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Abstract

We study preferences for timing of resolution of objective uncertainty in a sim-
ple menu choice model with two stages of information arrival. We characterize
two general classes of utility representations called hidden action representations.
The representations can be interpreted as if an unobservable action is taken by the
individual (or by the malevolent nature, depending on whether the preference is
for early or late resolution of uncertainty) between the two periods. We illustrate
that our general representations allow for a richer class of preferences for timing
of resolution of uncertainty than was possible in Kreps and Porteus (1978), and
provide a unified framework for studying a variety of well-known preferences in the
literature. We show that subjective versions of the class of multi-prior preferences
(Gilboa and Schmeidler (1989)) and variational preferences (Maccheroni, Mari-
nacci, and Rustichini (2006)) overlap with the class of hidden action preferences
exhibiting a preference for late resolution of uncertainty. The costly contempla-
tion model (Ergin and Sarver (2009)) is characterized as a special case of the class
of hidden action preferences exhibiting a preference for early resolution of uncer-
tainty. A generalization of the Kreps and Porteus (1978) model that allows for
preference for flexibility in the sense of Dekel, Lipman, and Rustichini (2001) is
also characterized.
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1 Introduction

This paper considers several new classes of dynamic preferences, providing representa-

tions for preferences for both early and late resolution of uncertainty. These preferences

are examined in a simple menu-choice model with two-stage objective uncertainty. We

axiomatize two hidden action representations corresponding to preferences for early and

late resolution of uncertainty, and we show that, under a minimality condition, these

representations are uniquely identified from the preference. In other words, preferences

for early and late resolution of uncertainty can be interpreted as arising from the pres-

ence of an unobserved (hidden) action that can be taken between the resolution of the

first and second period objective uncertainty.1

It is well known that an individual may prefer to have uncertainty resolve at an

earlier date in order to be able to condition her future actions on the realization of this

uncertainty. For example, an individual may prefer to have uncertainty about her future

income resolve earlier so that she can smooth her consumption across time. Suppose an

individual has the possibility of receiving a promotion with a substantial salary increase

several years into the future. If she is able to learn the outcome of that promotion

decision now, then even if she will not actually receive the increased income until a later

date, she may choose to increase her current consumption by temporarily decreasing

her savings or increasing her debt. On the other hand, if she is not told the outcome of

the promotion decision, then by increasing her consumption now, she risks having larger

debt and hence suboptimally low consumption in the future. In this example, changing

the timing of the resolution of uncertainty benefits the individual by increasing her

ability to condition her choices on the outcome of that uncertainty.

Kreps and Porteus (1978) considered a broader class of dynamic preferences that

allow for a preference for early (or late) resolution of uncertainty even when the indi-

vidual’s ability to condition her (observed) actions on the outcome of this uncertainty

is unchanged. For example, suppose the individual described above has no current sav-

ings and is unable to take on debt. Then, if she learns the outcome of the promotion

decision now, she still is unable to increase her current consumption. Even in this case,

the preferences considered by Kreps and Porteus (1978) allow the individual to have a

strict preference for that uncertainty to resolve earlier (or later). This additional time-

preference for the resolution of uncertainty has proved quite useful in applications, in

particular, in macroeconomic models of asset pricing and business cycles.

The setting for our model is a simple two-stage version of the model considered by

1Similar observations were made by Kreps and Porteus (1979) and Machina (1984). We discuss how
their models fit into our general class of preferences in Section 4.3.
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Kreps and Porteus (1978). However, we allow for more general axioms, which permits

us to model a richer set of preferences exhibiting a preference for early or late resolution

of uncertainty. In particular, we relax the Strategic Rationality Axiom of Kreps and

Porteus (1978) (see Axiom 7) to allow for a preference for flexibility as in Kreps (1979)

and Dekel, Lipman, and Rustichini (2001, henceforth DLR). We are able to represent

this general class of preferences for early and late resolution of uncertainty as if there is

an unobserved (hidden) action that can be taken between the resolution of the first and

second period objective uncertainty. In the case of a preference for early resolution of

uncertainty, this hidden action can be thought of as an action chosen by the individual.

Thus, the individual prefers to have objective uncertainty resolve in the first period so

that she can choose this action optimally. In the case of a preference for late resolution of

objective uncertainty, this hidden action could be thought of as an action chosen by the

(malevolent) nature. In this case, the individual prefers to have objective uncertainty

resolve in the second period, after this action has been selected by nature, so as to

mitigate natures ability to harm her.

This paper not only provides representations for a more general class of preferences

for early and late resolution of uncertainty, but also provides new ways to understand

and interpret these temporal preferences. Our hidden action model is general enough

to encompass the subjective versions of a number of well-known representations in the

literature: the multiple priors model of Gilboa and Schmeidler (1989), the variational

preferences model of Maccheroni, Marinacci, and Rustichini (2006), the costly contem-

plation model of Ergin and Sarver (2009), and a version of the temporal preferences

model of Kreps and Porteus (1978) extended to allow for subjective uncertainty as in

DLR (2001). We identify the preference for temporal resolution of uncertainty implied

by each of these representations as well as their additional behavioral implications over

the hidden action model. The general framework in this paper provides a unification of

these well-known representations and provides simple axiomatizations.

2 The Model

Let Z be a finite set of alternatives, and let 4(Z) denote the set of all probability

distributions on Z, endowed with the Euclidean metric d (generic elements p, q, r ∈
4(Z)). Let A denote the set of all closed subsets of 4(Z), endowed with the Hausdorff

metric:

dh(A,B) = max

{
max
p∈A

min
q∈B

d(p, q),max
q∈B

min
p∈A

d(p, q)

}
.
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Elements of A are called menus (generic menus A,B,C ∈ A). Let 4(A) denote the

set of all Borel probability measures on A, endowed with the weak* topology (generic

elements P,Q,R ∈ 4(A)).2 The primitive of the model is a binary relation % on 4(A),

representing the individual’s preferences over lotteries over menus.

We interpret % as corresponding to the individual’s choices in the first period of

a two-period decision problem. In the beginning of period 1, the individual chooses a

lottery P over menus. Later in period 1, the uncertainty associated with the lottery

P is resolved and P returns a menu A. In the unmodeled period 2, the individual

chooses a lottery p out of A. Later in period 2, the lottery p resolves and returns an

alternative z. We will refer to the uncertainty associated with the resolution of P as the

first-stage uncertainty, and will refer to the uncertainty associated with the resolution

of p as the second-stage uncertainty. Although the period 2 choice is unmodeled, it will

be important for the interpretation of the representations.

Our model is a special case of Kreps and Porteus (1978) with only two periods and

no consumption in period 1.3 A lottery P ∈ 4(A) over menus is a temporal lottery

(Kreps and Porteus (1978)) if P returns a singleton menu with probability one. An

individual facing a temporal lottery makes no choice in period 2, between the resolution

of first and second stages of the uncertainty. Note that the set of temporal lotteries can

be naturally associated with 4(4(Z)).

For any A,B ∈ A and α ∈ [0, 1], the convex combination of these two menus is

defined by αA + (1− α)B ≡ {αp + (1− α)q : p ∈ A and q ∈ B}. We let co(A) denote

the convex hull of the menu A and let δA ∈ 4(A) denote the degenerate lottery that

puts probability 1 on the menu A. Then, αδA + (1−α)δB denotes the lottery that puts

probability α on the menu A and probability 1 − α on the menu B. Finally, for any

continuous function V : A → R and P ∈ 4(A), we let EP [V ] denote the expected value

of V under the lottery P , i.e., EP [V ] =
∫
A V (A)P (dA).

3 General Representations

We will impose the following set of axioms in all the representation results in the paper.

Therefore, it will be convenient to refer to them altogether as Axiom 1.

2Given a metric space X, the weak* topology on the set of all finite signed Borel measures on X is
the topology where a net of signed measures {µd}d∈D converges to a signed measure µ if and only if∫
X
f µd(dx)→

∫
X
f µ(dx) for every bounded continuous function f : X → R.

3The same model is also used in Epstein and Seo (2007) and in Section 4 of Epstein, Marinacci and
Seo (2007).
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Axiom 1

1. (Weak Order): % is complete and transitive.

2. (Continuity): The upper and lower contour sets, {P ∈ 4(A) : P % Q} and

{P ∈ 4(A) : P - Q}, are closed in the weak* topology.

3. (First-Stage Independence): For any P,Q,R ∈ 4(A) and α ∈ (0, 1),

P � Q ⇒ αP + (1− α)R � αQ+ (1− α)R.

4. (L–Continuity): There exist A∗, A∗ ∈ A and M ≥ 0 such that for every A,B ∈ A
and α ∈ [0, 1] with α ≥Mdh(A,B),

(1− α)δA + αδA∗ % (1− α)δB + αδA∗ .

5. (Indifference to Randomization (IR)): For every A ∈ A, δA ∼ δco(A).

Axioms 1.1 and 1.2 are standard. Axiom 1.3 is the von Neumann-Morgenstern

independence axiom imposed with respect to the first-stage uncertainty. Axioms 1.1–

1.3 ensure that there exists a continuous function V : A → R such that P % Q if

and only if EP [V ] ≥ EQ[V ]. Given Axioms 1.1–1.3, Axiom 1.4 is a technical condition

implying the Lipschitz continuity of V .4 Axiom 1.5 was introduced in DLR (2001). It

is justified if the individual choosing from the menu A in period 2 can also randomly

select an alternative from the menu, for example, by flipping a coin. In that case, the

menus A and co(A) offer the same set of options, and hence they are identical from the

perspective of the individual.

The next two axioms from Kreps and Porteus (1978) will be key in our representation

results.

Axiom 2 (Preference for Early Resolution of Uncertainty (PERU)) For any A,B ∈
A and α ∈ (0, 1),

αδA + (1− α)δB % δαA+(1−α)B.

Axiom 3 (Preference for Late Resolution of Uncertainty (PLRU)) For any A,B ∈
A and α ∈ (0, 1),

δαA+(1−α)B % αδA + (1− α)δB.
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Figure 1: Timing of Resolution of Uncertainty with Temporal Lotteries

To understand Axioms 2 and 3, suppose first that A = {p} and B = {q} for some

p, q ∈ 4(Z). In this case, period 2 choice out of a menu is degenerate, and the two

equations above are statements about the preference between the temporal lotteries

αδ{p}+(1−α)δ{q} and δα{p}+(1−α){q}. The temporal lottery αδ{p}+(1−α)δ{q} corresponds

to the first tree in Figure 1, in which the uncertainty regarding whether lottery p or q

is selected resolves in period 1. The temporal lottery δα{p}+(1−α){q} corresponds to the

second tree in Figure 1, in which the same uncertainty resolves in period 2.5 PERU

requires a weak preference the first temporal lottery, whereas PLRU requires a weak

preference for the second temporal lottery.

In the general case where A and B need not be singletons, the interpretations of

PERU and PLRU are more subtle, since δαA+(1−α)B and αδA + (1 − α)δB involve non-

degenerate period 2 choices. Note that in αδA + (1 − α)δB, the uncertainty regarding

whether the menu A or B is selected resolves in period 1, before the individual makes

her choice out of the selected menu. On the other hand, in δαA+(1−α)B no uncertainty

is resolved in period 1. The period 2 choice of a lottery αp+ (1− α)q from the convex

combination menu αA+(1−α)B is identical to a pair of choices p ∈ A and q ∈ B, where

after the individual chooses (p, q), p is selected with probability α and q is selected with

probability 1 − α. Therefore, the period 2 choice out of the menu αA + (1 − α)B can

be interpreted as a complete contingent plan out of the menus A and B.

The key distinction between the two lotteries over menus is that in δαA+(1−α)B the

period 2 choice is made prior to the resolution of the uncertainty regarding whether the

4In models with preferences over menus over lotteries, analogous L–continuity axioms can be found
in Dekel, Lipman, Rustichini, and Sarver (2007, henceforth DLRS), Sarver (2008), and Ergin and Sarver
(2009).

5In both temporal lotteries, the remaining uncertainty, i.e., the outcome of p conditional on p being
selected and the outcome of q conditional on q being selected, is resolved in period 2.
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choice from A or the choice from B will be implemented, whereas in αδA + (1 − α)δB
the same uncertainty is resolved in period 1 before the individual makes a choice out of

the selected menu. Therefore, PERU can be interpreted as the individual’s preference

to make a choice out of the menu after learning which menu is selected, whereas PLRU

is the individual’s preference to make her choice out of the menus before learning which

menu is selected.

We will also characterize the special case of our representation where the individual

has a weak preference for larger menus.

Axiom 4 (Monotonicity) For any A,B ∈ A, A ⊂ B implies δB % δA.

Since expected-utility functions on 4(Z) are equivalent to vectors in RZ , we will use

the notation u(p) and u · p interchangeably for any expected utility function u ∈ RZ .

We define the set of normalized (non-constant) expected-utility functions on 4(Z) to be

U =

{
u ∈ RZ :

∑
z∈Z

uz = 0,
∑
z∈Z

u2
z = 1

}
.

We are ready to introduce our general representations:6

Definition 1 A Maximum [Minimum] Hidden Action (max-HA [min-HA]) representa-

tion is a pair (M, c) consisting of a compact set of finite signed Borel measures M on

U and a lower semi-continuous function c :M→ R such that:

1. P % Q if and only if EP [V ] ≥ EQ[V ], where V : A → R is defined by Equation

(1) [(2)]:

V (A) = max
µ∈M

(∫
U

max
p∈A

u(p)µ(du)− c(µ)

)
(1)

V (A) = min
µ∈M

(∫
U

max
p∈A

u(p)µ(du) + c(µ)

)
. (2)

2. The setM is minimal : For any compact proper subsetM′ ofM, the function V ′

obtained by replacing M with M′ in Equation (1) [(2)] is different from V .

The pair (M, c) is an HA representation if it is a max-HA or a min-HA representation.

An HA representation (M, c) is monotone if all measures in M are positive.

6Note that we endow the set of all finite signed Borel measures on U with the weak* topology (see
footnote 2).
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Before we interpret the representations, we will first argue that after appropriately

renormalizing the set of ex post utility functions, one can reinterpret the integral term

in Equations (1) and (2) as an expectation. More specifically, suppose that µ is a

nonnegative measure with λ = µ(U) > 0. Consider the probability measure π on

V = λU which (heuristically) puts µ(u)/λ weight on each v = λu ∈ V . Then, by

a simple change of variables, the above integral can be rewritten as the expectation∫
V maxp∈A v(p)π(dv) which can be interpreted as follows. The individual anticipates

that her ex post utility functions will be distributed according to π. Conditional on each

realization of her ex post utility v ∈ V , she will chose a lottery in A that maximizes v. She

aggregates across different possible realizations of v by taking expectation with respect

to π.7 Therefore, each measure µ can be interpreted as a reduced-form representation

of the individual’s subjective uncertainty about her ex post (period 2) utility function

over 4(Z). We conjecture that analogous interpretations are possible if µ is a signed

measure, by introducing regret and temptation to the current framework.8

We next interpret Equation (1). In period 1, the individual anticipates that after

the first-stage uncertainty is resolved but before she makes her choice in period 2, she

will be able to select an action µ from a set M. Each action µ affects the distribution

of the individual’s ex post utility functions over 4(Z), at cost c(µ). As argued in the

above paragraph, the integral in Equation (1) can be interpreted as a reduced-form

representation for the value of the action µ when the individual chooses from menu A,

which is linear in the menu A. For each menu A, the individual maximizes the value

minus cost of her action.

The interpretation of Equation (2) is dual. In period 1, the individual anticipates

that after the first-stage uncertainty is resolved but before she makes her choice in

period 2, the (malevolent) nature will select an action µ from a set M. The individual

anticipates the nature to chose an action which minimizes the value to the individual

plus a cost term. The function c can be interpreted as being related to the pessimism

attitude of the individual. For constant c, she expects the nature to chose an action

that outright minimizes her utility from a menu. Different cost functions put different

restrictions on the individual’s perception of the malevolent nature’s objective.9

7It is noteworthy that any probability measure π′ such that µ and π′ are absolutely continuous with
respect to each other can be used in the above argument. The reason is that, heuristically, in the HA-
representations, the weight µ(u) on the ex post utility function u captures both the cardinality of the
ex post utility and its probability, and these two effects cannot be separated from behavior as in models
with state dependent utility. See Kreps (1988) for an elaborate discussion of the state-dependence issue.

8See Sarver (2008), Gul and Pesendorfer (2001), and DLR (2009).
9While we do not suggest that there literally exists a malevolent nature, it is a useful way to interpret

a pessimistic or ambiguity averse attitude on the part of the decision-maker. This interpretation of the
cost function is due to Maccheroni, Marinacci, and Rustichini (2006), whose results we discuss in more
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In the above representations, both the set of available actions and and their costs

are subjective in that they are part of the representation. Therefore M and c are

not directly observable to the modeler and need to be identified from the individual’s

preferences. Note that in both Equations (1) and (2), it is possible to enlarge the set of

actions by adding a new action µ to the setM at a prohibitively high cost c(µ) without

affecting the equations. Therefore, in order to identify (M, c) from the preference, we

also impose an appropriate minimality condition on the set M.

We postpone more concrete interpretations of the set of actions and costs to the

discussion of the applications of HA-representations in the following section. We are

now ready to state our general representation result.

