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ABSTRACT. We study an infinite horizon game in which pairs of players connected in a
network are randomly matched to bargain over a unit surplus. Players that reach agreement
are replaced by new players at the same positions in the network. We prove that for each
discount factor all equilibria are payoff equivalent. The equilibrium payoffs and the set of
equilibrium agreement links converge as players become patient. Several new concepts—
mutually estranged sets, partners, and shortage ratios—provide insights into the relative
strengths of the positions in the network. We develop a procedure to determine the limit
equilibrium payoffs by iteratively applying the following results. Limit payoffs are lowest
for the players in the largest mutually estranged set that minimizes the shortage ratio,
and highest for the corresponding partners. In equilibrium, for high discount factors, the
partners act as an oligopoly for the estranged players. In the limit, surplus within the
induced oligopoly subnetwork is divided according to the shortage ratio. We characterize
equitable networks, stable networks, and non-discriminatory buyer-seller networks. The

results extend to heterogeneous discount factors and general matching technologies.

1. INTRODUCTION

Competitive equilibrium theory assumes large and anonymous markets, in which every
buyer can trade with every seller. Underlying these assumptions are standard goods and
services that may be traded at low transaction costs by agents who are not in specific rela-
tionships with one another. However, in many markets goods and services are heterogeneous
(e.g., cars, apartments) or need to be tailored to particular needs (e.g., manufacturing in-
puts, technical support). Furthermore, trading opportunities may depend on transportation

costs, social relationships, technological compatibility, joint business opportunities, free trade
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FIGURE 1. The green position is weak despite having the largest number of connections.

agreements, etc. In such cases it is natural to model the market using a network, where only
pairs of connected agents can engage in exchange. New theories are needed to explore the
influence of the network structure on market outcomes. Many questions arise: How does
an agent’s position in the network determine his bargaining power and the local prices he
faces? Who trades with whom and on what terms? Are trading outcomes equitable or
non-discriminatory? Which networks are stable?

One possible conjecture is that an agent’s bargaining power is determined by his (relative)
number of connections in the network. However, this simple theory is not very plausible.
Consider the network of four sellers (located at the top nodes) and nine buyers (located at
the bottom nodes) depicted in Figure 1. The buyer located at the position colored green has
the largest number of links in the network, as he is connected to each of the four sellers. Yet
every seller has monopoly power over two other buyers whom he can extort, even if trade
with the green buyer is unattainable. Hence the green buyer is not able to extract a large
fraction of the surplus from any seller despite his relatively large number of connections.
This example illustrates that the relative strengths of the positions in a network are highly
interdependent. An agent’s bargaining power does not depend only on the number of his
partners, but also on the identities and bargaining power of his partners. Each partner’s
bargaining power depends in turn on the bargaining power of his corresponding partners,
and so forth. An adequate measure of bargaining power in networks needs to take this
interdependence into account.

In a recent book [15], Jackson surveys the emerging field of social and economic networks

and concludes that several central issues remain unsolved.

There are important open questions regarding how network structure affects

the distribution of the benefits that accrue to different actors in a network.
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In particular, Jackson notes that analyzing “a non-cooperative game that completely mod-
els the bargaining process through which ultimate payoffs are determined [...] is usually
intractable.” The present paper attempts to fill this gap using a non-cooperative model of
decentralized bilateral bargaining in networks. Our model is tractable and provides answers
to the questions listed in the first paragraph.

The setting is as follows. We consider a network where each pair of players connected
by a link can jointly produce a unit surplus. The network generates the following infinite
horizon discrete time bargaining game. Fach period a link is randomly selected, and one of
the two matched players is randomly chosen to make an offer to the other player specifying
a division of the unit surplus between themselves. If the offer is accepted, the two players
exit the game with the shares agreed on. We make the following steady state assumption.
The two players who reached agreement are replaced in the next period by two new players
at the same positions in the network. If the offer is rejected, the two players remain in the
game for the next period. All players have a common discount factor.

