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Abstract. We study an infinite horizon game in which pairs of players connected in a

network are randomly matched to bargain over a unit surplus. Players that reach agreement

are replaced by new players at the same positions in the network. We prove that for each

discount factor all equilibria are payoff equivalent. The equilibrium payoffs and the set of

equilibrium agreement links converge as players become patient. Several new concepts–

mutually estranged sets, partners, and shortage ratios–provide insights into the relative

strengths of the positions in the network. We develop a procedure to determine the limit

equilibrium payoffs by iteratively applying the following results. Limit payoffs are lowest

for the players in the largest mutually estranged set that minimizes the shortage ratio,

and highest for the corresponding partners. In equilibrium, for high discount factors, the

partners act as an oligopoly for the estranged players. In the limit, surplus within the

induced oligopoly subnetwork is divided according to the shortage ratio. We characterize

equitable networks, stable networks, and non-discriminatory buyer-seller networks. The

results extend to heterogeneous discount factors and general matching technologies.

1. Introduction

Competitive equilibrium theory assumes large and anonymous markets, in which every

buyer can trade with every seller. Underlying these assumptions are standard goods and

services that may be traded at low transaction costs by agents who are not in specific rela-

tionships with one another. However, in many markets goods and services are heterogeneous

(e.g., cars, apartments) or need to be tailored to particular needs (e.g., manufacturing in-

puts, technical support). Furthermore, trading opportunities may depend on transportation

costs, social relationships, technological compatibility, joint business opportunities, free trade
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Figure 1. The green position is weak despite having the largest number of connections.

agreements, etc. In such cases it is natural to model the market using a network, where only

pairs of connected agents can engage in exchange. New theories are needed to explore the

influence of the network structure on market outcomes. Many questions arise: How does

an agent’s position in the network determine his bargaining power and the local prices he

faces? Who trades with whom and on what terms? Are trading outcomes equitable or

non-discriminatory? Which networks are stable?

One possible conjecture is that an agent’s bargaining power is determined by his (relative)

number of connections in the network. However, this simple theory is not very plausible.

Consider the network of four sellers (located at the top nodes) and nine buyers (located at

the bottom nodes) depicted in Figure 1. The buyer located at the position colored green has

the largest number of links in the network, as he is connected to each of the four sellers. Yet

every seller has monopoly power over two other buyers whom he can extort, even if trade

with the green buyer is unattainable. Hence the green buyer is not able to extract a large

fraction of the surplus from any seller despite his relatively large number of connections.

This example illustrates that the relative strengths of the positions in a network are highly

interdependent. An agent’s bargaining power does not depend only on the number of his

partners, but also on the identities and bargaining power of his partners. Each partner’s

bargaining power depends in turn on the bargaining power of his corresponding partners,

and so forth. An adequate measure of bargaining power in networks needs to take this

interdependence into account.

In a recent book [15], Jackson surveys the emerging field of social and economic networks

and concludes that several central issues remain unsolved.

There are important open questions regarding how network structure affects

the distribution of the benefits that accrue to different actors in a network.
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In particular, Jackson notes that analyzing “a non-cooperative game that completely mod-

els the bargaining process through which ultimate payoffs are determined [...] is usually

intractable.” The present paper attempts to fill this gap using a non-cooperative model of

decentralized bilateral bargaining in networks. Our model is tractable and provides answers

to the questions listed in the first paragraph.

The setting is as follows. We consider a network where each pair of players connected

by a link can jointly produce a unit surplus. The network generates the following infinite

horizon discrete time bargaining game. Each period a link is randomly selected, and one of

the two matched players is randomly chosen to make an offer to the other player specifying

a division of the unit surplus between themselves. If the offer is accepted, the two players

exit the game with the shares agreed on. We make the following steady state assumption.

The two players who reached agreement are replaced in the next period by two new players

at the same positions in the network. If the offer is rejected, the two players remain in the

game for the next period. All players have a common discount factor.

The steady state assumption captures the idea that in many trading environments agents

face stationary distributions of bargaining opportunities, and some agents take similar posi-

tions in relationships and transactions at different points in time. In the benchmark model

this assumption entails that every period an exogenous inflow of agents matches the sto-

chastic endogenous outflow of agents who reach agreements in equilibrium. Nevertheless,

the results extend to a model in the spirit of Gale (1987), where the steady state analysis

involves a deterministic inflow of agents. In that model every period a continuum of players

are present at each node in the network, and a positive measure of player pairs are matched

to bargain across each link (see footnote 9).

In Abreu and Manea (2008) we drop the stationarity assumption, and analyze the situation

in which players that reach agreements are removed from the network without replacement.

The bargaining protocol is identical to the one of the present paper. Our findings, along

with the key differences between the two models, are discussed in the literature review.
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1.1. Outline of the paper. We assume that all players have perfect information about all

the events preceding any of their decision nodes in the game. The equilibrium concept we

use is subgame perfect equilibrium.1

In Section 3, we prove that for every discount factor the equilibrium payoff of every

player present at the beginning of any period is uniquely determined by his position in

the network (Theorem 1). For all but a finite number of discount factors, there exists a

partition of the set of links into equilibrium agreement and disagreement links (Proposition

1). In every equilibrium, after any history, a pair of players connected by an equilibrium

agreement link reaches an agreement when matched to bargain, and the division agreed on

is uniquely determined by the positions in the network of the proposer and the responder.

Players connected by equilibrium disagreement links never reach agreements when matched

to bargain.

We prove that there exists a limit equilibrium agreement network that describes the set of

equilibrium agreement links for sufficiently high discount factors (Theorem 2). Also, there is

a limit equilibrium payoff vector to which the equilibrium payoffs converge as the discount

factor goes to 1.

For instance, consider the network G1 with 5 players illustrated in Figure 2.2 For every

discount factor there is a unique equilibrium, with agreement network equal to G1. In

equilibrium every match ends in agreement because players 4 and 5 cannot be monopolized

by either player 1 or 2. The limit equilibrium payoffs are 3/5 for players 1 and 2, and 2/5

for players 3, 4, and 5. The limit equilibrium agreement network coincides with G1.

Consider next the network G2, obtained from G1 by removing the link (2, 4). For low

discount factors there exists a unique equilibrium, and the agreement network is the entire

G2. However, for high discount factors, players 1 and 5 do not reach an equilibrium agreement

when matched to bargain. The intuition is that player 1 can extort players 3 and 4, since

these two players do not have other bargaining partners. Player 1 cannot extract as much

surplus from player 5, since player 5 has monopoly over the bargaining opportunities of

player 2. The limit equilibrium payoffs are 2/3 for player 1, 1/3 for players 3 and 4, and

1Section 3 discusses the robustness of the results to some features of the information structure and the
equilibrium requirements.
2In all figures, limit equilibrium payoffs for each player are represented next to the corresponding node, and
limit equilibrium agreement and disagreement links are drawn as thick and thin line segments, respectively.
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Figure 2. Networks G1 (left) and G2

1/2 for players 2 and 5. The limit equilibrium agreement network consists of all links of

G2 except (1, 5). The equilibria of the bargaining games on the networks G1 and G2 for all

discount factors are described in Example 1 from Section 3.

The main objective of our analysis is to determine the limit equilibrium payoffs for every

network. The following essential observation is presented in Section 4. Consider a set of

players who are pairwise disconnected in the limit equilibrium agreement network, and the

set of players with whom these players share limit equilibrium agreement links. We refer to

players in the former set as mutually estranged, and to ones in the latter set as partners.3

Basically, as players become patient, the partners have control over the (equilibrium) relevant

bargaining opportunities of the mutually estranged players. For high discount factors, since

the estranged players can only reach equilibrium agreements in pairwise matchings with

the partners, the mutually estranged set is weak if the partners are relatively scarce. The

appropriate measure of the strength of a mutually estranged set proves to be the simplest

that springs to mind–the shortage ratio, which is defined as the ratio of the numbers of

partners and estranged players.

For example, in the network G1 the shortage ratios of the mutually estranged sets {3, 4}

and {3, 4, 5} are 1 and 2/3, respectively, since the partner set is {1, 2} in either case. In the

network G2 the shortage ratios of the mutually estranged sets {3, 4} and {3, 4, 5} are 1/2

and 2/3, respectively, since the corresponding partner sets are {1} and {1, 2}, respectively.

The determination of the partners for the mutually estranged sets considered here is based

3To illustrate the definition, note that the list of all mutually estranged sets and corresponding part-
ner sets in the limit equilibrium agreement network for the bargaining game on the network G2 is
({1}, {3, 4}), ({2}, {5}), ({3}, {1}), ({4}, {1}), ({5}, {2}), ({1, 2}, {3, 4, 5}), ({1, 5}, {2, 3, 4}), ({2, 3}, {1, 5}),
({2, 4}, {1, 5}), ({3, 4}, {1}), ({3, 5}, {1, 2}), ({4, 5}, {1, 2}), ({2, 3, 4}, {1, 5}), and ({3, 4, 5}, {1, 2}).
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on the aforementioned limit equilibrium agreement subnetworks for the bargaining games on

the networks G1 and G2.

The concepts of mutually estranged sets, partners and shortage ratios play key roles in

the prediction of bargaining power. Formally, the shortage ratio measures the strength of a

mutually estranged set in the following sense. For every set of mutually estranged players

and their partners the ratio of the limit equilibrium payoffs of the worst-off estranged player

and the best-off partner is not larger than the shortage ratio of the mutually estranged

set (Theorem 3). The proof is based on the fact that a player’s equilibrium payoff is the

expected present value of his stream of first mover advantage. Since first mover advantage

in a bilateral encounter is symmetric for the two players, the sum of equilibrium payoffs for

every set of mutually estranged players is not larger than for the corresponding partners.

The result yields an upper (lower) bound for the limit equilibrium payoff of the worst-off

estranged player (best-off partner).

There may be a multitude of mutually estranged sets, and it is not immediately clear

which, if any, of the corresponding bounds for the limit equilibrium payoffs are binding.

One delicate step toward the main result (Theorem 4) is the idea that the bounds generated

by a set of mutually estranged players and their partners need to be binding unless the

worst-off estranged player is part of an even weaker mutually estranged set, and the best-off

partner is part of an even stronger partner set. Based on this intuition, we prove that the

extreme bounds–the ones derived from the (largest) mutually estranged set that minimizes

the shortage ratio and the corresponding partners–must bind.4 The two sets of players

associated with these bounds have extremal limit equilibrium payoffs, and induce an oligopoly

subnetwork enclosing all their limit equilibrium agreement links. Thus, for high discount

factors, the partners act as an oligopoly that corners and extorts the estranged players.

In the equilibrium limit, surplus within the oligopoly subnetwork is divided according to

the shortage ratio of the mutually estranged players with respect to their partners, with

all players on each side receiving identical payoffs. The limit equilibrium payoffs for the

networks G1 and G2 are obtained by computing that the lowest shortage ratio in G1 is 2/3,

4Our analysis reveals that the lowest shortage ratio, when smaller than 1, may be computed by considering
sets of players that are pairwise disconnected (and their neighbors) in the entire network rather than in the
(a priori unknown) limit equilibrium agreement network.
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attained for the mutually estranged set {3, 4, 5} with the oligopoly {1, 2}, while in G2 it is

1/2, attained for the mutually estranged set {3, 4} with the oligopoly {1}.

Section 5 defines an algorithm that sequentially determines the limit equilibrium payoffs

of all players based on the ideas above. At each step, the algorithm determines the union of

all mutually estranged sets with the lowest shortage ratio, and removes the corresponding

estranged players and their partners.5 Within the identified extremal oligopoly subnetwork

surplus is divided between the two sides according to the shortage ratio. The algorithm

stops when all players have been removed, or when the lowest shortage ratio is greater than

or equal to 1, corresponding to limit equilibrium payoffs for the remaining players of 1/2.

We use the algorithm to address a number of questions about the uniformity of payoffs and

the stability of the network. In Section 6 we characterize the class of equitable networks, i.e.,

networks for which the limit equilibrium payoffs of all players are identical (equal to 1/2).

A network is equitable if and only if it is quasi-regularizable; another equivalent condition is

that the network can be covered by a match and odd cycles disjoint union (Theorem 5).

Section 7 studies the networks that are stable with respect to the equilibrium payoffs. A

network is unilaterally stable if no player benefits from severing one of his links. A network

is pairwise stable if it is unilaterally stable and no pair of players benefit from forming a

new link. We prove that every network is unilaterally stable, but only equitable networks

are pairwise stable, with respect to the limit equilibrium payoffs (Theorem 6). The same

conclusions hold for approximate stability with respect to the equilibrium payoffs for high

discount factors smaller than 1 (Corollary 2).

In Section 8 we show that restricting attention to buyer-seller networks permits a more

transparent characterization of limit equilibrium oligopoly subnetworks and a more straight-

forward procedure to compute the limit equilibrium payoffs (Theorem 4BS). Limit equilib-

rium payoffs of 1/2 play no special role in the results for buyer-seller networks. We also

analyze non-discriminatory buyer-seller networks, i.e., networks for which the limit equi-

librium payoffs of all buyers are identical. If the buyer-seller ratio is an integer, then the

network is non-discriminatory if and only if it can be covered by a disjoint union of clusters

5An important observation, which ensures that the algorithm identifies and removes all residual players with
extremal limit equilibrium payoffs simultaneously, is that the set of mutually estranged sets with the lowest
shortage ratio is closed with respect to unions, as long as the lowest shortage ratio is less than 1 (Lemma 5).
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formed by one seller connected to a number of buyers equal to the buyer-seller ratio (The-

orem 7). We adapt the definition of pairwise stability to buyer-seller networks and show

that a buyer-seller network is two-sided pairwise stable with respect to the limit equilibrium

payoffs if and only if it is non-discriminatory (Theorem 6.iiBS).

One consequence of the analysis is that submarkets endogenously emerge in equilibrium. A

market described by a connected network, which cannot be decomposed into non-overlapping

submarkets, may induce a disconnected limit equilibrium agreement network where players

are partitioned into oligopoly subnetworks. In the equilibrium limit, each oligopoly sub-

network describes an independent submarket since no transactions occur across distinct

oligopoly subnetworks. Each player self-selects into the most favorable submarket he is

linked to. The limit equilibrium prices are uniform within every submarket. In particular,

an outside observer who is only aware of the equilibrium outcomes, but is unfamiliar with the

underlying network structure, may attempt to analyze the ensuing submarkets separately,

failing to notice that a priori they are interconnected.

Section 9 extends the main results to the cases of heterogeneous discount factors and

general matching technologies. Section 10 reviews the related literature, and Section 11

concludes.

2. Framework

Let N denote the set of n players, N = {1, 2, . . . , n}. A network is an undirected

graph H = (V,E) with set of vertices V ⊂ N and set of edges (also called links)

E ⊂ {(i, j)|i 6= j ∈ V } such that (j, i) ∈ E whenever (i, j) ∈ E. We identify the pairs (i, j)

and (j, i), and use the shorthand ij or ji instead. We say that player i is connected in H

to player j, or i has an H link to j, if ij ∈ E. We often abuse notation and write ij ∈ H for

ij ∈ E. A network H ′ = (V ′, E ′) is a subnetwork of H if V ′ ⊂ V and E ′ ⊂ E. A network

H ′ = (V ′, E ′) is the subnetwork of H induced by V ′ if E ′ = E ∩ (V ′ × V ′).

