Λ × ∆(A) → R defined

by g(λ, α) =
∑

i

∑
θ λi(θ)[ui(α|θ) − vi(θ)] is linear in each component and almost pe-

riodic over Λ′ × ∆(A) for any convex Λ′ ⊂ Λ. Thus, by Fan’s minimax theorem,

infλ∈Λ′ maxα{g(λ, α)} = maxα infλ∈Λ′{g(λ, α)} for any Λ′ ⊂ Λ. We now use this to

show the two items of condition B must hold. Pick θ+ ∈ Θ, i ∈ I arbitrarily and

v ∈ V such that vi(θ
+) = ŵi(θ

+), vi(θi, θ
+
−i) = wi(θi) for θi 6= θ+

i . Let λ ∈ Λ6 be such

that (λn)n6=i = 0, λi(θ
+) = p > 0, λi(θi, θ

+
−i) = qθi < 0 for all θi 6= θ+

i . Then, for any

α ∈ ∆(A):∑
θ

λi(θ)[ui(α|θ)− vi(θ)] =p[ui(α|θ+)− vi(θ+)] +
∑
θi 6=θ+

i

qθi [ui(α|θi)− vi(θi, θ+
−i)]

max
α∈∆(A)

∑
θ

λi(θ)[ui(α|θ)− vi(θ)] =k∗(λ(p, q))− λ(p, q) · v ≥ 0

inf
p,q
{k∗(λ(p, q))− λ(p, q) · v} = max

α∈∆(A)
inf
(p,q)

∑
θ

λi(θ)[ui(α|θ)− vi(θ)] ≥ 0

where the second line follows from the characterization of k∗ and the fact that k∗(λ)−

maxv∈V λ · v ≥ 0 and the last line follows from Fan’s min max theorem. Thus, there

must be an α∗ such that
∑

θ λi(p, q)(θ)[ui(α
∗|θ)− vi(θ)] ≥ 0 for all p, q. Letting p→∞,

qθi → 0 for all θ we conclude ui(α
∗|θ+)− ŵi(θ+) ≥ 0 and letting qθi → −∞ for some θi,

qθ′i → 0 for all θ′i 6= θi and p → 0 we conclude ui(α
∗|θi) − wi(θi) ≤ 0. Let α ≡ α∗ and
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obtain condition B.1.

Let θ+ ∈ Θ, J ⊂ N and v(θ∗) a J-undominated payoff vector. Extend this vector to

RN×|Θ| by setting vn(θ) = wn(θ) for θ 6= θ∗. Choose λ ∈ Λ7 such that λn(θ∗) = p(n) > 0

for n ∈ J , λn(θ∗) = q(n) < 0 for n /∈ J , λn(θ) = 0 for all n /∈ I and θ 6= θ∗. Furthermore,

let λi(θi, θ
∗
−i) = q(i, θi) < 0 for all θi 6= θ∗i and all i ∈ I. Following the same logic as

before:∑
θ

∑
n

λn(θ)[un(α|θ)− vn(θ)] =
∑
n∈J

p(n)[un(α)− vn(θ∗)] +
∑
n/∈J

q(n)[un(α)− vn(θ∗)]

+
∑
i∈I

∑
θi 6=θ∗i

q(i, θi)[ui(α|θi, θ+
−i)− v1(θi, θ

+
−i)]

k∗(λ(p, q))− λ(p, q) · v ≥0

inf
p,q
{k∗(λ(p, q))− λ(p, q) · v} = max

α∈∆(A)
inf
(p,q)

∑
θ

∑
n

λn(θ)[un(α|θ)− v(θ)] ≥ 0

Thus, there must be α∗ such that for all (p, q),
∑

n λn(θ)[un(α∗|θ) − v(θ)] ≥ 0. By

adjusting the sizes of p, q in turns we obtain [un(α∗|θ∗) − vn(θ∗)] ≥ 0 for n ∈ J ,

[un(α∗|θ∗)− vn(θ∗)] ≤ 0 for n /∈ J and [ui(α
∗|θi)− wi(θi)] ≤ 0 for all θi 6= θ+

i .

