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Abstract

Which solution concepts satisfy backward induction (BI)? We de�ne a property�we call it

Di¤erence�which relates the behavior of a solution concept on a whole tree to its behavior on any

truncation of the tree�obtained by pruning from a subtree all moves disallowed by the solution

concept in question. Di¤erence (together with some background properties) characterizes the

BI algorithm in perfect-information (PI) trees. We propose it as the de�nition of BI in general

(non-PI) trees as well. Our main �nding is a non-monotonicity in BI: A solution concept S
can satisfy BI while another solution concept R, though a re�nement of S, may not. We argue
that this has an important implication for the program of re�ning Nash equilibrium.

1 Introduction

The idea of backward induction (BI) has a long history in game theory, going back to von Neumann

and Morgenstern (18, 1944). (See Schwalbe and Walker (15, 2001).) It is a staple of game-theoretic

applications, and a standard criterion which solution concepts are expected to satisfy. Yet, we will

suggest that even today there are some surprises and puzzles concerning BI.

To start, we need a de�nition of BI. Even this has not been �rmly established. Kohlberg and

Mertens (5, 1986, p.1006) wrote:

In games of perfect information, the meaning of this requirement is clear (Zermelo (19,

1912)). But in games of imperfect information the meaning is ambiguous as best.

By this they mean that, in perfect-information (PI) game trees, the idea of BI is clearly implemented

by the BI algorithm. But, the idea of BI should apply beyond these trees� so, there is the question
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of how it applies, absent being able to refer directly to the algorithm. A number of proposals have

been put forth in the literature. However, we will argue that these fail to capture BI at either the

formal or the intuitive level.

Here, we propose what we call the Di¤erence Property as the de�nition of BI. We describe this

property in Section 3. For now, simply think of it as a way of building up the solution of a tree

from the solution of each of its subtrees� just as the BI algorithm does in PI trees. We will argue

that Di¤erence does capture the general idea of BI at both the formal and the intuitive levels.

What do we learn from o¤ering a general de�nition of BI? We show the following:

Main Result: There exists solution concepts S and R, such that S satis�es BI and R
fails BI, even though R is a re�nement of S.

This says that there is a basic non-monotonicity in whether or not a solution concept satis�es BI.

A solution concept may fail BI, even if it is a re�nement of a solution concept which satis�es BI.

Moreover, we show that this is the case for �standard�solution concepts� in the proof, we take S
to be sequential equilibrium and R to be proper equilibrium. (In particular, then, both solution

concepts are nonempty.)

We believe this �nding has an important implication for the program of re�ning Nash equilibrium.

Since Kohlberg and Mertens (5, 1986), the program has proceeded by searching for a solution concept

which satis�es one or other list of desirable axioms� e.g., invariance, admissibility, small worlds, etc.

(See (5, 1986, p.1020) for the original list of axioms. There have been many subsequent lists.)

Indeed, the Holy Grail for this program would be an agreed-upon list of axioms which succeeds

in identifying precisely one solution concept. Re�nement theorists would consider such a solution

concept to be the �ultimate�meaning of rationality in the game context.

In practice, the re�nements program has adopted a less than purely axiomatic approach. Some

of the axioms which have been proposed are truly axioms�i.e., properties demanded of a solution

concept. (Our Di¤erence property is of this type.) But, other axioms are not truly axioms. While

they talk about how a solution concept should behave, they do so in terms of some other solution

concepts, and are therefore circular in nature.

The leading such �quasi-axiom� is about BI. In some papers (e.g., Kohlberg and Mertens (5,

1986), Hillas (3, 1990), Govindan and Wilson (2, 2009)), the BI requirement is that a solution

concept contain a sequential equilibrium. Why does this circularity matter? Take as given that

sequential equilibrium satis�es BI. (Indeed, we say it does, since it satis�es Di¤erence.) But, now

add other axioms from some list, just as the literature does. This is e¤ectively asking that a good

solution concept contain a re�nement of sequential equilibrium, where the re�nement is de�ned

implicitly by these other axioms. Because of our non-monotonicity result, there is no guarantee

that such a re�nement will satisfy BI. That is, in the presence of other axioms, the BI quasi-axiom

may not capture the meaning of BI. (Of course, this is if our de�nition of BI is granted.)

Some papers state a BI quasi-axiom which takes the form of requiring that a solution concept

contain a proper equilibrium (e.g., Mertens (9, 1989), (10, 1992)). In this case, the issue is even
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more immediate: Proper equilibrium fails Di¤erence and therefore, under our de�nition, does not

satisfy BI even in its own right.

Our conclusion is that BI must be stated as a non-circular axiom. Then, to determine whether

or not a certain solution concept satis�es BI, one must go back to ��rst principles�and give a direct

proof that it satis�es the axiom, or give a counterexample. Of course, we think the appropriate BI

axiom is Di¤erence.

Kohlberg and Mertens (5, 1986, p.1036) themselves expressed reservations about the use of what

we are calling quasi-axioms:

Our feeling, however, is that the source of the di¢ culty is in the use of a concept like

sequential equilibrium. While sequentiality, invariance, dummy properties, etc., are

reasonable properties against which a proposed solution concept may be checked, they

cannot serve as a de�nition or an axiom ....

We go further. We believe our paper shows that a full-�edged axiomatic approach to re�nements

is not only desirable, but essential.