Let G be a fixed network with vertex set N . A link ij in G is interpreted as the ability

of players i and j to jointly generate a unit surplus.6 Consider the following infinite horizon

bargaining game generated by the network G. Each period t = 0, 1, . . . a link ij in G

6For simplicity, we assume everywhere except Section 7 that each player has at least one G link.
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is selected randomly (with equal probability),7 and one of the players (the proposer) i and

j is chosen randomly (with equal probability) to make an offer to the other player (the

responder) specifying a division of the unit surplus between themselves. If the responder

accepts the offer, the two players exit the game with the shares agreed on. In period t + 1

two new players assume the same positions in the network as i and j, respectively. If the

responder rejects the offer, the two players remain in the game for the next period. In period

t + 1 the game is repeated with the set of n players, consisting of the ones from period t,

with the departing players replaced by new players if an agreement obtains in period t. All

players share a discount factor δ ∈ (0, 1).8 The game is denoted Γδ.

Formally, there exists a sequence i0, i1, . . . , iτ , . . . of players of type i ∈ N (a player’s type

is defined by his position in the network). When player iτ exits the game (following an

agreement with another player), player iτ+1 replaces him for the next period.9 We assume

that players have perfect information of all the events preceding any of their decision nodes

in the game. Possible relaxations of the information structure are discussed in the next

section.

There are three types of histories. We denote by ht a history of the game up to (not

including) time t, which is a sequence of t− 1 pairs of proposers and responders connected

in G, with corresponding proposals and responses. We call such histories, and the subgames

that follow them, complete. For simplicity, we assume that for every history players are

only labeled by their type without reference to the index of their copy. The index τ of the

copy of i playing the game at time t following the history ht can be recovered by counting

the number of bargaining agreements involving i along ht. Therefore, a history ht uniquely

determines the copy iτ of player i present in the game at time t, and when there is no risk

of confusion we suppress the index of iτ . We denote by H(iτ ) the set of complete histories,

or subgames, where iτ is the copy of player i present in the game. We denote by (ht; i→ j)

7The analysis is not sensitive to the specification of the matching technology. See Subsection 9.2.
8The case of heterogeneous discount factors is considered in Subsection 9.1.
9The results translate to an alternative specification of the model in the spirit of Gale (1987). Suppose that
there exists a continuum of players of each type in N . Measure µi of players of type i are present in the
game at each period. The matching technology is such that, for each link ij, measure µij of players i are
matched to bargain with one of the players j (through random selection of proposer). It is assumed that
µi > 0, µij = µji > 0 and µi >

∑
{j|ij∈G} µij . The probability that a player i is matched to a player j is

µij/µi, and no player is involved in more than one match at once. The set of players of each type who reach
agreements is immediately replaced by a set of players of the same type of equal measure.
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the history consisting of ht followed by nature selecting i to propose to j. We denote by

(ht; i→ j;x) the history consisting of (ht; i→ j) followed by i offering x ∈ [0, 1] to j.

A strategy σiτ for player iτ specifies, for all j connected to i in G and all ht ∈ H(iτ ),

the offer σiτ (ht; i → j) that i makes to j after the history (ht; i → j), and the response

σiτ (ht; j → i;x) that i gives to j after the history (ht; j → i;x). We allow for mixed

strategies, hence σiτ (ht; i → j) and σiτ (ht; j → i;x) are probability distributions over [0, 1]

and {Yes, No}, respectively. In the context of our game, we say that two strategy profiles

are payoff equivalent if they induce identical payoffs for any player iτ , when payoffs are

evaluated as follows. A player’s payoff is the expected value of his gains from all bargaining

agreements discounted relative to the time when the player entered the game (rather than

period 0 of the game). A strategy profile (σiτ )i∈N,τ≥0 is a subgame perfect equilibrium

of Γδ if it induces Nash equilibria in subgames following every history (ht; i → j) and

(ht; i→ j;x).

3. Essential Equilibrium Uniqueness and Discounting Asymptotics

We first show that across all equilibria of the bargaining game the expected payoff of

every player present in any complete subgame is uniquely determined by his position in the

network. The unique and stationary equilibrium payoffs associated with each player type

may be used to describe the possible equilibrium outcomes of every bargaining encounter.

Theorem 1. For every δ ∈ (0, 1), there exists a payoff vector (v∗δi )i∈N such that for every

subgame perfect equilibrium of Γδ the expected payoff of player iτ in any H(iτ ) subgame is

uniquely given by v∗δi for all i ∈ N, τ ≥ 0. For every equilibrium of Γδ, in any subgame where

iτ is selected to make an offer to jτ ′, the following statements are true with probability one:

(1) if δ(v∗δi + v∗δj ) < 1 then iτ offers δv∗δj and jτ ′ accepts;

(2) if δ(v∗δi + v∗δj ) > 1 then iτ makes an offer that jτ ′ rejects.

We can extend the conclusions of Theorem 1 to settings in which players do not have perfect

information about all past bargaining encounters. It may be that players only know their

own history of interactions, or know the history of all pairs matched to bargain but only see

the outcomes of their own interactions. Players who reach agreements and exit the game may

pass down information to the players who take their positions in the network. Some players
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may be informed of the exact identities of their bargaining partners, or only about their

positions in the network. In such settings, players need to form beliefs about the unrevealed

bargaining outcomes. Extending the proof to show uniqueness of the sequential equilibrium

payoffs for each player type under various information structures is straightforward.

Furthermore, Theorem 1 generalizes to security equilibria (Binmore and Herrero 1988b).

The definition of a security equilibrium is related to the notion of rationalizability introduced

by Bernheim (1984) and Pearce (1984). The requirement that it be common knowledge that

a player never uses a strategy which is not a best response to a rational strategy profile of

his opponents is replaced by a similar requirement concerning security levels. A security

equilibrium entails common knowledge of the fact that no player takes an action under any

contingency which yields a payoff smaller than his security level for that contingency. The

requirements of security equilibrium are weaker than those of sequential equilibrium.

The proof proceeds in two steps. First, we show that if attention is restricted to steady

state stationary strategies then all equilibria are payoff equivalent. Second, we argue that

all subgame perfect equilibria yield the unique steady state stationary equilibrium payoffs.

A strategy profile (σiτ )i∈N,τ≥0 is steady state stationary if each player’s strategy at any

time t depends exclusively on his position in the network and the play of the game in period

t, that is, σiτ (ht; i → j) = σiτ ′ (h
′
t′ ; i → j) and σiτ (ht; j → i;x) = σiτ ′ (h

′
t′ ; j → i;x) for

all ij ∈ G, x ∈ [0, 1], τ, τ ′ ≥ 0, ht ∈ H(iτ ), h
′
t′ ∈ H(iτ ′). A steady state stationary

equilibrium is a subgame perfect equilibrium in steady state stationary strategies.

The following two lemmas are essential to the proof. Lemma 1 is a simple algebraic

observation, and Lemma 2 is the statement of the first part of Theorem 1 restricted to steady

state stationary equilibria. Lemma 1 is invoked in the proofs of Lemma 2 and Theorem 1.

Lemma 1. For all w1, w2, w3, w4 ∈ R,

|max(w1, w2)−max(w3, w4)| ≤ max(|w1 − w3|, |w2 − w4|).

Lemma 2. There exists a payoff vector (ṽ∗δi )i∈N such that in every steady state stationary

equilibrium of Γδ the expected payoff of iτ at the beginning of any H(iτ ) subgame is uniquely

given by ṽ∗δi for all i ∈ N, τ ≥ 0.
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The proofs of Lemmata 1 and 2 appear in the Appendix. We sketch the proof of Lemma

2 here. Let σ be a steady state stationary equilibrium of Γδ. Under σ, for every i ∈ N , each

player iτ receives the same expected payoff, ṽi, in any H(iτ ) subgame. We argue that ṽ is a

fixed point of the function f δ = (f δ1 , f
δ
2 , . . . , f

δ
n) : [0, 1]n → [0, 1]n defined by

(3.1) f δi (v) =
2e− ei

2e
δvi +

1

2e

∑
{j|ij∈G}

max(1− δvj, δvi),

where e denotes the total number of links in G and ei denotes the number of links player i

has in G. Next we use Lemma 1 to show that f δ is a contraction with respect to the sup

norm on Rn, hence it has a unique fixed point (ṽ∗δi )i∈N . Therefore, ṽ = ṽ∗δ.

Remark 1. The set of steady state stationary pure strategy equilibria of Γδ is non-empty.

The following is an element. When i is selected to propose to j, he offers min(1− δṽ∗δi , δṽ∗δj ),

and when i has to respond, he accepts any offer of at least δṽ∗δi and rejects smaller offers

(regardless of the proposer). However, uniqueness of the steady state stationary equilibrium

payoffs does not imply uniqueness of the equilibrium strategies. For instance, when i is

selected to make an offer to j and δ(ṽ∗δi + ṽ∗δj ) > 1, we can replace i’s behavior by any mixed

strategy over the interval [0, δṽ∗δj ) or [0, δṽ∗δj ] (depending on whether j’s strategy is to accept

offers of δṽ∗δj from i with positive probability).

Proof of Theorem 1. Consider the (non-empty) set of all subgame perfect equilibria of Γδ

(including those which are not steady state stationary). For each i ∈ N , let vδi and vδi be

the infimum and respectively supremum of the expected payoff of iτ in any H(iτ ) subgame,

over all τ ≥ 0, and across all subgame perfect equilibria of Γδ.10

Fix an i ∈ N and a subgame perfect equilibrium of Γδ. No copy of player j will accept an

offer smaller than δvδj , so i can obtain a payoff of at most 1− δvδj from an agreement with j,

when i is the proposer.11 Player i accepts any offer larger than δvδi since he receives at most

δvδi in the continuation subgame after a rejection, so no player j offers him more than δvδi in

equilibrium. If there is no agreement involving i in some period, his continuation payoff is at

10The approach is similar to the Shaked and Sutton (1984) proof of equilibrium uniqueness for the Rubinstein
(1982) alternating offer bargaining game. For our bargaining game, the steps are complicated by the a priori
unknown set of pairs of players who reach agreements in equilibrium when the possible bargaining partners
for each player are determined by the network.
11Throughout this argument i (j) should be read as “copy of i (j).”
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most δvδi . It follows that for all τ ≥ 0 the equilibrium payoff viτ of iτ in an H(iτ ) subgame

satisfies

viτ ≤
2e− ei

2e
δvδi +

1

2e

∑
{j|ij∈G}

max(1− δvδj , δvδi ).

By the definition of vδi , the inequality above implies that

(3.2) vδi ≤
2e− ei

2e
δvδi +

1

2e

∑
{j|ij∈G}

max(1− δvδj , δvδi ).

Again, fix an i ∈ N and a subgame perfect equilibrium of Γδ. Consider the following

deviation for player i from the equilibrium strategy. Player i offers δvδj + ε (ε > 0) to any

j such that δvδi + δvδj + ε ≤ 1. Since each player j receives at most δvδj in the continuation

subgame, the offer is accepted in equilibrium. Player i makes unreasonable offers (say, offers

0) to all other players, and rejects any offer he receives. It must be that for all τ ≥ 0 the

equilibrium payoff viτ of iτ in an H(iτ ) subgame is not smaller than the expected payoff from

the deviation,

viτ ≥
2e− ei

2e
δvδi +

1

2e

∑
{j|ij∈G}

max(1− δvδj − ε, δvδi ), ∀ε > 0,

and taking the limit ε→ 0,

viτ ≥
2e− ei

2e
δvδi +

1

2e

∑
{j|ij∈G}

max(1− δvδj , δvδi ).

By the definition of vδi , the inequality above implies that

(3.3) vδi ≥
2e− ei

2e
δvδi +

1

2e

∑
{j|ij∈G}

max(1− δvδj , δvδi ).

Let D = maxk∈N v
δ
k − vδk. If i ∈ arg maxk∈N v

δ
k − vδk, then from 3.2, 3.3, and Lemma 1,

D = vδi − vδi ≤
2e− ei

2e
δ(vδi − vδi ) +

1

2e

∑
{j|ij∈G}

(max(1− δvδj , δvδi )−max(1− δvδj , δvδi ))

≤ 2e− ei
2e

δD +
1

2e

∑
{j|ij∈G}

max(|1− δvδj − (1− δvδj)|, |δvδi − δvδi |)

≤ 2e− ei
2e

δD +
1

2e

∑
{j|ij∈G}

δmax(vδj − vδj , vδi − vδi )

≤ δD.

Since D ≥ 0 and δ ∈ (0, 1), it follows that D = 0. Therefore, vδk = vδk for all k ∈ N .
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Then 3.2 and 3.3 imply that

vδi =
2e− ei

2e
δvδi +

1

2e

∑
{j|ij∈G}

max(1− δvδj , δvδi ),∀i ∈ N,

which means that vδ is identical to the unique fixed point ṽ∗δ of f δ. Hence vδ = vδ = ṽ∗δ.

It follows that iτ obtains an expected payoff of ṽ∗δi =: v∗δi in any H(iτ ) subgame in every

subgame perfect equilibrium. The second part of the theorem follows immediately. �

The following description of the equilibria for two simple networks illustrates the conclu-

sions of Theorem 1. Equilibria for less trivial networks are analyzed in Example 2.

Example 1. Consider the network G1 illustrated in Figure 2. The equilibrium payoffs are

v∗δ1 =
150− 250δ + 103δ2

5(100− 220δ + 158δ2 − 37δ3)
, v∗δ2 =

100− 160δ + 63δ2

5(100− 220δ + 158δ2 − 37δ3)

v∗δ3 =
2(25− 40δ + 16δ2)

5(100− 220δ + 158δ2 − 37δ3)
, v∗δ4 = v∗δ5 =

100− 165δ + 67δ2

5(100− 220δ + 158δ2 − 37δ3)
,

converging to v∗1 = v∗2 = 3/5 and v∗3 = v∗4 = v∗5 = 2/5 as δ → 1. There exists a unique

equilibrium in which, for all ij ∈ G1, when i is selected to propose to j, he offers δv∗δj , and

when i has to respond to a proposal from j, he accepts any offer of at least δv∗δi and rejects

smaller offers. In equilibrium every match ends in agreement.

Consider next the network G2, also illustrated in Figure 2. The equilibrium payoffs when

players have discount factor δ ≤ 10(9−
√

2)/79 ≈ 0.9602 =: δ are

v∗δ1 =
300− 520δ + 223δ2

5(200− 460δ + 346δ2 − 85δ3)
, v∗δ2 =

100− 160δ + 63δ2

5(200− 460δ + 346δ2 − 85δ3)

v∗δ3 = v∗δ4 =
2(50− 85δ + 36δ2)

5(200− 460δ + 346δ2 − 85δ3)
, v∗δ5 =

2(100− 170δ + 71δ2)

5(200− 460δ + 346δ2 − 85δ3)
.

For δ < δ, there is a unique equilibrium with a description similar to the case of G1.