From condition B.2 we get a similar result as lemma A.2. Notice that, in Λ5(i), if

λθi < 0, λθ
′
i < 0 then θ−i = θ′−i. Thus, directions in Λ5 are those where there is a unique

section θ−i ∈ Θ−i where weights are non zero.

Lemma B.2. If condition B2 holds then, for all i ∈ I, k∗(λ) ≥ maxv∈V λ · v for all

λ ∈ Λ5(i).

Proof. Let condition B.2 holds, and pick J = ∅. Thus, there must exist α∗ such that,
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for all θi ∈ Θi and all i ∈ I, ui(α
∗|θi) ≤ wi(θi). Then, for all λ ∈ Λ5(i):

k∗(λ) = max
α−i

min
αi
{
∑
θ

λi(θ)ui(αi, α−i|θ)}

=−min
α−i

max
αi
{
∑
θ

|λi(θ)|ui(αi, α−i|θ)}

=−
∑
θ

|λi(θ)|min
α−i

max
αi
{ui(αi, α−i|θ)}

= max{λ · v : v ∈ V }

where the next to last equality follows from the existence of the uniform (across Θi)

min max action.

Theorem 2. Condition B holds if and only if for any strict, smooth subset W ⊂ V

there exists δ̄ ∈ (0, 1) such that, for any δ ≥ δ̄, W ⊂ EPTXE(δ)

Proof. ⇒ If condition B holds, by virtue of Lemma B.1 and B.2, V ⊂ Q. Since V is

fully dimensional, so is Q. Hence, by virtue of FY proposition 1, for any strict, smooth,

compact subset W ⊂ V there exists δ ∈ (0, 1) such that W ⊂ EPTXE(δ).

⇐ Assume that for any strict, smooth subset W ⊂ V there exists δ ∈ (0, 1) such

that W ⊂ EPTXE(δ). Denote with V ◦ the relative interior of V . For any v ∈ V ◦ let

B̄ ⊂ V be a closed ball containing v. The set B̄ is a smooth strict subset of V . Thus,

v ∈ B̄ ⊂ limδ→1E
PTXE(δ) ⊂ Q by assumption. Since this holds for any v ∈ V ◦, it

follows that V ◦ ⊂ Q and thus supv∈V v · λ ≤ k∗(λ). By virtue of lemma B.1, condition

B must then hold.

A.4 Proof of Theorem 3 and Theorem 4

Theorem 3. Let σ be a PBE of the game G(µ, δ). Then, σ is asymptotically constant.

Proof. Fix θn ∈ Θn, j 6= n, θj, θ
′
j ∈ Θj, and h ∈ H such that P (θj|h) > 0, P (θ′j|h) > 0.

Since P (θj|h) > 0, P (θ′j|h) > 0 then P (θj|ht) > 0, P (θ′j|ht) > 0 for large enough t. Fix
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ε > 0. By Kalai-Lehrer (1993), there exists T such that, if t > T , then σ|θj
htj

plays ε-like∑
θ′′j
P (θj|ht, θi)σ|

θ′′j
htj

. That is, the realized strategy plays ε-like the prediction any other

player-type makes. The same holds for σ|θ
′
j

htj
. Thus, σ|θj

htj
plays ε-like σ|θ

′
j

htj
. In particular,

for any aj ∈ Aj |σ|
θj
htj

(ai)− σ|
θ′j
htj

(ai)| ≤ ε. Taking ε→ 0 (so that ht → h) completes the

proof.

Theorem 4. Let µ ∈ ∆(Θ). If for any smooth, strict subset W ⊂ V there exists

δ̄ ∈ (0, 1) such that for all δ > δ̄ W ⊂ EPBE(µ, δ) then condition B must hold.

The proof is a straightforward application of the following two lemmas. Since condi-

tion B.1 only deals with one “relevant” player, the argument is much simpler than for

condition B.2. Thus the separation of the proof into two distinct lemmas.