The steady state assumption captures the idea that in many trading environments agents
face stationary distributions of bargaining opportunities, and some agents take similar posi-
tions in relationships and transactions at different points in time. In the benchmark model
this assumption entails that every period an exogenous inflow of agents matches the sto-
chastic endogenous outflow of agents who reach agreements in equilibrium. Nevertheless,
the results extend to a model in the spirit of Gale (1987), where the steady state analysis
involves a deterministic inflow of agents. In that model every period a continuum of players
are present at each node in the network, and a positive measure of player pairs are matched
to bargain across each link (see footnote 9).

In Abreu and Manea (2008) we drop the stationarity assumption, and analyze the situation
in which players that reach agreements are removed from the network without replacement.
The bargaining protocol is identical to the one of the present paper. Our findings, along

with the key differences between the two models, are discussed in the literature review.
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1.1. Outline of the paper. We assume that all players have perfect information about all
the events preceding any of their decision nodes in the game. The equilibrium concept we
use is subgame perfect equilibrium.*

In Section 3, we prove that for every discount factor the equilibrium payoff of every
player present at the beginning of any period is uniquely determined by his position in
the network (Theorem 1). For all but a finite number of discount factors, there exists a
partition of the set of links into equilibrium agreement and disagreement links (Proposition
1). In every equilibrium, after any history, a pair of players connected by an equilibrium
agreement link reaches an agreement when matched to bargain, and the division agreed on
is uniquely determined by the positions in the network of the proposer and the responder.
Players connected by equilibrium disagreement links never reach agreements when matched
to bargain.

We prove that there exists a limit equilibrium agreement network that describes the set of
equilibrium agreement links for sufficiently high discount factors (Theorem 2). Also, there is
a limit equilibrium payoff vector to which the equilibrium payoffs converge as the discount
factor goes to 1.

For instance, consider the network G, with 5 players illustrated in Figure 2. For every
discount factor there is a unique equilibrium, with agreement network equal to G;. In
equilibrium every match ends in agreement because players 4 and 5 cannot be monopolized
by either player 1 or 2. The limit equilibrium payoffs are 3/5 for players 1 and 2, and 2/5
for players 3, 4, and 5. The limit equilibrium agreement network coincides with G.

Consider next the network Go, obtained from G, by removing the link (2,4). For low
discount factors there exists a unique equilibrium, and the agreement network is the entire
G5. However, for high discount factors, players 1 and 5 do not reach an equilibrium agreement
when matched to bargain. The intuition is that player 1 can extort players 3 and 4, since
these two players do not have other bargaining partners. Player 1 cannot extract as much
surplus from player 5, since player 5 has monopoly over the bargaining opportunities of
player 2. The limit equilibrium payoffs are 2/3 for player 1, 1/3 for players 3 and 4, and
ISection 3 discusses the robustness of the results to some features of the information structure and the
equilibrium requirements.

In all figures, limit equilibrium payoffs for each player are represented next to the corresponding node, and
limit equilibrium agreement and disagreement links are drawn as thick and thin line segments, respectively.
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FIGURE 2. Networks G (left) and G

1/2 for players 2 and 5. The limit equilibrium agreement network consists of all links of
G4 except (1,5). The equilibria of the bargaining games on the networks G; and G, for all
discount factors are described in Example 1 from Section 3.

The main objective of our analysis is to determine the limit equilibrium payoffs for every
network. The following essential observation is presented in Section 4. Consider a set of
players who are pairwise disconnected in the limit equilibrium agreement network, and the
set of players with whom these players share limit equilibrium agreement links. We refer to
players in the former set as mutually estranged, and to ones in the latter set as partners.?
Basically, as players become patient, the partners have control over the (equilibrium) relevant
bargaining opportunities of the mutually estranged players. For high discount factors, since
the estranged players can only reach equilibrium agreements in pairwise matchings with
the partners, the mutually estranged set is weak if the partners are relatively scarce. The
appropriate measure of the strength of a mutually estranged set proves to be the simplest
that springs to mind—the shortage ratio, which is defined as the ratio of the numbers of
partners and estranged players.