Theorem 1 A. The preference % has a max-HA [min-HA] representation if and only

if it satisfies Axiom 1 and PERU [PLRU].

B. The preference % has a monotone max-HA [min-HA] representation if and only

if it satisfies Axiom 1, PERU [PLRU], and monotonicity.10

The special case of HA representations satisfying indifference to timing of resolution

of uncertainty (i.e., both PERU and PLRU) are those where M is a singleton. In that

case, the constant cost can be dropped out from Equations (1) and (2), leading to an

analogue of DLR (2001)’s additive representation where the individual is risk neutral

with respect to the first-stage uncertainty.

We next give a brief intuition about Theorem 1.A. Axiom 1 guarantees the existence

of a Lipschitz continuous function V : A → R such that V (co(A)) = V (A) and P % Q

if and only if EP [V ] ≥ EQ[V ]. In terms of this expected utility representation, it is easy

to see that PERU corresponds to convexity of V and PLRU corresponds to concavity

of V . The set Ac of convex menus can be mapped one-to-one to the set Σ of support

functions, preserving the metric and the linear operations. Therefore, by using the

property V (co(A)) = V (A) and mimicking the construction in DLR (2001), V can be

thought of as a function defined on the subset Σ of the Banach space C(U) of continuous

real-valued functions on U . We then apply a variation of the classic duality principle that

convex [concave] functions can be written as the supremum [infimum] of affine functions

lying below [above] them.11 Finally, we apply the Riesz representation theorem to write

each such continuous affine function as an integral against a measure µ minus [plus]

detail in Section 4.1.
10In part B, IR can be dropped for the case of the max-HA representation because it is implied by

weak order, continuity, first-stage independence, PERU, and monotonicity.
11See Rockafellar (1970), Phelps (1993), and Appendix A of the current paper for variations of this

duality result.
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a scalar c(µ). Theorem 1.B states that additionally imposing monotonicity guarantees

that all measures in the HA representation are positive.

We show that the uniqueness of the HA representations follows from the affine

uniqueness of V and a result about the uniqueness of the dual representation of a convex

function in the theory of conjugate convex functions (see Theorem 11 in Appendix A).

A similar application of the duality and uniqueness results can be found in Ergin and

Sarver (2009).

Theorem 2 If (M, c) and (M′, c′) are two max-HA [min-HA] representations for %,

then there exist α > 0 and β ∈ R such that M′ = αM and c′(αµ) = αc(µ) + β for all

µ ∈M.

4 Applications

4.1 Multiple Priors and Variational Preferences

A preference for late resolution of uncertainty could arise if an individual would like

to delay the resolution of objective lotteries for hedging reasons. In this section, we

formalize this intuition by showing that the monotone min-HA model is equivalent to

two representations that have natural interpretations in terms of ambiguity-aversion.

The following multiple-priors representation allows for ambiguity regarding the distri-

bution over ex post subjective states and is intuitively similar to the multiple-priors

representation proposed by Gilboa and Schmeidler (1989) in the Anscombe-Aumann

setting.

Definition 2 A Subjective-State-Space Multiple-Priors (SSMP) representation is a quadru-

ple ((Ω,F), U,Π) where Ω is a state space endowed with the σ-algebra F , U : Ω→ RZ

is a Z–dimensional, F–measurable, and bounded random vector, and Π is a set of prob-

ability measures on (Ω,F), such that P % Q if and only if EP [V ] ≥ EQ[V ], where

V : A → R is defined by

V (A) = min
π∈Π

∫
Ω

max
p∈A

U(ω) · p π(dω), (3)

and the minimization in Equation (3) has a solution for every A ∈ A.

The next representation is similar in spirit to the variational representation consid-

ered by Maccheroni, Marinacci, and Rustichini (2006) in the Anscombe-Aumann setting.
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Definition 3 A Subjective-State-Space Variational (SSV) representation is a quintuple

((Ω,F), U,Π, c) where Ω is a state space endowed with the σ-algebra F , U : Ω→ RZ is

a Z–dimensional, F–measurable, and bounded random vector, Π is a set of probability

measures on (Ω,F), and c : Π → R is a function, such that P % Q if and only if

EP [V ] ≥ EQ[V ], where V : A → R is defined by

V (A) = min
π∈Π

(∫
Ω

max
p∈A

U(ω) · p π(dω) + c(π)

)
, (4)

and the minimization in Equation (4) has a solution for every A ∈ A.12

The SSV representation generalizes the SSMP representation by allowing a “cost”

c(π) to be assigned to each measure π in the representation. In the Anscombe-Aumann

setting, the class of variational preferences considered by Maccheroni, Marinacci, and

Rustichini (2006) is strictly larger than the class of multiple-prior expected-utility pref-

erences considered by Gilboa and Schmeidler (1989). However, we show that in the

current setting, the SSMP and SSV representations are equivalent in the sense that the

set of preferences that can be represented using an SSMP representation is precisely the

set of preferences that can be represented using an SSV representation. The reason for

this equivalence in the subjective versions of the representations is the state-dependence

of the utility functions in the representations. The following Theorem formalizes this

claim and, moreover, states that a preference % can be represented by one of these

representations if and only if it has a monotone min-HA representation.

Theorem 3 Let V : A → R. Then, the following are equivalent:

1. There exists a monotone min-HA representation such that V is given by Equa-

tion (2).

2. There exists an SSMP representation such that V is given by Equation (3).

3. There exists an SSV representation such that V is given by Equation (4).

12Note that for simplicity, we directly assume in the SSMP and SSV representations that the mini-
mization in Equations (3) and (4) have a solution. One alternative approach that does not require this
indirect assumption on the parameters would be to replace the minimums in Equations (3) and (4) with
infima, in which case Theorem 3 would continue to hold. A second alternative is to impose topological
assumptions on the parameters that would guarantee the existence of a minimum, for instance assuming
that Ω is a metric space, F is the Borel σ–algebra on Ω, U is continuous, Π is weak*-compact, and c
is lower semi-continuous.
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The following immediate corollary provides the axiomatic foundation for the SSMP

and SSV representations.

Corollary 1 A preference % has a SSMP representation if and only if it has a SSV

representation if and only if it satisfies Axiom 1, PLRU, and monotonicity.

We next outline the intuition behind Theorem 3 for the case where in the min-HA,

SSMP, and SSV representations, the setsM, Π, Ω are finite, F = 2Ω, and the measures

in M have finite support. In this special case, the compactness, lower semi-continuity,

measurability, and boundedness properties in the representations are automatically sat-

isfied.

First consider (1)⇒ (3). Fix a monotone min-HA representation (M, c), and define

V by Equation (2). Take any µ ∈ M, and define a measure πµ on the set µ(U)U by

πµ(v) = µ(u)
µ(U)

for v = µ(U)u, u ∈ U . This transformation ensures that πµ is a probability

measure. Moreover, since πµ(v)v = µ(u)u for v = µ(U)u, for any A ∈ A,∫
µ(U)U

max
p∈A

v(p) πµ(dv) =

∫
U

max
p∈A

u(p)µ(du).

Let Ω =
⋃
µ∈M µ(U)U , and define U : Ω → RZ by U(ω) = ω. Let Π = {πµ : µ ∈ M}

and c̃(πµ) = c(µ). Then, V can be expressed in the following SSV form:

V (A) = min
π∈Π

(∫
Ω

max
p∈A

U(ω) · p π(dω) + c̃(π)

)
.

The idea of this construction is identical to the interpretation we gave for the integral

term in the HA-representations: Since utility is state-dependent, the weight of the states

in the linear aggregator cannot be uniquely pinned down, and integration against the

positive measure µ can be reexpressed as integration against a probability measure πµ
after appropriately rescaling the state-dependent utility functions.

To see the intuition for (3) ⇒ (2), consider an SSV representation ((Ω,F), U,Π, c),

and define V by Equation (4). Let Ω̃ = Ω×Π and F̃ = 2Ω̃. Let 1 ∈ RZ denote the vector

whose coordinates are equal to 1, and define Ũ : Ω̃ → RZ by Ũ(ω, π) = U(ω) + c(π)1

for any ω̃ = (ω, π) ∈ Ω̃. Take any probability measure π ∈ Π, and define a new measure

ρπ on Ω̃ by ρπ(ω, π) = π(ω) and ρπ(ω, π′) = 0 for any π′ 6= π. It is immediate that ρπ is

11



a probability measure on (Ω̃, F̃). Also, for any A ∈ A,∫
Ω̃

max
p∈A

Ũ(ω̃) · p ρπ(dω̃) =

∫
Ω×Π

[
max
p∈A

U(ω) · p+ c(π′)

]
ρπ(dω, dπ′)

=

∫
Ω

max
p∈A

U(ω) · p π(dω) + c(π).

Letting Π̃ = {ρπ : π ∈ Π}, we see that V can be expressed in the following SSMP form:

V (A) = min
ρ∈Π̃

∫
Ω̃

max
p∈A

Ũ(ω̃) · p ρ(dω̃).

The idea behind this argument is also a consequence of state-dependence of utility which

allows any constant to be absorbed in the integral term. Above, integration against the

probability measure π plus the constant c(π) is reexpressed as integration against the

probability measure ρπ whose support is a subset of states in Ω× {π} where the utility

functions are “shifted” by c(π)1.

To see the intuition for (2) ⇒ (1), consider an SSMP representation ((Ω,F), U,Π),

and define V by Equation (3). By the definition of U , since U(ω) is an expected-utility

function for each ω ∈ Ω, there exist u(ω) ∈ U , α(ω) ≥ 0, and β(ω) ∈ R such that

U(ω) = α(ω)u(ω) · p+ β(ω)1.

For each π ∈ Π, define the measure µπ on U by µπ(u) =
∑

ω∈Ω:u(ω)=u α(ω)π(ω) for each

u ∈ U . Define the function c : Π→ R by c(π) =
∑

ω∈Ω β(ω)π(ω). Then, for any A ∈ A,∑
ω∈Ω

max
p∈A

U(ω) · p π(ω) =
∑
ω∈Ω

max
p∈A

[u(ω) · p]α(ω)π(ω) +
∑
ω∈Ω

β(ω)π(ω)

=

∫
U

max
p∈A

u(p)µπ(du) + c(π).

Let M = {µπ : π ∈ Π} and let c̃(µ) = inf{c(π) : π ∈ Π and µπ = µ}. Then, V can be

expressed in the following min-HA form:

V (A) = min
µ∈M

(∫
U

max
p∈A

u(p)µ(du) + c̃(µ)

)
. (5)

It can also be shown that sequentially removing measures fromM that are not strictly

optimal in Equation (5) for some A ∈ A leads to a minimal set of measures M′ ⊂M.

12



Our SSMP representation bears some similarity to a representation considered by

Epstein, Marinacci and Seo (2007, Theorem 1). One main distinction between our

representation and theirs is that they impose a normalization on the state-dependent

utility function in their representation. As the above arguments illustrate, the key to

the equivalence proposed in Theorem 3 is the state-dependence of the utility functions

in the SSMP and SSV representations. If a normalization as in Epstein, Marinacci and

Seo (2007) were imposed on the utility functions in the SSV and SSMP representations,

then the equivalence of these representations would no longer hold, as it would not be

possible to “absorb” the cost function of the SSV representation into the utility function

to obtain an SSMP representation. Moreover, although these representations would

continue to be special cases of the monotone min-HA representation, it would not be

possible to write every monotone min-HA representation as an SSV representation since

it would not always be possible to “absorb” the magnitude of the measure into the utility

function. Theorem 3 illustrates that imposing either a normalization on utility functions

(as in the min-HA representation) or a normalization that measures be probabilities

(as in the SSMP and SSV representations) is not restrictive; however, imposing both

normalizations simultaneously would place a non-trivial additional restriction on the

representations.

4.2 Costly Contemplation

A special case of the max-HA representation is one of subjective information acquisi-

tion/costly contemplation, where the measures in M can be interpreted as a reduced-

form representation of the individual’s information about her tastes and the integral

term
∫
U maxp∈A u(p)µ(du) can be interpreted as the ex ante value of information µ

given menu A. In this application, we need to additionally impose the following axiom:

Axiom 5 (Reversibility of Degenerate Decisions (RDD)) For any A ∈ A, p, q ∈
4(Z), and α ∈ [0, 1],

βδαA+(1−α){p} + (1− β)δ{q} ∼ βδαA+(1−α){q} + (1− β)δ{p}

where β = 1/(2− α).

We will call a choice out of a singleton menu as a degenerate decision. To interpret

Axiom 5, consider Figure 2. The first tree represents βδαA+(1−α){p} + (1− β)δ{q}, where

the individual makes a choice out of the menu αA+ (1−α){p} with probability β, and

makes a degenerate choice out of the menu {q} with probability 1− β. A choice out of

13



αA+ (1− α){p}

choice
from A

α

p

1− α

β

{q}

q

1− β

∼ αA+ (1− α){q}

choice
from A

α

q

1− α

β

{p}

p

1− β

Figure 2: Reversibility of Degenerate Decisions (β = 1/(2− α))

the menu αA + (1 − α){p} can be interpreted as a contingent plan, where initially in

period 2 the individual determines a lottery out of A, and then her choice out of A is

executed with probability α and the fixed lottery p is executed with the remaining 1−α
probability. Similarly, the second tree represents βδαA+(1−α){q} + (1 − β)δ{p} where the

roles of p and q are reversed.

If one interprets the individual’s behavior as one of costly contemplation/subjective

information acquisition, then her optimal contemplation strategy might change as the

probability α that her choice out of A is executed changes since her return to contempla-

tion will be higher for higher values of α. However, since the probability that her choice

out of A will be executed is the same in both αA + (1 − α){p} and αA + (1 − α){q},
it is reasonable to expect that her contemplation strategy would be the same for both

contingent planning problems, although she need not be indifferent between δαA+(1−α){p}

and δαA+(1−α){q} depending on her preference between δ{p} and δ{q}. The RDD axiom

requires the individual to be indifferent between the two trees in Figure 2 when the prob-

abilities of the paths leading to lotteries p and q are the same, i.e., when β(1−α) = 1−β
or, equivalently, β = 1/(2− α).

Given a max-HA representation (M, c), we show that RDD is equivalent to the

following consistency requirement on the set of measures M:

Definition 4 A Reduced-Form Costly Contemplation (RFCC) representation is a max-

HA representation (M, c) where the set M is consistent : For each µ, ν ∈ M and

p ∈ 4(Z), ∫
U
u(p)µ(du) =

∫
U
u(p) ν(du).

An RFCC representation (M, c) is monotone if all the measures in M are positive.
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We show in Ergin and Sarver (2009) that the consistency condition above is key

for the interpretation of the max-HA representation as a subjective information acqui-

sition problem. More specifically, V satisfies Equation (1) for some monotone RFCC

representation (M, c) if and only if

V (A) = max
G∈G

(
E
[
max
p∈A

E
[
U
∣∣G] · p]− c(G)

)
(6)

where (Ω,F , P ) is a probability space, U : Ω→ RZ is a random vector interpreted as the

individual’s state-dependent utility, G is a collection of sub-σ-algebras of F representing

the set of signals that the individual can acquire, and c(G) denotes the cost of subjective

signal G ∈ G.13

As a special case of the max-HA representation, the RFCC representation satisfies

PERU. However, it always satisfies indifference to timing of resolution of uncertainty

when restricted to temporal lotteries, i.e., for all p, q ∈ 4(Z) and α ∈ (0, 1):

αδ{p} + (1− α)δ{q} ∼ δ{αp+(1−α)q}.
14

Therefore, an individual with RFCC preferences never has a strict PERU unless if she

has non-degenerate choices in period 2.

We next present an RFCC representation theorem as an application of Theorem 1.

Since RFCC representation is a special case of the max-HA representation, the unique-

ness of the RFCC representation is immediately implied by the uniqueness of the max-

HA representation.

Theorem 4 A. The preference % has a RFCC representation if and only if it satisfies

Axiom 1, PERU, and RDD.

B. The preference % has a monotone RFCC representation if and only if it satisfies

13The costly contemplation representation in Equation (3) is similar to the functional form considered
by Ergin (2003), whose primitive is a preference over menus taken from a finite set of alternatives.

14This property can also be established directly as a consequence of RDD and first-stage indepen-
dence. Fix any p, q ∈ 4(Z) and α ∈ (0, 1). Letting β = 1/(2− α) and A = {p}, RDD implies

βδ{p} + (1− β)δ{q} ∼ βδ{αp+(1−α)q} + (1− β)δ{p}.

Since β = 1/(2− α) implies that β = 1− β + αβ and 1− β = (1− α)β, the left side of this expression
is equal to (1− β)δ{p} + αβδ{p} + (1− α)βδ{q}. Hence,

β
[
αδ{p} + (1− α)δ{q}

]
+ (1− β)δ{p} ∼ βδ{αp+(1−α)q} + (1− β)δ{p},

which, by first-stage independence, implies αδ{p} + (1− α)δ{q} ∼ δ{αp+(1−α)q}.
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Axiom 1, PERU, RDD, and monotonicity.

4.3 Kreps and Porteus (1978) and DLR (2001)

In this section, we will introduce a generalization of Kreps and Porteus (1978) and DLR

(2001) additive representations, and characterize the intersection of this class with HA

preferences. The first axiom we consider is the standard von Neumann-Morgenstern

independence axiom imposed on the second-stage uncertainty. It is satisfied by RFCC

preferences, but not by SSMP and SSV preferences, since in the latter contexts the

individual may benefit from hedging even when she makes no choice in period 2.