Lemma 4.1. Let µ ∈ ∆(Θ). If for any smooth, strict subset W ⊂ V there exists

δ̄ ∈ (0, 1) such that for all δ > δ̄ W ⊂ EPBE(µ, δ) then condition B.1 must hold.

Proof. Let θ+ ∈ Θ, i ∈ I and K > 0 be arbitrarily selected. Pick v∗ ∈ V such that

v∗i (θ
+
i , θ−i) = ŵi(θ

+
i ) for all θ−i ∈ Θ−i, v

∗
i (θi, θ−i) = wi(θi) for all θi 6= θ+

i , θ−i ∈ Θ−i and

arbitrarily otherwise. Let v ∈ V ◦ be such that ‖v− v∗‖ ≤ 1
K

and vi(θi, θ−i) = vi(θi, θ
′
−i)

for all θ−i, θ
′
−i ∈ Θ−i. Then, v can be sustained as a (µ, δ) PBE for high enough δ. Let

σ be the sustaining strategy.

Define α = Eh,θ−i{
∑

t≥0(1 − δ)δt(σθ
+

i , (σ
θj
j )j 6=i)(h

t)}. By linearity of Bernoulli utility

functions, ui(α|θ+
i ) = vi(θ

+
i ). Also, by incentive compatibility, ui(α|θi) ≤ vi(θi) for any

θi 6= θ+
i . Taking K →∞ concludes the proof.

Lemma 4.2. Let µ ∈ ∆(Θ). If for any smooth, strict subset W ⊂ V there exists

δ̄ ∈ (0, 1) such that for all δ > δ̄ W ⊂ EPBE(µ, δ) then condition B.2 must hold.

The proof of this lemma is similar to the proof of the previous one. We approximate

an appropriate boundary payoff with payoffs in the interior (these can be sustained

as PBEs); we then show that the dynamic strategies employed induce certain “static
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actions” and, finally, we show the existence of the desired action by considering the limit

case as the interior payoffs approach the boundary. On the other hand, and contrary to

the previous lemma, since many informed players are involved in the relevant incentive

compatibility constraints, we need a slightly more notational-intensive proof.

Proof. Definitions and notations Consider θ+ ∈ Θ, J ⊂ N and v(θ+) ∈ V (θ+) a J-

undominated payoff profile. Extend v(θ+) to v ∈ V by setting (a) vn(θ+
n , θ−n) = vn(θ+)

for all θ−n ∈ Θ−n (b) vi(θi, θ−i) = wi for all θi 6= θ+
i and all θ−i ∈ Θ−i. For each

K ∈ N let vK ∈ V ◦ such that ‖vK − v‖ ≤ 1
K

and such that (i) vKn (θ+
n , θ−n) = vKn (θ+)

for all θ−n ∈ Θ−n (ii) vKn (θn, θ−n) = vKn (θn, θ
′
−n) for all θn 6= θ+

n and all θ−n, θ
′
−n ∈ Θ−n.

Since this payoff is independent of the rival’s type, we abbreviate it vn(θn). Since each

vK ∈ V ◦, there exist (σK , δK) such that σK sustains vK as a µ, δK PBE. Note that

w.l.o.g. δK → 1 as K →∞. Moreover, let PK ∈ ∆(Θ×H) be the probability induced

by σK and EK denote expectation with respect to said measure. Finally, note that

Tychonoff’s theorem guarantees S is compact, and thus σK converges to some σ (up to

a subsequence) and thus PK converges (up to subsequence) to some P .

Step 1: Take any history ht (possibly with t =∞ thus denoting a complete history), any

θn ∈ Θn, and any σ̄ ∈ S. Let α(σ̄, θn, h
t) = EK

h′,θ−n|ht{
∑

τ (1 − δK)δτK(σ̄θnhtn , σ̄h
t
−n

)(h′τ )}.