For example, in the network G the shortage ratios of the mutually estranged sets {3,4}
and {3,4,5} are 1 and 2/3, respectively, since the partner set is {1,2} in either case. In the
network Go the shortage ratios of the mutually estranged sets {3,4} and {3,4,5} are 1/2
and 2/3, respectively, since the corresponding partner sets are {1} and {1, 2}, respectively.
The determination of the partners for the mutually estranged sets considered here is based

3To illustrate the definition, note that the list of all mutually estranged sets and corresponding part-
ner sets in the limit equilibrium agreement network for the bargaining game on the network Gg is

({1}, {3,4}), ({2}, {51, ({3} {1}), ({4}, {1}), ({5}, {2}), ({1,2},{3,4,5}), ({1,5},{2,3,4}), ({2,3},{1,5}),
({2,4},{1,5}), ({3,4},{1}), ({3,5},{1,2}), ({4,5},{1,2}), ({2,3,4},{1,5}), and ({3,4,5},{1,2}).
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on the aforementioned limit equilibrium agreement subnetworks for the bargaining games on
the networks GG; and Gbs.

The concepts of mutually estranged sets, partners and shortage ratios play key roles in
the prediction of bargaining power. Formally, the shortage ratio measures the strength of a
mutually estranged set in the following sense. For every set of mutually estranged players
and their partners the ratio of the limit equilibrium payoffs of the worst-off estranged player
and the best-off partner is not larger than the shortage ratio of the mutually estranged
set (Theorem 3). The proof is based on the fact that a player’s equilibrium payoff is the
expected present value of his stream of first mover advantage. Since first mover advantage
in a bilateral encounter is symmetric for the two players, the sum of equilibrium payoffs for
every set of mutually estranged players is not larger than for the corresponding partners.
The result yields an upper (lower) bound for the limit equilibrium payoff of the worst-off
estranged player (best-off partner).

There may be a multitude of mutually estranged sets, and it is not immediately clear
which, if any, of the corresponding bounds for the limit equilibrium payoffs are binding.
One delicate step toward the main result (Theorem 4) is the idea that the bounds generated
by a set of mutually estranged players and their partners need to be binding unless the
worst-off estranged player is part of an even weaker mutually estranged set, and the best-off
partner is part of an even stronger partner set. Based on this intuition, we prove that the
extreme bounds—the ones derived from the (largest) mutually estranged set that minimizes
the shortage ratio and the corresponding partners-must bind.* The two sets of players
associated with these bounds have extremal limit equilibrium payoffs, and induce an oligopoly
subnetwork enclosing all their limit equilibrium agreement links. Thus, for high discount
factors, the partners act as an oligopoly that corners and extorts the estranged players.
In the equilibrium limit, surplus within the oligopoly subnetwork is divided according to
the shortage ratio of the mutually estranged players with respect to their partners, with
all players on each side receiving identical payoffs. The limit equilibrium payoffs for the

networks GG; and Gy are obtained by computing that the lowest shortage ratio in Gy is 2/3,

1Our analysis reveals that the lowest shortage ratio, when smaller than 1, may be computed by considering
sets of players that are pairwise disconnected (and their neighbors) in the entire network rather than in the
(a priori unknown) limit equilibrium agreement network.
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attained for the mutually estranged set {3,4,5} with the oligopoly {1,2}, while in G5 it is
1/2, attained for the mutually estranged set {3,4} with the oligopoly {1}.

Section 5 defines an algorithm that sequentially determines the limit equilibrium payoffs
of all players based on the ideas above. At each step, the algorithm determines the union of
all mutually estranged sets with the lowest shortage ratio, and removes the corresponding
estranged players and their partners.” Within the identified extremal oligopoly subnetwork
surplus is divided between the two sides according to the shortage ratio. The algorithm
stops when all players have been removed, or when the lowest shortage ratio is greater than
or equal to 1, corresponding to limit equilibrium payoffs for the remaining players of 1/2.