Axiom 6 (Second-Stage Independence) For any p, q, r ∈ 4(Z), and α ∈ (0, 1),

δ{p} � δ{q} ⇒ δ{αp+(1−α)r} � δ{αq+(1−α)r}.

Under weak order and continuity, the following axiom from Kreps (1979) guarantees

that the individual is indifferent between any menu and its best singleton subset. Kreps

and Porteus (1978) assume the same relationship between the individual’s ranking of

menus and alternatives.15

Axiom 7 (Strategic Rationality) For any A,B ∈ A, δA % δB implies δA ∼ δA∪B.

Suppose there exists a continuous function V : A → R such that P % Q if and only

if EP [V ] ≥ EQ[V ]. Then, the preference % satisfies strategic rationality if and only if

V (A) = max
p∈A

V ({p}). (7)

Thus, strategic rationality implies that the restriction of the individual’s preference to

temporal lotteries determines her entire preference. In particular, if such an individ-

ual is indifferent to timing of resolution of uncertainty when choosing among temporal

15To be precise, Kreps and Porteus (1978) consider both a period 1 preference % over first-stage
lotteries in 4(A) and a period 2 preference %2 over second-stage lotteries in 4(Z). It is easy to show
that imposing their temporal consistency axiom (Axiom 3.1 in their paper) on this pair of preferences
(%,%2) implies that the period 1 preference % satisfies strategic rationality. Conversely, if the period
1 preference % satisfies strategic rationality along with continuity, then there exists some period 2
preference %2 such that the pair (%,%2) satisfies their temporal consistency axiom. Moreover, in this
case, the period 1 preference % satisfies our second-stage independence axiom if and only if this period
2 preference %2 satisfies the substitution axiom of Kreps and Porteus (1978, Axiom 2.3).
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lotteries, then Equation (7) implies that she must always be indifferent to timing of res-

olution of uncertainty. This is in contrast with RFCC preferences, where the individual

is indifferent to timing of resolution of uncertainty when choosing among temporal lot-

teries, but may exhibit a strict PERU when she faces non-degenerate choices in period 2.

Although the setup of Kreps and Porteus (1978) is rich enough to distinguish between

attitudes towards timing of resolution of uncertainty for temporal lotteries (without pe-

riod 2 choice) and more general lotteries over menus (with period 2 choice), the fact that

they implicitly impose Axiom 7 throughout their analysis prevents them from doing so.

A second implication of strategic rationality is that it rules out a strict preference

for flexibility (Kreps (1979)), i.e., situations where the union of two menus is strictly

better than each menu separately: δA∪B � δA and δA∪B � δB. The reason is that, by

Equation (7), the individual behaves as if she has no uncertainty in period 1 about her

ex post preference ranking over 4(Z).

Kreps and Porteus (1978) considered the following representation:16

Definition 5 A Kreps-Porteus representation is a pair (φ, v), where v is an expected-

utility function on 4(Z) and φ : [a, b] → R is a Lipschitz continuous and strictly

increasing function on the bounded interval [a, b] = {v(p) : p ∈ 4(Z)}, such that P % Q

if and only if EP [V ] ≥ EQ[V ], where V : A → R is defined by:

V (A) = φ
(

max
p∈A

v(p)
)
. (8)

The following representation result is a special case of Theorem 1 in Kreps and

Porteus (1978):17

Theorem 5 The preference % has a Kreps-Porteus representation if and only if it sat-

isfies Axiom 1, second-stage independence, and strategic rationality.

The intuition behind Theorem 5 is relatively straightforward. Axiom 1 implies there

exists a continuous function V : A → R such that P % Q if and only if EP [V ] ≥ EQ[V ].

16While this two-period model captures the essence of their representation, Kreps and Porteus (1978)
allowed for uncertainty to resolve in a finite number of periods and allowed for consumption in each
period. An infinite-horizon recursive formulation of this representation was considered by Epstein and
Zin (1989), who also considered several non-expected-utility generalizations.

17The only difference is that Kreps and Porteus (1978) only require φ to be continuous. We ad-
ditionally require Lipschitz continuity of φ since we impose the L–continuity axiom throughout the
paper.
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Together with continuity, second-stage independence implies there exists an expected-

utility function v on 4(Z) such that v(p) ≥ v(q) ⇐⇒ δ{p} % δ{q}. Since we also

have V ({p}) ≥ V ({q}) ⇐⇒ δ{p} % δ{q}, this implies there exists a strictly increasing

function φ such that V ({p}) = φ(v(p)). By strategic rationality, V satisfies Equation (7),

and hence

V (A) = max
p∈A

φ
(
v(p)

)
= φ

(
max
p∈A

v(p)
)
.

The following axiom from DLR (2001) is the standard independence requirement

applied to convex combinations of menus when there is no first-stage uncertainty:

Axiom 8 (Mixture Independence) For any A,B,C ∈ A and α ∈ (0, 1),

δA � δB ⇒ δαA+(1−α)C � δαB+(1−α)C .

It is easy to see that mixture independence is stronger than second-period indepen-

dence, but in the presence of Axiom 1, it is weaker than the combination of second-period

independence and strategic rationality.

We next consider a class of representations that generalize the DLR (2001) additive

representation where there is no objective first-stage uncertainty, and Kreps and Porteus

(1978) representation where there is no subjective second-stage uncertainty. Unlike

the Kreps and Porteus (1978) representation, the following class of representations are

compatible with a strict preference for flexibility:

Definition 6 A Kreps-Porteus-Dekel-Lipman-Rustichini (KPDLR) representation is a

pair (φ, µ), where µ is a finite signed Borel measure on U and φ : [a, b] → R is a

Lipschitz continuous and strictly increasing function on the bounded interval [a, b] =

{
∫
U maxp∈A u(p)µ(du) : A ∈ A}, such that P % Q if and only if EP [V ] ≥ EQ[V ], where

V : A → R is defined by:

V (A) = φ

(∫
U

max
p∈A

u(p)µ(du)

)
. (9)

Note that the Kreps-Porteus representation corresponds to the special case of the

KPDLR representation in which µ = αδu for some u ∈ U and α ≥ 0.18 The following is

our KPDLR representation result:

18It is immediate that any KPDLR representation (φ, µ) in which µ = αδu for α ≥ 0 can be written as
a Kreps-Porteus representation (φ, v) where v = αu. Conversely, for any Kreps-Porteus representation
(φ, v), there exist u ∈ U , α ≥ 0, and β ∈ R such that v(p) = αu(p) + β for all p ∈ 4(Z). Let µ = αδu.
Define constants â = a−β and b̂ = b−β, and define a function φ̂ : [â, b̂]→ R by φ̂(t) = φ(t+β). Then,
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Theorem 6 A. The preference % has a KPDLR representation if and only if it satisfies

Axiom 1 and mixture independence.19

B. If the preference % has the KPDLR representation (φ, µ), then % satisfies PERU

[PLRU] if and only if φ is convex [concave].

It is easy to see that two KPDLR representations (φ, µ) and (ψ, ν) induce the same

preference if and only if there exists λ, α > 0 and β ∈ R such that µ = λν and

φ(t) = αψ(t/λ) + β. Since it is possible to have
∫
U u(p)µ(du) = λ

∫
U u(p) ν(du) for all

p ∈ 4(Z) even when µ 6= λν, this implies in particular that in KPDLR representations,

the preference restricted to temporal lotteries does not determine the entire preference.

This is in contrast to Kreps-Porteus preferences which, by strategic rationality, are

determined entirely by their restriction to temporal lotteries.

However, like Kreps-Porteus preferences, KPDLR preferences impose a certain con-

sistency between attitudes towards timing of resolution of uncertainty for temporal

lotteries and more general lotteries. Specifically, Equation (9) implies that a prefer-

ence % with a KPDLR representation exhibits a PERU [PLRU] for temporal lotteries

if and only if it exhibits a PERU [PLRU] for lotteries over menus taken from the set

{A ∈ A : δA ∼ δ{p} for some p ∈ 4(Z)}. In particular, if an individual’s preference

has a KPDLR representation and has the property that for every A ∈ A there exists

a p ∈ 4(Z) such that δA ∼ δ{p}, then, as in the case of Kreps-Porteus preferences,

her attitude towards timing of resolution of uncertainty is determined entirely by her

attitude towards timing of resolution of uncertainty for temporal lotteries.

Not every KPDLR preference will have an HA representation, but the subclass sat-

isfying PERU or PLRU will. We next characterize the subclass of KPDLR preferences

which satisfies PERU and PLRU within the class of HA preferences.

Theorem 7 Let V : A → R and let µ be a nonzero finite signed Borel measure on U .

Then, the following are equivalent:

1. There exists a KPDLR representation (φ, µ) with convex [concave] φ such that V

is given by Equation (9).

the KPDLR representation (φ̂, µ) gives the same value function for menus V as the Kreps-Porteus
representation (φ, v).

19It is not necessary to include indifference to randomization (IR) explicitly in this result since it is
implied by mixture independence. Similarly, since mixture independence is implied by the combination
of second-stage independence and strategic rationality, it is also not necessary to include IR explicitly
in Theorem 5.
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2. There exists a max-HA [min-HA] representation (M, c) such that V is given by

Equation (1) [ (2)] where:

(a) M⊂ {λµ : λ ∈ R+}.

(b) 0 is not an isolated point of M and if 0 ∈M then

lim
λ↘0:λµ∈M

c(λµ)− c(0)

λ
= min

A∈A

∫
U

max
p∈A

u(p)µ(du)

[
lim

λ↘0:λµ∈M

c(λµ)− c(0)

λ
= −max

A∈A

∫
U

max
p∈A

u(p)µ(du)

]
.

The (1) ⇒ (2.a) part of Theorem 7 suggests that if the KPDLR representation

satisfies PERU or PLRU, then it is possible to rewrite the function V in Equation (9)

as an HA representation where all measures are multiples of the fixed measure µ. In

the (2) ⇒ (1) part of Theorem 7, condition (2.a) ensures that the transformation φ

in the KPDLR representation is nondecreasing. Condition (2.b) is merely a technical

regularity condition on the derivative of the cost function c at 0 which ensures that φ is

strictly increasing.

To interpret the HA representation in part (2) of Theorem 7, consider the case of

a positive measure µ, and consider again the probability measure π on V = µ(U)U
that (heuristically) puts weight π(v) = µ(u)/µ(U) on each v = µ(U)u ∈ V . One

interpretation of part (2.a) is that all actions lead to the same distribution π over ex post

utilities in V , but each action λµ ∈ M changes the magnitude of the ex post utilities

by a common scalar multiple λ.20 In the special case of Kreps-Porteus preferences,

all measures are degenerate and put their weight on the same ex post von Neumann-

Morgenstern utility function over 4(Z). In this case, the individual has no uncertainty

about her ex post preference ranking over lotteries in 4(Z), and different actions only

affect the strength of her ex post preference.

If a Kreps-Porteus preference % is non-trivial and satisfies PERU, then Theorem 7

implies that it has a max-HA representation (M, c) such that M ⊂ {λδu : λ ∈ R+}
for some u ∈ U . Following the interpretation given above, define a set of actions by

Λ = {λ ∈ R+ : λδu ∈ M} and a cost function c̃ : Λ → R by c̃(λ) = c(λδu). Then,

20Suppose without loss of generality that max{λ : λµ ∈ M} = 1. Then, one can also interpret each
action λµ ∈ M to lead to the distribution π over V with probability λ, and to the ex post preference
0 ∈ RZ with probability 1− λ. Under this interpretation, the choice of action affects the probability of
the 0 ex post preference, but not the conditional probability distribution π over V.
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Equation (1) for this max-HA representation simplifies to the following:21

V (A) = max
λ∈Λ

(
max
p∈A

λu(p)− c̃(λ)

)
. (10)

This formulation of the max-HA representation allows for a direct comparison to the

results of Kreps and Porteus (1979). They considered a certain class of hidden action

representations and determined the conditions on the representation that result in the

corresponding preference % being a Kreps-Porteus preference (i.e., satisfying the ax-

ioms of Kreps and Porteus (1978)). Specifically, Propositions 5 and 6 in Kreps and

Porteus (1979) show that a hidden action representation represents a Kreps-Porteus

preference if and only if it takes a functional form that is essentially equivalent to the

one in Equation (10).22 Their results (and, more generally, our Theorem 7) are useful for

determining the instances in which the Kreps-Porteus representation (or KPDLR rep-

resentation) can be used as a reduced-form representation for a hidden action model.23

The following example from Kreps and Porteus (1979) illustrates:

Example 1 Consider a consumption-savings problem in which the individual faces lot-

teries over future (period 2) income. Let Z be a finite subset of R, denoting the possible

levels of period 2 income. Let c1 and c2 denote the levels of consumption in periods 1

and 2, respectively. If the individual consumes c1 in period 1, then her period 2 con-

sumption when her realized period 2 income is z is c2 = z − c1. Suppose the individual

has a continuous and additively-separable von Neumann-Morgenstern utility function

for consumption U(c1, c2) = U1(c1) +U2(c2). Suppose that c1 is chosen from some com-

pact interval C after the realization period 1 uncertainty but before the realization of

period 2 uncertainty about income z. Defining A in the usual way for this set Z, the

induced preferences for lotteries over income have the following representation: For any

two lotteries P,Q ∈ 4(A), P % Q if and only if EP [V ] ≥ EQ[V ], where V : A → R is

21Theorem 7 also implies that if 0 ∈ Λ, then 0 is not an isolated point and c̃′(0) = minp∈4(Z) u(p).
As noted above, this condition implies that the mapping r 7→ maxλ∈Λ (λr − c̃(λ)) is strictly increasing
for all r ∈ {u(p) : p ∈ 4(Z)}.

22Kreps and Porteus (1979) restricted attention to temporal lotteries, and therefore their represen-
tation did not include a period 2 choice of lottery p from a menu A. Kreps and Porteus (1979) also
allowed for consumption in period 1; this is possible in our model as well by making some minor changes
to the functional form of the representation.

23It has also been suggested that a preference for early resolution of uncertainty could arise from
anticipatory feelings. However, Epstein (2008) develops a model of anticipatory feelings and shows
that while such preferences can lead to non-indifference to temporal resolution of uncertainty, they are
not consistent with the model of Kreps and Porteus (1978) except in the trivial case of indifference to
timing of resolution of uncertainty.
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defined by

V (A) = max
c1∈C

(
U1(c1) + max

p∈A

∑
z∈Z

U2(z − c1)pz

)
.

Kreps and Porteus (1979) observed that a sufficient condition for this representation to

take the form described in Equation (10) is that U2(c2) = − exp(−αc2) for some α > 0.

This can easily be seen by letting Λ = {exp(αc1) : c1 ∈ C}, defining c̃ : Λ → R by

c̃(λ) = −U1( 1
α

ln(λ)), and defining u ∈ RZ by u(z) = − exp(−αz).24 Intuitively, if U2

has constant absolute risk aversion, then the choice of c1 does not affect the individual’s

ranking of lotteries p over Z. This implies that the ex post expected-utility functions on

4(Z) resulting from the various choices of c1 must be affine transformations of a single

fixed utility function, which is precisely the content of Equation (10).

One could ask a dual question to the one considered in Example 1: Instead of deter-

mining what conditions on U2 are needed to ensure that the resulting preference over

4(A) is a Kreps-Porteus preference, we could ask whether there is a class of preferences

that can accommodate any choice of U2. Clearly, the class of all max-HA preferences is

sufficiently general for this purpose. However, notice that the induced preference in this

example will satisfy strategic rationality regardless of the choice of U2. The following

theorem illustrates that maintaining strategic rationality while relaxing second-stage

independence results in a natural generalization of Kreps-Porteus preferences that can

accommodate the preferences in Example 1 for any choice of parameters:25

Theorem 8 The preference % satisfies Axiom 1, strategic rationality, and PERU if and

only if it has a max-HA representation (M, c) such that M⊂ {λδu : λ ∈ R+, u ∈ U}.26

We now sketch the proof Theorem 8. Axiom 1 implies there exists a Lipschitz

continuous function V : A → R such that P % Q if and only if EP [V ] ≥ EQ[V ]. Strategic

rationality implies that V satisfies Equation (7), and PERU implies that V is convex.

Define f : 4(Z) → R by f(p) = V ({p}). Then, f is convex and V (A) = maxp∈A f(p).

By the same duality results as those used to prove Theorem 1, f can be expressed as

the maximum of the set of all affine function lying below it. Since affine functions on

24Although this definition implies that u /∈ U , u can be normalized to be in U .
25It is well-known that second-stage independence will in general be violated if the individual takes a

payoff-relevant action prior to the resolution of uncertainty; for instance, see Markowitz (1959, Chap-
ters 10–11), Mossin (1969), and Spence and Zeckhauser (1972). The results of Kreps and Porteus (1979)
discussed above characterize precisely those special cases in which independence is not violated.

26It is not necessary to include IR explicitly in this result because it is implied by the combination
of weak order, continuity, first-stage independence, PERU, and strategic rationality.