In words: given a dynamic strategy σ̄, this action that summarizes the dynamic play

a player n can expect, conditional on having arrived at history ht, if he starts play-

ing like player-type θn. By linearity of Bernoulli utility functions, it follows that

un(α(σ̄, θ+
n , h

t)|θn) = EK
h′,θ−n|ht{

∑
(1 − δK)δτKun((σ̄htnθ

+
n , σ̄ht−n)(h′τ )|θn)}. In words: the

static payoff of action α(σ̄, θ+
n , h

t) summarizes, conditional on reaching history ht, the

continuation payoff player-type θn can expect if he starts mimicking θ+
n . For the case

σ̄ = σK note that, for t = ∞, so ht = h ∈ H is an infinite history, if h is such that

PK(θ+|h) > 0 then un(α(σK , θ+
n , h)|θn) = un(α((σKn , σ

K
θ+−n
−n ), θ+

n , h
t)|θn). This follows

from the fact -proved in theorem 3- that at infinity, all players in the support of the

asymptotic distribution play the same strategy. Thus, at an infinite history where θ+ re-
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ceives positive probability, without loss of generality all player-types of the rival play as

if they were θ+
−n. Also, if h is such that PK(θ+|h) = 0 then un(α(σK , θn, h)|θn) ≥ wn(θn)

by individual rationality.

Step 2: Consider a player-type θi 6= θ+
i . For each K, we construct a possible de-

viation from σK , denoted σ̂Ki , as follows: for θ′i 6= θi σ̂
Kθ′i
i = σK

θ′i
i and for each ht

such that PK(θ+|ht) > 0, σ̂K
θi

hti
= σK

θ+
i

hti
, and σ̂K

θi

hti
= σK

θi

hti
otherwise. That is, only

player-type θi deviates and, for each history ht, he only deviates if there is a positive

probability that his rivals are θ+
−i; in which case he deviates by mimicking θ+

i . Fix

an arbitrary period T ∈ N; then the payoff from this deviation can be calculated as

Ui(σ̂
Kθi

i , σK−i|θi) = Eh,θ−i{δTKui(α(σ̂, θi, h
T )|θi)} + Eh,θ−i{

∑T−1
t=0 (1 − δK)δtKui(σ̂(ht)|θi)}

By equilibrium, this payoff is no greater than the compliance payoff vKi (θi). Moreover,

let H+
K = {h : PK(θ+|h) > 0} and H+ = {h : P (θ+|h) > 0}. Then, as K → ∞ and

using convergence results from Serfozo (1982), we get:

wi(θi) ≥

Ui(σ̂|θi) = P (H+)Eh|H+{ui(α(σ̂, θi, h
T )|θi)}+ (1− P (H+))Eh|{H+{ui(α(σ̂, θi, h

T )|θi)}

≥ P (H+)Eh|H+{ui(α(σ̂, θi, h
T )|θi)}+ (1− P (H+))wi(θi)

where the last inequality follows from sequential rationality after every history.

Since this holds for all T ∈ N, taking limits as T →∞ and noting that α(σ̂, θi, h) =

α((σi, σ−i), θ
+
i , h) for all h ∈ H+, we get ui(α

∗|θi) ≤ wi(θi) where α∗ = Eh|H+{α((σi, σ
θ+
−i
−i ), θ+

i , h)}.

Since player-type θi 6= θ+
i was arbitrarily selected, this holds for all such player types.

The next step shows that un(α∗|θ+
n ) = vn(θ+) thus concluding the proof.

Step 3: By definition, strategy σK
θ+

yields playoffs vKn (θ+) to player types θ+
n . Since

under strategy σK
θ+

the set H+
K receives probability 1 we get:

vKn (θ+) = Un(σK
θ+ |θ+

n ) =

Eh,θ−i|H+
K
{δTKui(α(σK

θ+

, θi, h
T )|θ+

i )}+ Eh,θ−i|H+
K
{
∑T−1

t=0 (1− δK)δtKui(σ
Kθ+ |θ+

i )}
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Taking limits as K →∞ first and T →∞ next yields

vn(θ+) = un(α∗|θ+
n )