2 Formulation

We �x the following notation throughout. Given sets X1; : : : ; XI , write X = �Ii=1Xi and X�i =
�j 6=iXj . Likewise, given maps fi : Xi ! Yi, i = 1; : : : ; I, write f : X ! Y for the product map,

i.e., f(x1; : : : ; xI) = (f1(x1); : : : ; fI(xI)). De�ne product maps f�i : X�i ! Y�i analogously. If X

is either a �nite or a closed subset of Rn, letM(X) be the set of Borel probability measures on X.

Write Supp� for the support of � 2M(X).

First, the formalities of a game tree: We consider �nite extensive-form games of perfect recall

(Kuhn (7, 1950), (8, 1953)) with the exception that we allow a non-terminal node to have only one

outgoing branch (rather than two). We denote a typical such game by �, and let N be the set of

non-terminal nodes and Z be the set of terminal nodes. The players are labelled i = 1; : : : ; I. Write

Hi for the family of information sets for player i and H =
SI
i=1Hi for the family of all information

sets. (Recall, under the Kuhn de�nition of a tree, an information set is a subset of N .) Write

Mi[h] for the set of moves m available to i at h 2 Hi. (Recall, under the Kuhn de�nition of a tree,
a move is a subset of N .) A pure strategy si for player i maps each h 2 Hi to some mi 2 Mi[h].

Write Si for the set of pure strategies for player i, and �i = M(Si) (with typical element �i) for

the set of mixed strategies. The map � : S ! Z takes each pure-strategy pro�le into the terminal

node it reaches.

Let �i : Z ! R be the payo¤ function for player i. The outcome map � : Z ! RI is given by
�(z) = (�1(z); : : : ;�I(z)). Terminal nodes z; z0 2 Z are outcome equivalent if �(z) = �(z0).

(Note that � need not be injective.) Write �i : S ! R for player i�s strategic-form payo¤ function,

i.e., �i = �i � �. Extend �i to �i � ��i in the usual way.
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A strategy pro�le � 2 � induces a distribution over outcomes, i.e., the measure inM(RI) given
by the image measure of � under � � �. In particular, the probability of outcome x 2 RI is
�((� � �)�1(x)). Call strategy pro�les � and �0 outcome equivalent if they induce the same
distribution on outcomes. Note, we can (and do) de�ne this notion of outcome equivalence, even

when � and �0 are strategy pro�les in two (possibly di¤erent) I-player games. Likewise, given

subsets of strategy pro�les Q � � and Q0 � � (of two, possibly di¤erent, I-player games), say that
Q induces the same outcomes as Q0 if, for each �0 2 Q0, there is some � 2 Q such that � and

�0 are outcome equivalent. Call Q and Q0 outcome equivalent if Q induces the same outcomes

as Q0, and Q0 induces the same outcomes as Q.

Say �i 2 �i (resp.��i 2 ��i) allows an information set h if there is some si with �i (si) > 0

(resp. s�i with ��i(s�i) > 0) such that si (resp. s�i) allows h. Say �i 2 �i (resp.��i 2 ��i)
reaches an information set h if, for each si with �i(si) > 0 (resp. s�i with ��i(s�i) > 0), si
(resp. s�i) allows h. Write �i(h) (resp. ��i(h)) for the set of strategies �i (resp. ��i) that reach

h. (Note carefully that we abuse notation here, since ��i(h) need not be a product set.)

Say a strategy pro�le � 2 � allows a move m if m 2Mi [h], where h is allowed by �, and m is

played with strictly positive probability under �. Given a subset of strategy pro�les Q � �, say Q
allows a move m if there is some � 2 � which allows m.
A solution concept S associates with each game tree � a family of subsets of strategy pro�les

for �. Formally, a solution concept S (on a family of games G) maps each tree (in G) to a family
of subsets of strategy pro�les for the tree, i.e. S(�) � 2�. The family S(�) is called the solution
of �. Each element of S(�), i.e., each subset of mixed-strategy pro�les Q 2 S(�), is called a
component of the solution. Some familiar examples: For Nash equilibrium, take the solution of

a game to consist of multiple components, where each component is a singleton and consists of a

particular Nash equilibrium. Or, following Kohlberg and Mertens (5, 1986) and their successors, we

could take each component to consist of a connected set of Nash equilibria. For iterated (strong or

weak) dominance, we could take the solution to consist of a single component� viz., all the iterated

undominated pro�les.

Say solution concept R is a re�nement of S if, for each game � and every R 2 R(�), there is
a Q 2 S(�) so that Q induces the same outcomes as R.
We note that we have given our de�nitions in terms of mixed strategies. Of course, some solution

concepts (e.g., sequential equilibrium) are de�ned using behavioral strategies. When needed, we will

understand all the preceding de�nitions to be in terms of behavioral strategies�and use the notation

�i for a behavioral strategy for player i.

3 Backward Induction

What is backward induction? Here is the intuitive idea: Fix a tree � and a subtree � of �. Now

discard�, leaving behind only the solution on this subtree�leaving behind the �ghost�of the subtree,
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if you like. Then, we don�t change our original analysis. Let us now formalize this idea.