22



4(Z) are precisely expected-utility functions, this implies there exists a set V ⊂ RZ

such that f(p) = maxv∈V v(p). The observation that f can be given dual representation

of this kind is well-known; for example, see Machina (1984, Theorem 2).27 Therefore, if

% satisfies the axioms of Theorem 8, then V takes the following form:

V (A) = max
p∈A

f(p) = max
v∈V

(
max
p∈A

v(p)

)
. (11)

The final step of the proof is to transform the functional form in Equation (11) into

a max-HA representation. By the definition of U , for each v ∈ V , there exist ū ∈ U ,

λ ≥ 0, and β ∈ R such that v(p) = λū(p)+β for all p ∈ 4(Z). Thus, defining a measure

µv = λδū and letting c̃(v) = −β, we have

max
p∈A

v(p) =

∫
U

max
p∈A

u(p)µv(du)− c̃(v).

Let M = {µv : v ∈ V} and define c : M → R by c(µ) = inf{c̃(v) : µv = µ}. Then,

Equation (11) can be written as

V (A) = max
µ∈M

(∫
U

max
p∈A

u(p)µ(du)− c(µ)

)
.

Therefore, (M, c) is a max-HA representation for %.28

27Our motivation is also very similar to that of Machina (1984), who used this dual representation to
perform local expected-utility analysis in a model of induced preferences over temporal lotteries over
levels of future wealth.

28A complete proof, including the arguments for obtaining a compact and minimal setM and a lower
semi-continuous function c, are contained in the appendix.
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Appendix

A Mathematical Preliminaries

In this section, we present some general mathematical results that will be used to prove our
representation and uniqueness theorems. Our main results will center around a classic duality
relationship from convex analysis. Throughout this section, let X be a real Banach space, and
let X∗ denote the space of all continuous linear functionals on X.

Definition 7 Suppose C ⊂ X. A function f : C → R is said to be Lipschitz continuous if
there is some real number K such that |f(x) − f(y)| ≤ K‖x − y‖ for every x, y ∈ C. The
number K is called a Lipschitz constant of f .

We now introduce the standard definition of the subdifferential of a function.

Definition 8 Suppose C ⊂ X and f : C → R. For x ∈ C, the subdifferential of f at x is
defined to be

∂f(x) = {x∗ ∈ X∗ : 〈y − x, x∗〉 ≤ f(y)− f(x) for all y ∈ C}.

The subdifferential is useful for the approximation of convex functions by affine functions.
It is straightforward to show that x∗ ∈ ∂f(x) if and only if the affine function h : X → R
defined by h(y) = f(x) + 〈y − x, x∗〉 satisfies h ≤ f and h(x) = f(x). It should also be noted
that when X is infinite-dimensional it is possible to have ∂f(x) = ∅ for some x ∈ C, even
if f is convex. However, the following result shows that a Lipschitz continuous and convex
function always has a nonempty subdifferential:

Lemma 1 (Ergin and Sarver (2008)) Suppose C is a convex subset of a Banach space X.
If f : C → R is Lipschitz continuous and convex, then ∂f(x) 6= ∅ for all x ∈ C.

We now introduce the definition of the conjugate of a function.

Definition 9 Suppose C ⊂ X and f : C → R. The conjugate (or Fenchel conjugate) of f is
the function f∗ : X∗ → R ∪ {+∞} defined by

f∗(x∗) = sup
x∈C

[
〈x, x∗〉 − f(x)

]
.

There is an important duality between f and f∗. Lemma 2 summarizes certain properties
of f∗ that are useful in establishing this duality.29 We include a proof for completeness.

29For a complete discussion of the relationship between f and f∗, see Ekeland and Turnbull (1983)
or Holmes (1975). A finite-dimensional treatment can be found in Rockafellar (1970).
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Lemma 2 Suppose C ⊂ X and f : C → R. Then,

1. f∗ is lower semi-continuous in the weak* topology.

2. f(x) ≥ 〈x, x∗〉 − f∗(x∗) for all x ∈ C and x∗ ∈ X∗.

3. f(x) = 〈x, x∗〉 − f∗(x∗) if and only if x∗ ∈ ∂f(x).

Proof: (1): For any x ∈ C, the mapping x∗ 7→ 〈x, x∗〉 − f(x) is continuous in the weak*
topology. Therefore, for all α ∈ R, {x∗ ∈ X∗ : 〈x, x∗〉 − f(x∗) ≤ α} is weak* closed. Hence,

{x∗ ∈ X∗ : f∗(x∗) ≤ α} =
⋂
x∈C
{x∗ ∈ X∗ : 〈x, x∗〉 − f(x) ≤ α}

is closed for all α ∈ R. Thus, f∗ is lower semi-continuous.
(2): For any x ∈ C and x∗ ∈ X∗, we have

f∗(x∗) = sup
y∈C

[
〈y, x∗〉 − f(y)

]
≥ 〈x, x∗〉 − f(x),

and therefore f(x) ≥ 〈x, x∗〉 − f∗(x∗).
(3): By the definition of the subdifferential, x∗ ∈ ∂f(x) if and only if

〈y, x∗〉 − f(y) ≤ 〈x, x∗〉 − f(x). (12)

for all y ∈ C. By the definition of the conjugate, Equation (12) holds if and only if f∗(x∗) =
〈x, x∗〉 − f(x), which is equivalent to f(x) = 〈x, x∗〉 − f∗(x∗). �

Suppose that C ⊂ X is convex and f : C → R is Lipschitz continuous and convex. As
noted above, this implies that ∂f(x) 6= ∅ for all x ∈ C. Therefore, by parts 2 and 3 of Lemma 2,
we have

f(x) = max
x∗∈X∗

[
〈x, x∗〉 − f∗(x∗)

]
(13)

for all x ∈ C.30 In order to establish the existence of a minimal set of measures in the proof of
Theorem 1, it is useful to establish that under certain assumptions, there is a minimal compact
subset of X∗ for which Equation (13) holds. Let Cf denote the set of all x ∈ C for which the
subdifferential of f at x is a singleton:

Cf = {x ∈ C : ∂f(x) is a singleton}. (14)

Let Nf denote the set of functionals contained in the subdifferential of f at some x ∈ Cf :

Nf = {x∗ ∈ X∗ : x∗ ∈ ∂f(x) for some x ∈ Cf}. (15)

30This is a slight variation of the classic Fenchel-Moreau theorem. The standard version of this
theorem states that if f : X → R ∪ {+∞} is lower semi-continuous and convex, then f(x) = f∗∗(x) ≡
supx∗∈X∗ [〈x, x∗〉 − f∗(x∗)]. See, e.g., Proposition 1 in Ekeland and Turnbull (1983, p97).

25



Finally, let Mf denote the closure of Nf in the weak* topology:

Mf = Nf . (16)

Before stating our first main result, recall that the affine hull of a set C ⊂ X, denoted
aff(C), is defined to be the smallest affine subspace of X that contains C. Also, a set C ⊂ X
is said to be a Baire space if every countable intersection of dense open subsets of C is dense.

Theorem 9 (Ergin and Sarver (2008)) Suppose (i) X is a separable Banach space, (ii)
C is a convex subset of X that is a Baire space (when endowed with the relative topology) such
that aff(C) is dense in X,31 and (iii) f : C → R is Lipschitz continuous and convex. Then,
Mf is weak* compact, and for any weak* compact M⊂ X∗,

Mf ⊂M ⇐⇒ f(x) = max
x∗∈M

[
〈x, x∗〉 − f∗(x∗)

]
∀x ∈ C.

The intuition for Theorem 9 is fairly simple. We already know from Lemma 2 that for
any x ∈ Cf , f(x) = maxx∗∈Nf [〈x, x∗〉 − f∗(x∗)]. Ergin and Sarver (2008) show that under the
assumptions of Theorem 9, Cf is dense in C. Therefore, it can be shown that for any x ∈ C,

f(x) = max
x∗∈Mf

[
〈x, x∗〉 − f∗(x∗)

]
.

In addition, if M is a weak* compact subset of X∗ and Mf is not a subset of M, then there
exists x∗ ∈ Nf such that x∗ /∈ M. That is, there exists x ∈ Cf such that ∂f(x) = {x∗} and
x∗ /∈M. Therefore, Lemma 2 implies f(x) > maxx∗∈M[〈x, x∗〉 − f∗(x∗)].

In the proof of Theorem 1, we will construct an HA representation in which Mf , for a
certain function f , is the set of measures. In the proof of part B of Theorem 1, we will use
the following result to establish that monotonicity leads to a positive set of measures. For this
next result, assume that X is a Banach lattice.32 Let X+ = {x ∈ X : x ≥ 0} denote the
positive cone of X. A function f : C → R on a subset C of X is monotone if f(x) ≥ f(y)
whenever x, y ∈ C are such that x ≥ y. A continuous linear functional x∗ ∈ X∗ is positive if
〈x, x∗〉 ≥ 0 for all x ∈ X+.

Theorem 10 (Ergin and Sarver (2008)) Suppose C is a convex subset of a Banach lattice
X, such that at least one of the following conditions holds:

1. x ∨ x′ ∈ C for any x, x′ ∈ C, or

2. x ∧ x′ ∈ C for any x, x′ ∈ C.

Let f : C → R be Lipschitz continuous, convex, and monotone. Then, the functionals in Mf

are positive.
31In particular, if C is closed, then by the Baire Category theorem, then C is a Baire space. Also,

note that if C contains the origin, then the affine hull of C is equal to the span of C.
32See Aliprantis and Border (1999, p302) for a definition of Banach lattices.
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Finally, the following result will be used in the proof of Theorem 2 to establish the unique-
ness of the HA representation.

Theorem 11 (Ergin and Sarver (2008)) Suppose X is a Banach space and C is a convex
subset of X. Let M be a weak* compact subset of X∗, and let c : M → R be weak* lower
semi-continuous. Define f : C → R by

f(x) = max
x∗∈M

[
〈x, x∗〉 − c(x∗)

]
. (17)

Then,

1. The function f is Lipschitz continuous and convex.

2. For all x ∈ C, there exists x∗ ∈ ∂f(x) such that x∗ ∈ M and f∗(x∗) = c(x∗). In
particular, this implies Nf ⊂M, Mf ⊂M, and f∗(x∗) = c(x∗) for all x∗ ∈ Nf .

3. If C is also compact (in the norm topology), then f∗(x∗) = c(x∗) for all x∗ ∈Mf .

B Proof of Theorem 1

Note that A is a compact metric space since 4(Z) is a compact metric space (see, e.g.,
Munkres (2000, p280–281) or Theorem 1.8.3 in Schneider (1993, p49)). We begin by showing
that weak order, continuity, and first-stage independence imply that % has an expected-utility
representation.

Lemma 3 A preference % over 4(A) satisfies weak order, continuity, and first-stage indepen-
dence if and only if there exists a continuous function V : A → R such that % is represented
by EP [V ]. Furthermore, if V : A → R and V ′ : A → R are continuous functions such that
EP [V ] and EP [V ′] represent the same preference over 4(A), then there exist α > 0 and β ∈ R
such that V ′ = αV + β.

Proof: This is a standard result. For example, it is asserted without proof in Corollary 5.22
of Kreps (1988). Alternatively, it can be verified that 4(A) and % satisfy the conditions of
Theorem 10.1 of Fishburn (1970), and hence there exists a bounded V such that % is repre-
sented by EP [V ]. Since the mapping P 7→ EP [V ] is affine, it is straightforward to show that
the continuity axiom implies this mapping is weak* continuous. Therefore, for any sequence
{An} ⊂ A and any A ∈ A,

An → A =⇒ δAn
w∗−−→ δA =⇒ V (An) = EδAn [V ]→ EδA [V ] = V (A),

which implies that V is continuous. Uniqueness of V follows from the uniqueness part of the
mixture-space theorem (see Kreps (1988, Theorem 5.11) or Fishburn (1970, Theorem 8.4)). �
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Let Ac ⊂ A denote the collection of all convex menus. It is a standard exercise to show
that Ac is a closed subset of A, and hence Ac is also compact (see Theorem 1.8.5 in Schneider
(1993, p50)). Our strategy for proving the sufficiency of the axioms will be to show that the
function V described in Lemma 3 satisfies the max-HA [min-HA] formula on Ac. Using the IR
axiom, it will then be straightforward to show that V satisfies the max-HA [min-HA] formula
on all of A.

The following lemma shows the implications of our other axioms.

Lemma 4 Suppose that V : A → R is a continuous function such that EP [V ] represents the
preference % over 4(A). Then:

1. If % satisfies L–continuity, then V is Lipschitz continuous on Ac, i.e., there exists K ≥ 0
such that |V (A)− V (B)| ≤ Kdh(A,B) for any A,B ∈ Ac.33

2. If V is Lipschitz continuous (on A), then % satisfies L–continuity.

3. The preference % satisfies PERU [PLRU] if and only if V is convex [concave].

4. The preference % satisfies monotonicity if and only if V is monotone (i.e., A ⊂ B

implies V (B) ≥ V (A) for any A,B ∈ A).

Proof: Claims 3 and 4 follow immediately from the definitions. To prove claim 1, we
use the arguments in the proof of Lemma 13 in Ergin and Sarver (2009). Suppose that %
satisfies L–continuity for M ≥ 0 and A∗, A∗ ∈ A. First, note that if M = 0, then L–continuity
implies that V (A) = V (B) for all A,B ∈ A, i.e., V is Lipschitz continuous with a Lipschitz
constant K = 0. If M > 0, then let K ≡ 2M [V (A∗)− V (A∗)] ≥ 0. We first show that for any
A,B ∈ Ac:

dh(A,B) ≤ 1
2M =⇒ |V (A)− V (B)| ≤ Kdh(A,B). (18)

Suppose that dh(A,B) ≤ 1
2M and let α ≡Mdh(A,B). Then, α ≤ 1/2 and

V (B)− V (A) ≤ α
1−α [V (A∗)− V (A∗)] ≤ 2α[V (A∗)− V (A∗)] = Kdh(A,B),

where the first inequality follows from L–continuity, the second inequality follows from α ≤ 1/2,
and the equality follows form the definitions of α and K. Interchanging the roles of A and B

above, we also have that V (A)− V (B) ≤ Kdh(A,B), proving Equation (18).
Next, we use the argument in the proof of Lemma 8 in the supplementary appendix of

DLRS (2007) to show that for any A,B ∈ Ac:

|V (A)− V (B)| ≤ Kdh(A,B), (19)

i.e., the requirement dh(A,B) ≤ 1
2M in Equation (18) is not necessary. To see this, take any

sequence 0 = λ0 < λ1 < . . . < λn < λn+1 = 1 such that (λi+1 − λi)dh(A,B) ≤ 1
2M . Let

33If % also satisfies IR, then it can be shown that V is Lipschitz continuous on A.
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Ai = λiA+ (1− λi)B. It is straightforward to verify that:34

dh(Ai+1, Ai) = (λi+1 − λi)dh(A,B) ≤ 1
2M .

Combining this with the triangle inequality and Equation (18), we obtain

|V (A)− V (B)| ≤
n∑
i=0

|V (Ai+1)− V (Ai)|

≤ K
n∑
i=0

dh(Ai+1, Ai) = K
n∑
i=0

(λi+1 − λi)dh(A,B) = Kdh(A,B).

This establishes Equation (19), which implies V is Lipschitz continuous on Ac with a Lipschitz
constant K.

To prove claim 2, suppose that V is Lipschitz continuous, and let K > 0 be a Lipschitz
constant of V . Let A∗ be a maximizer of V on A and let A∗ be a minimizer of V on A. If
V (A∗) = V (A∗), then P ∼ Q for any P,Q ∈ 4(A), implying that L–continuity holds trivially
for A∗, A∗, and M = 0. If V (A∗) > V (A∗), then let M ≡ K/[V (A∗) − V (A∗)] > 0. For any
A,B ∈ A and α ∈ [0, 1] with α ≥Mdh(A,B), we have

(1− α)[V (B)− V (A)] ≤ V (B)− V (A) ≤ Kdh(A,B) ≤ Kα/M = α[V (A∗)− V (A∗)],

which implies the conclusion of L–continuity. �

We now follow a construction similar to the one in DLR (2001) to obtain from V a function
W whose domain is the set of support functions. As in the text, let

U =
{
u ∈ RZ :

∑
z∈Z

uz = 0,
∑
z∈Z

u2
z = 1

}
.

For any A ∈ Ac, the support function σA : U → R of A is defined by σA(u) = maxp∈A u · p.
For a more complete introduction to support functions, see Rockafellar (1970) or Schneider
(1993). Let C(U) denote the set of continuous real-valued functions on U . When endowed
with the supremum norm ‖·‖∞, C(U) is a Banach space. Define an order ≥ on C(U) by f ≥ g
if f(u) ≥ g(u) for all u ∈ U . Let Σ = {σA ∈ C(U) : A ∈ Ac}. For any σ ∈ Σ, let

Aσ =
⋂
u∈U

{
p ∈ 4(Z) : u · p =

∑
z∈Z

uzpz ≤ σ(u)
}
.

Lemma 5 1. For all A ∈ Ac and σ ∈ Σ, A(σA) = A and σ(Aσ) = σ. Hence, σ is a bijection
from Ac to Σ.

34Note that the convexity of the menus A and B is needed for the first equality.
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2. For all A,B ∈ Ac and any λ ∈ [0, 1], σλA+(1−λ)B = λσA + (1− λ)σB.