A payoff irrelevant equilibrium multiplicity arises for the discount factor δ. For δ = δ, it is

true that δ(v∗δ1 + v∗δ5 ) = 1. Any behavior of player 1 in bargaining encounters with player 5

that satisfies the following conditions is part of an equilibrium. Player 1’s offer is an arbitrary

probability distribution over [0, δv∗δ5 ]. Player 1 rejects offers smaller than δv∗δ1 , accepts with

some arbitrary probability an offer of δv∗δ1 , and accepts with probability 1 larger offers.12

12Note that the probability of agreement between 1τ and 5τ ′ does not influence their own payoffs, but affects
the length of time that future copies of players 1 and 5 need to wait before entering the game. However,
the equilibrium payoffs of these players are not affected by the induced delay since, as already mentioned,
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The equilibrium payoffs when players have discount factor δ > δ are

v∗δ1 =
2

10− 7δ
, v∗δ3 = v∗δ4 =

1

10− 7δ
, v∗δ2 = v∗δ5 =

1

2(5− 4δ)
,

converging to v∗1 = 2/3, v∗3 = v∗4 = 1/3 and v∗4 = v∗5 = 1/2 as δ → 1. For δ > δ, in every

equilibrium agreement obtains across all links except (1, 5). The equilibrium requirements

do not pin down the disagreement offer in an encounter between players 1 and 5, and there

exist multiple payoff equivalent equilibria as explained in Remark 1. However, in every

equilibrium the strategies for bargaining across the links (1, 3), (1, 4), (2, 5) need to be as

specified by Remark 1.

We call (v∗δi )i∈N the equilibrium payoff vector at δ. The equilibrium agreement

network at δ, denoted G∗δ, is defined as the subnetwork of G with the link ij included if

and only if δ(v∗δi + v∗δj ) ≤ 1. For δ such that δ(v∗δi + v∗δj ) 6= 1, ∀ij ∈ G, the agreements

and disagreements in any subgame across all equilibria are entirely characterized as in the

second part of Theorem 1. We show that the condition δ(v∗δi + v∗δj ) 6= 1, ∀ij ∈ G holds for

all but a finite set of discount factors δ, hence the description of equilibrium agreements and

disagreements is complete generically.

Proposition 1. The condition δ(v∗δi + v∗δj ) 6= 1,∀ij ∈ G holds for all but a finite set of δ.

The proof appears in the Appendix. We outline the approach here since some of the ideas

resurface in the proof of the next result.

For every δ ∈ (0, 1) and every subnetwork H of G, consider the n× n linear system

(3.4) vi =
2e− eHi

2e
δvi +

1

2e

∑
{j|ij∈H}

(1− δvj), ∀i = 1, n,

where eHi denotes the number links that player i has in H (e denotes the total number of

links in G, as in the proof of Theorem 1). We showed that v∗δ solves the system for H = G∗δ.

It is easy to check that the system 3.4 has a unique solution vδ,H . In particular, v∗δ = vδ,G
∗δ

.

All entries in the augmented matrix of the linear system 3.4 are linear functions of δ. Then

for each i ∈ N the solution vδ,Hi is given by Cramer’s rule, as the ratio of two determinants

a player’s payoff is evaluated by discounting relative to the time when the player entered the game rather
than period 0 of the game.
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that are polynomials in δ of degree at most n,

(3.5) vδ,Hi = PH
i (δ)/QH

i (δ).

We can then argue that every δ for which there exist i, j with δ(v∗δi + v∗δj ) = 1 is a root of

one of a finite family of non-zero polynomials in δ.

Denote by ∆ the finite set of δ for which the condition δ(v∗δi + v∗δj ) 6= 1,∀ij ∈ G does not

hold. As established by Theorem 1, for δ 6∈ ∆, in every equilibrium of Γδ, in any subgame

where iτ is chosen to make an offer to jτ ′ , with probability one: (1) if ij ∈ G∗δ then iτ offers

δv∗δj and jτ ′ accepts; (2) if ij 6∈ G∗δ then iτ makes an offer that jτ ′ rejects.

Theorem 2. There exist δ ∈ (0, 1) and a subnetwork G∗ of G such that the equilibrium

agreement network G∗δ is equal to G∗ for all δ > δ. The equilibrium payoff vector v∗δ

converges to a vector v∗ as δ goes to 1. The rate of convergence of v∗δ to v∗ is O(1− δ).

Proof. To establish the first part, recall that the proof of Proposition 1 shows that the set ∆̄

of δ for which there exist a link ij ∈ G and a subnetwork H of G such that δ(vδ,Hi +vδ,Hj ) = 1

is finite. Fix δ0 > max ∆̄ =: δ. Let G∗ = G∗δ0 . We show that G∗δ = G∗ for all δ > δ.

Fix ij ∈ G. The function 1 − δ(vδ,G
∗

i + vδ,G
∗

j ) is continuous in δ for δ ∈ (0, 1) as it is

a rational function (ratio of two polynomials) by 3.5,13 and it has no roots δ outside ∆̄.

Then the sign εδij of 1 − δ(vδ,G
∗

i + vδ,G
∗

j ) is strict and constant for all δ > δ. In particular,

εδij = εδ0ij for δ > δ.

Since δ0 > δ and G∗ = G∗δ0 , the following conditions hold (1) εδ0ij = 1 ⇐⇒ ij ∈ G∗, and

(2) εδ0ij = −1 ⇐⇒ ij 6∈ G∗. For all δ > δ we have εδij = εδ0ij , hence the following conditions

must also be true: (1) εδij = 1 ⇐⇒ ij ∈ G∗, and (2) εδij = −1 ⇐⇒ ij 6∈ G∗. For δ > δ, it

follows that G∗δ = G∗.

To establish the second part, fix i ∈ N . From the first part, v∗δi = PG∗
i (δ)/QG∗

i (δ) for

δ > δ. Rewrite PG∗
i /QG∗

i = P̄G∗
i /Q̄G∗

i , with P̄G∗
i and Q̄G∗

i relatively prime polynomials.

Since v∗δi ∈ [0, 1] for all δ ∈ (δ, 1), it must be that Q̄G∗
i (1) 6= 0. For, if Q̄G∗

i (1) = 0 then

P̄G∗
i (1) 6= 0 and P̄G∗

i (δ)/Q̄G∗
i (δ) diverges at δ = 1. Consequently, P̄G∗

i (δ)/Q̄G∗
i (δ) converges

to P̄G∗
i (1)/Q̄G∗

i (1) as δ tends to 1. Therefore, v∗δi = P̄G∗
i (δ)/Q̄G∗

i (δ) has a finite limit,

v∗i := P̄G∗
i (1)/Q̄G∗

i (1), at δ = 1.

13For all δ ∈ (0, 1), QG
∗

i (δ) 6= 0 because the system 3.4 is non-singular.
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To show that the rate of convergence of v∗δ to v∗ is O(1− δ), write

v∗δi − v∗i =
P̄G∗
i (δ)

Q̄G∗
i (δ)

− P̄G∗
i (1)

Q̄G∗
i (1)

=
Q̄G∗
i (1)P̄G∗

i (δ)− P̄G∗
i (1)Q̄G∗

i (δ)

Q̄G∗
i (1)Q̄G∗

i (δ)
.

The latter rational function has a vanishing numerator and a non-vanishing denominator at

δ = 1, hence it can be rewritten as (1 − δ)RG∗
i (δ) where RG∗

i is a rational function with a

finite limit at δ = 1. �

We call G∗ the limit equilibrium agreement network, and v∗ the limit equilibrium

payoff vector. Our main objective is to determine the limit equilibrium payoff vector. The

following preliminary observations are proven in the Appendix.

Proposition 2. If ij ∈ G, then v∗i + v∗j ≥ 1. If ij ∈ G∗, then v∗i + v∗j = 1. In particular, if

v∗i + v∗j > 1, then ij 6∈ G∗.

Lemma 3. Every player has at least one link in G∗ (under the assumption in footnote 6).

4. Bounds for Limit Equilibrium Payoffs

For every network H, and a non-empty subset of players M , let LH(M) denote the set

of players that have H-links to players in M , LH(M) = {j|ij ∈ H, i ∈ M}. A set M is

H-independent if there exists no H-link between two players in M , M ∩ LH(M) = ∅. A

set is mutually estranged if it is G∗-independent. The set of partners for a mutually

estranged set M is defined as LG
∗
(M).

Fix a mutually estranged set M with partner set L. Basically, as players become patient,

the players in L have control over the relevant bargaining opportunities of the players in

M . For high discount factors, since players in M can only reach equilibrium agreements in

pairwise matchings with players in L, the set M is weak if the set L is relatively small. This

intuition is formalized by the shortage ratio, which measures the strength of the mutually

estranged players in a sense made precise later. The shortage ratio of M is defined as the

ratio of the numbers of partners and estranged players, |L|/|M |.

The next result is essential for developing a procedure to determine the limit equilibrium

payoffs. For every mutually estranged set M with partner set L, the ratio of the limit

equilibrium payoffs of the worst-off estranged player, mini∈M v∗i , and the best-off partner,

maxj∈L v
∗
j , is not larger than the shortage ratio of M .
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Theorem 3. For every mutually estranged set M with partner set L, the following bounds

on limit equilibrium payoffs hold

min
i∈M

v∗i ≤
|L|

|M |+ |L|

max
j∈L

v∗j ≥
|M |

|M |+ |L|
.

The proof of Theorem 3 is relegated to the Appendix. It uses the following result.

Lemma 4. For every δ, the equilibrium payoff of each player in Γδ is equal to the expected

present value of his stream of first mover advantage, i.e.,

v∗δi =
1

1− δ
∑
{j|ij∈G}

1

2e
max(1− δv∗δi − δv∗δj , 0),∀i ∈ N,∀δ ∈ (0, 1).

Proof. Fix a discount factor δ and a player i. The expected payoff of i is δv∗δi in any

subgame where he is not the proposer, and max(1− δv∗δj , δv∗δi )–which represents a net gain

of max(1 − δv∗δi − δv∗δj , 0) over δv∗δi –in any subgame where he is selected to make an offer

to player j. Hence, max(1− δv∗δi − δv∗δj , 0) measures the net first mover advantage that

i gains from making an offer to j. Therefore, the expected loss from not being the proposer

at some round, measured by (1 − δ)v∗δi , is equal to the sum of the first mover advantage

max(1 − δv∗δi − δv∗δj , 0) that i enjoys when selected to make an offer to j weighted by the

probability of this event in that round. �

The intuition for the proof of Theorem 3 is as follows. Suppose that M is a mutually

estranged set with partner set L. Fix a discount factor δ > δ, with δ specified as in Theorem

2. Thus, G∗δ = G∗. In every equilibrium, in any subgame, a player i in M only reaches

agreements with players in L with whom he shares G∗ links. Any net first mover advantage

that a player i in M gains from making an offer to a player j in L is mapped to an equal

net first mover advantage that j gains from making an offer to i (max(1− δv∗δi − δv∗δj , 0) is

symmetric in i and j). It follows that the sum of the expected present values of the streams

of first mover advantage enjoyed by all players in M is not larger than the same expression

evaluated for the players in L.14 Hence, by Lemma 4,
∑

j∈L v
∗δ
j ≥

∑
i∈M v∗δi . Taking the

14Players in M only gain first mover advantage from players in L, while players in L gain first mover
advantage from the corresponding players in M , and possibly from players that are not in M .
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limit δ → 1 we obtain that
∑

j∈L v
∗
j ≥

∑
i∈M v∗i . Then the proof is completed by repeated

use of Proposition 2 to establish that mini∈M v∗i + maxj∈L v
∗
j = 1.

While Theorem 3 invokes knowledge we do not have a priori about the limit equilibrium

agreement network G∗, it has an immediate corollary that involves exclusively properties of

G.15 It is sufficient to note that since G∗ is a subnetwork of G, if M is G-independent then

M is also G∗-independent, and LG
∗
(M) ⊂ LG(M), so |LG∗(M)| ≤ |LG(M)|.

Corollary 1. For every G-independent set of players M , the following bounds on limit

equilibrium payoffs hold

min
i∈M

v∗i ≤
|LG(M)|

|M |+ |LG(M)|

max
j∈LG(M)

v∗j ≥
|M |

|M |+ |LG(M)|
.

5. Limit Equilibrium Payoff Computation

Theorem 3 suggests that it may be useful to study the mutually estranged sets M that

minimize the upper bound |LG∗(M)|/(|M | + |LG∗(M)|) for the limit equilibrium payoff of

the worst-off player in M , or equivalently, minimize the shortage ratio |LG∗(M)|/|M |. The

next lemma (applied to the network G∗) shows that the set of such minimizers is closed

with respect to unions if the attained minimum is less than 1. It is useful to generalize

this conclusion to all networks. For every network H let I(H) denote the set of non-empty

H-independent sets.

Lemma 5. Let H be a network. Suppose that

min
M∈I(H)

|LH(M)|
|M |

< 1,

and that M ′ and M ′′ are two H-independent sets achieving the minimum. Then M ′ ∪M ′′ is

also H-independent, and

M ′ ∪M ′′ ∈ arg min
M∈I(H)

|LH(M)|
|M |

.

The proof, which is a conjunction of combinatorial arguments and brute force algebra, is

relegated to the Appendix.

15However, for the results of the next section we need the full strength of Theorem 3.
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We show that the bounds on limit equilibrium payoffs corresponding to a set of mutually

estranged players and their partners provided by Theorem 3 need to be binding unless the

worst-off estranged player is part of an even weaker mutually estranged set, and the best-off

partner is part of an even stronger partner set. The intuition is that each player is part of a

limit equilibrium oligopoly subnetwork where, for high δ, some mutually estranged players

and their partners share the unit surplus according to the shortage ratio. Consequently,

the limit equilibrium payoff of any player cannot be smaller than the upper bound for the

worst-off player from a mutually estranged set with the lowest shortage ratio. Therefore, the

bounds for the limit equilibrium payoffs of the worst-off estranged player and the best-off

partner corresponding to a mutually estranged set with the lowest shortage ratio must be

binding.

Suppose that the lowest shortage ratio r1 = minM∈I(G) |LG(M)|/|M | is smaller than 1.16

Let M1 be the union of all G-independent sets M minimizing the shortage ratio. By Lemma

5, M1 is also a G-independent set with minimal shortage ratio. Let L1 = LG(M1) be

the corresponding set of partners.17 We argued above that mini∈M1 v
∗
i = r1/(r1 + 1) and

maxj∈L1 v
∗
j = 1/(r1 + 1). We set out to show that the limit equilibrium payoffs equal

r1/(r1 + 1) for all players in M1 and 1/(r1 + 1) for all players in L1; that is, all players in

M1∪L1, not only the worst-off estranged player and the best-off partner, have extremal limit

equilibrium payoffs. The following algorithm sequentially iterates this hypothesis in order

to determine the limit equilibrium payoffs of all players.

Definition 1 (Algorithm A(G) = (rs, xs,Ms, Ls, Ns, Gs)s=1,2,...,s). Define the sequence

(rs, xs,Ms, Ls, Ns, Gs)s recursively as follows. Let N1 = N and G1 = G. For s ≥ 1, if

Ns = ∅ then stop. Else, let18

(5.1) rs = min
M⊂Ns, M∈I(G)

|LGs(M)|
|M |

.

16Note that G∗ is a priori unknwon. Our proof reveals that the lowest shortage ratio, when smaller than 1,
may be computed by restricting attention to sets that are G-independent rather than G∗-independent.
17One implication of our analysis is that LG

∗
(M1) = LG(M1).