First, we need to specify what it means to delete a subtree, leaving behind only the solution on

the subtree. The relevant concept goes back to Kuhn (8, 1953, p.208); we will call it a di¤erence
tree. A di¤erence tree is de�ned relative to a solution concept S. Begin with a tree � and a subtree
� of �. Fix a nonempty component of S(�), which we will denote Q�. The (S; Q�)-di¤erence
tree is obtained by deleting from the original tree � any move not allowed by Q�. It is readily

veri�ed that each (S; Q�)-di¤erence tree is a well-de�ned game tree. (This uses the fact that we

required Q� to be nonempty.) Write �S;Q� for the (S; Q�)-di¤erence tree. Note, the di¤erence

tree depends on a solution concept, subtree, and particular component of the solution on the subtree.

Now, the Di¤erence property. Recall, the idea was that we don�t change our original analysis

when we replace a tree with a di¤erence tree. We can now state this precisely:

(D) A solution concept S satis�es Di¤erence (on G) if for each tree � (in G) and each subtree
� of � the following holds: If Q 2 S(�), there is a nonempty component Q� 2 S(�) and a
component �Q 2 S(�S;Q�), such that �Q induces the same outcomes as Q.

Loosely, the Di¤erence property says that the solution on the whole tree should be included in the

solution on what is left after replacing a subtree with what the solution allows on the subtree. Figure

3.1 illustrates the de�nition.

If Q is a component of
the solution on this tree,
then …

there is a component Q∆ of
the solution on this tree
such that …

there is a component Q′ of the
solution on this tree such that Q′
induces the same outcomes as Q

Original tree

Subtree ∆

(S,Q∆)­difference
tree

Figure 3.1

How does the de�nition of Di¤erence capture the idea of BI? The way BI is usually explained

is that future play in the game is used to pin down current play. The BI algorithm implements

this idea in PI trees. Our Di¤erence property works the same way�in general trees. Solutions on

subtrees yield di¤erence trees, which are used to pin down the solution on the overall tree. Di¤erence

formalizes this idea as: Each (distribution on) outcome(s) allowed by the solution on the overall tree

must also be allowed by the solution of some di¤erence tree.

Later in this section, we will come back to discuss a subtlety in the de�nition of Di¤erence�viz.,

why we require that the solution on the whole tree be included in the solution on the di¤erence tree,
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and not vice versa. In Sections 5b-c we will explain why some other possible de�nitions of BI do

not work. But, �rst, we record the formal connection between Di¤erence and BI. We show that

Di¤erence�plus some background properties�characterizes the BI algorithm in PI trees satisfying a

no-ties requirement.

First, this requirement:

De�nition 3.1 A tree � satis�es the Single Payo¤ Condition (SPC) if, for all z; z0 2 Z, the
following holds: If i moves at the last common predecessor of z and z0, then �i(z) = �i(z0) implies

�(z) = �(z0).

In words, a game satis�es SPC if whenever player i is indi¤erent between two terminal nodes

over which he is decisive, those two terminal nodes are outcome equivalent. It is clear that in a

PI game satisfying SPC, there is a unique BI outcome. Moreover, SPC appears to be a minimal

requirement for this purpose.

We will also have two background properties:

(E) A solution concept S satis�es Existence (on G) if, for each game � (in G), there is a nonempty
component of S(�).

A strategy �i is optimal under ��i 2 M (��i), among strategies in Qi � �i, if �i 2 Qi and
�i (�i; ��i) � �i (�i; ��i) for each �i 2 Qi. (Writing ��i 2 M (��i) is a slight notational abuse.)

A strategy �i is (extensive-form) rational if, for each information set h 2 Hi allowed by �i, there
is some ��i 2M(��i), with ��i(��i(h)) = 1, under which �i(�j�i(h)) is optimal among strategies
in �i(h).

(R) A solution concept S satis�es Rationality (on G) if, for each tree � (in G) and each component
Q 2 S (�), any pro�le � 2 Q consists of rational strategies.

We can now state the formal connection between Di¤erence and BI.

Theorem 3.1 Fix a solution concept S.

(i) If S satis�es (E), (R), and (D) on the domain of PI trees satisfying SPC, then each component
of S is outcome equivalent to the BI algorithm on these trees.

(ii) If each component of S is outcome equivalent to the BI algorithm on every PI tree satisfying

SPC, then S satis�es (E), (R), and (D) when restricting the domain of the solution concept
to these trees.

Proof. Part (i): The proof is by induction on the length of the tree. For a tree of length 1,

the result is immediate from (E), (R), and the fact that the game satis�es SPC. So, suppose the

statement holds for any tree of length l or less.
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Fix a tree of length l + 1, where i moves �rst and write �k, k = 1; : : : ;K, for the immediate

subtrees. For each such subtree �k, �x a component Qk of S(�k). Using the induction hypothesis,
Qk 6= ; and any (�k1 ; : : : ; �kI ) 2 Qk gives the unique BI outcome on that subtree.
Consider the tree obtained by deleting from each immediate subtree �k any move not allowed

by Qk. Call this tree �S . Then, in �S , each of i�s choices k = 1; : : : ;K leads to a unique outcome

in the associated subtree. Of course, these outcomes do not depend on the particular choices of Qk.

Using SPC, all rational strategies for i (in �S) are outcome equivalent. By (E), there is a

nonempty component of S(�S). By (R), any such component must be outcome equivalent to BI in
�S�and, therefore, outcome equivalent to BI in �.