We use the algorithm to address a number of questions about the uniformity of payoffs and
the stability of the network. In Section 6 we characterize the class of equitable networks, i.e.,
networks for which the limit equilibrium payoffs of all players are identical (equal to 1/2).
A network is equitable if and only if it is quasi-regularizable; another equivalent condition is
that the network can be covered by a match and odd cycles disjoint union (Theorem 5).

Section 7 studies the networks that are stable with respect to the equilibrium payoffs. A
network is unilaterally stable if no player benefits from severing one of his links. A network
is pairwise stable if it is unilaterally stable and no pair of players benefit from forming a
new link. We prove that every network is unilaterally stable, but only equitable networks
are pairwise stable, with respect to the limit equilibrium payoffs (Theorem 6). The same
conclusions hold for approximate stability with respect to the equilibrium payoffs for high
discount factors smaller than 1 (Corollary 2).

In Section 8 we show that restricting attention to buyer-seller networks permits a more
transparent characterization of limit equilibrium oligopoly subnetworks and a more straight-
forward procedure to compute the limit equilibrium payoffs (Theorem 47%). Limit equilib-
rium payoffs of 1/2 play no special role in the results for buyer-seller networks. We also
analyze non-discriminatory buyer-seller networks, i.e., networks for which the limit equi-
librium payoffs of all buyers are identical. If the buyer-seller ratio is an integer, then the

network is non-discriminatory if and only if it can be covered by a disjoint union of clusters

An important observation, which ensures that the algorithm identifies and removes all residual players with
extremal limit equilibrium payoffs simultaneously, is that the set of mutually estranged sets with the lowest
shortage ratio is closed with respect to unions, as long as the lowest shortage ratio is less than 1 (Lemma 5).
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formed by one seller connected to a number of buyers equal to the buyer-seller ratio (The-
orem 7). We adapt the definition of pairwise stability to buyer-seller networks and show
that a buyer-seller network is two-sided pairwise stable with respect to the limit equilibrium
payoffs if and only if it is non-discriminatory (Theorem 6.i35°).

One consequence of the analysis is that submarkets endogenously emerge in equilibrium. A
market described by a connected network, which cannot be decomposed into non-overlapping
submarkets, may induce a disconnected limit equilibrium agreement network where players
are partitioned into oligopoly subnetworks. In the equilibrium limit, each oligopoly sub-
network describes an independent submarket since no transactions occur across distinct
oligopoly subnetworks. Each player self-selects into the most favorable submarket he is
linked to. The limit equilibrium prices are uniform within every submarket. In particular,
an outside observer who is only aware of the equilibrium outcomes, but is unfamiliar with the
underlying network structure, may attempt to analyze the ensuing submarkets separately,
failing to notice that a priori they are interconnected.

Section 9 extends the main results to the cases of heterogeneous discount factors and
general matching technologies. Section 10 reviews the related literature, and Section 11

concludes.

2. FRAMEWORK

Let N denote the set of n players, N = {1,2,...,n}. A network is an undirected
graph H = (V,E) with set of vertices V' C N and set of edges (also called links)
E c {(i,j)|i #j € V} such that (j,i) € E whenever (i,5) € E. We identify the pairs (i, j)
and (j,7), and use the shorthand ij or ji instead. We say that player i is connected in H
to player j, or @« has an H link to j, if ij € E. We often abuse notation and write 15 € H for
ij € E. A network H' = (V' E') is a subnetwork of H if V' C V and E’ C E. A network
H' = (V' E') is the subnetwork of H induced by V' if E' = En (V' x V').

Let G be a fixed network with vertex set N. A link 75 in G is interpreted as the ability
of players i and j to jointly generate a unit surplus.® Consider the following infinite horizon

bargaining game generated by the network G. Each period t = 0,1,... a link ij in G

6For simplicity, we assume everywhere except Section 7 that each player has at least one G link.
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is selected randomly (with equal probability),” and one of the players (the proposer) i and
j is chosen randomly (with equal probability) to make an offer to the other player (the
responder) specifying a division of the unit surplus between themselves. If the responder
accepts the offer, the two players exit the game with the shares agreed on. In period ¢ + 1
two new players assume the same positions in the network as ¢ and j, respectively. If the
responder rejects the offer, the two players remain in the game for the next period. In period
t + 1 the game is repeated with the set of n players, consisting of the ones from period t,
with the departing players replaced by new players if an agreement obtains in period t. All
players share a discount factor § € (0,1).% The game is denoted T°.