18It can be shown that each player in Ns has at least one link in Gs, hence rs is well-defined and positive.
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If rs ≥ 1 then stop. Else, set xs = rs/(1 + rs). Let Ms be the union of all minimizers M in

5.1.19 Denote Ls = LGs(Ms). Let Ns+1 = Ns \ (Ms ∪ Ls), and Gs+1 be the subnetwork of G

induced by the players in Ns+1. Denote by s the finite step at which the algorithm stops.20

At each step, the algorithmA(G) determines the largest cardinality mutually estranged set

minimizing the shortage ratio in the subnetwork induced by the remaining players (Lemma

5), and removes the corresponding estranged players and partners (the remarks in footnotes

16 and 17 are essential). We are going to show that for high discount factors the removed

players can only reach agreements among themselves in equilibrium; the oligopoly subnet-

work they form encloses all their limit equilibrium agreement links. The definition ensures

that A(G) identifies and removes all residual players with extremal limit equilibrium payoffs

simultaneously. The algorithm stops when every G-independent set formed by the remaining

players has shortage ratio greater than or equal to 1, or when all players have been removed.21

The next lemma, which is used in the proofs of Proposition 3 and Theorem 4 below,

follows immediately from the definition of the algorithm A(G). The proof of Proposition 3

is provided in the Appendix.

Lemma 6. A(G) satisfies the following conditions for all 1 ≤ s ≤ s′ < s

LGs(Ms ∪Ms+1 ∪ . . . ∪Ms′) = Ls ∪ Ls+1 ∪ . . . ∪ Ls′

LG(Ns+1) ∩ (M1 ∪M2 ∪ . . . ∪Ms) = ∅

Ms ∪Ms+1 ∪ . . . ∪Ms′ is G-independent.

Proposition 3. The sequences (rs)s and (xs)s defined by A(G) are strictly increasing.

Note that the sets M1, L1, . . . ,Ms−1, Ls−1, Ns partition N . The limit equilibrium payoff of

each player is uniquely determined by the partition set he belongs to.

19By Lemma 5, since rs < 1, Ms is also a minimizer in 5.1.
20In some cases the (irrelevant) variables rs, xs,Ms, Ls are left undefined.
21As an illustration, the algorithm A(G2), for the network G2 introduced in Section 1, ends in s = 2 steps.
The relevant outcomes are r1 = 1/2, x1 = 1/3,M1 = {3, 4}, L1 = {1} at the first step, and r2 = 1, N2 = {2, 5}
at the second step.
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Theorem 4. Let (rs, xs,Ms, Ls, Ns, Gs)s=1,2,...,s be the outcome of the algorithm A(G). The

limit equilibrium payoffs for Γδ as δ → 1 are given by

v∗i = xs,∀i ∈Ms,∀s < s

v∗j = 1− xs,∀j ∈ Ls, ∀s < s

v∗k =
1

2
,∀k ∈ Ns.

Proof. We prove the theorem by induction on s. Suppose we proved the assertion for all

lower values, and we proceed to proving it for s (1 ≤ s ≤ s).22 We treat the case s = s

separately, in the Appendix.

Let s < s and define xs = mini∈Ns v
∗
i . Denote by M s = arg mini∈Ns v

∗
i the set of players

in Ns whose limit equilibrium payoffs equal xs, and set Ls = LGs(M s). We first show that

xs = xs by arguing that xs ≤ xs and xs ≥ xs.

Claim 4.1. xs ≤ xs

We proceed by contradiction. Suppose that xs > xs. Then v∗j ≥ 1−xs−1 > 1−xs > 1−xs
for all j in L1 ∪ L2 ∪ . . . ∪ Ls−1.

23 The first inequality follows from the induction hypothesis

and Proposition 3, and the second from Proposition 3. But v∗i ≥ xs for all i in Ms. Thus,

v∗i + v∗j > 1, ∀i ∈ Ms, ∀j ∈ L1 ∪ L2 ∪ . . . ∪ Ls−1. By Proposition 2 no player i ∈ Ms has G∗

links to players j ∈ L1 ∪ L2 ∪ . . . ∪ Ls−1, or LG
∗
(Ms) ∩ (L1 ∪ L2 ∪ . . . ∪ Ls−1) = ∅.

By Lemma 6, LG(Ms) ∩ (M1 ∪M2 ∪ . . . ∪Ms−1) = ∅.

It follows that LG
∗
(Ms) ⊂ LGs(Ms) = Ls. Theorem 3 implies that

min
i∈Ms

v∗i ≤
|Ls|

|Ms|+ |Ls|
= xs,

a contradiction with mini∈Ns v
∗
i = xs > xs.

Claim 4.2. xs ≥ xs and v∗j = 1− xs, ∀j ∈ Ls
We proved that xs ≤ xs. Since rs < 1 it follows that xs < 1/2. By Proposition 2 and

Claim 4.1,

v∗j ≥ 1− xs ≥ 1− xs > 1/2,∀j ∈ Ls.

22The following technical detail is used in order to avoid analogous arguments proving the base case and the
inductive step. Append step 0 to the algorithm, with (r0, x0,M0, L0, N0, G0) = (0, 0, ∅, ∅, N,G). Then the
base case s = 0 follows trivially, and the inductive steps, s = 1, 2, . . . , s− 1, involve analogous arguments.
23This argument is only necessary for s > 1.
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Then Proposition 2 implies that Ls is a G∗-independent set.

Fix j ∈ Ls. By Proposition 2 there exist no G∗ links from j to players k ∈ Ns \M s, since

for these players v∗k > xs (by the definition of M s) and we already argued that v∗j ≥ 1− xs.

Also, there exist no G links from j to players in M1 ∪M2 ∪ . . . ∪Ms−1 by Lemma 6.

By Proposition 2, there exist no G∗ links from j to players k ∈ L1 ∪ L2 ∪ . . . ∪ Ls−1 since

for these players v∗k ≥ 1− xs−1 > 1/2, and we need v∗j > 1/2.

Therefore, any j ∈ Ls only has G∗ links to players in M s. By Proposition 2 and Lemma

3, any player j ∈ Ls must have limit equilibrium payoff v∗j = 1− xs.

Hence Ls is G∗-independent and LG
∗
(Ls) ⊂M s,

24 so it follows from Theorem 3 that

xs = max
i∈LG∗ (Ls)

v∗i ≥
|Ls|

|LG∗(Ls)|+ |Ls|
≥ |Ls|
|M s|+ |Ls|

.

Recall that Ls = LGs(M s). We can rewrite the inequality above as

(5.2)
xs

1− xs
≥ |L

Gs(M s)|
|M s|

.

Yet by the definition of rs and xs,

(5.3)
|LGs(M s)|
|M s|

≥ rs =
xs

1− xs
,

and the last two inequalities imply xs ≥ xs.

Claims 4.1 and 4.2 establish that xs = xs. Hence v∗i = xs,∀i ∈M s and v∗j = 1−xs,∀j ∈ Ls.

Moreover, we need to have equalities in the weak inequalities 5.2-5.3, so |Ls|/|M s| = rs.

Claim 4.3. M s ⊂Ms

Since Ms is the union of all G-independent M ⊂ Ns with |LGs(M)|/|M | = rs and

|LGs(M s)|/|M s| = rs, it follows that M s ⊂ Ms. (M s is G-independent by Proposition

2, as the limit equilibrium payoff of each player in M s is xs < 1/2.)

Claim 4.4. M s = Ms

We show that M s = Ms by contradiction. Fix i ∈Ms \M s. Since i ∈Ms and LGs(Ms) =

Ls, i has no G links to players in Ns\Ls. By Lemma 6, i has no G links to M1∪M2∪. . .∪Ms−1.

By Proposition 2, i has no G∗ links to players j ∈ L1 ∪ L2 ∪ . . . ∪ Ls−1 ∪ Ls as for such

players v∗j ≥ 1− xs, and v∗i > xs = xs by the definition of M s.

24It can be easily argued that the inclusion holds with equality.
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Figure 3. Network G3

It follows that i may only have G∗ links to players in Ls \Ls. Therefore, LG
∗
(Ms \M s) ⊂

Ls \ Ls, implying that |LG∗(Ms \M s)| ≤ |Ls \ Ls| = |Ls| − |Ls|.

Note that
|Ls|
|Ms|

= rs &
|Ls|
|M s|

= rs =⇒ |Ls| − |Ls|
|Ms| − |M s|

= rs.

Then by Theorem 3,

min
i∈Ms\Ms

v∗i ≤
|LG∗(Ms \M s)|

|Ms \M s|+ |LG
∗(Ms \M s)|

≤ |Ls| − |Ls|
|Ms| − |M s|+ |Ls| − |Ls|

=
rs

1 + rs
= xs,

a contradiction with v∗i > xs for all i ∈ Ns \M s.

Therefore, M s = Ms, Ls = Ls, and v∗i = xs,∀i ∈Ms and v∗j = 1− xs,∀j ∈ Ls, completing

the proof of the induction step for s < s. �

Example 2 below shows that the limit equilibrium agreement network does not necessarily

contain all the links from players in Ms to players in Ls. Although all players in Ms (Ls)

have identical limit equilibrium payoffs, their relative bargaining strengths may vary, and the

rates of convergence to the common limit are not identical across Ms (Ls). Moreover, it is

possible that the players in Ms∪Ls induce a connected subnetwork in G, but a disconnected

subnetwork in G∗.

Example 2. Consider the network G3 with 9 players illustrated in Figure 3.25 The algorithm

A(G3) ends in one step, with r1 = 1/2, M1 = {4, 5, 6, 7, 8, 9} and L1 = {1, 2, 3}. Therefore,

the limit equilibrium payoffs are 1/3 for all players in M1 and 2/3 for all players in L1.

However, it is not the case that the limit equilibrium agreement network contains all the

links from players in M1 to players in L1, that is, all the links of G3.

25See the legend in footnote 2.
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Indeed, the limit equilibrium agreement network G∗3 excludes the links (1, 8) and (1, 9).

The intuition is that, although v∗1 = v∗2 = v∗3 = 2/3 and v∗4 = v∗5 = v∗6 = v∗7 = v∗8 = v∗9 = 1/3,

player 1 is relatively stronger than players 2 and 3 as he is connected to all players that

2 and 3 are connected to, and players 8 and 9 are relatively stronger than players 4, 5, 6,

and 7 as they are connected to all players that 4, 5, 6, and 7 are connected to. For similar

reasons, player 3 is relatively weaker than players 1 and 2, augmenting the relative strength

of 8 and 9 over 4, 5, 6, and 7; and players 4 and 5 are relatively weaker than players 6, 7,

8, 9, augmenting the relative strength of 1 over 2 and 3. For high δ, the equilibrium payoffs

of player 1, and also of players 8 and 9, will be sufficiently high so that 1 does not reach

agreements with either 8 or 9.

By the proof of Theorem 1, to check that G∗3 is the limit equilibrium agreement network,

we only need to show that vδ,G
∗
3 is a fixed point of the corresponding f δ for δ sufficiently

large.26 The payoff vector vδ,G
∗
3 solves the n× n linear system

vi =
2e− eG

∗
3

i

2e
δvi +

1

2e

∑
{j|ij∈G∗3}

(1− δvj),∀i = 1, 9.

A closed form solution is immediately obtained, but is omitted for expositional brevity. For

example,

v
δ,G∗3
1 =

2(576− 1068δ + 493δ2)

3(2304− 6048δ + 5264δ2 − 1519δ3)
,

and the other components of vδ,G
∗
3 have similar rational function expressions.

Simple calculus shows that for all δ > δ := 6/251(45 −
√

17) ≈ 0.977, the following is

true: ∀ij ∈ G3, δ(v
δ,G∗3
i + v

δ,G∗3
j ) ≤ 1 ⇐⇒ ij ∈ G∗3. Hence vδ,G

∗
3 is a fixed point of f δ,

and G∗δ3 = G∗3. Therefore, G∗3 is the limit equilibrium agreement network. For δ < δ, the

equilibrium agreement network is the entire G3, and for δ > δ the equilibrium agreement

network is G∗3. The set of equilibria admits a characterization similar to that for the network

G2 in Example 1.

An example where the players in Ms ∪Ls induce a connected subnetwork in G, but a dis-

connected subnetwork in G∗ is provided by the network G4 from Figure 4.27 G4 essentially

consists of two copies of G3, with two additional links, (8, 10) and (9, 10). The limit equi-

librium agreement network G∗4 excludes the links (1, 8), (1, 9), (8, 10), (9, 10), (10, 17), (10, 18)

26Recall the definitions 3.1 and 3.4.
27See the legend in footnote 2.
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Figure 4. Network G4

(by a logic analogous to the one suggesting that (1, 8) and (1, 9) are not limit equilibrium

agreement links in G3).
28

6. Equitable Networks

We are interested in characterizing the class of equitable networks, that is, networks for

which the limit equilibrium payoffs of all players are identical–equal to 1/2, by Proposition

2. By Theorem 4, a network G is equitable if and only if r1 ≥ 1, so that the algorithm A(G)

stops at the first step. Intuitively, this means that no oligopoly may emerge in equilibrium.

Thus G is equitable if and only if |LG(M)| ≥ |M | for every G-independent set M . Networks

satisfying the latter property have been studied in graph theory. The following definitions

are useful.

A graph is an odd cycle if its vertex set has odd cardinality and can be relabeled

ν1, ν2, . . . , νk such that the set of edges is {ν1ν2, ν2ν3, . . . , νk−1νk, νkν1}. A graph is a match

if its vertex set has even cardinality and can be relabeled ν1, ν2, . . . , νk such that the set of

edges is {ν1ν2, ν3ν4, . . . , νk−1νk}. A graph is a match and odd cycles disjoint union if

it is the union of a match and a number of odd cycles that are pairwise vertex-disjoint. A

network covers a vertex if the vertex has at least one link in the network. A network H ′

covers a network H if H ′ is a subnetwork of H that covers each vertex of H. A graph is

regular if all its vertices are incident to an identical number of edges.

A graph H is quasi-regularizable (Berge 1981) if there exists d > 0 and non-negative

integer weights ωij associated with each edge ij ∈ H such that the sum of the weights of the

28The bipartite nature of G3 and G4 is not critical to the asymptotic results. For instance, the limit
equilibrium payoffs and agreement networks for G3 and G4 remain unchanged if the link (2, 3) is added to
either network.
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Figure 5. A network that can be covered by a match and odd cycles disjoint union

edges incident to any vertex i is d, ∑
{j|ij∈H}

ωij = d.

Examples of quasi-regularizable graphs are regular graphs (set all the weights equal to 1),

and match and odd cycles disjoint unions (set the weights of the edges along the odd cycles

and in the match equal to 1 and 2, respectively). If a network is quasi-regularizable then so

is any network it covers. Berge (1981) shows that [G satisfies |LG(M)| ≥ |M | for every G-

independent set M ] if and only if [G is quasi-regularizable] if and only if [G can be covered by

a match and odd cycles disjoint union]. Figure 5 depicts a network that can be covered by a

match and odd cycles disjoint union. The links of the relevant covering subnetwork are drawn

in black, while the rest of the links are colored orange. Berge’s alternative characterizations,

along with the discussion opening the section, establish the following result.

Theorem 5. [G is equitable] if and only if [G is quasi-regularizable] if and only if [G can be

covered by a match and odd cycles disjoint union].

One important corollary is that regular networks, and also networks that can be covered

by regular networks, are equitable.

Example 3. Consider the network G5 with 6 players drawn in Figure 6.29 By Theorem 5,

G5 is equitable since it is covered by the match {(1, 4), (2, 5), (3, 6)}. By methods similar to

those of Example 2 we can prove that the limit equilibrium agreement network excludes the

link (1, 6).