Now, successively apply (D) to each subtree, so that any outcome allowed by any component of

the solution on the overall tree must be allowed by the component on �S . (This uses the fact that

there is a unique outcome in this di¤erence tree and this outcome does not depend on the initial

choice of solutions Qk.) It follows that any outcome allowed by any component of the solution

on the overall tree must be the BI outcome in that tree. By (E), the solution must have some

nonempty component, establishing part (i).

Part (ii): Fix a solution concept S, as in the premise. It is immediate that S satis�es (E) and
(R). We show (D). Fix a tree � satisfying SPC, so that there is a unique BI outcome. Fix also

a subtree � and a component Q� 2 S(�). Consider the (S; Q�)-di¤erence tree �S;Q� . It, too,

is a PI tree satisfying SPC, and so has a unique BI outcome. But this must coincide with the BI

outcome in �, since deleting (from the subtree) any move precluded by Q� does not delete the BI

outcome in �. This establishes (D).

Back to the de�nition of (D). Why not require instead the reverse inclusion�i.e., that the solution

on a di¤erence tree be contained in the solution on the whole tree?

A

3
0

Out In

B

0
2

4
0

Left Right

•

•

Figure 3.2

B

0
2

4
0

Left Right
•

Figure 3.3

A

3
0

Out In

B

0
2

Left

•

•

Figure 3.4

The reason is simple. Consider the tree � in Figure 3.2, the tree � in Figure 3.3 (which is the

subtree of � that begins after Ann chooses In), and the tree �� in Figure 3.4. Let G = f�;�; ��g. If
S satis�es (E) and (R), then S(�) = ffLeftgg. So, �� is the (S; fLeftg)-di¤erence tree. Again, (E)
and (R) imply that S(��) = ff(Out; Left)gg. By (D), Ann must then play Out in any Q 2 S(�),
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yielding the BI outcome (as required by Theorem 3.1). Now change the de�nition of Di¤erence

to require instead the reverse inclusion. Consider a solution concept R on G given by R(�) =
ffLeftgg, R(��) = ff(Out; Left)gg, and R(�) = ffOut; Ing�fLeftgg. This satis�es (E), (R), and
the reverse version of Di¤erence on the domain G. But, R is not outcome equivalent to BI on this

family of trees.

The problem here is clear: The idea of BI is that solutions on parts of the tree should be used to

pin down the solution on the whole tree. Indeed, (D) uses solutions on di¤erence trees to pin down

the solution on the whole tree. If we change Di¤erence to require instead the reverse inclusion, then

we see that solutions on di¤erence trees do not pin down the solution on the whole tree.

In Sections 5b-c , we will review some other proposed de�nitions of BI�these also fail to implement

the idea that solutions on parts of the tree pin down the solution on the overall tree. We will also

point out another subtlety in the de�nition of Di¤erence.

4 Main Theorem

We state and prove our main result.

Theorem 4.1 There exists a solution concept S and a re�nement R of S, such that S satis�es (E),
(R), and (D), while R satis�es (E) and (R) but fails (D).

In the proof of the theorem, we will take S to be sequential equilibrium and R to be proper

equilibrium.

Recall some de�nitions from Kreps and Wilson (6, 1982). A pair (�; �) is an assessment if �
is a pro�le of behavioral strategies and � is a system of beliefs. (That is: � : H ! M(N) with

each �(h)(h) = 1.) The assessment is consistent if there is a sequence (�k; �k) ! (�; �) where

each �k is a pro�le of completely mixed behavioral strategies. (That is: For each i and hi 2 Hi,
Supp�ki (hi) = Mi[hi] and each �k is derived from �k by conditioning.) An assessment (�; �) is a

sequential equilibrium if it is consistent and, for each i, every �i(hi) is optimal under � (among

strategies in �i(hi)). We de�ne the sequential equilibrium solution concept SSE by

SSE (�) = ff�g : there is a system of beliefs � s.t. (�; �) is a sequential equilibrium of �g.

For the connection to (D), we need some more notation. Fix a solution concept S, a tree �,
a subtree � of �, and consider a di¤erence tree �S;Q� . We write �Hi (resp. �H) for the family

of i�s (resp. the family of all) information sets in this di¤erence tree. Write H for the family of

information sets in �, and note that there is an injective mapping � : �H ! H with �h � �(�h). Write
�Mi[�hi] for the moves available to i at �hi in the di¤erence tree, and note that, for each �hi, there is

an injective mapping �[�hi] : �Mi[�hi]!Mi[�(�hi)] so that �mi � �[�hi] ( �mi). If �si is a pure strategy for

i in the di¤erence tree, we write [�si] for the set of pure strategies for i in � which coincide with �si
in the di¤erence tree.
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Proposition 4.1 The solution concept SSE satis�es (D).

Proof. Fix a tree � and some � = (�1; : : : ; �I) with f�g 2 SSE(�). Then, there exists some system
of beliefs � : H !M(N) such that (�; �) is a sequential equilibrium. Fix a subtree �. For each

information set hi of �, set �
�
i (hi) = �i(hi) and �

�(hi) = �(hi). It is immediate that (�
�; ��) is

a sequential equilibrium of �, i.e., f��g 2 SSE(�).
Construct the di¤erence tree �SE,f��g by deleting from � any path (in �) that is played with

zero probability under ��. This amounts to deleting from � any path which is in � and which is

played with zero probability under �. So, certainly, each �i(�(�hi))(�[�hi]( �Mi[�hi])) = 1. Moreover,

if �(�h) is in �, �(�h) is reached with strictly positive probability under ��. So, in this case,

�(�(�h))(�h) = ��(�(�h))(�h) = 1. Indeed, this is true more generally, i.e., for each �(�h) (whether or

not it is in �) �(�(�h))(�h) = 1. We use these facts repeatedly below.