Formally, there exists a sequence ig, i1, ..., %,,... of players of type i € N (a player’s type
is defined by his position in the network). When player i, exits the game (following an
agreement with another player), player i,,; replaces him for the next period.” We assume
that players have perfect information of all the events preceding any of their decision nodes
in the game. Possible relaxations of the information structure are discussed in the next
section.

There are three types of histories. We denote by h; a history of the game up to (not
including) time ¢, which is a sequence of ¢ — 1 pairs of proposers and responders connected
in GG, with corresponding proposals and responses. We call such histories, and the subgames
that follow them, complete. For simplicity, we assume that for every history players are
only labeled by their type without reference to the index of their copy. The index 7 of the
copy of ¢ playing the game at time ¢ following the history h; can be recovered by counting
the number of bargaining agreements involving i along h;. Therefore, a history h; uniquely
determines the copy i, of player ¢ present in the game at time ¢, and when there is no risk
of confusion we suppress the index of i,. We denote by H(i,) the set of complete histories,
or subgames, where i, is the copy of player i present in the game. We denote by (hy;i — 7)
"The analysis is not sensitive to the specification of the matching technology. See Subsection 9.2.
8The case of heterogeneous discount factors is considered in Subsection 9.1.
9The results translate to an alternative specification of the model in the spirit of Gale (1987). Suppose that
there exists a continuum of players of each type in N. Measure u; of players of type i are present in the
game at each period. The matching technology is such that, for each link ij, measure p;; of players i are
matched to bargain with one of the players j (through random selection of proposer). It is assumed that
i > 0,55 = pys > 0 and p; > Z{j‘ijeg} tij. The probability that a player i is matched to a player j is

Hij/1i, and no player is involved in more than one match at once. The set of players of each type who reach
agreements is immediately replaced by a set of players of the same type of equal measure.
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the history consisting of h; followed by nature selecting ¢ to propose to j. We denote by
(ht;i — 7;x) the history consisting of (hy; i — j) followed by i offering = € [0,1] to j.

A strategy o, for player i, specifies, for all j connected to ¢ in G and all h; € H(i,),
the offer o, _(h;;i — j) that i makes to j after the history (hy;i — j), and the response
oi. (hy;j — i;x) that @ gives to j after the history (hy;;j — i;2). We allow for mixed
strategies, hence o;_(hy;i — j) and oy, (h; j — 4;2) are probability distributions over [0, 1]
and {Yes, No}, respectively. In the context of our game, we say that two strategy profiles
are payoff equivalent if they induce identical payoffs for any player i, when payoffs are
evaluated as follows. A player’s payoff is the expected value of his gains from all bargaining
agreements discounted relative to the time when the player entered the game (rather than
period 0 of the game). A strategy profile (0;.);cn >0 is a subgame perfect equilibrium
of T if it induces Nash equilibria in subgames following every history (h;i — j) and

(hy;i— j;x).
3. ESSENTIAL EQUILIBRIUM UNIQUENESS AND DISCOUNTING ASYMPTOTICS

We first show that across all equilibria of the bargaining game the expected payoff of
every player present in any complete subgame is uniquely determined by his position in the
network. The unique and stationary equilibrium payoffs associated with each player type

may be used to describe the possible equilibrium outcomes of every bargaining encounter.

Theorem 1. For every 6 € (0,1), there exists a payoff vector (v;®

*ien such that for every

subgame perfect equilibrium of T'° the expected payoff of player i, in any H(i,) subgame is
uniquely given by v}° for alli € N, 7 > 0. For every equilibrium of I'°, in any subgame where
1, 15 selected to make an offer to j,, the following statements are true with probability one:
(1) if 5(v° + U;J) < 1 then i, offers (51}}75 and . accepts;
(2) if 6(v;° + ;%) > 1 then i, makes an offer that j. rejects.