3. For all A,B ∈ Ac, dh(A,B) = ‖σA − σB‖∞.

4. Σ is convex and compact, and 0 ∈ Σ.

Proof: Parts 1–3 are standard results that can be found in Rockafellar (1970) or Schneider
(1993).35 For instance, in Schneider (1993), part 1 follows from Theorem 1.7.1, part 2 follows
from Theorem 1.7.5, and part 3 follows from Theorem 1.8.11.

For part 4, note that the set Σ is convex by the convexity of Ac and part 2 of this lemma.
As discussed above, the set Ac is compact, and hence by parts 1 and 3 of this lemma, Σ is a
compact subset of the Banach space C(U). Also, if we take q = (1/|Z|, . . . , 1/|Z|) ∈ 4(Z),
then u · q = 0 for all u ∈ U . This implies σ{q} = 0, and hence 0 ∈ Σ. �

The following lemma shows that a function defined on Ac can be transformed into a
function on Σ.

Lemma 6 Suppose V : Ac → R, and define a function W : Σ→ R by W (σ) = V (Aσ). Then:

1. V (A) = W (σA) for all A ∈ Ac.

2. V is Lipschitz continuous if and only if W is Lipschitz continuous.

3. If V is convex [concave] if and only if W is convex [concave].

4. V is monotone if and only if W is monotone (i.e., σ ≤ σ′ implies W (σ) ≤ W (σ′) for
any σ, σ′ ∈ Σ).

Proof: (1): This follows immediately from part 1 of Lemma 5.
(2): If V is Lipschitz continuous with a Lipschitz constant K ≥ 0, then by parts 1 and 3

of Lemma 5, for any A,B ∈ Ac,

|W (σA)−W (σB)| = |V (A)− V (B)| ≤ Kdh(A,B) = K‖σA − σB‖∞.

A similar argument shows if W Lipschitz continuous, then V is Lipschitz continuous.
(3): If V is convex, then by parts 1 and 2 of Lemma 5, for any A,B ∈ Ac and λ ∈ [0, 1],

W (λσA + (1− λ)σB) = W (σλA+(1−λ)B) = V (λA+ (1− λ)B)

≤ λV (A) + (1− λ)V (B) = λW (σA) + (1− λ)W (σB).

Similar arguments can be used to show that convexity of W implies convexity of V and that
V is concave if and only if W is concave.

35The standard setting for support functions is the set of nonempty closed and convex subsets of
Rn. However, by imposing our normalizations on the domain of the support functions U , the standard
results are easily adapted to our setting of nonempty closed and convex subsets of 4(Z).

30



(4): This is an immediate consequence of the following fact, which is easy to see from part
1 of Lemma 5 and the definitions of σA and Aσ: For all A,B ∈ Ac, A ⊂ B if and only if
σA ≤ σB. �

We denote the set of continuous linear functionals on C(U) (the dual space of C(U)) by
C(U)∗. It is well-known that C(U)∗ is the set of finite signed Borel measures on U , where the
duality is given by:

〈f, µ〉 =
∫
U
f(u)µ(du)

for any f ∈ C(U) and µ ∈ C(U)∗.36

For any function W : Σ → R, define the subdifferential ∂W and the conjugate W ∗ as in
Appendix A. Also, define ΣW , NW , andMW as in Equations (14), (15), and (16), respectively:

ΣW = {σ ∈ Σ : ∂W(σ) is a singleton},
NW = {µ ∈ C(U)∗ : µ ∈ ∂W(σ) for some σ ∈ ΣW },

MW = NW ,

where the closure is taken with respect to the weak* topology. We now apply Theorem 9 to
the current setting.

Lemma 7 Suppose W : Σ → R is Lipschitz continuous and convex. Then, MW is weak*
compact, and for any weak* compact M⊂ C(U)∗,

MW ⊂M ⇐⇒ W (σ) = max
µ∈M

[
〈σ, µ〉 −W ∗(µ)

]
∀σ ∈ Σ.

Proof: We simply need to verify that C(U), Σ, and W satisfy the assumptions of Theo-
rem 9. Since U is a compact metric space, C(U) is separable (see Theorem 8.48 of Aliprantis
and Border (1999)). By part 4 of Lemma 5, Σ is a closed and convex subset of C(U) contain-
ing the origin. Since Σ is a closed subset of a Banach space, it is a Baire space by the Baire
Category theorem. Although the result is stated slightly differently, it is shown in Hörmander
(1954) that span(Σ) is dense in C(U). This result is also proved in DLR (2001). Since 0 ∈ Σ
implies that aff(Σ) = span(Σ), the affine hull of Σ is therefore dense in C(U). Finally, W is
Lipschitz continuous and convex by assumption. �

36Since U is a compact metric space, by the Riesz representation theorem (see Royden (1988, p357)),
each continuous linear functional on C(U) corresponds uniquely to a finite signed Baire measure on U .
Since U is a locally compact separable metric space, the Baire sets and the Borel sets of U coincide (see
Royden (1988, p332)). Hence, the set of Baire and Borel finite signed measures also coincide.
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B.1 Sufficiency of the axioms for the max-HA representations

To prove the sufficiency of the axioms for the max-HA representation in part A, suppose that
% satisfies Axiom 1 and PERU. By Lemma 3, there exists a continuous function V : A → R
such that EP [V ] represents %. Moreover, by Lemma 4, the restriction of V to the set Ac

of convex menus is Lipschitz continuous and convex. With slight abuse of notation, we also
denote this restriction by V . By Lemma 6, the function W : Σ→ R defined by W (σ) = V (Aσ)
is Lipschitz continuous and convex. Therefore, by Lemma 7, for all σ ∈ Σ,

W (σ) = max
µ∈MW

[
〈σ, µ〉 −W ∗(µ)

]
.

This implies that for all A ∈ A,

V (A) = V (co(A)) = W (σco(A))

= max
µ∈MW

(∫
U

max
p∈co(A)

u(p)µ(du)−W ∗(µ)
)

= max
µ∈MW

(∫
U

max
p∈A

u(p)µ(du)−W ∗(µ)
)
,

where the first equality follows from IR and the second equality follows from part 1 of Lemma 6.
The function W ∗ is lower semi-continuous by part 1 of Lemma 2, and MW is compact by
Lemma 7. It is also immediate from Lemma 7 that MW satisfies the minimality condition in
Definition 1. Therefore, (MW ,W

∗|MW
) is a max-HA representation for %.

To prove the sufficiency of the axioms for the monotone max-HA representation in part B,
suppose that, in addition, % satisfies monotonicity. Then, by Lemmas 4 and 6, the function
W is monotone. Also, note that for any A,B ∈ Ac, σA ∨ σB = σA∪B. Hence, σ ∨ σ′ ∈ Σ for
any σ, σ′ ∈ Σ. Therefore, by Theorem 10, the measures in MW are positive.

B.2 Sufficiency of the axioms for the min-HA representations

To prove the sufficiency of the axioms for the min-HA representation in part A, suppose that
% satisfies Axiom 1 and PLRU. By Lemma 3, there exists a continuous function V : A → R
such that EP [V ] represents %. By Lemmas 4 and 6, the function W : Σ → R defined by
W (σ) = V (Aσ) is Lipschitz continuous and concave. Define a function W̄ : Σ → R by
W̄ (σ) = −W (σ). Then, W̄ is Lipschitz continuous and convex, so by Lemma 7, for all σ ∈ Σ,

W̄ (σ) = max
µ∈MW̄

[
〈σ, µ〉 − W̄ ∗(µ)

]
.
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Let M ≡ −MW̄ = {−µ : µ ∈ MW̄ }, and define c : M → R by c(µ) = W̄ ∗(−µ). Then, for
any σ ∈ Σ,

W (σ) = −W̄ (σ) = min
µ∈MW̄

[
− 〈σ, µ〉+ W̄ ∗(µ)

]
= min

µ∈M

[
− 〈σ,−µ〉+ W̄ ∗(−µ)

]
= min

µ∈M

[
〈σ, µ〉+ c(µ)

]
.

This implies that for all A ∈ A,

V (A) = V (co(A)) = W (σco(A))

= min
µ∈M

(∫
U

max
p∈co(A)

u(p)µ(du) + c(µ)
)

= min
µ∈M

(∫
U

max
p∈A

u(p)µ(du) + c(µ)
)
,

where the first equality follows from IR and the second equality follows from part 1 of Lemma 6.
The function W̄ ∗ is lower semi-continuous by part 1 of Lemma 2, which implies that c is lower
semi-continuous. The compactness ofM follows from the compactness ofMW̄ , which follows
from Lemma 7. Also, by Lemma 7 and the above construction, it is immediate thatM satisfies
the minimality condition in Definition 1. Therefore, (M, c) is a min-HA representation for %.

To prove the sufficiency of the axioms for the monotone min-HA representation in part B,
suppose that, in addition, % satisfies monotonicity. Then, by Lemmas 4 and 6, the function
W is monotone. Let Σ̂ ≡ −Σ = {−σ : σ ∈ Σ}, and define a function Ŵ : Σ̂ → R by
Ŵ (σ) ≡ W̄ (−σ) = −W (−σ). Notice that Ŵ is monotone and convex: By the monotonicity
of W , for any σ, σ′ ∈ Σ̂,

σ ≤ σ′ =⇒ −σ ≥ −σ′ =⇒ Ŵ (σ) = −W (−σ) ≤ −W (−σ′) = Ŵ (σ).

By the concavity of W , for any σ, σ′ ∈ Σ̂ and λ ∈ [0, 1],

Ŵ (λσ + (1− λ)σ′) = −W (λ(−σ) + (1− λ)(−σ′))
≤ −λW (−σ)− (1− λ)W (−σ′) = λŴ (σ) + (1− λ)Ŵ (σ′).

Also, for any A,B ∈ Ac, (−σA) ∧ (−σB) = −(σA ∨ σB) = −σA∪B. Hence, σ ∧ σ′ ∈ Σ̂ for any
σ, σ′ ∈ Σ̂. Therefore, by Theorem 10, the measures in MŴ are positive. For any µ ∈ C(U)∗

and σ, σ′ ∈ Σ̂, note that

Ŵ (σ′)− Ŵ (σ) ≥ 〈σ′ − σ, µ〉 ⇐⇒ W̄ (−σ′)− W̄ (−σ) ≥ 〈σ′ − σ, µ〉 = 〈−σ′ + σ,−µ〉,

and hence µ ∈ ∂Ŵ (σ) ⇐⇒ −µ ∈ ∂W̄ (−σ). In particular, Σ̂Ŵ = −ΣW̄ and NŴ = −NW̄ .
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Taking closures, we have MŴ = −MW̄ =M. Thus, the measures in M are positive.

B.3 Necessity of the axioms

We begin by demonstrating some of the properties of the function V defined by an HA repre-
sentation.

Lemma 8 Suppose (M, c) is an HA representation.

1. If (M, c) is a max-HA representation and V : A → R is defined by Equation (1), then
V is Lipschitz continuous and convex. In addition, defining the function W : Σ→ R by
W (σ) = V (Aσ), we have M =MW and c(µ) = W ∗(µ) for all µ ∈M.

2. If (M, c) is a min-HA representation and V : A → R is defined by Equation (2), then
V is Lipschitz continuous and concave. In addition, defining the function W : Σ → R
by W (σ) = V (Aσ), we have M = −M−W and c(µ) = [−W ]∗(−µ) for all µ ∈M.

Proof: (1): By the definitions of V and W , we have

W (σ) = max
µ∈M

[
〈σ, µ〉 − c(µ)

]
, ∀σ ∈ Σ.

By part 1 of Theorem 11, W is Lipschitz continuous and convex. Therefore, the restriction of
V to Ac is Lipschitz continuous and convex by Lemma 6. Let K ≥ 0 be any Lipschitz constant
of V |Ac , and take any A,B ∈ A. It is easily verified that V (A) = V (co(A)), V (B) = V (co(B)),
and dh(co(A), co(B)) ≤ dh(A,B). Hence,

|V (A)− V (B)| = |V (co(A))− V (co(B))| ≤ Kdh(co(A), co(B)) ≤ Kdh(A,B),

which implies that V is Lipschitz continuous on all of A with the same Lipschitz constant K.
Also, for any A,B ∈ A and λ ∈ [0, 1],

V (λA+ (1− λ)B) = V (co(λA+ (1− λ)B)) = V (λco(A) + (1− λ)co(B))

≤ λV (co(A)) + (1− λ)V (co(B)) = λV (A) + (1− λ)V (B),

which implies that V is convex onA. Also, by parts 2 and 3 of Theorem 11 and the compactness
of Σ, MW ⊂M and W ∗(µ) = c(µ) for all µ ∈ MW . By Lemma 7 and the minimality of M,
this implies M =MW , and hence c(µ) = W ∗(µ) for all µ ∈M.

(2): Define a function W̄ : Σ→ R by W̄ (σ) = −W (σ). Then, for any σ ∈ Σ,

W̄ (σ) = −W (σ) = − min
µ∈M

[
〈σ, µ〉+ c(µ)

]
= max

µ∈M

[
〈σ,−µ〉 − c(µ)

]
= max

µ∈−M

[
〈σ, µ〉 − c(−µ)

]
.
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By the same arguments used above, this implies that W̄ is Lipschitz continuous and convex,
which in turn implies that V is Lipschitz continuous and concave. Moreover, the above argu-
ments imply that −M = MW̄ and c(−µ) = W̄ ∗(µ) for all µ ∈ −M. Thus, M = −MW̄ =
−M−W and c(µ) = W̄ ∗(−µ) = [−W ]∗(−µ) for all µ ∈M. �

Suppose that % has a max-HA [min-HA] representation (M, c), and suppose V : A → R is
defined by Equation (1) [(2)]. Since EP [V ] represents % and V is continuous (by Lemma 8), %
satisfies weak order, continuity, and first-stage independence by Lemma 3. Since V is Lipschitz
continuous and convex [concave] by Lemma 8, % satisfies L–continuity and PERU [PLRU] by
Lemma 4. Since V (A) = V (co(A)) for all A ∈ A, it is immediate that % satisfies IR. Finally,
if the measures in M are positive, then it is obvious that V is monotone, which implies that
% satisfies monotonicity.

C Proof of Theorem 2

Throughout this section, we will continue to use notation and results for support functions that
were established in Appendix B. Suppose (M, c) and (M′, c′) are two max-HA representations
%. Define V : A → R and V ′ : A → R for these respective representations, and define
W : Σ→ R and W ′ : Σ→ R by W (σ) = V (Aσ) and W ′(σ) = V ′(Aσ). By part 1 of Lemma 8,
M = MW and c(µ) = W ∗(µ) for all µ ∈ M. Similarly, M′ = MW ′ and c′(µ) = W ′∗(µ) for
all µ ∈M′.

Since V is continuous (by Lemma 8), the uniqueness part of Lemma 3 implies that there
exist α > 0 and β ∈ R such that V ′ = αV − β. This implies that W ′ = αW − β. Therefore,
for any σ, σ′ ∈ Σ,

W (σ′)−W (σ) ≥ 〈σ′ − σ, µ〉 ⇐⇒ W ′(σ′)−W ′(σ) ≥ 〈σ′ − σ, αµ〉,

and hence ∂W ′(σ) = α∂W(σ). In particular, ΣW ′ = ΣW and NW ′ = αNW . Taking closures we
also have that MW ′ = αMW . Since from our earlier arguments M′ =MW ′ and M =MW ,
we conclude that M′ = αM. Finally, let µ ∈M. Then,

c′(αµ) = sup
σ∈Σ

[
〈σ, αµ〉 −W ′(σ)

]
= α sup

σ∈Σ
[〈σ, µ〉 −W (σ)] + β = αc(µ) + β,

where the first and last equalities follow from our earlier findings that c′ = W ′∗|MW ′ and
c = W ∗|MW

.
The proof of the uniqueness of the min-HA representation is similar and involves an ap-

plication of part 2 of Lemma 8.

35



D Proof of Theorem 3

(1 ⇒ 3): Fix a monotone min-HA representation (M, c), and define V by Equation (2). Since
M is compact, there is κ > 0 such that µ(U) ≤ κ for all µ ∈ M. Let Ω = ∪λ∈[0,κ]λU and let
F be the Borel σ-algebra generated by the relative topology of Ω in RZ . Define U : Ω → RZ

by U(ω) = ω.
For each µ ∈ M, define the probability measure πµ on (Ω,F) as follows. If µ(U) = 0,

let πµ be the degenerate probability measure that puts probability one on 0 ∈ Ω, i.e., for any
E ∈ F , πµ(E) = 1 if 0 ∈ E, and πµ(E) = 0 otherwise. If µ(U) > 0, then define the probability
measure µ̃ on U and its Borel σ-algebra by µ̃(E) = 1

µ(U)µ(E) for any measurable E ⊂ U .
Define the function fµ : U → Ω by fµ(u) = µ(U)u. Note that f is measurable because it is
continuous. Finally, let πµ be defined by πµ = µ̃ ◦ f−1

µ . Then,∫
Ω

max
p∈A

U(ω) · p πµ(dω) =
∫
U

max
p∈A

u(p)µ(du)

for any A ∈ A.37 Let Π = {πµ : µ ∈ M} and c̃(πµ) = c(µ). Then, V can be expressed in the
following SSV form:

V (A) = min
π∈Π

(∫
Ω

max
p∈A

U(ω) · p π(dω) + c̃(π)
)
.