Now, we de�ne an assessment (��; ��) of the di¤erence tree �SE,f��g. Choose �� = (��1; : : : ; ��I) so

that each ��i(�hi) satis�es ��i(�hi)( �mi) = �i(�i(
�hi))(�[�hi]( �mi)), for all �mi 2 �Mi[�hi]. (Recall that each

�i(�(
�hi))(�[�hi]( �Mi[�hi])) = 1, so this is well de�ned.) Likewise, choose �� so that each ��(�h)(n) =

�(�(�h))(n), for each node in �h. (Recall that each �(�(�h))(�h) = 1, so this is well de�ned.) We will

show that (��; ��) is a sequential equilibrium of the di¤erence tree, so that f��g 2 S(�SE,f��g). Since,
by construction, any outcome allowed by � is allowed by ��, this will establish the result.

It is immediate from the construction that each ��i(�hi) is a best reply under ��. So, it su¢ ces to

show that (��; ��) is consistent.

Since (�; �) is consistent, there is some (�k; �k) ! (�; �) where each �k is completely mixed

and each �k is derived from �k by conditioning. As such, �ki (�(�hi))(�[�hi]( �Mi[�hi])) > 0 and

�k(�(�hi))(�hi) > 0 for all �hi. De�ne (��
k
; ��k) as follows: For each �hi and each �mi 2 �Mi

�
�hi
�
,

set ��
k
i (
�hi)( �mi) = �ki (�(

�hi))(�[�hi]( �mi)j�[�hi]( �Mi[�hi])). Likewise, for each �hi and each n 2 �hi, set
��k(�hi)(n) = �

k(�(�hi))(nj�hi). Note, by construction ��
k
is completely mixed and ��k is derived from ��

k

by conditioning. Moreover, using the fact that each �ki (�(�h))(�[�hi]( �Mi[�hi]))! 1; �k(�(�hi))(�hi)! 1,

it follows that (��
k
i ; ��

k
i )! (��i; ��i) as required.

Next, recall the following de�nitions from Myerson (11, 1978). A pro�le of completely mixed

strategies �" = (�"1; : : : ; �
"
I) is an "-proper equilibrium of � if, whenever �i

�
si; �

"
�i
�
< �i

�
ri; �

"
�i
�
,

then �"i (si) � "�"i (ri). A pro�le � is a proper equilibrium of � if there is a sequence of "-proper

equilibria �" of � with lim"!0 �
" = �. We de�ne the proper equilibrium solution concept SPE by

SPE (�) = ff�g : � is a proper equilibrium of �g:

Proposition 4.2 The solution concept SPE fails (D).

Proof. Consider the game � given in Figure 4.1. There is a proper equilibrium where Ann plays

Left (at the initial node) with probability one. To see this, note that there is an "-proper equilibrium

where Ann uses (unnormalized) weights (1 : { Left-left, Left-right}, 23" :Right-left,
1
3" :Right-right)
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and Bob uses (unnormalized) weights (" : { Left-Out-left, Left-Out-right}, "3 : { Right-Out-left, Right-

Out-right}, 35 :Left-In-left,
3
5"
2 :Right-In-left, 25 :Left-In-right,

2
5"
2 :Right-In-right). So, the outcome

(1; 1) is allowed under properness.
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4

4
8

left right

•

• •

A

B
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OutB

•

• •

1
1

0
0

Left Right

1/2
3

Right

In

x y

Figure 4.1

Now take � to be the subtree beginning at the node where Bob can choose Out. Writing

Ann�s (resp. Bob�s) strategies for � in the order (left, right) (resp. ({ Out-left, Out-right}, In-left,

In-right)), there are three proper equilibria of the subtree: ((1; 0); (0; 1; 0)), ((0; 1); (0; 0; 1)), and

(( 23 ;
1
3 ); (0;

3
5 ;

2
5 )). (Note that Out-left and Out-right are strongly dominated in the subtree, and so

can�t be part of a proper equilibrium.)

A

3
7

left

left

•

•

A

B

Left

B

•

• •

1
1

0
0

Left Right

Right

In

Figure 4.2
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Figure 4.4
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Thus, properness gives the di¤erence trees in Figures 4.2-4.4. In each of these trees, the strategies

Left-left and Left-right (for Ann) are dominated. (In Figure 4.4, they are weakly dominated by

a 1
2 :
1
2 mixture of Right-left:Right-right.) Therefore, the outcome (1; 1) cannot arise in a proper

equilibrium. This contradicts (D).

Now we can prove Theorem 4.1.

Proof of Theorem 4.1. By Propositions 1 and 3 in Kreps and Wilson (6, 1982), SSE satis�es
(E) and (R). By our Proposition 4.1, SSE also satis�es (D). By Myerson (11, 1978, p.79), SPE
satis�es (E). For (R), start with a proper equilibrium � and an associated sequence of "-proper

equilibria �". There is an " such that �i is optimal under �"�i. (See, e.g., Lemma 2.3.2 in van

Damme (17, 1991).) Since �"�i has full support, it follows by a standard argument that �i is then

(extensive-form) rational. So, SPE satis�es (R). By our Proposition 4.2, SPE fails (D). Finally, by
Theorem 1 in van Damme (16, 1984), SPE is a re�nement of SSE .