We can extend the conclusions of Theorem 1 to settings in which players do not have perfect
information about all past bargaining encounters. It may be that players only know their
own history of interactions, or know the history of all pairs matched to bargain but only see
the outcomes of their own interactions. Players who reach agreements and exit the game may

pass down information to the players who take their positions in the network. Some players
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may be informed of the exact identities of their bargaining partners, or only about their
positions in the network. In such settings, players need to form beliefs about the unrevealed
bargaining outcomes. Extending the proof to show uniqueness of the sequential equilibrium
payoffs for each player type under various information structures is straightforward.

Furthermore, Theorem 1 generalizes to security equilibria (Binmore and Herrero 1988b).
The definition of a security equilibrium is related to the notion of rationalizability introduced
by Bernheim (1984) and Pearce (1984). The requirement that it be common knowledge that
a player never uses a strategy which is not a best response to a rational strategy profile of
his opponents is replaced by a similar requirement concerning security levels. A security
equilibrium entails common knowledge of the fact that no player takes an action under any
contingency which yields a payoff smaller than his security level for that contingency. The
requirements of security equilibrium are weaker than those of sequential equilibrium.

The proof proceeds in two steps. First, we show that if attention is restricted to steady
state stationary strategies then all equilibria are payoff equivalent. Second, we argue that
all subgame perfect equilibria yield the unique steady state stationary equilibrium payoffs.
A strategy profile (0, )ien >0 is steady state stationary if each player’s strategy at any
time ¢ depends exclusively on his position in the network and the play of the game in period
t, that is, o (hy;i — j) = o5, (hi — j) and oy (hy;j — i52) = o;,(hy;j — d;x) for
all ij € G,z € [0,1],7,7 > 0,hy € H(i;),h}, € H(i). A steady state stationary
equilibrium is a subgame perfect equilibrium in steady state stationary strategies.

The following two lemmas are essential to the proof. Lemma 1 is a simple algebraic
observation, and Lemma 2 is the statement of the first part of Theorem 1 restricted to steady

state stationary equilibria. Lemma 1 is invoked in the proofs of Lemma 2 and Theorem 1.

Lemma 1. For all wy,ws, w3, wy € R,

| max(w, wy) — max(ws, wy)| < max(|w; — ws|, jwg — wyl).

Lemma 2. There exists a payoff vector (0;°);cn such that in every steady state stationary

equilibrium of T° the expected payoff of i at the beginning of any H(i,) subgame is uniquely
given by ©7° for alli € N,7 > 0.
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The proofs of Lemmata 1 and 2 appear in the Appendix. We sketch the proof of Lemma
2 here. Let o be a steady state stationary equilibrium of I'’. Under o, for every i € N, each
player i, receives the same expected payoff, 7;, in any H(i,) subgame. We argue that o is a

fixed point of the function f° = (f9, f2,..., f2) : [0,1]* — [0, 1]" defined by

(3.1) ff(U) _ 2e — ei&}i + Qi Z max (1 — dv;, ov;),

2e e <~
{7lijeG}

where e denotes the total number of links in G and e; denotes the number of links player ¢
has in G. Next we use Lemma 1 to show that f? is a contraction with respect to the sup

norm on R™, hence it has a unique fixed point (7;°);eny. Therefore, ¥ = 0*°.

Remark 1. The set of steady state stationary pure strategy equilibria of I’ is non-empty.
The following is an element. When i is selected to propose to j, he offers min(1 — 67;°, 517;‘5),
and when i has to respond, he accepts any offer of at least §0;° and rejects smaller offers
(regardless of the proposer). However, uniqueness of the steady state stationary equilibrium
payoffs does not imply uniqueness of the equilibrium strategies. For instance, when i is
selected to make an offer to j and 0(9}° + 27;6) > 1, we can replace 7’s behavior by any mixed
strategy over the interval [0, 517;‘-‘5) or [0, 517;5] (depending on whether j’s strategy is to accept

offers of 517;-‘5 from ¢ with positive probability).