(3⇒ 2): Let ((Ω,F), U,Π, c) be an SSV representation, and define V by Equation (4). Let
the subset Π′ ⊂ Π stand for the set of π ∈ Π such that there exists A ∈ A for which π solves
the minimization problem in Equation (4). Note that Equation (4) continues to hold when Π
is replaced by Π′, i.e.,

V (A) = min
π∈Π′

(∫
Ω

max
p∈A

U(ω) · p π(dω) + c(π)
)

(20)

for all A ∈ A.
We first show that c is bounded on Π′. Note that since U is bounded, there exists κ > 0

such that the absolute value of the integral term in Equation (20) is bounded by κ for every

37 This is easy to see if µ(U) = 0. If µ(U) > 0, then define the function g : Ω → R by g(ω) =
maxp∈A U(ω) · p. To see that g is F-measurable, let B be a countable dense subset of A. At each
ω ∈ Ω, maxp∈A Ũ(ω) ·p exists and is equal to supp∈B Ũ(ω) ·p. For each p ∈ B, Ũ ·p is F–measurable as
a convex combination of F–measurable random variables. Hence, g an F–measurable as the pointwise
supremum of countably many F–measurable random variables (see Billingsley (1995, p184), Theorem
13.4(i)). Then, ∫

Ω

max
p∈A

U(ω) · p πµ(dω) =
∫
U

max
p∈A

µ(U)u(p) µ̃(du) =
∫
U

max
p∈A

u(p)µ(du),

where the first equality follows from the change of variables formula
∫

Ω
g(ω) (µ̃ ◦ f−1

µ )(dω) =∫
U g(fµ(u)) µ̃(du).
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menu A ∈ A and probability measure in π ∈ Π′. Take any π, π′ ∈ Π′, and suppose that they
solve the minimization in Equation (20) for menus A and A′, respectively. Then, optimality
of π at A implies:

c(π)− c(π′) ≤
∫

Ω
max
p∈A

U(ω) · p π′(dω)−
∫

Ω
max
p∈A

U(ω) · p π(dω) ≤ 2κ.

Similarly, optimality of π′ at A′ implies:

−2κ ≤
∫

Ω
max
p∈A′

U(ω) · p π′(dω)−
∫

Ω
max
p∈A′

U(ω) · p π(dω) ≤ c(π)− c(π′).

Therefore, |c(π)− c(π′)| ≤ 2κ for any π, π′ ∈ Π′, implying that c is bounded on Π′.
Let Ω̃ = Ω× Π′. Let G be any σ-algebra on Π′ that contains all singletons and such that

c|Π′ : Π′ → R is G-measurable (e.g. G = 2Π′). Let F̃ = F ⊗ G be the product σ-algebra on
Ω̃. Let 1 ∈ RZ denote the vector whose coordinates are equal to 1, and define Ũ : Ω̃→ RZ by
Ũ(ω, π) = U(ω) + c(π)1 for any ω̃ = (ω, π) ∈ Ω̃. Note that Ũ is F̃-measurable and bounded.38

For any π ∈ Π′, define the function fπ : Ω → Ω̃ by fπ(ω) = (ω, π). Note that fπ is
measurable.39 Define the probability measure ρπ on (Ω̃, F̃) by ρπ = π ◦ f−1

π . For any A ∈ A,∫
Ω̃

max
p∈A

Ũ(ω̃) · p ρπ(dω̃) =
∫

Ω
max
p∈A

Ũ(fπ(ω)) · p π(dω)

=
∫

Ω

[
max
p∈A

U(ω) · p+ c(π)
]
π(dω)

=
∫

Ω
max
p∈A

U(ω) · p π(dω) + c(π),

where the first equality above follows from the change of variables formula.40

Letting Π̃′ = {ρπ : π ∈ Π′}, by Equation (20), we see that V can be expressed in the
following SSMP form:

V (A) = min
ρ∈Π̃′

∫
Ω̃

max
p∈A

Ũ(ω̃) · p ρ(dω̃).

38Ũ is bounded because U is bounded on Ω and c is bounded on Π′. To see that Ũ is F̃-measurable,
note that since U is F-measurable and F̃ is the product of the σ-algebras F and G, the function
f : Ω̃→ RZ defined by f(ω, π) = U(ω) is F̃-measurable. Also note that since c|Π′ is G-measurable, and
F̃ is the product of the σ-algebras F and G, the function g : Ω̃→ RZ defined by g(ω, π) = c(π)1 is also
F̃-measurable. Therefore, Ũ is F̃-measurable as the sum of the two F̃-measurable functions f and g.

39To see this, note that the collection F̃ ′ of sets E ⊂ Ω̃ satisfying {ω ∈ Ω : (ω, π′) ∈ E} ∈ F for
every π′ ∈ Π′, is a σ-algebra. Since F̃ ′ contains both F × Π′ and Ω × G for every F ∈ F and G ∈ G,
we have that F̃ = F ⊗ G ⊂ F̃ ′. It is easy to see that fπ would be measurable if Ω̃ were endowed with
the σ-algebra F̃ ′. Therefore, fπ is measurable since Ω̃ is endowed with the coarser σ-algebra F̃ .

40To see this, define the function g : Ω̃ → R by g(ω̃) = maxp∈A Ũ(ω̃) · p. By a similar argument as
in Footnote 37, g is F̃-measurable. Then, the change of variables formula is

∫
Ω̃
g(ω̃) (π ◦ f−1

π )(dω̃) =∫
Ω
g(fπ(ω))π(dω).
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(2 ⇒ 1): Let ((Ω,F), U,Π) be an SSMP representation, and define V by Equation (3). It
is easy to see that V is monotone and concave. We next show that V is Lipschitz continuous.
For every π ∈ Π, define fπ : A → R by

fπ(A) =
∫

Ω
max
p∈A

U(ω) · p π(dω).

Since U is bounded, there exists κ > 0 such that ‖U(ω)‖ ≤ κ for all ω ∈ Ω. Let A,B ∈ A.
Given a state ω ∈ Ω, let p∗ be a solution of maxp∈A U(ω) · p. By definition of Hausdorff
distance, there exists q∗ ∈ B such that ‖p∗ − q∗‖ ≤ dh(A,B). Then,

max
p∈A

U(ω) · p−max
q∈B

U(ω) · q = U(ω) · p∗ −max
q∈B

U(ω) · q

≤ U(ω) · p∗ − U(ω) · q∗ ≤ ‖U(ω)‖ ‖p∗ − q∗‖ ≤ κ dh(A,B).

Taking the expectation of the above inequality with respect to π, we obtain:

fπ(A)− fπ(B) ≤ κ dh(A,B).

Hence fπ is Lipschitz continuous with a Lipschitz constant κ that does not depend on π ∈ Π.
Since V is the pointwise minimum of fπ over π ∈ Π, it is also Lipschitz continuous with the
same Lipschitz constant κ.

Since V : A → R is monotone, concave, Lipschitz continuous, and it satisfies the IR
condition V (A) = V (co(A)) for all A ∈ A, the construction in Appendix B.2 implies that
there exists a monotone min-HA representation such that V is given by Equation (2).

E Proof of Theorem 4

We define the set of translations to be

Θ ≡
{
θ ∈ RZ :

∑
z∈Z

θz = 0
}
.

For A ∈ A and θ ∈ Θ, define A+ θ ≡ {p+ θ : p ∈ A}. Intuitively, adding θ to A in this sense
simply “shifts” A. Also, note that for any p, q ∈ 4(Z), we have p− q ∈ Θ.

Definition 10 A function V : A → R is translation linear if there exists v ∈ RZ such that
for all A ∈ A and θ ∈ Θ with A+ θ ∈ A, we have V (A+ θ) = V (A) + v · θ.

Lemma 9 Suppose that V : A → R is a function such that EP [V ] represents the preference
% over 4(A). Then, V is translation linear if and only if % satisfies RDD.
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Proof: Assume that EP [V ] represents the preference %. Then, it is easy to see that %
satisfies RDD if and only if

V (αA+ (1− α){p})− V (αA+ (1− α){q}) = (1− α)[V ({p})− V ({q})] (21)

for any α ∈ [0, 1], A ∈ A, and p, q ∈ 4(Z).
If there exists v ∈ RZ such that for all A ∈ A and θ ∈ Θ with A + θ ∈ A, we have

V (A + θ) = V (A) + v · θ, then both sides of Equation (21) are equal to (1 − α)v · (p − q),
showing that % satisfies RDD.

If % satisfies RDD, then define the function f : 4(Z) → R by f(p) = V ({p}) for all
p ∈ 4(Z). Let α ∈ [0, 1] and p, q ∈ 4(Z), then

2f(αp+ (1− α)q) = [f(αp+ (1− α)q)− f(αp+ (1− α)p)]

+[f(αp+ (1− α)q)− f(αq + (1− α)q)] + f(p) + f(q)

= (1− α)[f(q)− f(p)] + α[f(p)− f(q)] + f(p) + f(q)

= 2[αf(p) + (1− α)f(q)],

where the second equality follows from Equation (21) and the definition of f . Therefore,
f(αp + (1 − α)q) = αf(p) + (1 − α)f(q) for any α ∈ [0, 1] and p, q ∈ 4(Z). It is standard to
show that this implies that there exists v ∈ RZ such that f(p) = v · p for all p ∈ 4(Z).

To see that V is translation linear, let A ∈ A and θ ∈ Θ be such that A + θ ∈ A. If
θ = 0, then the conclusion of translation linearity follows trivially, so without loss of generality
assume that θ 6= 0. Ergin and Sarver (2009) show in the proof of their Lemma 4 that if A ∈ A
and A+ θ ∈ A for some θ ∈ Θ \ {0}, then there exist A′ ∈ A, p, q ∈ 4(Z), and α ∈ (0, 1] such
that A = (1− α)A′ + α{p}, A+ θ = (1− α)A′ + α{q}, and θ = α(p− q). Then

V (A+ θ)− V (A) = V ((1− α)A′ + α{p})− V ((1− α)A′ + α{q})
= α[V ({p})− V ({q})]
= α[v · p− v · q]
= v · θ,

where the second equality follows from Equation (21) and the third equality follows from the
expected utility form of f . Therefore, V is translation linear. �

We are now ready to prove Theorem 4. The necessity of RDD in parts A and B are
straightforward and left to the reader. In the rest of this section, we will continue to use the
notation and results from Appendix B. For the sufficiency direction of part A, suppose that
% satisfies Axiom 1, PERU, and RDD. Then, (MW ,W

∗|MW
) constructed in Appendix B is

a max-HA representation for %. Since % satisfies RDD, by Lemma 9, V is translation linear.
Let v ∈ RZ such that for all A ∈ A and θ ∈ Θ with A+θ ∈ A, we have V (A+θ) = V (A)+v ·θ.
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Let q = (1/|Z|, . . . , 1/|Z|) ∈ 4(Z). By Lemma 22 of Ergin and Sarver (2009), for all µ ∈MW

and p ∈ 4(Z), 〈σ{p}, µ〉 = v · (p − q). The consistency of MW follows immediately from this
fact because for any µ, µ′ ∈MW and p ∈ 4(Z), we have∫

U
u(p)µ(du) = 〈σ{p}, µ〉 = v · (p− q) = 〈σ{p}, µ′〉 =

∫
U
u(p)µ′(du).

If % additionally satisfies monotonicity, then (MW ,W
∗|MW

) above is a monotone HA repre-
sentation for %. Therefore, the sufficiency direction of part B also follows from the consistency
of MW established above.

F Proof of Theorem 5

The necessity of the axioms is straightforward. For sufficiency, suppose that % satisfies Ax-
iom 1, second-stage independence, and strategic rationality. By Lemma 3, there exists a
continuous function V : A → R such that P % Q if and only if EP [V ] ≥ EQ[V ].

We first show that since % satisfies strategic rationality, V (A) = maxp∈A V ({p}) for all
A ∈ A. To see this, fix any A ∈ A, and let p∗ be a solution to maxp∈A V ({p}). Since % satisfies
weak order and strategic rationality, it also satisfies monotonicity, implying that A % {p∗}.
We next show that for any finite subset B of A, {p∗} % B. To see this, let B be a finite
subset of A where |B| = n. Let B = {p1, . . . , pn}, where {p1} % {p2} % . . . % {pn}. For any
k = 2, . . . , n,

{pk} ∼ {pk, . . . , pn} =⇒ {pk−1} ∼ {pk−1, . . . , pn}, (22)

since by strategic rationality, {pk−1} % {pk} ∼ {pk, . . . , pn} implies that {pk−1} ∼ {pk−1} ∪
{pk, . . . , pn}. By applying backwards induction on k = 2, . . . , n using Equation (22), we have
that {p1} % B. Since {p∗} % {p} for all p ∈ A, we also have that {p∗} % {p1} % B. Therefore,
{p∗} % B for any finite B ⊂ A. Since 4(Z) is a compact metric space, there exists a sequence
of finite subsets {Bm} of A such that Bm converge to A in Hausdorff topology. Since {p∗} % Bm
for all m, by continuity of % we have that {p∗} % A. This proves that {p∗} ∼ A. Therefore,
V (A) = V ({p∗}) = maxp∈A V ({p}), as desired.

Define a preference %′ on 4(Z) by p %′ q ⇐⇒ δ{p} % δ{q} (or, equivalently, p %′ q ⇐⇒
V ({p}) ≥ V ({q})). Continuity of % implies continuity of %′, and second-stage independence
implies that %′ satisfies independence. Therefore, by the standard von Neumann-Morgenstern
expected-utility theorem, there exists v ∈ RZ such that p %′ q ⇐⇒ v(p) ≥ v(q). Note that
{v(p) : p ∈ 4(Z)} = [a, b] for some −∞ < a ≤ b < +∞. Since V ({p}) ≥ V ({q}) ⇐⇒ v(p) ≥
v(q), there exists a strictly increasing function φ : [a, b]→ R such that for all p ∈ 4(Z),

V ({p}) = φ
(
v(p)

)
.
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Therefore, for any menu A ∈ A,

V (A) = max
p∈A

V ({p}) = max
p∈A

φ
(
v(p)

)
= φ

(
max
p∈A

v(p)
)
.

To establish the Lipschitz continuity of φ, first recall that by Lemma 4, L–continuity
implies there exists K ≥ 0 such that |V (A) − V (B)| ≤ Kdh(A,B) for any A,B ∈ Ac. In
particular, for any p, q ∈ 4(Z), |V ({p})−V ({q})| ≤ Kdh({p}, {q}) = K‖p−q‖. If a = b, then
φ is trivially Lipschitz continuous. Next, suppose that a < b. Take p∗, p∗ ∈ 4(Z) such that
v(p∗) = a and v(p∗) = b. For any t ∈ [a, b], let α(t) ≡ (t − a)/(b − a) ∈ [0, 1], which implies
v(α(t)p∗ + (1− α(t))p∗) = t. Then, for any s, t ∈ [a, b],

|φ(t)− φ(s)| =
∣∣∣φ(v(α(t)p∗ + (1− α(t))p∗)

)
− φ

(
v(α(s)p∗ + (1− α(s))p∗)

)∣∣∣
=
∣∣V ({α(t)p∗ + (1− α(t))p∗})− V ({α(s)p∗ + (1− α(s))p∗})

∣∣
≤ K|α(t)− α(s)| ‖p∗ − p∗‖
= K|t− s| ‖p∗ − p∗‖/(b− a),

which implies φ is Lipschitz continuous with a Lipschitz constant of K‖p∗ − p∗‖/(b− a).

G Proof of Theorem 6

G.1 Proof of Theorem 6.A

The necessity of the axioms is straightforward. For sufficiency, suppose that% satisfies Axiom 1
and mixture independence. By Lemma 3, there exists a continuous function V : A → R such
that P % Q if and only if EP [V ] ≥ EQ[V ]. Since % satisfies IR, V (A) = V (co(A)) for all
A ∈ A. It therefore suffices to show the existence of a finite signed Borel measure µ of U and
a Lipschitz continuous and strictly increasing function φ : [a, b]→ R such that for all A ∈ Ac

(the set of all convex menus),

V (A) = φ

(∫
U

max
p∈A

u(p)µ(du)
)
,

where [a, b] = {
∫
U maxp∈A u(p)µ(du) : A ∈ Ac}.

Define a preference %′ on Ac by A %′ B ⇐⇒ δA % δB (or, equivalently, A %′ B ⇐⇒
V (A) ≥ V (B)). Continuity of % implies continuity of %′, and mixture independence implies
that %′ satisfies independence. Therefore, by the Hernstein-Milnor Theorem, there exists an
affine function U : Ac → R such that A %′ B ⇐⇒ U(A) ≥ U(B). Moreover, U is continuous
by the continuity of %′, which by the compactness of Ac implies the existence of −∞ < a ≤
b < +∞ such that [a, b] = {U(A) : A ∈ Ac}. Since V (A) ≥ V (B) ⇐⇒ U(A) ≥ U(B), there
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exists a strictly increasing function φ : [a, b]→ R such that

V (A) = φ
(
U(A)

)
.