It is instructive to compare the behavior of sequential equilibrium with that of proper equilibrium

in the game of Figure 4.1. Much as with proper equilibrium, there is a sequential equilibrium where:

(i) Ann puts weight 1 on Left; and (ii) Bob puts weight 1 on Left, weight 1 on In, and weights
3
5 :
2
5 on left vs. right. This is supported by an assessment for Bob that puts weights 2

3 :
1
3 on node

x vs. node y. Likewise, corresponding to the three proper equilibria of the subtree, there are three

sequential equilibria. In particular, Figure 4.4 is again a di¤erence tree under sequential equilibrium.

The distinction is that there is a sequential equilibrium of this third di¤erence tree in which Ann

plays Left. (The details are the same as for the sequential equilibrium of the original tree.) So,

this time the Di¤erence property is satis�ed (as required by Theorem 4.1).

Under properness, the situation is di¤erent. The strategies Left-left and Left-right for Ann

are undominated in the original game of Figure 4.1. In fact, Left is played in a proper equilibrium.

It is supported by a belief that assigns " less weight to the event that Bob plays Right-In vs. Left-

Out. But, in the di¤erence tree Out is eliminated for Bob and so Ann cannot consider the event

the Bob plays Right-In �" less likely�than the event that Bob plays Left-Out. As a result, Left

is weakly dominated in each of the di¤erence trees of Figures 4.2-4.4 and so cannot be part of a

proper equilibrium of these trees.

Let us review the proof. Begin with proper equilibrium. In the original tree, there is a proper

equilibrium where Ann plays Left. This is supported by a belief that assigns " less weight to

the event {(Right-In-left),(Right-In-right) vs. the event {(Left-Out-left),(Left-Out-right). More

colloquially, Left for Ann is supported by a belief that assings in�nitely more weight to the event

that Bob plays Left-Out vs. the event that Bob plays Right-In. But, there can be no such belief

in the di¤erence tree, since Out is dominated in the subtree �.

prob(Out,L)=" � "2 = Pr (fl �R; r �Rg)
, in �,

It is instructive to compare the behavior of sequential equilibrium with that of proper equilibrium

in the game of Figure 4.1. Much as with proper equilibrium, there is a sequential equilibrium where:
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(i) Ann puts weight 1 on Left; and (ii) Bob puts weight 1 on Left, weight 1 on In, and weights
3
5 :
2
5 on left vs. right. This is supported by an assessment for Bob that puts weights 2

3 :
1
3 on node

x vs. node y. Likewise, corresponding to the three proper equilibria of the subtree, there are three

sequential equilibria. In particular, Figure 4.4 is again a di¤erence tree under sequential equilibrium.

The distinction is that there is a sequential equilibrium of this third di¤erence tree in which Ann

plays Left. (The details are the same as for the sequential equilibrium of the original tree.) So,

this time the Di¤erence property is satis�ed (as required by Theorem 4.1).

Under properness, the situation is di¤erent. The strategies Left-left and Left-right for Ann

are undominated in the original game of Figure 4.1�in fact, Left is played in a proper equilibrium.

But they are weakly dominated in the di¤erence tree of Figure 4.4�and so, cannot be part of a proper

equilibrium. This happens because, in the course of forming the di¤erence tree, a move for Bob

has been eliminated. After this elimination, a previously undominated strategy for Ann becomes

dominated.

We can now see that, at least in �hindsight,� the non-monotonicity in BI which we identify in

this paper is not at all surprising. Here are the key steps:

� Start with a solution concept which satis�es BI. (In our example, this is sequential equilib-
rium.)

� Next consider a stronger solution concept. (In our example, this is proper equilibrium.)

� The stronger solution concept may prune more moves in forming a particular di¤erence tree.
(In our example, this is the move Out for Bob.)

� From elementary game theory, we know that when we prune a move for one player in a game,

we can change previously good strategies for other players into bad strategies. (In our example,

these are the strategies Left-left and Left-right for Ann.)

� Suppose such a previously good strategy is played under the stronger solution concept on the
overall tree. Then, this solution concept will fail Di¤erence�hence BI. (In our example, Ann�s

playing Left is indeed part of a proper equilibrium of the overall tree.)

The point is actually a very elementary one. Of course, we need our Propositions 4.1 and 4.2

to convert the in-principle argument into a speci�c instance of interest.

We note in passing that there is another (potential) source of a failure of Di¤erence. In our

example, Figure 4.4 was a di¤erence tree for both the solution concept S and the re�nement R.
However, a re�nement might also rule out a di¤erence tree altogether�again leading to a failure of

Di¤erence.
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5 Discussion

We have proposed a de�nition of BI, namely Di¤erence, shown that it exhibits a basic non-monotonicity,

and described the implication we think this has for the re�nements program. In this section, we

discuss some other possible de�nitions of BI, the question of whether some non-equilibrium solution

concepts satisfy Di¤erence, and some open issues.

a. History The idea of relating the solution on the whole tree to solutions on subtrees has

a long history in game theory. As already mentioned, the idea of a di¤erence tree goes back to

Kuhn (8, 1953, p.204), who also showed that subgame perfect equilibrium satis�es a di¤erence-like

property (8, 1953, p.208). Kohlberg and Mertens (5, 1986, pp.1012-1013) proposed a di¤erence-like

property as one of several possible de�nitions of BI. They stated�but did not prove�that sequential

equilibrium satis�es their di¤erence property. See also Pimienta (13, 2009).