A.5 Dropping Condition B

If a given game does not satisfy condition B then we know that a PTXE or PBE

folk theorem cannot hold for that game. Yet, to the extent that the set of PTXE (and

thus PBE) payoffs is not empty, there are some payoff profiles that can be sustained

in equilibrium. This section deals with characterizing these. To this effect, consider an

arbitrary payoff vector v ∈ V and conditions C.1 and C.2 below:

Condition C.1. For every i ∈ I θ+ ∈ Θ there exists α such that

• ui(α|θ+
i )− vi(θ+) ≥ 0

• ui(α|θi)− vi(θi, θ+
−i) ≤ 0 for all θi 6= θ+

i

Condition C.2. For every θ+ ∈ Θ and any J ⊂ N there exists α such that

• un(α|θ+
n )− vn(θ+) ≥ 0 for all n ∈ J

• un(α|θ+
n )− vn(θ+) ≤ 0 for all n /∈ J

• ui(α|θi)− vn(θi, θ
+
−i) ≤ 0 for all θi 6= θ+

i

Conditions C.1 and C.2 are a straightforward generalization of conditions B.1 and

B.2 respectively. Thus, by mimicking the proofs of Lemmas B.1 and B.2, it is straight-

forward to see that a payoff vector v ∈ V satisfies λ · v ≤ k∗(λ) for all λ ∈ Λ6 ∪ Λ7 if

and only if it satisfies conditions C.1 and C.2.

Checking that a specific vector v ∈ V satisfies k∗(λ) ≥ λ · v for all λ ∈ Λ5 requires
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an extra definition. For n ∈ N let L(n) = {l ∈ RΘ : (∃ a∗−n : ∆(An) → A−n) such that

l(θ) = maxαn un(αn, a
∗
−n(αn)|θn)}.14 Then, k∗(λ)− λ · v ≥ 0 for all λ ∈ Λ5 if and only if

for every i there exists some l ∈ L(i) such that vi(θ) ≥ l(θ). Before proving this result,

notice that when there is an action that minimaxes player i uniformly over his types

then l(θ) ≡ wi(θ) ∈ L(i) for all v ∈ V and n ∈ N . Thus, when condition B.2 applies to

the special case J = ∅, for each n ∈ N there is an l ∈ L(n) such that, for every v ∈ V

l(θ) ≥ vn(θ). In this sense, the sets L(i) generalize the notion of “lower bound” when

the action profile that minimaxes all players cannot be sustained.

To show the result note:

k∗(λ)− λ · v ≥ 0 for all λ ∈ Λ5(i)⇔

(∀λ ∈ Λ5) maxα−i minai{
∑

θ λi(θ)[ui(ai, α−i|θ)− vi(θ)]} ≥ 0⇔

(∀λ ∈ Λ5(i)) maxαi min a−i{
∑

θ |λi(θ)|[ui(αi, a−i|θ)− vi(θ)]} ≤ 0⇔

maxλ∈Λ5(i) maxαi min a−i{
∑

θ |λi(θ)|[ui(αi, a−i|θ)− vi(θ)]} ≤ 0⇔

maxαi min a−i maxθ∈Θ{
∑

θ |λi(θ)|[ui(αi, a−i|θ)− vi(θ)]} ≤ 0⇔

(∀αi)(∃a−i) : (∀θ)[ui(αi, a−i|θ)− vi(θ)] ≤ 0⇔

(∃a∗−i : ∆(Ai)→ A−i) : (∀αi)(∀θ)[ui(αi, a∗−i(αi)|θ)− vi(θ)] ≤ 0⇔

(∃l ∈ L(i)) : (∀θ)[l(θ)− vi(θ)] ≤ 0

In short, a payoff profile v ∈ V is such that v ∈ Q, and thus v ∈ limδ→1E
PTXE(δ) under

the dimensionality condition, if and only if it satisfies C.1, C.2 and for each i there exists

l ∈ L(i) such that l(θ) ≤ vi(θ) for each θ ∈ Θ.
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