To establish the Lipschitz continuity of φ, first recall that by Lemma 4, L–continuity implies
there exists K ≥ 0 such that |V (A) − V (B)| ≤ Kdh(A,B) for any A,B ∈ Ac. If a = b, then
φ is trivially Lipschitz continuous. Next, suppose that a < b. Take A∗, A∗ ∈ Ac such that
U(A∗) = a and U(A∗) = b. Note that for any α, β ∈ [0, 1],

dh(αA∗ + (1− α)A∗, βA∗ + (1− β)A∗) = |α− β|dh(A∗, A∗).

Therefore, by analogous arguments to those in Appendix F, the linearity of U implies that φ
is Lipschitz continuous with a Lipschitz constant of Kdh(A∗, A∗)/(b− a).

It remains only to show that there exists a finite signed Borel measure µ on U such that
for every A ∈ Ac,

U(A) =
∫
U

max
p∈A

u(p)µ(du).

To establish the existence of such a measure µ, it suffices to show that U is Lipschitz continuous
(see the arguments used in the construction of the additive EU representation in the supple-
mentary appendix of DLRS (2007)). We prove that U is Lipschitz continuous by contradiction;
we will argue that if U is not Lipschitz continuous, then φ cannot be strictly increasing.41 In
particular, we show that if U is not Lipschitz continuous, then φ(b)−φ(a) < ε · (b− a) for any
ε > 0, which implies φ(b) = φ(a), a contradiction. These arguments are completed in three
steps:

Step 1 — For any t ∈ (a, b) and n ∈ N, there exist An, Bn ∈ Ac such that U(An) < t <

U(Bn) and |U(Bn) − U(An)| > n · dh(An, Bn): Since U is not Lipschitz continuous, for any
n ∈ N, there must exist A′n, B

′
n ∈ Ac such that |U(B′n)−U(A′n)| > n ·dh(A′n, B

′
n). Without loss

of generality, suppose U(A′n) < U(B′n). If U(A′n) < t < U(B′n), then letAn = A′n andBn = B′n.
If t ≤ U(A′n), then take α ∈ (0, 1) such that αa+ (1−α)U(A′n) < t < αa+ (1−α)U(B′n). Let
An = αA∗ + (1− α)A′n and Bn = αA∗ + (1− α)B′n. Then, U(An) < t < U(Bn) and

|U(Bn)− U(An)| = (1− α)[U(B′n)− U(A′n)]

> (1− α) · n · dh(A′n, B
′
n)

= n · dh(An, Bn).

41The Lipschitz continuity of U does not follow immediately from the arguments in DLRS (2007)
because we impose a different L–continuity axiom than the one used in their paper. The statement of
their L–continuity axiom in our framework would be the following axiom, which we do not explicitly
assume:

Axiom 9 (Mixture L–Continuity) There exist A∗, A∗ ∈ A and M ≥ 0 such that for every A,B ∈ A
and α ∈ [0, 1] with α ≥Mdh(A,B), δ(1−α)A+αA∗ % δ(1−α)B+αA∗ .
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The case of U(B′n) ≤ t is similar.
Step 2 — For any t ∈ (a, b) and ε > 0, there exists an open interval (at, bt) ⊂ (a, b)

containing t such that |φ(s)−φ(s′)| ≤ ε · |s− s′| for any s, s′ ∈ (at, bt): Recall that there exists
K ≥ 0 such that |V (A) − V (B)| ≤ Kdh(A,B) for any A,B ∈ Ac. Choose n ∈ N such that
K/n < ε. From Step 1, we know there exist An, Bn ∈ Ac such that U(An) < t < U(Bn) and
|U(Bn) − U(An)| > n · dh(An, Bn). Let at = U(An) and bt = U(Bn). Fix any s, s′ ∈ (at, bt).
Then, there exist α, α′ ∈ (0, 1) such that

s = U(αAn + (1− α)Bn) and s′ = U(α′An + (1− α′)Bn).

Therefore,

|s− s′| =
∣∣(α− α′)[U(An)− U(Bn)]

∣∣
> |α− α′| · n · dh(An, Bn)

= n · dh(αAn + (1− α)Bn, α′An + (1− α′)Bn),

and hence

|φ(s)− φ(s′)| =
∣∣V (αAn + (1− α)Bn)− V (α′An + (1− α′)Bn)

∣∣
≤ Kdh(αAn + (1− α)Bn, α′An + (1− α′)Bn)

<
K

n
· |s− s′| < ε · |s− s′|.

Step 3 — For any ε > 0, φ(b)−φ(a) ≤ ε·(b−a): Fix any ε > 0. Since we established above
that φ is continuous, it suffices to show that for any t, t ∈ (a, b), t < t, we have φ(t)− φ(t) ≤
ε·(t−t). To see that this is true, note that the collection of intervals {(at, bt) : t ∈ (a, b)} defined
in Step 2 (for this ε) forms an open cover of the closed interval [t, t]. Therefore, there exists
a finite subcover taken from this collection of intervals that also covers [t, t]. The finiteness of
this subcover implies the existence of a finite set of numbers t = s1 ≤ · · · ≤ sk = t such that
for any i ∈ {1, . . . , k − 1} there exists t ∈ (a, b) such that si, si+1 ∈ (at, bt). By the definition
of (at, bt), we have

φ(t)− φ(t) =
k−1∑
i=1

[φ(si+1)− φ(si)] ≤ ε
k−1∑
i=1

(si+1 − si) = ε · (t− t).

This completes the proof.
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G.2 Proof of Theorem 6.B

Suppose % has a KPDLR representation (φ, µ). First, note that for any A,B ∈ A and any
α ∈ (0, 1),∫

U
max

p∈αA+(1−α)B
u(p)µ(du) = α

∫
U

max
p∈A

u(p)µ(du) + (1− α)
∫
U

max
p∈B

u(p)µ(du).

For any s, t ∈ [a, b], let A,B ∈ A be such that s =
∫
U maxp∈A u(p)µ(du) and t =∫

U maxp∈B u(p)µ(du). Then, for any α ∈ (0, 1),

αδA + (1− α)δB % δαA+(1−α)B

⇐⇒ αV (A) + (1− α)V (B) ≥ V (αA+ (1− α)B)

⇐⇒ αφ

(∫
U

max
p∈A

u(p)µ(du)
)

+ (1− α)φ
(∫
U

max
p∈B

u(p)µ(du)
)

≥ φ
(
α

∫
U

max
p∈A

u(p)µ(du) + (1− α)
∫
U

max
p∈B

u(p)µ(du)
)

⇐⇒ αφ(s) + (1− α)φ(t) ≥ φ(αs+ (1− α)t).

Thus, % satisfies PERU if and only if φ is convex. A similar argument shows that % satisfies
PLRU if and only if φ is concave.

H Proof of Theorem 7

Throughout this section, we use the notation ∂f , f∗, Nf , andMf introduced in Appendix A.

Lemma 10 Let a, b ∈ R with a < b and let φ : [a, b]→ R be Lipschitz continuous and convex.
Then, 1⇔ 2⇒ 3:

1. φ is strictly increasing.

2. (a) Mφ ⊂ R+.

(b) The right-derivative of φ∗ at 0, dφ∗

dλ+ (0), exists and is equal to a.

3. 0 is not an isolated point of Mφ.

Proof: (1⇒ 2) Part a follows from Theorem 10.
To see part b, it is enough to show that for all t ∈ (a, b], there exists λ > 0 such that

λ′a ≤ φ∗(λ′)− φ∗(0) ≤ λ′t ∀λ′ ∈ (0, λ). (23)

Since φ is nondecreasing, 0 ∈ ∂φ(a). Along with Lemma 2, this implies that −φ∗(0) = φ(a) ≥
λ′a − φ∗(λ′) for any λ′ ≥ 0, establishing the first inequality in Equation (23). Take any
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t ∈ (a, b]. By Lemma 1 there exists λ ∈ ∂φ(t). Note that λ > 0. Otherwise, if λ ≤ 0, then by
Lemma 2,

φ(a) ≥ λa− φ∗(λ) ≥ λt− φ∗(λ) = φ(t),

a contradiction to φ being strictly increasing. Let λ′ ∈ (0, λ). Since φ is continuous and its
domain is compact, there exists t′ ∈ [a, b] such that φ∗(λ′) = t′λ′ − φ(t′). By Lemma 2, this
implies that λ′ ∈ ∂φ(t′). Monotonicity of the subdifferential ∂φ implies that t′ ≤ t.42 Then,
by Lemma 2 and φ being nondecreasing,

−φ∗(0) = φ(a) ≤ φ(t′) = λ′t′ − φ∗(λ′) ≤ λ′t− φ∗(λ′),

which implies the second inequality in Equation (23).
(2 ⇒ 1) Theorem 9 and part a imply that φ is nondecreasing. Therefore, 0 ∈ ∂φ(a),

implying φ(a) = −φ∗(0) by Lemma 2.
We will first show that φ(a) < φ(t) for any t ∈ (a, b]. Suppose for a contradiction that

φ(a) = φ(t) for some t ∈ (a, b]. Then, for any λ > 0,

φ∗(λ) ≥ λt− φ(t) = λt− φ(a) = λt+ φ∗(0)

implying that φ∗(λ)−φ∗(0)
λ ≥ t > a for any λ > 0, a contradiction to dφ∗

dλ+ (0) = a.
To conclude that φ is strictly increasing, it remains to show that φ(t) < φ(t′) for any

t, t′ ∈ (a, b] such that t < t′. By Lemma 1, there exists λ ∈ ∂φ(t). If λ ≤ 0, then

φ(a) ≥ λa− φ∗(λ) ≥ λt− φ∗(λ) = φ(t)

by Lemma 2, contradicting φ(a) < φ(t). Therefore, λ > 0, implying

φ(t) = λt− φ∗(λ) < λt′ − φ∗(λ) ≤ φ(t′),

by Lemma 2, as desired.
(1⇒ 3) Suppose for a contradiction that 0 is an isolated point of Mφ. Then, 0 ∈ Nφ, i.e.,

there exists t ∈ [a, b] such that ∂φ(t) = {0}. Then, Lemma 2 implies

−φ∗(0) = φ(t) > λt− φ∗(λ) ∀λ ∈Mφ \ {0}.

Since 0 is an isolated point ofMφ andMφ is compact by Theorem 9,Mφ\{0} is also compact.
Therefore, the above inequality implies that

−φ∗(0) > max
λ∈Mφ\{0}

[
λt− φ∗(λ)

]
. (24)

42To see that ∂φ is monotone, note that by the definition of the subdifferential, λ ∈ ∂φ(t) implies
λ(t′− t) ≤ φ(t′)− φ(t) and λ′ ∈ ∂φ(t′) implies λ′(t− t′) ≤ φ(t)− φ(t′). Summing these inequalities, we
have (λ− λ′)(t− t′) ≥ 0.
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Let ∆ > 0 be the difference of the left hand side and the right hand side in Equation (24)
and let M > 0 be such that Mφ ⊂ [0,M ]. Take any s ∈ [a, b] such that |t − s| < ∆

M . Then,
|λt − λs| < ∆ for any λ ∈ Mφ \ {0}, implying that Equation (24) continues to hold if t is
replaced by s. Therefore,

−φ∗(0) = max
λ∈Mφ

[
λs− φ∗(λ)

]
= φ(s),

where the second equality follows from Theorem 9. This implies that φ is constant at a ∆
M

neighborhood of t, contradicting the assumption that φ is strictly increasing. �

Corollary 2 Let a, b ∈ R with a < b and let φ : [a, b]→ R be Lipschitz continuous and convex.
Then, 1⇔ 2⇒ 3:

1. φ is strictly decreasing.

2. (a) Mφ ⊂ R−.

(b) The left-derivative of φ∗ at 0, dφ∗

dλ− (0), exists and is equal to b.

3. 0 is not an isolated point of Mφ.

Proof: Define φ̂ : [−b,−a]→ R by φ̂(t) = φ(−t). Note that φ̂ is Lipschitz continuous and
convex. For any λ ∈ R and t ∈ [−b,−a], we have

λ ∈ ∂φ̂(t) ⇐⇒ φ̂(s)− φ̂(t) ≥ λ(s− t) ∀s ∈ [−b,−a]

⇐⇒ φ(−s)− φ(−t) ≥ −λ(−s− (−t)) ∀s ∈ [−b,−a]

⇐⇒ −λ ∈ ∂φ(−t).

Therefore, Nφ̂ = −Nφ implying that Mφ̂ = −Mφ. For any λ ∈ R,

φ̂∗(λ) = max
t∈[−b,−a]

[λt− φ̂(t)] = max
t′∈[a,b]

[−λt′ − φ̂(−t′)] = max
t′∈[a,b]

[−λt′ − φ(t′)] = φ∗(−λ).

implying,

dφ̂∗

dλ+
(0) = lim

λ↘0

φ̂∗(λ)− φ̂∗(0)
λ

= − lim
λ↘0

φ∗(0)− φ∗(−λ)
λ

= − dφ
∗

dλ−
(0).

Therefore, conditions 1, 2.a, 2,b, and 3 are equivalent to:

1’ φ̂ is strictly increasing,

2’ (a’) Mφ̂ ⊂ R+,

(b’) The right-derivative of φ̂∗ at 0, dφ̂∗

dλ+ (0), exists and is equal to −b, and
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3’ 0 is not an isolated point of Mφ̂,

respectively. Applying Lemma 10 to φ̂, we have 1′ ⇔ 2′ ⇒ 3′, as desired. �

In the next lemma, Σ denotes the set of support functions defined in Appendix B.

Lemma 11 Let µ be a nonzero finite signed Borel measure on U and [a, b] = {〈σ, µ〉 : σ ∈ Σ}.
Let φ : [a, b] → R be Lipschitz continuous and convex and define W : Σ → R by W (σ) =
φ(〈σ, µ〉) for any σ ∈ Σ. Then,

1. W is Lipschitz continuous and convex.

2. W ∗(λµ) = φ∗(λ) for any λ ∈ R.

3. MW = {λµ : λ ∈Mφ}.

Proof: 1. Let K ≥ 0 be a Lipschitz constant for φ. Then, for any σ, σ′ ∈ Σ,

|W (σ)−W (σ′)| = |φ(〈σ, µ〉)− φ(〈σ′, µ〉)| ≤ K|〈σ, µ〉 − 〈σ′, µ〉| ≤ K‖µ‖‖σ − σ′‖,

implying that W is Lipschitz continuous with a Lipschitz constant K‖µ‖. W is convex as the
composition of a linear and a convex function.

2. Let λ ∈ R. Then,

W ∗(λµ) = max
σ∈Σ

[〈σ, λµ〉 −W (σ)]

= max
σ∈Σ

[λ〈σ, µ〉 − φ(〈σ, µ〉)]

= max
t∈[a,b]

[λt− φ(t)]

= φ∗(λ).

3. We will first show that NW ⊂ {λµ : λ ∈Mφ}. This will imply thatMW = NW ⊂ {λµ :
λ ∈ Mφ} since Mφ is closed. Let ν ∈ NW , then there exists σ ∈ Σ such that ∂W (σ) = {ν}.
For any λ ∈ ∂φ(〈σ, µ〉),

W (σ′)−W (σ) = φ(〈σ′, µ〉)− φ(〈σ, µ〉) ≥ λ[〈σ′, µ〉 − 〈σ, µ〉] = 〈σ′ − σ, λµ〉) ∀σ′ ∈ Σ,

implying λµ ∈ ∂W (σ) = {ν}. Therefore, {λµ : λ ∈ ∂φ(〈σ, µ〉)} ⊂ {ν}. Since µ is nonzero and
∂φ(〈σ, µ〉) 6= ∅ by Lemma 1, there exists a unique λ ∈ R such that ∂φ(〈σ, µ〉) = {λ}. Note
that λ ∈ Nφ ⊂Mφ and ν = λµ, as desired.

Let M = {λ ∈ R : λµ ∈ MW }. We will next show that Mφ ⊂ M, which will imply
{λµ : λ ∈Mφ} ⊂ MW . Since µ is nonzero andMW is compact by part 1 and Theorem 9,M
is also compact. Let t ∈ [a, b], and σ ∈ Σ be such that t = 〈σ, µ〉. Then,

φ(t) = W (σ) = max
ν∈MW

[〈σ, ν〉 −W ∗(ν)] = max
λ∈M

[〈σ, λµ〉 −W ∗(λµ)] = max
λ∈M

[λt− φ∗(λ)],
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where the second equality follows from part 1 and Theorem 9, the third equality follows from
MW ⊂ {λµ : λ ∈ R}, and the last equality follows from part 2. Therefore, by Theorem 9,
Mφ ⊂M. �

Proof of Theorem 7, the convex case: In the following, let W : Σ → R be defined
by W (σ) = V (Aσ). Also, let [a, b] = {

∫
U maxp∈A u(p)µ(du) : A ∈ A}.