29See the legend in footnote 2.
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Figure 6. Network G5

Limit equilibrium payoffs depend on the network structure in a more complex fashion

than simply by way of the relative number of bargaining partners. In G5 players may have

1, 2, or 3 links, but they all receive limit equilibrium payoffs of 1/2. Therefore, while regular

networks are equitable, regularity is far from being a necessary condition for equitability.

Quasi-regularizability is a necessary and sufficient condition.

7. Stable Networks

In our model the network structure is exogenously given, and we do not study network

formation. Nonetheless, we may ask whether patient players can benefit in the bargaining

game from forming new links or severing existing ones. The algorithm A(G) can be used

to address this question. Fix the set of players N , and let G be the set of networks G with

vertex set equal to N . A payoff function u assigns to each player i ∈ N a payoff, denoted

ui(G), for every network G ∈ G. If v∗δi (G) and v∗i (G) denote the equilibrium payoff of player

i in the bargaining game on the network G for discount factor δ, and respectively its limit

as δ → 1, then the profiles (v∗δi (G))i∈N,G∈G and (v∗i (G))i∈N,G∈G define payoff functions. For

every network G and any i 6= j ∈ N , let G + ij (G − ij) denote the network obtained by

adding (deleting) the link ij to (from) G.

Definition 2 (Stability). A network G is unilaterally stable with respect to the payoff

function u if ui(G) ≥ ui(G − ij) for all ij ∈ G. A network G is pairwise stable with

respect to the payoff function u if it is unilaterally stable with respect to u, and for all

ij /∈ G, ui(G+ ij) > ui(G) only if uj(G+ ij) < uj(G).

To rephrase, a network is unilaterally stable if no player benefits from severing one of his

links. Pairwise stability requires additionally that no pair of players benefit from forming
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a new link. Jackson and Wolinsky (1996) motivate the definitions by the fact that the

formation of the link ij necessitates the consent of both players i and j, but its severance

can be done unilaterally by either i or j.

Theorem 6. (i) Every network is unilaterally stable with respect to (v∗i (G))i∈N,G∈G. (ii) A

network is pairwise stable with respect to (v∗i (G))i∈N,G∈G if and only if it is equitable.

Part (i) of the statement is not surprising, but its proof is involved, as the removal of a

single link may create a long chain effect in the procedure for determining limit equilibrium

payoffs. All proofs are in the Appendix.

While every network is unilateral stabile with respect to the equilibrium payoffs in the

limit as players become patient, the conclusion does not necessarily apply before taking the

limit. Indeed, not every network is unilaterally stable with respect to (v∗δi (G))i∈N,G∈G for

δ < 1. Consider the networks G2 and G∗2 from Figure 2. G∗2 is obtained from G2 by removing

the link (1, 5). For every discount factor δ ∈ (10(9 −
√

2)/79, 1), players 1 and 5 receive

higher equilibrium payoffs in the bargaining game on the network G∗2 than in that on G2,

v∗δ1 (G2) =
2

10− 7δ
<

2

8− 5δ
= v∗δ1 (G∗2) and v∗δ5 (G2) =

1

2(5− 4δ)
<

1

2(4− 3δ)
= v∗δ5 (G∗2).

Thus both players 1 and 5 benefit from removing the link connecting them and prefer playing

the game on G∗2 rather than G2.

The intuition for this observation is simple. For the range of discount factors considered,

(1, 5) is an equilibrium disagreement link in the bargaining game on G2, whence it becomes a

source of delay for the possible agreements and deflates the equilibrium payoffs of all players.

However, the gains to players 1 and 5 from severing the link (1, 5) vanish as δ approaches 1.

If players only consider deleting or adding links when the ensuing gains are significant, we

need to focus on approximate stability.

Definition 3 (ε-Stability). A network G is unilaterally ε-stable with respect to the payoff

function u if ui(G) + ε ≥ ui(G− ij) for all ij ∈ G. A network G is pairwise ε-stable with

respect to the payoff function u if it is unilaterally ε-stable with respect to u, and for all

ij /∈ G, ui(G+ ij) > ui(G) + ε only if uj(G+ ij) < uj(G) + ε.
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For any sufficiently low ε > 0, there exists a discount factor threshold δ < 1 such that the

two statements of Theorem 6 also hold for ε-stability with respect to the equilibrium payoffs

for any δ > δ. The next result is based on ideas from the proofs of Theorems 2 and 6.

Corollary 2. There exists ε̄ > 0 such that for all ε < ε̄ there exists δ < 1 such that for

all δ > δ the following statements are true. (i) Every network is unilaterally ε-stable with

respect to (v∗δi (G))i∈N,G∈G. (ii) A network is pairwise ε-stable with respect to (v∗δi (G))i∈N,G∈G

if and only if it is equitable.

8. Buyer and Seller Networks

Suppose that N = B∪S, where B and S denote the sets of buyers and sellers, respectively.

Each seller owns one unit of a homogeneous indivisible good. Each buyer demands one unit

of the good. The utilities of buyers and sellers for the good are normalized to 1 and 0,

respectively. In a buyer-seller network every link is between a buyer and a seller, i.e.,

i ∈ B ⇐⇒ j ∈ S for every link ij. Fix a buyer-seller network G. Only buyer-seller pairs

connected in G can engage in exchange. With this interpretation, pairs of agents connected

in G can generate a unit surplus, as in the benchmark model. Buyers and sellers have a

common discount factor δ, and play the bargaining game Γδ on the network G. Since buyer-

seller networks form a special class of networks, all results of the paper apply, and some

refinements are possible.

The bipartite nature of buyer-seller networks permits a more straightforward description

of the bounds and the accompanying procedure for computing limit equilibrium payoffs.

The restatements of Theorems 3 and 4 specialized to buyer-seller networks are based on

the following observations. Fix a buyer-seller network H and a subset of players K =

M ∪L (M ⊂ B,L ⊂ S). Then LH(K) = LH(M)∪LH(L) with LH(M) ⊂ S and LH(L) ⊂ B.

The set K is H-independent if there exists no H-link between buyers in M and sellers in L,

or LH(M) ∩ L = ∅ (or LH(L) ∩M = ∅). M and L are H-independent.
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Theorem 3BS. For every set of buyers M , the following bounds on limit equilibrium payoffs

hold

min
i∈M

v∗i ≤
|LG∗(M)|

|M |+ |LG∗(M)|

max
j∈LG∗ (M)

v∗j ≥
|M |

|M |+ |LG∗(M)|
.

If we restrict attention to sets of buyers M that minimize |LH(M)|/|M |, Lemma 5 can be

extended to show that the set of such minimizers is closed with respect to unions without

the assumption that the attained minimum is strictly less than 1.

Lemma 5BS. Let H be a buyer-seller network. Suppose that

M ′,M ′′ ∈ arg min
M⊂B

|LH(M)|
|M |

.

Then

M ′ ∪M ′′ ∈ arg min
M⊂B

|LH(M)|
|M |

.

In view of Theorem 3BS and Lemma 5BS, the algorithm computing limit equilibrium

payoffs does not have to treat rs ≥ 1 as a stopping condition at step s if the focus is on

sets of buyers M that minimize |LGs(M)|/|M |. While the algorithm A(G) is effective for

buyer-seller networks, the adapted version ABS(G) offers a simplified procedure.

Definition 4 (Algorithm ABS(G) = (rs, xs, Bs, Ss, Ns, Gs)s=1,2,...,s). Define the sequence

(rs, xs, Bs, Ss, Ns, Gs)s recursively as follows. Set N1 = N and G1 = G. For s ≥ 1, let

(8.1) rs = min
M⊂Ns∩B

|LGs(M)|
|M |

.

Set xs = rs/(1+rs). Let Bs be the union of all minimizers M in 8.1.30 Denote Ss = LGs(Bs).

If Ns = Bs ∪ Ss then stop. Else, set Ns+1 = Ns \ (Bs ∪ Ss), and let Gs+1 be the subnetwork

of G induced by the players in Ns+1. Denote by s the finite step at which the algorithm

stops.

Proposition 3BS. The sequences (rs)s and (xs)s defined by ABS(G) are strictly increasing.

Note that the sets B1, S1, . . . , Bs, Ss partition N .

30By Lemma 5BS , Bs is also a minimizer in 8.1.
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Theorem 4BS. Let (rs, xs, Bs, Ss, Ns, Gs)s=1,2,...,s be the outcome of the algorithm ABS(G)

for the buyer-seller network G. The limit equilibrium payoffs for Γδ as δ → 1 are given by

v∗i = xs,∀i ∈ Bs,∀s ≤ s

v∗j = 1− xs, ∀j ∈ Ss,∀s ≤ s.

Similarly to the study of equitable networks for the general model, we are interested in

characterizing the class of non-discriminatory networks in the bipartite case. A buyer-

seller network is non-discriminatory if the limit equilibrium payoffs of all buyers are identical.

By Proposition 3BS and Theorem 4BS, G is non-discriminatory if and only if the algorithm

ABS(G) stops at the first step, hence B1 = B, S1 = S, r1 = |S|/|B|. Let β denote the buyer-

seller ratio, β = |B|/|S|. In a non-discriminatory network the common limit equilibrium

payoffs of all buyers and all sellers are 1/(β+ 1) and β/(β+ 1), respectively. Hence the limit

equilibrium price is β/(β + 1).

Suppose that the buyer-seller ratio β is an integer. A β-buyer-seller cluster is a

network formed by a seller connected to β buyers. A β-buyer-seller cluster disjoint

union is a network that is a union of vertex-disjoint β-buyer-seller clusters. Set B =

{4, 5, 6, 7, 8, 9} and S = {1, 2, 3} for the network G3 from Example 2. The buyer-seller ratio

is 2, and the network can be covered by the disjoint union of three 2-buyer-seller clusters,

{(1, 4), (1, 5)} ∪ {(2, 6), (2, 7)} ∪ {(3, 8), (3, 9)}. The network G3 is non-discriminatory, with

a limit equilibrium price of 2/3. The intuition is that each seller enjoys a distinct 2-buyer

base, so there is no differentiation in bargaining power across sellers. This observation can

be generalized.

Theorem 7. Suppose that the buyer-seller ratio β is an integer. A buyer-seller network is

non-discriminatory if and only if it can be covered by a β-buyer-seller cluster disjoint union.

Proof. Let G be a buyer-seller network. By Proposition 3BS and Theorem 4BS, G is non-

discriminatory if and only if B1 = B, S1 = S, r1 = 1/β if and only if |LG(M)|/|M | ≥ 1/β for

all M ⊂ B.

Recall the definitions from Section 6. A network H ′ is a perfect match of a network

H if H ′ is a match that covers H. Let H be the graph obtained from G by replacing each

vertex corresponding to a seller with β identical copies (each copy is connected to all buyers



BARGAINING IN NETWORKS 33

whom the corresponding seller was connected to). Note that |LG(M)|/|M | ≥ 1/β, ∀M ⊂ B

is equivalent to |LH(M)|/|M | ≥ 1,∀M ⊂ B. Since the numbers of buyers and sellers in H

are equal, Hall (1935)’s theorem implies that the latter condition is equivalent to H having

a perfect match. By construction, H has a perfect match if and only if G can be covered by

a β-buyer-seller cluster disjoint union, which completes the proof. �

Corollary 3. A buyer-seller network is equitable if and only if it has a perfect match.

Remark 2. Corollary 3 also follows from Theorem 5 since bipartite networks contain no

odd cycles, so any match and odd cycle disjoint union that covers such a network must be

a match.

Remark 3. A symmetric set of results obtains if we interchange the roles of buyers and

sellers in Theorems 4BS and 7.

In the context of buyer-seller networks the definition of pairwise stability should account

for the fact that only buyer-seller pairs may consider forming new links.

Definition 5 (Buyer-seller stability). A buyer-seller network G is two-sided pairwise

stable with respect to the payoff function u if it is unilaterally stable with respect to u, and

for all (i, j) ∈ (B × S) ∪ (S ×B), ui(G+ ij) > ui(G) only if uj(G+ ij) < uj(G).

The next result is the analogue of Theorem 6.ii.

Theorem 6.iiBS. A buyer-seller network is two-sided pairwise stable with respect to (v∗i (G))i∈N,G∈G

if and only if it is non-discriminatory.

9. Robustness of the Results

9.1. Heterogeneous discount factors. All players are assumed to have a common dis-

count factor hitherto. We can extend the results to the case of heterogeneous discount

factors, where the copies of player i share a discount factor δi. The accumulation points of

the equilibrium payoffs and agreement networks along a (δ1, δ2, . . . , δn) sequence that con-

verges to (1, 1, . . . , 1) depend on the choice of the sequence.31 One condition that guarantees

31For example, in the game for the two player network, if discount factors are given by the pair (δa, δb)
(a, b > 0), then as δ → 1 the limit equilibrium payoffs are (b/(a+ b), a/(a+ b)). For different choices of (a, b)
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convergence of the equilibrium payoffs and agreement network is that the relative rates of

convergence of δi and δj to 1 be constant along the sequence of discount factors. That is,

there exists α = (α1, α2, . . . , αn) such that δi = δαi for δ ∈ (0, 1). Denote by Γδ,α the bar-

gaining game described in Section 2 with payoffs modified by the assumption that iτ has

discount factor δαi for all i ∈ N and τ ≥ 0.

For a fixed α, we are interested in the asymptotic equilibrium behavior in Γδ,α as δ → 1.

Theorems 1 and 2 generalize verbatim. The notation for Γδ, v∗δ, δ, G∗δ, G∗, v∗, . . . needs to

be replaced by Γδ,α, v∗δ(α), δ(α), G∗δ(α), G∗(α), v∗(α), . . . to reflect the dependence of the

variables on α.

Remark 4. For a subnetwork H of G, the analogue of the linear system 3.4 used in the

proofs of Proposition 1 and Theorem 2 is

vi =
2e− eHi

2e
δαivi +

1

2e

∑
{j|ij∈H}

(1− δαjvj),∀i = 1, n.

As in the proof of Proposition 1 the unique solution vδ,Hi (α) is given by Cramer’s rule, as

the ratio of two determinants that are finite sums of positive real powers (which are not

necessarily polynomials) of δ. In order to show that for fixed i, j,H there exists a finite

number of δ solving the equation δ(vδ,Hi (α)+vδ,Hj (α)) = 1 we invoke a result due to Laguerre

(1883). The result extends Descartes’ rule of signs, which provides a bound for the number

of positive real roots of polynomials in δ, to the case of linear combinations of powers of δ.

A corollary of Laguerre’s result is that every finite linear combination of positive powers of

δ which does not vanish everywhere has a finite number of solutions.32

the limit equilibrium payoffs for the corresponding sequence of discount factors vary accordingly. For the
sequence of discount factors indexed by n given by (1− 1/n, 1− 1/n) for odd n and (1− 1/n, (1− 1/n)2) for
even n, the set of equilibrium payoffs has two accumulation points, (1/2, 1/2) and (2/3, 1/3). Similarly, for
more complicated network structures, the limit equilibrium agreement network depends on the sequence of
discount factors, and convergence does not always obtain.
32If all components of α are rational numbers we can avoid non-polynomial functions by using the substation
δ → δc, where c is the least common multiple of the denominators of α1, α2, . . . , αn.
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Theorem 3α. For every G∗(α)-independent set M , the following bounds on limit equilibrium

payoffs hold

min
i∈M

v∗i (α) ≤
∑

j∈LG∗(α)(M) αj∑
i∈M αi +

∑
j∈LG∗(α)(M) αj

max
j∈LG∗(α)(M)

v∗j (α) ≥
∑

i∈M αi∑
i∈M αi +

∑
j∈LG∗(α)(M) αj

.