Next, we review some other attempts in the literature, and, continuing the discussion at the end

of Section 3, point to an another subtlety in the de�nition of Di¤erence.

b. Projection Several papers have put forward a Projection property as the de�nition of BI.

(See, e.g., Kohlberg and Mertens (5, 1986, p.1012) and Hillas and Kohlberg (4, 2002, Section 10).)

This is the property that �a solution of the game induces a solution in any subgame� (5, 1986,

p.1012).

At �rst sight, Projection seems to �t the idea of BI. It looks like it uses the solutions on the

parts of the tree to pin down the solution on the overall tree� this time, using the solutions on the

subtrees rather than on the di¤erence trees to do so. But, it turns out that solutions on subtrees

may be insu¢ cient for this purpose. As such, Projection may fail to deliver the BI outcome.

To see why, let us try to formalize the Projection property. Start with a game � and a subtree

�. Given a pure strategy si in �, write s�i for the restriction of si to ��i.e., for the restriction of si
to the information sets in �. Given a mixed strategy �i in �, de�ne a mixed strategy ��i in � by

��i (s
�
i ) =

X
fsi:s�i is the restriction of sig

�i(si):

Call ��i the restriction of �i to �.

(P) A solution concept S satis�es Projection (on G) if for each tree � (in G) the following holds:
For each subtree � and component Q 2 S(�), there is a component Q� 2 S(�) such that
for each (�1; : : : ; �I) 2 Q which reaches �, the restriction of (�1; : : : ; �I) to the subtree � is

contained in Q�.

That is, (P) attempts to use the behavior on a reached subtree to pin down behavior on the overall

tree.

However, a solution concept may satisfy (E), (R), and (P) on the family of PI trees satisfying

SPC, yet fail to deliver the BI outcome in these trees. Indeed, consider the solution concept
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of extensive-form rational Nash equilibrium, which we denote SRNE . (Thus: f�g 2 SRNE(�) if
� = (�1; : : : ; �I) is a Nash equilibrium in extensive-form rational strategies for �.) It is readily

veri�ed that SRNE satis�es (E), (R), and (P) (on all trees). But, clearly, SRNE (�) may include a
component which is not outcome equivalent to BI (on an SPC tree).

Perhaps, we should modify the de�nition of Projection, so that we can use all subtrees� not just

reached subtrees� to pin down behavior in the overall tree.

(P0) A solution concept S satis�es Projection 0 (on G) if, for each tree � (in G) the following
holds: For each subtree � and component Q 2 S(�), there is a component Q� 2 S(�) such
that for each (�1; : : : ; �I) 2 Q, the restriction of (�1; : : : ; �I) 2 Q to the subtree � is contained
in Q�.

Do (E), (R), and (P0) give the BI outcome? Still not. Set G = f�;�g, where � is again the tree
in Figure 3.2 and � is again the subtree which begins after Ann�s choice of In. De�ne a solution

concept S on G by S(�) = ffOut; Ing�fLeftgg and S(�) = ffLeftgg. Then, S satis�es (E), (R),
and (P0) on G, but fails to deliver the BI outcome on this family of trees.
The problem is that while the solution S(�) is used to pin down Bob�s behavior in �, it cannot

be used to pin down Ann�s behavior in �, because she has no move in �. With (D), even if Ann

has no move in �, we can use a component Q� of the solution on � to pin down Ann�s behavior in

�, since Ann does have a move in the associated di¤erence tree. We conclude that even (P0) does

not give a method for using the solution on the parts to pin down the solution on the whole, while

(D) does give such a method.

c. De�nition of Di¤erence Now, back to the de�nition of (D). We already explained (in

Section 3) why we require the solution on the whole tree to be contained in the solution on a

di¤erence tree, and not vice versa. Here, we point out another subtlety.

We formulated our Di¤erence property in terms of outcomes not strategies. In accordance with

this, the statement of Theorem 3.1(i) also involves outcomes: It says that (E), (R), and (D) give the

BI outcome�not the BI strategies.

We cannot improve Theorem 3.1(i) so that it delivers the BI strategies, even if we restrict

attention to the family of PI trees satisfying No Relevant Ties (Battigalli (1, 1997)). (This is a

subfamily of the PI trees satisfying SPC.) The solution concept of extensive-form rationalizability

(Pearce (12, 1984)) is outcome equivalent to BI on PI trees satisfying NRT (1, 1997, Theorem 4).

So, using Theorem 3.1(ii), extensive-form rationalizability satis�es (E), (R), and (D) on this family

of trees. But, it need not yield the BI strategies on such trees. See Figure 3 in Reny (14, 1992) for

an example.

In light of this, perhaps we should restate (D), so that it is a requirement on strategies and not

outcomes. Speci�cally:

(SD) A solution concept S satis�es Strategy-wise Di¤ erence (on G) if for each tree � (in G)
and each subtree � of � the following holds. Let Q 2 S(�). Then there exists a Q� 2 S(�)
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and a PS 2 S(�S;Q�) such that for each (s1; : : : ; sI) 2 Q, the restriction of (s1; : : : ; sI) to
�S;Q� is contained in PS .