(1⇒ 2) For any σ ∈ Σ,

W (σ) = V (Aσ) = φ(〈σ(Aσ), µ〉) = φ(〈σ, µ〉),

where the last equality follows from part 1 of Lemma 5. Since W is Lipschitz continuous and
convex by Lemma 11, V (A) = V (co(A)) for all A ∈ A, and W (σ) = V (Aσ) for all σ ∈ Σ, the
construction in Section B.1 implies that (M, c) := (MW ,W

∗|MW
) is a max-HA representation

such that V is given by Equation (1). By part 2.a of Lemma 10 and part 3 of Lemma 11,
MW ⊂ {λµ : λ ∈ R+}. By part 2.b of Lemma 10 and part 2 of Lemma 11,

lim
λ↘0

W ∗(λµ)−W ∗(0)
λ

=
dφ∗

dλ+
(0) = a ≡ min

A∈A

∫
U

max
p∈A

u(p)µ(du). (25)

By part 3 of Lemma 10, part 3 of Lemma 11, and µ being nonzero, 0 is not an isolated
point of MW . Therefore, if 0 ∈ MW , then the limit term in Equation (25) agrees with
limλ↘0:λµ∈MW

c(λµ)−c(0)
λ .

(2⇒ 1) The mapping λ 7→ c(λµ) is lower semi-continuous since c is lower semi-continuous,
and {λ ∈ R+ : λµ ∈ M} is nonempty by part a, and it is compact since M is compact and µ

is nonzero. Therefore, we can define φ : [a, b]→ R by

φ(t) = max
λ∈R+:λµ∈M

[λt− c(λµ)] ∀t ∈ [a, b].

By Theorem 11, φ is Lipschitz continuous and convex. Furthermore, for any A ∈ A,

V (A) = max
λ∈R+:λµ∈M

[〈σA, λµ〉 − c(λµ)] = max
λ∈R+:λµ∈M

[λ〈σA, µ〉 − c(λµ)] = φ(〈σA, µ〉),

where the first equality follows from Equation (1) and part a. Therefore, it only remains to
show that φ is strictly increasing.

By Lemma 8, M =MW and c(ν) = W ∗(ν) for all ν ∈M. Note that

W (σ) = V (Aσ) = φ(〈σ(Aσ), µ〉) = φ(〈σ, µ〉) ∀σ ∈ Σ,

where the last equality follows from part 1 of Lemma 5. By part 3 of Lemma 11, M = {λµ :
λ ∈ Mφ}. Therefore, since µ is nonzero: 0 ∈ M if and only if 0 ∈ Mφ; part a implies
Mφ ⊂ R+; and the first part of b implies that 0 is not an isolated point of Mφ.
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First suppose that 0 /∈ M, implying 0 /∈ Mφ. Let t, t′ ∈ [a, b] be such that t < t′. By
Theorem 9,

φ(s) = max
λ∈Mφ

[λs− φ∗(λ)] ∀s ∈ [a, b].

Let λ̂ > 0 be a solution of the above maximization at s = t. Then,

φ(t) = λ̂t− φ∗(λ̂) < λ̂t′ − φ∗(λ̂) ≤ max
λ∈Mφ

[λt′ − φ∗(λ)] = φ(t′).

Next suppose that 0 ∈M, implying that 0 ∈Mφ. Then,

a = lim
λ↘0:λµ∈M

c(λµ)− c(0)
λ

= lim
λ↘0:λ∈Mφ

φ∗(λ)− φ∗(0)
λ

(26)

where the first equality follows from part b and the second equality follows from M = {λµ :
λ ∈ Mφ}, µ being nonzero, c = W ∗|M, and part 2 of Lemma 11. For any λ ∈ (0,∞), define
aλ ∈ R by aλ = φ∗(λ)−φ∗(0)

λ . Since 0 ∈ Mφ is not an isolated point of Mφ, Equation (26)
implies that there exists a sequence λn inMφ \ {0} such that λn ↘ 0 and limn aλn = a. Since
φ∗ is convex, aλ is nondecreasing in λ ∈ (0,∞). Therefore, for any sequence λ′n in (0,∞)
such that λ′n ↘ 0, limn aλ′n = limn aλn . This implies that the limit on the right hand side of
Equation (26) is equal to dφ∗

dλ+ (0). By Lemma 10, φ is strictly increasing. �

Proof of Theorem 7, the concave case: In the following, let W : Σ→ R and W̄ : Σ→
R be defined by W (σ) = V (Aσ) and W̄ (σ) = −W (σ). Also, let [a, b] = {

∫
U maxp∈A u(p)µ(du) :

A ∈ A}.
(1⇒ 2) For any σ ∈ Σ,

W (σ) = V (Aσ) = φ(〈σ(Aσ), µ〉) = φ(〈σ, µ〉),

where the last equality follows from part 1 of Lemma 5. Define φ̄ : [a, b]→ R by φ̄(t) = −φ(t).
Then, φ̄ is Lipschitz continuous, convex, and strictly decreasing, and W̄ (σ) = φ̄(〈σ, µ〉) for all
σ ∈ Σ. Let M = −MW̄ and define c : M → R by c(ν) = W̄ ∗(−ν). Since W̄ is Lipschitz
continuous and convex by Lemma 11, V (A) = V (co(A)) for all A ∈ A, and W (σ) = V (Aσ)
for all σ ∈ Σ, the construction in Section B.2 implies that (M, c) is a min-HA representation
such that V is given by Equation (2). By part 2.a of Corollary 2 and part 3 of Lemma 11,
MW̄ ⊂ {λµ : λ ∈ R−}, implying that M ⊂ {λµ : λ ∈ R+}. By part 2.b of Corollary 2 and
part 2 of Lemma 11,

lim
λ↘0

W̄ ∗(0)− W̄ ∗(−λµ)
λ

=
dφ̄∗

dλ−
(0) = b ≡ max

A∈A

∫
U

max
p∈A

u(p)µ(du). (27)

By part 3 of Corollary 2, part 3 of Lemma 11, and µ being nonzero, 0 is not an isolated point
of MW̄ . Therefore, 0 is also not an isolated point of M = −MW̄ . Therefore, if 0 ∈ M, then

49



the limit term in Equation (27) agrees with limλ↘0:λµ∈M
c(0)−c(λµ)

λ .
(2⇒ 1) The mapping λ 7→ c(λµ) is lower semi-continuous since c is lower semi-continuous,

and {λ ∈ R+ : λµ ∈ M} is nonempty by part a, and it is compact since M is compact and µ

is nonzero. Therefore, we can define φ : [a, b]→ R by

φ(t) = min
λ∈R+:λµ∈M

[λt+ c(λµ)] ∀t ∈ [a, b].

Define φ̄ : [a, b]→ R by φ̄(t) = −φ(t). Then,

φ̄(t) = −φ(t) = max
λ∈R+:λµ∈M

[−λt− c(λµ)] = max
λ′∈R−:λ′µ∈−M

[λ′t− c(−λ′µ)] ∀t ∈ [a, b].

Since {λ′ ∈ R− : λ′µ ∈ −M} = −{λ ∈ R+ : λµ ∈ M} is nonempty and compact, and the
mapping λ′ 7→ c(−λ′µ) is lower semi-continuous, by Theorem 11, φ̄ is Lipschitz continuous
and convex. Therefore, φ is Lipschitz continuous and concave. Furthermore, for any A ∈ A,

V (A) = min
λ∈R+:λµ∈M

[〈σA, λµ〉+ c(λµ)] = min
λ∈R+:λµ∈M

[λ〈σA, µ〉+ c(λµ)] = φ(〈σA, µ〉),

where the first equality follows from Equation (2) and part a. Therefore, it only remains to
show that φ̄ is strictly decreasing which will imply that φ is strictly increasing.

By Lemma 8, M = −MW̄ and c(ν) = W̄ ∗(−ν) for all ν ∈M. Note that

W (σ) = V (Aσ) = φ(〈σ(Aσ), µ〉) = φ(〈σ, µ〉) ∀σ ∈ Σ,

where the last equality follows from part 1 of Lemma 5. Therefore, W̄ (σ) = φ̄(〈σ, µ〉) for all
σ ∈ Σ. By part 3 of Lemma 11, −M = {λµ : λ ∈Mφ̄}. Therefore, since µ is nonzero: 0 ∈M
if and only if 0 ∈ Mφ̄; part a implies Mφ̄ ⊂ R−; and the first part of b implies that 0 is not
an isolated point of Mφ̄.

First suppose that 0 /∈ M, implying 0 /∈ Mφ̄. Let t, t′ ∈ [a, b] be such that t < t′. By
Theorem 9,

φ̄(s) = max
λ∈Mφ̄

[λs− φ̄∗(λ)] ∀s ∈ [a, b].

Let λ̂ < 0 be a solution of the above maximization at s = t′. Then,

φ̄(t′) = λ̂t′ − φ̄∗(λ̂) < λ̂t− φ̄∗(λ̂) ≤ max
λ∈Mφ̄

[λt− φ̄∗(λ)] = φ̄(t).

Next suppose that 0 ∈M, implying that 0 ∈Mφ̄. Then,

b = lim
λ↘0:λµ∈M

c(0)− c(λµ)
λ

= lim
λ↘0:−λ∈Mφ̄

φ̄∗(0)− φ̄∗(−λ)
λ

(28)
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where the first equality follows from part b and the second equality follows from M = {λµ :
−λ ∈ Mφ̄}, µ being nonzero, c(ν) = W̄ ∗(−ν) for all ν ∈ M, and part 2 of Lemma 11. For

any λ ∈ (0,∞), define bλ ∈ R by bλ = φ̄∗(0)−φ̄∗(−λ)
λ . Since 0 ∈ Mφ̄ is not an isolated point of

Mφ̄, Equation (28) implies that there exists a sequence λn in −Mφ̄ \ {0} such that λn ↘ 0
and limn bλn = b. Since φ̄∗ is convex, bλ is nonincreasing in λ ∈ (0,∞). Therefore, for any
sequence λ′n in (0,∞) such that λ′n ↘ 0, limn bλ′n = limn bλn . This implies that the limit on the
right hand side of Equation (28) is equal to dφ̄∗

dλ− (0). By Corollary 2, φ̄ is strictly decreasing. �

I Proof of Theorem 8

The necessity of the axioms is straightforward. For sufficiency, suppose that % satisfies Ax-
iom 1, strategic rationality, and PERU. By Lemma 3, there exists a continuous function
V : A → R such that P % Q if and only if EP [V ] ≥ EQ[V ]. As we showed in Appendix F, since
% satisfies strategic rationality, V (A) = maxp∈A V ({p}) for all A ∈ A. Define f : 4(Z) → R
by f(p) = V ({p}). By Lemma 4, f is Lipschitz continuous and convex. Let

H ≡

{
u ∈ RZ :

∑
z∈Z

uz = 0

}
.

The following result identifies H with the set of all linear functions on 4(Z) in order to prove
a variation of Fenchel duality for the function f :

Lemma 12 If f : 4(Z)→ R is Lipschitz continuous and convex, then there exists a nonempty
compact set V ⊂ H and a lower semi-continuous function c : V → R such that

f(p) = max
v∈V

[v(p)− c(v)]

for all p ∈ 4(Z). Moreover, this set V can chosen to be minimal in the following sense: If V ′ is
a compact proper subset of V, then there exists p ∈ 4(Z) such that f(p) > maxv∈V ′ [v(p)−c(v)].

Proof: Suppose that f : 4(Z) → R is a Lipschitz continuous and convex function. Let
n = |Z|. Without loss of generality, let n ≥ 2 and Z = {1, . . . , n}. Let

C =

{
s ∈ Rn−1 : − 1

n
≤ si and

n−1∑
i=1

si ≤
1
n

}
.43

43It is standard to represent the set of all probability distributions over a set of n prizes as the set
D = {s ∈ Rn−1 : 0 ≤ si and

∑n−1
i=1 si ≤ 1}. The set C is simply the translation of the set D so that the

uniform distribution is represented by the 0 vector in Rn−1 instead of the vector (1/n, . . . , 1/n) ∈ Rn−1.
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Note that C is closed and convex. Define ζ : C →4(Z) by:

ζ(s) =

s1 +
1
n
, . . . , sn−1 +

1
n
,−

n−1∑
j=1

sj +
1
n


for any s ∈ C. Note that ζ is well defined (i.e., takes values in 4(Z)), one-to-one, onto 4(Z),
and satisfies ζ(αs + (1 − α)s′) = αζ(s) + (1 − α)ζ(s′) for all s, s′ ∈ C, α ∈ [0, 1]. Therefore,
as an affine function defined on a finite-dimensional vector space, ζ is Lipschitz continuous.
Also, since ζ is a bijection, the inverse function ζ−1 : 4(Z)→ C exists.

Define ξ : Rn−1 → H by:

ξ(t) =

t1 − 1
n

n−1∑
j=1

tj , . . . , tn−1 −
1
n

n−1∑
j=1

tj ,−
1
n

n−1∑
j=1

tj


for any t = (t1, . . . , tn−1) ∈ Rn−1. Note that ξ is well defined (i.e., takes values in H), linear,
one-to-one, and onto H. Therefore, the inverse function ξ−1 : H → Rn−1 exists and is linear.
Since ξ and ξ−1 are linear, they are Lipschitz continuous. Note also that t · s = ξ(t) · ζ(s) for
all t ∈ Rn−1 and s ∈ C.

Define the function g : C → R by g = f ◦ ζ. Then, g is Lipschitz continuous as the
composition of two Lipschitz continuous functions, and g is convex since ζ is affine and f

is convex. By Theorem 9, there exists a nonempty compact T ⊂ Rn−1 and a lower semi-
continuous function d : T → R such that

g(s) = max
t∈T

[t · s− d(t)]

for all s ∈ C and, in addition, for any compact proper subset T ′ of T , there exists s ∈ C such
that g(s) > maxt∈T ′ [t ·s−d(t)]. Let V = ξ(T ) and define the function c : V → R by c = d◦ξ−1.
Then, V is a compact subset of H and c is lower semi-continuous. For all p ∈ 4(Z),

f(p) = g(ζ−1(p)) = max
t∈T

[t · ζ−1(p)− d(t)]

= max
t∈T

[ξ(t) · p− c(ξ(t))]

= max
v∈V

[v(p)− c(v)].

Moreover, if V ′ is a compact proper subset of V, then T ′ ≡ ξ−1(V ′) is a compact proper subset
of T . Thus, there exists s ∈ C such that g(s) > maxt∈T ′ [t · s − d(t)]. Letting p = ζ(s), it
follows that f(p) > maxt∈V ′ [v(p)− c(v)]. �
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By Lemma 12, there exists a compact set V ⊂ H and a lower semi-continuous function
c : V → R such that for any A ∈ A,

V (A) = max
p∈A

f(p) = max
v∈V

(
max
p∈A

v(p)− c(v)
)
.

Moreover, for any proper compact subset V ′ of V, there exists p ∈ 4(Z) such that V ({p}) >
maxv∈V ′ [v(p)− c(v)].

Define a function φ : H → C(U)∗ as follows:

φ(v) =

{
‖v‖δ v

‖v‖
if ‖v‖ 6= 0

0 if ‖v‖ = 0.

Note that φ is norm-to-weak* continuous. To see this, fix any v ∈ H and any net {vd}d∈D ⊂ H
such that vd → v. Let µd = φ(vd) for d ∈ D and let µ = φ(v). We will show that µd

w∗−−→ µ.
There are two cases to consider:

• Case 1 — v = 0: In this case, ‖vd‖ → 0 and µ = 0. Fix any continuous function
g : U → R. Then, there exists M > 0 such that |g(u)| ≤M for all u ∈ U . Therefore,∣∣∣∣∫

U
g(u)µd(du)

∣∣∣∣ ≤ ‖vd‖M → 0 =
∫
U
g(u)µ(du).

Since this is true for any continuous function g, we have µd
w∗−−→ µ.

• Case 2 — v 6= 0: In this case, since vd → v, there exists d′ ∈ D such that ‖vd‖ > 0 for all
d ≥ d′. Without loss of generality, suppose ‖vd‖ > 0 for all d ∈ D. Hence, vd

‖vd‖ →
v
‖v‖ .

Fix any continuous function g : U → R. Then,∫
U
g(u)µd(du) = ‖vd‖g

(
vd
‖vd‖

)
→ ‖v‖g

(
v
‖v‖
)

=
∫
U
g(u)µ(du).

Since this is true for any continuous function g, we have µd
w∗−−→ µ.

Let M = φ(V). Then, M is weak* compact by the continuity of φ. Define c̃ : M → R
by c̃(µ) = c(

∫
U uµ(du)). Since c is lower semi-continuous and the mapping µ 7→

∫
U uµ(du)

is weak* continuous, c̃ is weak* lower semi-continuous. We claim that (M, c̃) is a max-HA
representation for %. To see this, fix any v ∈ V and let µ = φ(v). Then,

∫
U uµ(du) = v, and

hence c̃(µ) = c(v). Therefore,∫
U

max
p∈A

u(p)µ(du)− c̃(µ) = max
p∈A

v(p)− c(v),
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which implies that V satisfies Equation (1) for (M, c̃):

V (A) = max
v∈V

(
max
p∈A

v(p)− c(v)
)

= max
µ∈M

(∫
U

max
p∈A

u(p)µ(du)− c̃(µ)
)
.

To see thatM is minimal, consider any proper subsetM′ ofM. Let V ′ = {v ∈ V : φ(v) ∈M′}.
Then, V ′ is a compact proper subset of V such that φ(V ′) = M′. By the minimality of V,
there exists p ∈ 4(Z) such that

V ({p}) > max
v∈V ′

(v(p)− c(v)) = max
µ∈M′

(∫
U
u(p)µ(du)− c̃(µ)

)
.

Thus, M is minimal.
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