Proof. We follow analogous steps to the proof of Theorem 3. The only innovation is that we

rewrite the conclusion of Lemma 4 as

1− δαi
1− δ

v∗δi (α) =
1

1− δ
∑
{j|ij∈G}

1

2e
max(1− δαiv∗δi (α)− δαjv∗δj (α), 0),∀i ∈ N,∀δ ∈ (0, 1).

Then ∑
j∈L

1− δαj
1− δ

v∗δj (α) ≥
∑
i∈M

1− δαi
1− δ

v∗δi (α),

which after taking the limit δ → 1 becomes∑
j∈L

αjv
∗
j (α) ≥

∑
i∈M

αiv
∗
i (α).

The conclusion is reached as in the proof of Theorem 3. �

If we replace formula 5.1 in the algorithm A(G) with

rs(α) = min
M⊂Ns, M∈I(G)

∑
j∈LG∗(α)(M) αj∑

i∈M αi
,

and leave the definitions of the other variables unchanged, the new procedure delivers the

limit equilibrium payoffs of Γδ,α when δ → 1 as detailed in Theorem 4.33

9.2. General matching technologies. In the benchmark model of Section 2 it is assumed

that every pair of connected players is equally likely to be matched to bargain at every round,

and each of the two matched players is equally likely to be the proposer. Here we attempt

to relax these assumptions. Let (p(i → j) > 0)ij∈G be a probability distribution over the

oriented links of G. Denote by Γδ,α the bargaining game described in Section 2 with the

moves by nature modified so that every period player i is chosen to make an offer to player

j with probability p(i → j). Hence, each link ij is selected for bargaining with probability

p(i → j) + p(j → i), and conditional on the selection, i is the proposer with probability

33The extension of the proofs of Lemma 5 and Theorem 4 virtually consists in replacing everywhere the
cardinality set operator | · | by the α-weight set operator | · |α, defined by |M |α =

∑
i∈M αi for every M ⊂ N .
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p(i→ j)/(p(i→ j) + p(j → i)). The uniform distribution pu defining the benchmark game

Γδ is given by pu(i→ j) = 1/(2e),∀ij ∈ G.

Fix p. We are interested in the asymptotic equilibrium behavior in Γδ,p as δ → 1. As in

the previous subsection, Theorems 1 and 2 generalize with Γδ, v∗δ, δ, G∗δ, G∗, v∗, . . . replaced

by Γδ,p, v∗δ(p), δ(p), G∗δ(p), G∗(p), v∗(p), . . .

The observation that for every discount factor the equilibrium payoff of any player is

equal to the expected present value of his stream of first mover advantage, which is the first

ingredient for the proof of Theorem 3, generalizes to Γδ,p. Next suppose that conditional on

the selection of any link, each of the two players is equally likely to become the proposer,

i.e., p(i→ j) = p(j → i) for all ij ∈ G. Then the second ingredient for the proof of Theorem

3 also generalizes to Γδ,p. Any net first mover advantage that a player i gains from making

an offer to a player j is mapped to an equal net first mover advantage that j gains from

making an offer to i, and both gains are weighted by the probability p(i → j) = p(j → i)

in the expected payoffs of i and j. Therefore, the sum of the expected present values of the

streams of first mover advantage enjoyed by all players in a mutually estranged set is not

larger than the same expression evaluated for the corresponding partner set.

Proposition 4. If p(i→ j) = p(j → i) for all ij ∈ G then Theorems 3 and 4 extend without

change. As δ → 1, the limit equilibrium payoffs of Γδ,p are identical to those of Γδ,pu = Γδ.

Remark 5. Suppose that G is the complete network,34 and that p(i → j) = πiπj,∀i 6=

j ∈ N for some vector π describing relative matching frequencies (πi > 0,∀i ∈ N). In

this setting, Proposition 4 implies that the limit equilibrium payoff of each player is 1/2,

independently of π. While players with higher matching frequencies obtain larger equilibrium

payoffs for any δ < 1, all equilibrium payoffs converge to 1/2 as δ goes to 1. The intuition

is that patient players can postpone agreement until matched to bargain with players that

have low matching frequency (each match occurs with positive probability every period).

Another case where the results extend easily is the setting of buyer-seller networks where

there exists q > 0 such that p(j → i) = qp(i→ j) for all ij ∈ G, i ∈ B, j ∈ S (B and S denote

the sets of buyers and sellers, respectively). In every pairwise matching, the seller is q times

more likely than the buyer to be the proposer. Consider the sequence (rs, xs, Bs, Ss, Ns, Gs)s

34The complete network includes every link ij with i 6= j ∈ N .
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Figure 7. Network G∗3(p)

generated by the algorithm ABS(G), with the variable xs redefined as rs/(q + rs) for all s

and the other variables left intact. The sequence delivers the limit equilibrium payoffs of Γδ,p

when δ → 1 as detailed in Theorem 4.

The conclusions of Theorems 3 and 4 do not immediately extend to more general matching

technologies. The following example illustrates some of the difficulties.

Example 4. Consider again the network G3 with 9 players illustrated in Figure 3. Let p

be the probability distribution of moves by nature induced as follows. Every link is selected

with equal probability, and for each selection except (2, 6) and (2, 7), each of the two matched

players is equally likely to be the proposer. If the link (2, 6) ((2, 7)) is selected, then player

2 is twice as likely as player 6 (7) to be the proposer. Mathematically, p(2 → 6) = p(2 →

7) = 1/18, p(6→ 2) = p(7→ 2) = 1/36 and p(i→ j) = 1/24 for all other links ij in G3. We

similarly define the probability distribution p′ to give player 2 asymmetric bargaining power

in encounters with players 8 and 9, by p′(2 → 8) = p′(2 → 9) = 1/18, p′(8 → 2) = p′(9 →

2) = 1/36 and p′(i→ j) = 1/24 for all other links ij in G3.

Consider first the game Γδ,p. By arguments similar to those from Example 2, we obtain

that the limit equilibrium agreement network is the subnetwork G∗3(p) illustrated in Figure

7. The limit equilibrium payoffs are v∗1(p) = v∗2(p) = 8/11, v∗3(p) = 2/3, v∗4(p) = v∗5(p) =

v∗6(p) = v∗7(p) = 3/11 and v∗8(p) = v∗9(p) = 1/3. The intuition is that player 2 can extort

players 6 and 7 for more than 2/3, since he enjoys increased bargaining power in pairwise

interactions with each of these players. Players 6 and 7 have to reach agreements when

matched to bargain with 1, since they would receive limit equilibrium payoffs of at most 1/5

if they were monopolized by 2. Then player 1 will be able to take advantage of the weakness

of 6 and 7, and also reach equally favorable agreements with 4 and 5. Player 1 can extort
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4 and 5 because these two plyers do not have other bargaining partners. In the limit, since

players 1 and 2 reach agreements on very favorable terms with 4, 5, 6 and 7, they are not

attractive bargaining partners for 8 and 9. Players 8 and 9 have monopsony power over 3,

and thus can secure limit equilibrium payoffs of 1/3. Hence, as players become patient, 8

and 9 do not have incentives to reach agreements with 1 or 2.

Consider next the game Γδ,p
′
. The limit equilibrium agreement network is identical to

G∗3 (consisting of the set of thick links in Fugure 3). The limit equilibrium payoffs are

v∗1 = v∗2 = v∗3 = 2/3 and v∗4 = v∗5 = v∗6 = v∗7 = v∗8 = v∗9 = 1/3. Player 2 cannot use his

stronger bargaining power in pairwise interactions with 8 and 9 to obtain a limit equilibrium

payoff larger than 2/3. The intuition is that 8 and 9 can secure limit equilibrium payoffs

of 1/3 in pairwise agreements with 3, since they constitute the only bargaining partners

for 3. Hence 8 and 9 cannot be pressured to surrender more than 2/3 to player 2 in the

limit, despite their relatively smaller chance of proposing when matched to bargain with

2. Equilibrium agreements do not arise across the links (1, 8) and (1, 9) when players are

sufficiently patient for the reasons outlined in Example 2.

9.2.1. More than one match per period. The results are not sensitive to the assumption that

only one pair of players is matched to bargain every period. Consider the following more

general matching technology. Suppose that every period nature matches a set (possibly

varying in cardinality) of disjoint pairs of linked players. All pairs matched in a given period

bargain simultaneously. We assume that the distribution over matchings is stationary, and

that each link is selected with positive probability. The preliminary results on essential

equilibrium uniqueness and convergence as players become patient extend to this setting.

Suppose further that for every matched pair, each of the two players is equally likely to be

the proposer. Then, by an argument similar to the one of Proposition 4, the limit equilibrium

payoffs of the bargaining game with the matching technology sketched out here are identical

to those of the benchmark game.

10. Related Literature

One major study of decentralized trade is Rubinstein and Wolinsky (1985). The paper

considers a market where each seller owns one unit of a homogeneous indivisible good, and

each buyer demands one unit of the good. The values of buyers and sellers for the good are



BARGAINING IN NETWORKS 39

1 and 0, respectively. At every round each buyer (seller) is matched to a new seller (buyer)

with probability αb (αs). For every buyer-seller match, each of the two agents is selected

with equal probability to make a price offer. If the offer is accepted then the two agents trade

and leave the market. It is assumed that the market is at a steady state, where the numbers

of buyers and sellers are constant over time. An important result is that as players become

patient, the equilibrium payoffs of each buyer and each seller converge to αb/(αs + αb) and

αs/(αs + αb), respectively.

Rubinstein and Wolinsky endogenize the variables αb and αs by means of the following

matching technology. Suppose there are nb buyers and ns sellers. Each period m matchings

are chosen with equal probability among the sets of m disjoint buyer-seller pairs. This

framework is a special case of our model (see Subsection 9.2.1), whereby the network is a

bipartite complete graph with nb buyers and ns sellers. If nb and ns are large,35 the matching

technology leads to αb ≈ m/nb and αs ≈ m/ns. Then the limit equilibrium payoffs can be

rewritten as ns/(nb + ns) and nb/(nb + ns), respectively. Hence, as players become patient,

the unit surplus is split between buyers and sellers according to the shortage ratio, ns/nb,

describing the relative strength of the group of buyers. Our analysis develops the idea that,

in stationary environments, the shortage ratio of every mutually estranged group plays a key

role in the prediction of bargaining power.

Gale (1987), Binmore and Herrero (1988a), and Rubinstein and Wolinsky (1990) further

study the relationship between the equilibrium outcomes of various decentralized bargaining

procedures and the competitive equilibrium price as the costs of search and delay become

negligible. The findings are that the relationship is sensitive to the assumptions on the

flow of agents entering the market over time, the amount of information available to agents,

the matching technology, and the discount factor.36 All buyers and respectively all sellers

are treated anonymously by the various stochastic matching processes considered in this

literature. The analogue of this modeling assumption in our setting is the special case of

buyer-seller networks in which every buyer is connected to every seller. As argued above,

35Rubinstein and Wolinsky assume that every pair of matched agents continues to bargain until one of them
is matched to a new partner. The large market condition implies that it is improbable that an agent will be
re-matched with his current partner.
36Osborne and Rubinstein (1990) and Binmore et al. (1992) are excellent surveys of the literature on
bargaining in markets.
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for such networks our conclusions coincide with those of Rubinstein and Wolinsky (1985).

In other networks some pairs of buyers and sellers are not connected and cannot engage in

exchange. Since bargaining encounters are restricted by network connections, the competitive

equilibrium analysis does not apply.

In Abreu and Manea (2008) we drop the stationarity assumption, and analyze the situation

in which players that reach agreements are removed from the network without replacement.

The bargaining protocol is identical to the one of the present paper. In that setting the

production technology determines a maximum total surplus that may be generated coop-

eratively in every network. A family of equilibria is asymptotically efficient if the welfare

they induce approaches the maximum total surplus as players become patient. To achieve

efficiency some pairs of connected players need to refrain from reaching agreements in various

subgames. For many networks, all Markov perfect equilibria are asymptotically inefficient.

The main result is that asymptotically efficient subgame perfect equilibria exist for every

network. Our equilibrium construction entails non-Markovian behavior as in the dynamic

games literature. Players who resist the temptation of reaching inefficient agreements are

rewarded by their neighbors, and players who do not conform to the rewarding procedure

are punished via the threat of inefficient agreements that result in their isolation.

The latter paper also studies properties of Markov perfect equilibria (MPE). We establish

existence of MPEs, and show that MPE payoffs are not necessarily unique. We provide

a method to construct pure strategy MPEs for high discount factors based on conjectures

about the set of links across which agreement may obtain in every subnetwork.

The two models differ in strategic complexity. In the present model bargaining oppor-

tunities are stationary over time. A player’s decisions consist solely in determining who

his most favorable bargaining partners are. In effect, each player solves a search problem

with prizes endogenously and simultaneously determined by the network structure. In the

model of Abreu and Manea (2008) a player’s decisions additionally entail anticipating that

passing up bargaining opportunities may lead to agreements involving other players which

undermine or enhance his position in the network in future bargaining encounters. Tech-

nically, this means that we need to compute equilibrium payoffs for every subnetwork that

may arise following a series of agreements. Clearly, the selection between the two models
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depends on the environment under investigation. In some markets bargaining opportunities

are stationary, while in others bargaining opportunities decline over time.

Polanski (2007) studies a related model. The differences regard the matching technology

and the steady state assumption. Polanski assumes that a maximum number of pairs of

connected players are selected to bargain every period, and all players who reach agreement

are removed from the network without replacement. Corominas-Bosch (2004) considers a

model in which buyers and sellers alternate in making public offers that may be accepted

by any of the responders connected to a specific proposer. As in the previous paper, the

matching technology is chosen such that when there are multiple possibilities to match

buyers and sellers (that is, there are multiple agents proposing or accepting identical prices)

the maximum number of transactions take place. The efficient matching technologies of

the preceding papers are fundamentally centralized. The market forces that would organize

the matchings in order to maximize total surplus are not explicitly modeled by way of self-

interested strategic behavior.

Centralized trading mechanisms may be employed in order to implement efficient matching

outcomes. Kranton and Minehart (2001) study a model similar to the one of Corominas-

Bosch (2004). The valuations of the buyers are heterogeneous, and sellers are non-strategic.

Prices are determined by the ascending-bid auction mechanism designed by Demange, Gale

and Sotomayor (1986). The unique equilibrium in weakly undominated strategies leads to

an efficient allocation of the goods. The result makes possible the study of the relationship

between overall economic welfare and the incentives of buyers to form the network when

links are costly to maintain.

Calvo-Armengol (2001, 2003) introduces the following model of sequential bargaining on

a network. In the first round a proposer is randomly selected, and a responder is randomly

chosen among his neighbors in the network. Every round that ends in disagreement is

followed by a new round where the disagreeing responder makes an offer to a randomly

chosen neighbor. The game ends when the first agreement is obtained. The unique stationary

subgame perfect equilibrium specifies offers and responses identical to those in the two-person

Rubinstein (1982) game. Therefore, the network has no effect on the ex-post equilibrium

division, and only influences payoffs via the probabilities that an agent is the proposer or the

responder in the first round of the game. These probabilities are defined exogenously in the
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model. Furthermore, it is assumed that a proposer passes down the bargaining opportunity

to the responder in case of disagreement and that the game ends as soon as one pair reaches

an agreement.