One might think that, in the proof of Theorem 3.1(i), we can replace (D) line-by-line with the

stronger requirement of (SD) and reach a stronger conclusion�viz., that we get BI strategy-wise and

not just outcome-wise. But this is false.

B
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3
4

1
2

A

Out

A

Out Down

Across 4
0

0
6

B

Down

AcrossIn In

Figure 5.1

Consider the game in Figure 5.1. Here the BI strategies are (In-Down;Out-Down). The proof

of Theorem 3.1(i) requires the following analysis: Consider the subtree in Figure 5.2. Per the new

induction hypothesis, suppose that the solution on this subtree gives the BI strategies. Now consider

the associated di¤erence tree in Figure 5.3. By (E) and (R), Ann must choose In. From this, (E)

and (SD) say that, in the original tree, Ann must choose some strategy and this strategy must be

consistent with In. But this strategy need not be In-Down�it could be In-Across. Certainly,

then, if replace (D) with (SD), our proof will not yield the stronger conclusion. We conjecture that

a solution concept can satisfy (E), (R), and (SD), even though it fails to give the BI strategies. (Of

course, it must give the BI outcome.)

One more variation. Fix a solution concept where each nonempty component is a singleton. In

this case, we could formulate Di¤erence in terms of expected payo¤s rather than outcomes: Given

a component Q 2 S(�), we could ask that there is a nonempty (singleton) component Q� 2 S(�)
such that, when we replace � with a terminal node whose payo¤s are the expected payo¤s under

Q�, there is a component Q0 of the solution on the new tree that induces the same outcomes as Q.

We can mimic the proofs of Propositions 4.1 and 4.2 to show that sequential equilibrium will satisfy

this expected-payo¤ version of Di¤erence, but proper equilibrium won�t. As such, the message of

this paper would be unchanged. This said, there is no clear way to extend this version of Di¤erence

to solution concepts with multi-valued components. Many solution concepts have multi-valued

components. The non-equilibrium solution concepts discussed next are good examples.
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d. The Axiomatic Approach As we emphasized in the Introduction, our de�nition of BI is

axiomatic� it is a requirement of a solution concept, but does not make reference to other solution

concepts. So, in particular, it does not make reference to equilibrium concepts. Therefore, our

approach allows us to ask whether non-equilibrium solution concepts satisfy BI. Two natural can-

didates are extensive-form rationalizability (EFR) and the iterated elimination of weakly dominated

strategies (IA for �iterated admissibility�).1

We already noted that EFR satis�es (E), (R), and (D) on the family of PI trees satisfying NRT.

We don�t know if it satis�es (D) on all SPC trees. IA does not satisfy (D) on SPC trees. To see this,

consider again the game of Figure 4.1. It is easily checked that the IA set allows the outcome (1; 1).

Next, consider again the subtree beginning at the node where Bob can choose Out. Calculating

the IA set here leads to the Di¤erence tree in Figure 4.4. But, in this tree, Ann�s strategy Left is

weakly dominated�so, the outcome (1; 1) is inconsistent with IA in this tree, contradicting (D).

e. Open Questions We have seen that (E), (R), and (D) are consistent. In particular,

sequential equilibrium satis�es these axioms. But, what about the consistency of (E), (R), (D),

and additional axioms? There are two obvious candidates to investigate: admissibility and forward

induction.

Recall, a strategy �i 2 M(Si) is admissible if there is no strategy �i 2 M (Si) which weakly

dominates it. Then:

(A) A solution concept satis�es Admissibility if it contains only admissible strategies.

It is a standard argument that (A) implies (R). But, (E), (D), and (A) are inconsistent�at least,

if we require that a solution concept satisfy (E), (D), and (A) on all trees. Refer to Figure 5.4.

(This is essentially Figure 5 in Kohlberg and Mertens (5, 1986), modi�ed to allow us to talk about

outcomes rather than strategies.) Consider the subtree following Ann�s play of Left. By (E) and

(A), the solution on the subtree requires Bob to play Left. Now, refer to the di¤erence tree in

Figure 5.5 and note that, by (E) and (A), Ann must play Left in this tree. So, by (E) and (D), Ann

1 In keeping with the literature, we adopt the following conventions: EFR and IA each have one component,
consisting of pure-strategy pro�les. We allow a pure strategy to be dominated (conditionally dominated or weakly
dominated) by a mixed strategy. We also take IA to be simultaneous maximal deletion.
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must play Left in the original tree. This yields the (2; 2) outcome. But a similar argument applies

to the subgame following Ann�s play of Right. This yields the (2; 3) outcome�a contradiction.
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Figure 5.4
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Figure 5.5

But, this is perhaps too harsh a test. The tree in Figure 5.4 doesn�t satisfy SPC. This raises the

question: Are (E), (D), and (A) consistent on the family of trees satisfying SPC? We don�t know.

Now turn to forward induction (FI). There have been a number of proposals in the literature on

how to de�ne FI. See, e.g., Govindan and Wilson (2, 2009, De�nition 3.5), whose proposal is stated

in terms of what they call weak sequential equilibrium. In keeping with the main message here,

we would argue that FI should be stated as a full-�edged axiom in its own right�i.e., as an axiom

which does not make reference to other solution concepts. But, what is this axiom? What about

the consistency of such an axiom with Di¤erence�i.e., with BI? We leave this as an open issue.
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