Proof of Theorem 1. Consider the (non-empty) set of all subgame perfect equilibria of I
(including those which are not steady state stationary). For each i € N, let v0 and % be
the infimum and respectively supremum of the expected payoff of i, in any H(i,) subgame,
over all 7 > 0, and across all subgame perfect equilibria of I'?.19

Fix an ¢ € N and a subgame perfect equilibrium of I'’. No copy of player j will accept an
offer smaller than 5y§- , 80 1 can obtain a payoff of at most 1 — 52? from an agreement with j,
when i is the proposer.’' Player i accepts any offer larger than 6o? since he receives at most

679 in the continuation subgame after a rejection, so no player j offers him more than 62? in

equilibrium. If there is no agreement involving ¢ in some period, his continuation payoff is at

10The approach is similar to the Shaked and Sutton (1984) proof of equilibrium uniqueness for the Rubinstein
(1982) alternating offer bargaining game. For our bargaining game, the steps are complicated by the a priori
unknown set of pairs of players who reach agreements in equilibrium when the possible bargaining partners
for each player are determined by the network.

HThroughout this argument 4 (5) should be read as “copy of i (j).

»
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most 60¢. It follows that for all 7 > 0 the equilibrium payoff v;_ of i, in an H(i,) subgame

satisfies
2e — e; 1
v, < — 500 + % Z max(1 — 5y§-,56?).
{ilijeG}
By the definition of ©¢, the inequality above implies that
2e — ¢; 1
(3.2) v < =+ o > max(1 - bl 7))
{jlijeG}

Again, fix an i € N and a subgame perfect equilibrium of I'°. Consider the following
deviation for player ¢ from the equilibrium strategy. Player i offers 55‘; +¢e (¢ > 0) to any
j such that 6v? + 5@? + ¢ < 1. Since each player j receives at most (5@? in the continuation
subgame, the offer is accepted in equilibrium. Player 7 makes unreasonable offers (say, offers
0) to all other players, and rejects any offer he receives. It must be that for all 7 > 0 the
equilibrium payoff v;_ of i, in an H(i,) subgame is not smaller than the expected payoff from

the deviation,

2 i 1
v > S ovd + % Z max(1 — 56? —£,009),Ve > 0,
{jlijeG}
and taking the limit ¢ — 0,
% — e 1
v > — v + % Z max(1 — 66?,5@?).
{jlijeG}

By the definition of v¢, the inequality above implies that

1
5v) + % Z max(1 — 607, 507).

{jlijeG}

2e —¢;

(3.3) v >

7

Let D = maxgey 05 — 3. If i € argmaxyen U5 — 02, then from 3.2, 3.3, and Lemma 1,

2e — ¢; 1
e 5 ) 5 5 =6 5 <&
D=7 —v, < 5 (5(vi—z_)i)+2—e Z (max(1 — évj, 0v5) — max(1 — 605, dvy7))
{ilijeG}
% — e 1
< S D+ o D~ max(L - du) — (1 - 65,1657 — o]
{jlijeG}
< X Cp+ LS Gmax(@ — ol 7 — o)
{ilijeG}
< D.

Since D >0 and d € (0,1), it follows that D = 0. Therefore, v{ =9 for all k € N.
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Then 3.2 and 3.3 imply that
1

2e —¢;
s - S R NP
=g LOU9 + — Z max(1 — 60, 0v;), Vi € N,
{ilijeG}
which means that 7° is identical to the unique fixed point 7*° of f°. Hence v° = v’ = ¢*.

It follows that i, obtains an expected payoff of #7° =: v° in any H(i,) subgame in every

subgame perfect equilibrium. The second part of the theorem follows immediately. O

The following description of the equilibria for two simple networks illustrates the conclu-

sions of Theorem 1. Equilibria for less trivial networks are analyzed in Example 2.

Example 1. Co