Formal models of non-cooperative two-player bargaining were introduced in the pioneering

work of Stahl (1972), Rubinstein (1982) and Binmore (1987). Pairwise stability is defined

by Jackson and Wolinsky (1996); Jackson (2005) surveys the extensive related literature.

11. Conclusion

Networks are important in many economic and social interactions. In our setting net-

works represent patterns of trading opportunities. The network structure affects the set of

feasible agreements, the division of surplus, and the relative bargaining strengths. Previ-

ous studies of surplus division in networks mainly focused on allocation rules defined by

exogenous or cooperative, rather than non-cooperative, procedures. Some papers discussed

in the literature review analyze non-cooperative division of surplus in networks under cen-

tralized mechanisms. Yet only a few papers explore the complex strategic issues that arise

in bargaining over surplus in networks with decentralized, bilateral matching. The models

of non-cooperative decentralized bargaining in networks of the present paper and of Abreu

and Manea (2008) constitute initial endeavors in that exploration.

The model introduced here is well-behaved in that equilibria are essentially unique and

converge as players become patient. The main result of the paper is the characterization

of the limit equilibrium payoffs by iterative use of the finding that players with extreme

limit equilibrium payoffs form an oligopoly subnetwork corresponding to the largest mu-

tually estranged set that minimizes the shortage ratio. The result facilitates the analysis

of equitable networks, stable networks, and non-discriminatory buyer-seller networks. The

ideas of mutually estranged sets and minimal shortage ratios, along with induced oligopoly

subnetworks, provide insights into the relative strengths of the positions in a network. The

limit equilibrium payoffs deliver an index of bargaining power in networks.

Appendix A. Proofs

Proof of Lemma 1. Suppose w1 = max(w1, w2, w3, w4). Then

|max(w1, w2)−max(w3, w4)| = w1 −max(w3, w4) ≤ w1 − w3 ≤ max(|w1 − w3|, |w2 − w4|).
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The proof is similar for the cases when w2, w3, or w4 is equal to max(w1, w2, w3, w4). �

Proof of Lemma 2. Let σ be a steady state stationary equilibrium of Γδ. Under σ, for every

i ∈ N , each player iτ receives the same expected payoff, ṽi, in any H(iτ ) subgame. In

equilibrium, it must be that each player j accepts any offer larger than δṽj, and rejects any

offer smaller than δṽj. If ij ∈ G and δ(ṽi + ṽj) < 1, when i is selected to propose to j, he

offers δṽj and j accepts with probability 1. Similarly, if ij ∈ G and δ(ṽi + ṽj) > 1, when i is

selected to propose to j, he makes an offer that j rejects with probability 1.

By the analysis above, the payoffs under σ solve the system

ṽi =
2e− ei

2e
δṽi +

1

2e

∑
{j|ij∈G}

max(1− δṽj, δṽi), ∀i ∈ N

(e and ei are defined in Section 3).

Therefore, ṽ = (ṽi)i∈N is a fixed point of the function f δ = (f δ1 , f
δ
2 , . . . , f

δ
n) : Rn → Rn

defined by

f δi (v) =
2e− ei

2e
δvi +

1

2e

∑
{j|ij∈G}

max(1− δvj, δvi).

Note that f δ maps [0, 1]n into itself.

We show that f δ is a contraction with respect to the sup norm || · ||∞ on Rn, defined by

||z||∞ = maxi=1,n |zi|. Specifically,

||f δ(v)− f δ(u)||∞ ≤ δ||v − u||∞,∀v, u ∈ [0, 1]n.

We need to prove that for each i, |f δi (v)− f δi (u)| ≤ δ||v − u||∞.

By f δ’s definition,

|f δi (v)− f δi (u)| ≤ 2e− ei
2e

δ|vi − ui|+
1

2e

∑
{j|ij∈G}

|max(1− δvj, δvi)−max(1− δuj, δui)|

≤ 2e− ei
2e

δ|vi − ui|+
1

2e

∑
{j|ij∈G}

max(|1− δvj − (1− δuj)|, |δvi − δui|)

=
2e− ei

2e
δ|vi − ui|+

1

2e

∑
{j|ij∈G}

δmax(|vj − uj|, |vi − ui|)

≤ 2e− ei
2e

δ||v − u||∞ +
1

2e

∑
{j|ij∈G}

δ||v − u||∞

= δ||v − u||∞,
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where the second inequality follows from Lemma 1, and the others from algebraic manipu-

lation and the definition of the sup norm.

Because f δ is a contraction, it has exactly one fixed point, denoted ṽ∗δ. Since f δ([0, 1]n) ⊂

[0, 1]n, it follows that ṽ∗δ ∈ [0, 1]n. Steady state stationary equilibrium payoffs of Γδ need to

be fixed points for f δ, hence they are uniquely given by ṽ∗δ. �

Proof of Proposition 1. By definition, ij ∈ G∗δ ⇐⇒ ij ∈ G& max(1−δv∗δj , δv∗δi ) = 1−δv∗δj .

Since v∗δ is a fixed point of f δ, v∗δ solves the n× n linear system

vi =
2e− eG∗δi

2e
δvi +

1

2e

∑
{j|ij∈G∗δ}

(1− δvj),∀i = 1, n.

For every δ ∈ (0, 1) and every non-empty subnetwork H of G, consider more generally the

n× n linear system

(A.1) vi =
2e− eHi

2e
δvi +

1

2e

∑
{j|ij∈H}

(1− δvj),∀i = 1, n

(e and eHi are defined in Section 3). We argue below that the system A.1 has a unique solution

vδ,H , and the solution belongs to [0, 1]n. In particular, the system A.1 is non-singular and

v∗δ = vδ,G
∗δ

.

The simplest path to show uniqueness of the solution to A.1 is analytical rather than

linear algebraic, by proving that the function hδ,H : Rn → Rn defined by

hδ,Hi (v) =
2e− eHi

2e
δvi +

1

2e

∑
{j|ij∈H}

(1− δvj),∀i = 1, n

is a contraction with respect to the sup norm on Rn. The proof is omitted as it is very

similar (but simpler, since it does not involve Lemma 1) to the proof that f δ is a contraction

in Lemma 2.

All entries in the augmented matrix of the linear system A.1 are linear functions of δ. Then

for each i ∈ N the solution vδ,Hi is given by Cramer’s rule, as the ratio of two determinants

that are polynomials in δ of degree at most n,

(A.2) vδ,Hi = PH
i (δ)/QH

i (δ).

QH
i (δ) 6= 0 for all δ ∈ (0, 1) and all non-empty subnetworks H of G as the corresponding

system A.1 is non-singular.
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Let ∆̄ be the set of δ for which there exist i, j,H with δ(vδ,Hi + vδ,Hj ) = 1. Fix i, j,H. The

equation δ(vδ,Hi + vδ,Hj ) = 1 is equivalent to

1 = δ(vδ,Hi + vδ,Hj ) = δ(PH
i (δ)/QH

i (δ) + PH
j (δ)/QH

j (δ)).

If the equation above has an infinite number of solutions δ, it follows that

δ(PH
i (δ)QH

j (δ) + PH
j (δ)QH

i (δ)) = QH
i (δ)QH

j (δ)

is a polynomial identity, i.e., it holds for all δ. In particular, equality needs to hold in the

two display equations above for δ = 1/3, implying that 1/3(v
1/3,H
i + v

1/3,H
j ) = 1. Hence

v
1/3,H
i + v

1/3,H
j = 3, which is a contradiction with v1/3,H ∈ [0, 1]n.

Since for every triplet (i, j,H) the equation δ(vδ,Hi + vδ,Hj ) = 1 has a finite number of

solutions δ, and the number of such triplets is finite, it follows that the set ∆̄ is finite. The

equality v∗δ = vδ,G
∗δ

implies that the set of δ for which there exist i, j s.t. δ(v∗δi + v∗δj ) = 1

is included in ∆̄. �

Proof of Proposition 2. Let ij ∈ G. If ij ∈ G \G∗, then for all δ > δ,

(A.3) δ(v∗δi + v∗δj ) > 1.

If ij ∈ G∗, then for all δ > δ,

(A.4) v∗δi =
2e− eG∗i

2e
δv∗δi +

1

2e

∑
{k|ik∈G∗}

(1− δv∗δk ) ≥ 2e− 1

2e
δv∗δi +

1

2e
(1− δv∗δj ),

since 1 − δv∗δk ≥ δv∗δi for all k 6= j such that ik ∈ G∗. Taking the limit as δ goes to 1 in

either A.3 or A.4 we obtain that v∗i + v∗j ≥ 1.

In conclusion, v∗i + v∗j ≥ 1,∀ij ∈ G. The other claims follow similarly. �

Proof of Lemma 3. Fix δ > δ. If i had no link in G∗, then v∗δi = 0. Hence δ(v∗δi + v∗δj ) < 1

for all j 6= i. Then by Theorem 1, ij ∈ G∗ for all j such that ij ∈ G. Since i has at least one

link in G (see footnote 6), it follows that i has at least one link in G∗, a contradiction. �

Proof of Theorem 3. Let M be a mutually estranged set with partner set L. Fix δ > δ, with

δ specified as in Theorem 2. Then in every equilibrium of Γδ, a pair of players connected in

G reach agreement when matched to bargain if and only if they are connected in G∗.
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By Lemma 4, for all i in M ,

v∗δi =
1

1− δ
∑
{j|ij∈G}

1

2e
max(1− δv∗δi − δv∗δj , 0)

=
1

1− δ
∑

{j|ij∈G, j∈L}

1

2e
max(1− δv∗δi − δv∗δj , 0),

(A.5)

since i only has G∗ links to players in L, so max(1− δv∗δi − δv∗δj , 0) = 0 if ij ∈ G, j /∈ L.

By Lemma 4, for all j in L,

v∗δj =
1

1− δ
∑

{k|kj∈G}

1

2e
max(1− δv∗δk − δv∗δj , 0)

≥ 1

1− δ
∑

{i|ij∈G, i∈M}

1

2e
max(1− δv∗δi − δv∗δj , 0).

(A.6)

Adding up the equalities A.5 across all i ∈M and the inequalities A.6 across all j ∈ L we

obtain ∑
i∈M

v∗δi =
1

1− δ
∑

{(i,j)|ij∈G, i∈M, j∈L}

1

2e
max(1− δv∗δi − δv∗δj , 0)

∑
j∈L

v∗δj ≥ 1

1− δ
∑

{(i,j)|ij∈G, i∈M, j∈L}

1

2e
max(1− δv∗δi − δv∗δj , 0).

Therefore,

(A.7)
∑
j∈L

v∗δj ≥
∑
i∈M

v∗δi ,

which after taking the limit δ → 1 becomes∑
j∈L

v∗j ≥
∑
i∈M

v∗i .

We can manipulate the latter inequality to obtain that

|L|max
j∈L

v∗j ≥ |M |min
i∈M

v∗i .

Player i ∈ arg mini∈M v∗i is connected in G∗ to a player j̃ ∈ L (Lemma 3), hence by

Proposition 2, v∗i + v∗
j̃

= 1. Thus mini∈M v∗i = 1− v∗
j̃
≥ 1−maxj∈L v

∗
j .

Also, any j ∈ arg maxj∈L v
∗
j is connected in G∗ to a player ĩ ∈ M , and v∗

ĩ
+ v∗

j
= 1 by

Proposition 2. Hence maxj∈L v
∗
j = 1− v∗

ĩ
≤ 1−mini∈M v∗i .
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We proved that mini∈M v∗i = 1−maxj∈L v
∗
j . It follows that

|L|max
j∈L

v∗j ≥ |M |(1−max
j∈L

v∗j ),

which is equivalent to

max
j∈L

v∗j ≥
|M |

|M |+ |L|
.

Moreover,

min
i∈M

v∗i = 1−max
j∈L

v∗j ≤ 1− |M |
|M |+ |L|

=
|L|

|M |+ |L|
.

�

Proof of Lemma 5. Suppose that r := minM∈I(H) |LH(M)|/|M | < 1, and let M ′,M ′′ be two

H-independent sets achieving the minimum. Decompose the set M ′ as the union of the

sets A2 = M ′ ∩ M ′′, A1 = (M ′ \ M ′′) \ LH(M ′′), that is, the set of players in M ′ \ M ′′

who do not have any H links to M ′′, and A4 = (M ′ \ M ′′) ∩ LH(M ′′), that is, the set

of players in M ′ \M ′′ who have H links to M ′′. Similarly, decompose the set M ′′ as the

union of the sets A2, A3 = (M ′′ \ M ′) \ LH(M ′) and A5 = (M ′′ \ M ′) ∩ LH(M ′). Let

B2 = LH(A2), B1 = LH(A1) \ B2, B3 = LH(A3) \ B2. Denote |Ai| = ai, |Bj| = bj for

i = 1, 5, j = 1, 3.

Since M ′′ is H-independent, there are no H links between A5 and A2. Also, there are no

H links between A5 and A1 because A1 ∩ LH(M ′′) = ∅. Then, as LH(M ′) ⊃ A5, it must be

that LH(A4) ⊃ A5. Similarly, LH(A5) ⊃ A4. Therefore,37

LH(A1 ∪ A2 ∪ A3) = B1 ∪B2 ∪B3

LH(M ′) = LH(A1 ∪ A2 ∪ A4) ⊃ B1 ∪B2 ∪ A5

LH(M ′′) = LH(A2 ∪ A3 ∪ A5) ⊃ B2 ∪B3 ∪ A4

LH(A2) = B2.

Since there are no H links between A1 ∪ A2 and M ′′, it follows that (B1 ∪ B2) ∩ A5 ⊂

(B1 ∪ B2) ∩M ′′ = ∅. Analogously, (B2 ∪ B3) ∩ A4 = ∅. By definition, B1 ∩ B2 = ∅ and

B2 ∩ B3 = ∅. It follows that the triplets (B1, B2, A5) and (B2, B3, A4) consist of pairwise

37The middle two expressions may be strict inclusions as players in A4 (A5) may have H links to players not
in B1 ∪B2 ∪A5 (B2 ∪B3 ∪A4).
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disjoint sets, hence |B1 ∪ B2 ∪ A5| = b1 + b2 + a5 and |B2 ∪ B3 ∪ A4| = b2 + b3 + a4. The

intersection of B1 and B3 may be non-empty, hence |B1 ∪B2 ∪B3| ≤ b1 + b2 + b3.

The definitions of r,M ′,M ′′, and the arguments above above imply38

b1 + b2 + b3
a1 + a2 + a3

≥ |L
H(A1 ∪ A2 ∪ A3)|
|A1 ∪ A2 ∪ A3|

≥ r(A.8)

r =
|LH(M ′)|
|M ′|

≥ b1 + b2 + a5

a1 + a2 + a4

(A.9)

r =
|LH(M ′′)|
|M ′′|

≥ b2 + b3 + a4

a2 + a3 + a5

(A.10)

b2
a2

=
|LH(A2)|
|A2|

≥ r,(A.11)

which can be rewritten as

b1 + b2 + b3 ≥ ra1 + ra2 + ra3(A.12)

ra1 + ra2 + ra4 ≥ b1 + b2 + a5(A.13)

ra2 + ra3 + ra5 ≥ b2 + b3 + a4(A.14)

b2 ≥ ra2.(A.15)

Adding up all the inequalities above and canceling terms we obtain that

(A.16) (r − 1)(a4 + a5) ≥ 0.

Since r < 1, it follows that a4+a5 = 0, hence there are no H links between M ′ and M ′′, so the

set M ′ ∪M ′′ is H-independent. Moreover, A4 = A5 = ∅, and thus M ′ ∪M ′′ = A1 ∪A2 ∪A3.

As the sum of all weak inequalities A.12-A.15 leads to an equality, it follows that A.8-A.15

hold with equality. In particular,

b1 + b2 + b3
a1 + a2 + a3

=
|LH(A1 ∪ A2 ∪ A3)|
|A1 ∪ A2 ∪ A3|

= r.

Therefore,

|LH(M ′ ∪M ′′)|
|M ′ ∪M ′′|

= r,

which finishes the proof. �

38The case a1 + a2 + a3 = 0 is not possible, as it would lead to LH(M ′) ⊃ M ′′ and LH(M ′′) ⊃ M ′, which
can hold only if r ≥ 1. If a2 = 0, the bottom inequality becomes irrelevant for the proof.
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Proof of Proposition 3. It is sufficient to show that (rs)s is strictly increasing. We proceed

by contradiction. Suppose that rs ≤ rs−1. Then it must be that 1 < s < s.

By Lemma 6, LGs−1(Ms−1∪Ms) = Ls−1∪Ls and Ms−1∪Ms is a G-independent set. Since

|Ls−1|
|Ms−1|

= rs−1 and
|Ls|
|Ms|

= rs ≤ rs−1,

it follows that

|LGs−1(Ms−1 ∪Ms)|
|Ms−1 ∪Ms|

=
|Ls−1|+ |Ls|
|Ms−1|+ |Ms|

≤ rs−1.

Therefore,

Ms−1 ∪Ms ∈ arg min
M⊂Ns−1, M∈I(G)

|LGs−1(M)|
|M |

,

a contradiction with Ms−1 being the union of all the minimizers of the expression above. �

Proof of Theorem 4, case s = s. This case is only relevant when Ns 6= ∅, which is assumed

in the claims below. Note that rs ≥ 1.

Claim 4.5. v∗k ≥ 1/2,∀k ∈ Ns

Again, let xs = mini∈Ns v
∗
i , M s = arg mini∈Ns v

∗
i and Ls = LGs(M s). We show that

xs ≥ 1/2 by contradiction. Suppose that xs < 1/2.

By arguments parallel to those in Claim 4.2, under the assumption that xs < 1/2,

LG
∗
(Ls) ⊂M s and Ls is G∗-independent. Theorem 3 implies that

xs = max
i∈LG∗ (Ls)

v∗i ≥
|Ls|

|M s|+ |Ls|
.

Since xs < 1/2 and Ls = LGs(M s), we obtain that

1 >
|LGs(M s)|
|M s|

,

which is a contradiction with rs ≥ 1.

Claim 4.6. v∗k ≤ 1/2,∀k ∈ Ns

Fix k ∈ Ns. By Claim 4.5, v∗k ≥ 1/2. One consequence of Lemma 6 is that k has no G

links to players in M1 ∪M2 ∪ . . . ∪Ms−1. By Proposition 2, as v∗k ≥ 1/2, there are no G∗

links from k to players j ∈ L1 ∪ L2 ∪ . . . ∪ Ls−1, since for these players v∗j ≥ 1− xs−1 > 1/2.

Therefore, k may only have G∗ links to players in Ns. But Claim 4.5 showed that the limit
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equilibrium payoff of every player in Ns is at least 1/2. Then Proposition 2 and Lemma 3

imply that v∗k ≤ 1/2.

Claims 4.5 and 4.6 show that v∗k = 1/2 for all k ∈ Ns. �

Proof of Theorem 6. (i) Let G̃ be a network with ij ∈ G̃, and let G = G̃− ij be the network

obtained by deleting the link ij from G̃. Denote by A(G) = (rs, xs,Ms, Ls, Ns, Gs)s=1,2,...,s

and A(G̃) = (r̃s̃, M̃s̃, L̃s̃, Ñs̃, G̃s̃)s̃=1,2,...,s̃ the outcomes of the algorithm for computing the

limit equilibrium payoffs for the bargaining games on the networks G and G̃, respectively.

Let s(k) and s̃(k) denote the steps at which player k is removed in the algorithms A(G) and

respectively A(G̃), i.e., s(k) = max{s|k ∈ Ns}, s̃(k) = max{s̃|k ∈ Ñs̃}.

Without loss of generality, we may assume that s(i) ≤ s(j) and set out to prove both of

the following inequalities,

v∗i (G̃) ≥ v∗i (G) and v∗j (G̃) ≥ v∗j (G).

It can be easily shown that if i ∈ Ls(i) or s(i) = s then A(G) and A(G̃) lead to identical

outcomes. Therefore, we may assume that i ∈Ms(i) and s(i) < s. In particular, rs(i) < 1.

Note that the outcomes of the algorithmsA(G) andA(G̃) are identical for steps 1, . . . , s(i)−

1 and r̃s(i) ≥ rs(i). Since i ∈ Ms(i), rs(i) < 1 and r̃s̃ ≥ rs(i) for s̃ ≥ s(i), it must be that

v∗k(G̃) ≥ rs(i)/(1 + rs(i)) = v∗i (G) for all k ∈ Ns(i) = Ñs(i). Hence v∗i (G̃) ≥ v∗i (G).

We next show that v∗j (G̃) ≥ v∗j (G). There are three cases to consider: j ∈ Ls(j), j ∈Ms(j),

and s(j) = s. We only solve the former case; the other two can be handled by similar

methods.

Henceforth we focus on the case i ∈ Ms(i), j ∈ Ls(j). Then s(j) < s and rs(j) < 1. The

following lemma will be used repeatedly.

Lemma 7. Suppose that (rs, xs,Ms, Ls, Ns, Gs)s=1,2,...,s is the outcome of the algorithm A(G).

For any s < s, and any non-empty L′ ⊂ Ls,

|L′|
|LGs(L′) ∩Ms|

≤ rs.

Proof. Let M ′ = LGs(L′)∩Ms. Then Ls = LGs(Ms) and LGs(L′)∩ (Ms \M ′) = ∅ imply that

LGs(Ms \M ′) ⊂ Ls \ L′. Since

rs = min
M⊂Ns, M∈I(G)

|LGs(M)|/|M |,
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it follows that |Ls \ L′|/|Ms \M ′| ≥ rs = |Ls|/|Ms|. Hence |L′|/|M ′| ≤ |Ls|/|Ms| = rs. �

For s̃ = s(i)− 1, s(i), . . . , s̃(j) we show that

(1) r̃s̃ ≤ rs(j)

(2) M̃s̃ ∩ (∪s(j)s=s(i)Ls) = ∅

(3) L̃s̃ ∩ (∪s(j)s=s(i)Ms) = ∅

by induction on s̃. The induction base case, s̃ = s(i)−1, follows trivially. Suppose we proved

the three assertions for all lower values, and we proceed to proving them for s̃. Each of the

parts below establishes the corresponding assertion.

Part 6.1. We prove the first part of the induction step, r̃s̃ ≤ rs(j). Let M̃ = M̃s(i)∪. . .∪M̃s̃−1

and L̃ = LG̃s(i)(M̃) = L̃s(i)∪. . .∪L̃s̃−1. Note that L̃ = LG̃s(i)(M̃) = LGs(i)(M̃) since i, j 6∈ M̃ (if

i ∈ M̃ then j ∈ L̃, a contradiction with s̃−1 < s̃(j); j ∈ M̃ leads to a similar contradiction).

Note that ∪s(j)s=s(i)Ms \ M̃ is non-empty as it contains i, and is contained in Ñs̃ since by the

induction hypothesis, L̃s̃′ ∩ (∪s(j)s=s(i)Ms) = ∅ for s̃′ < s̃. Thus it is sufficient to prove that

|LG̃s̃(∪s(j)s=s(i)Ms \ M̃)|

| ∪s(j)s=s(i) Ms \ M̃ |
≤ rs(j).

Indeed, ∪s(j)s=s(i)Ms\M̃ is G-independent (Lemma 6), and also G̃-independent (G̃ = G+ij, i ∈

Ms(i), j ∈ Ls(j)), so the inequality above implies that r̃s̃ ≤ rs(j).

Fix s ∈ s(i), s(j). Let L′ = Ls \LGs(Ms∩M̃). Note that LGs(L′)∩Ms ⊂Ms \M̃ . Lemma

7 applied to step s of A(G) with L′ defined above implies that39

|Ls| − |LGs(Ms ∩ M̃)|
|Ms \ M̃ |

≤ rs.

As LGs(Ms ∩ M̃) ⊂ LGs(i)(M̃) ∩ Ls, it follows that

|Ls| − |LGs(i)(M̃) ∩ Ls|
|Ms \ M̃ |

≤ rs.

Since rs ≤ rs(j) for all s ∈ s(i), s(j), the set of inequalities above imply that∑s(j)
s=s(i)(|Ls| − |L

Gs(i)(M̃) ∩ Ls|)∑s(j)
s=s(i) |Ms \ M̃ |

≤ rs(j),

39The argument is only necessary and relevant when Ms ∩ M̃ 6= ∅,Ms.
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or equivalently,

| ∪s(j)s=s(i) Ls| − |L
Gs(i)(M̃) ∩ (∪s(j)s=s(i)Ls)|

| ∪s(j)s=s(i) Ms \ M̃ |
≤ rs(j).

The letter inequality can be rewritten as

| ∪s(j)s=s(i) Ls \ L
Gs(i)(M̃)|

| ∪s(j)s=s(i) Ms \ M̃ |
≤ rs(j).

But LG̃s̃(∪s(j)s=s(i)Ms \ M̃) ⊂ LG̃s(i)(∪s(j)s=s(i)Ms) = LGs(i)(∪s(j)s=s(i)Ms) = ∪s(j)s=s(i)Ls (the first

equality follows from G̃ = G+ ij, i ∈Ms(i), j ∈ Ls(j)), and G̃s̃ does not contain any players in

L̃ = LGs(i)(M̃). Then LG̃s̃(∪s(j)s=s(i)Ms \ M̃) ⊂ ∪s(j)s=s(i)Ls \ L
Gs(i)(M̃), and the inequality above

implies that

|LG̃s̃(∪s(j)s=s(i)Ms \ M̃)|

| ∪s(j)s=s(i) Ms \ M̃ |
≤ rs(j),

as desired.

Part 6.2. We prove the second part of the induction step, M̃s̃ ∩ (∪s(j)s=s(i)Ls) = ∅, by contra-

diction. Suppose that M̃s̃ ∩ (∪s(j)s=s(i)Ls) 6= ∅, and let s0 be the smallest index s ∈ s(i), s(j)

for which M̃s̃ ∩ Ls 6= ∅. Define B = M̃s̃ ∩ Ls0 and A = LGs0 (B) ∩Ms0 .

We argue that A ⊂ Ñs̃. Fix k ∈ A. Player k has a G-link to a player l ∈ B. If k is

removed at step s̃′ < s̃ in the algorithm A(G̃) then k ∈ M̃s̃′ by the induction hypothesis

(L̃s̃′ ∩ (∪s(j)s=s(i)Ms) = ∅). Then l ∈ L̃s̃′ or l /∈ Ñs̃′ , contradicting that l ∈ M̃s̃. Therefore,

k ∈ Ñs̃.

Note that LG̃s̃(A) ∩ M̃s̃ ⊂ B ∪ {j} since players in A ⊂ Ms0 may only have G-links to

players in L1∪L2∪ . . .∪Ls0 (Lemma 6), and M̃s̃∩ (L1∪L2∪ . . .∪Ls0) = B by the definition

of s0. If i ∈ A then we could have j ∈ LG̃s̃(A) ∩ M̃s̃. Lemma 7 applied for step s̃ of A(G̃)

with L′ = A and Part 6.1 imply that

|A|
|B|+ 1

≤ r̃s̃ ≤ rs(j) < 1.

Hence |A| < |B|+ 1, or |A| ≤ |B|.

Since A = LGs0 (B) ∩Ms0 , Lemma 7 applied to step s0 of A(G) with L′ = B implies that

|B|
|A|
≤ rs0 ≤ rs(j) < 1.

Hence |A| > |B|, a contradiction with |A| ≤ |B|. Therefore M̃s̃ ∩ (∪s(j)s=s(i)Ls) = ∅.
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Part 6.3. To establish the third part of the induction hypothesis, L̃s̃ ∩ (∪s(j)s=s(i)Ms) = ∅, we

proceed by contradiction. Suppose that k ∈ L̃s̃ ∩ (∪s(j)s=s(i)Ms). It should be that k has a G̃s̃

link to a player l ∈ M̃s̃. By Lemma 6, since G̃s̃ is a subnetwork of Gs(i), k ∈ ∪s(j)s=s(i)Ms may

only have G̃s̃ links to players in ∪s(j)s=s(i)Ls, so l ∈ ∪s(j)s=s(i)Ls. Therefore, l ∈ M̃s̃ ∩ (∪s(j)s=s(i)Ls),

a contradiction with Part 6.2.

In particular, for s̃ = s̃(j) the induction hypothesis implies that j ∈ L̃s̃(j) and r̃s̃(j) ≤ rs(j).

Then v∗j (G̃) = 1/(1 + r̃s̃(j)) ≥ 1/(1 + rs(j)) = v∗j (G).

(ii) To prove the “if” part of the statement, let G̃ be an equitable network. Part (i) shows

that G̃ is unilaterally stable with respect to (v∗i (G))i∈N,G∈G. Note that by Theorem 5 when

a link is added to an equitable network another equitable network obtains. Hence G̃+ ij is

equitable, and v∗i (G̃ + ij) = v∗i (G̃) = 1/2 for all i 6= j ∈ N . Therefore, G̃ is pairwise stable

with respect to (v∗i (G))i∈N,G∈G.

To prove the “only if” part of the statement, let G̃ be a network that is pairwise stable

with respect to (v∗i (G))i∈N,G∈G. Suppose that G̃ is not equitable. Let (r̃s̃, M̃s̃, L̃s̃, Ñs̃, G̃s̃)s̃

denote the outcome of the algorithm A(G̃). Then there exist i, j ∈ M̃1 such that v∗i (G̃) =

v∗j (G̃) < 1/2 (|M̃1| ≥ 2). The limit equilibrium payoffs of players i and j in the game on the

network G̃+ ij satisfy v∗i (G̃+ ij) ≥ v∗i (G̃) and v∗j (G̃+ ij) ≥ v∗j (G̃) by part (i) of the theorem.

By Proposition 2, v∗i (G̃+ij)+v∗j (G̃+ij) ≥ 1. Hence, v∗i (G̃+ij)+v∗j (G̃+ij) > v∗i (G̃)+v∗j (G̃),

which together with v∗i (G̃+ ij) ≥ v∗i (G̃) and v∗j (G̃+ ij) ≥ v∗j (G̃), leads to a violation of the

pairwise stability of G̃.40 The contradiction proves that G̃ is equitable. �
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