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Abstract

This paper proposes and axiomatizes a recursive version of the vector expected utility

(VEU) decision model (Siniscalchi, 2009). Recursive VEU preferences are dynamically con-

sistent and “consequentialist.” Dynamic consistency implies standard Bayesian updating of

the baseline (reference) prior in the VEU representation, but imposes no constraint on the

adjustment functions and one-step-ahead adjustment factors. This delivers both tractabil-

ity and flexibility.

Recursive VEU preferences are also consistent with a dynamic, i.e. intertemporal ex-

tension of atemporal VEU preferences. Dynamic consistency is characterized by a time-

separability property of adjustments—the VEU counterpart of Epstein and Schneider (2003)’s

rectangularity for multiple priors.

A simple exchangeability axiom ensures that the baseline prior admits a representation

à la de Finetti, as an integral of i.i.d. product measures with respect to a unique probability

µ. Jointly with dynamic consistency, the same axiom also implies that µ is updated via

Bayes’ Rule to provide an analogous representation of baseline posteriors.

Finally, an application to a dynamic economy à la Lucas (1978) is sketched.
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1 Introduction

Siniscalchi (2009) (henceforth S09) proposes and axiomatizes the “vector expected utility” deci-

sion model—VEU for short. According to this model, the individual evaluates uncertain prospects,

or acts, by a process suggestive of anchoring and adjustment (Tversky and Kahneman, 1974).

The “anchor” is the expected utility of the prospect under consideration, computed with re-

spect to a baseline probability; the “adjustment” depends upon its exposure to distinct sources

of ambiguity, as well as its variation away from the anchor at states that the individual deems

ambiguous. Formally, an act f , mapping each stateω ∈Ω to a consequence x ∈ X , is evaluated

via the functional

V ( f ) = Ep [u ◦ f ]+A
�

�

Ep [ζi ·u ◦ f ]
�

0≤i<n

�

. (1)

In Eq. (1), u : X →R is a von Neumann-Morgenstern utility function; p is a baseline probability

on Ω, and Ep is the corresponding expectation operator; n ≤∞ and, for 0 ≤ i < n , ζi is a ran-

dom variable, or adjustment factor, that satisfies Ep [ζi ] = 0; and the function A :Rn →R satisfies

A(0) = 0 and A(−φ) = A(φ) for every vector φ ∈ Rn . As is demonstrated in S09, VEU specifica-

tions of preferences can be analytically tractable, yet retain sufficient flexibility to accommo-

date a wide variety of preference patterns and ambiguity attitudes. For instance, a simple VEU

specification can rationalize the well-known “reflection example” proposed by Machina (2009);

by way of contrast, popular models of choice, including Choquet expected utility and all deci-

sion models satisfying the “Uncertainty Aversion” axiom of Schmeidler (1989) are inconsistent

with the preferences in Machina’s example (Baillon et al., forthcoming).

The objective of the present paper is to develop and axiomatize recursive VEU preferences.

Following Epstein and Schneider (2003) (henceforth ES), the basic objects of choice are contin-

gent consumption plans, or simply “plans,” adapted to a given sequence of progressively finer

partitions—that is, an event tree. The individual is endowed with preferences conditional upon

every time and state (subject to the natural measurability restrictions). In the proposed recur-

sive formulation, preferences conditional upon (t ,ω) are represented by a functional Ut ( f ,ω)

that satisfies the recursive relation

Ut ( f ,ω) = u ( f t (ω))+βEp [Ut+1( f , ·)|Ft (ω)]+A t ,ω

�

βEp [ζt ,ω ·Ut+1( f , ·)|Ft (ω)]
�

. (2)

In Eq. (2), f denotes a plan, which is a collection of suitably measurable acts f t representing

2



state-contingent consumption at time t , and Ft (ω) denotes the cell of the time-t partition

containingω. The adjustment factors ζt ,ω and adjustment functions A t ,ω are permitted to vary

with time and state; the details are discussed in Sec. 2.3.

Two key features of the recursive VEU representation are worth emphasizing. First, at each

time t and state ω, the baseline probability employed in Eq. (2) is simply the Bayesian update

of the time-0 baseline prior p . This reinforces the central role of the baseline prior in the VEU

model. Furthermore, it suggests that its “anchoring and adjustment” interpretation extends

to dynamic settings: the DM acts as if she first specified the law of motion for the underlying

uncertainty, and then adjusted it in view of ambiguity. Finally, as in the static setting, the fact

that all expectations are taken with respect to a single probability measure can enable tractable

specifications, again even in dynamic settings.

The second noteworthy feature is the fact that the adjustment factorsζt ,ω areFt+1-measurable.

The interpretation is that, in each time period, ambiguity concerns one-step-ahead probabili-

ties, rather than the entire continuation process. This is in line with the intuition that the DM

distorts the law of motion to account for ambiguity, but does so in a manner consistent with

recursion.

Recursive VEU preferences also admit a direct, “dynamic VEU” representation that explicitly

involves contingent consumption plans:

Ũt ( f ,ω) = Ep





∑

τ≥t

βτ−t u ◦ fτ
�

�Ft (ω)



+ Ã t ,ω

 

Ep





∑

τ≥t+1

ζt ,ω
τ ·β

τ−t u ◦ fτ
�

�Ft (ω)





!

. (3)

The adjustment functions and factors in Eq. (3) are required to satisfy a time-separability con-

dition, reminiscent of ES’s notion of rectangularity (their Def. 3.1), and even more closely Mac-

cheroni et al. (2006b)’s Eq. (11). This dynamic representation suggests that recursive VEU pref-

erences are a bona fide intertemporal version of atemporal VEU preferences.

While, as noted above, the adjustment function is permitted to vary with time and state, this

is of course not required; indeed, S09 (see in particular Prop. 3 and 4) suggests ways to ensure

axiomatically that the same adjustment function is used in every period. On the other hand, it is

interesting to note that the recursive VEU specification can model an individual who may react

to information by becoming more or less ambiguity-averse, but do so in a fully time-consistent

way.
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Finally, a notion of exchangeability is introduced in a setting in which uncertainty is cap-

tured by the realizations of a sequence of random variables X0, X1, . . . taking value in some finite

setX . The proposed notion delivers a representation of the baseline prior p à la De Finetti: for

every event E ,

p (E ) =

∫

∆(X )

`∞(E )dµ(`),

where ∆(X ) is the set of probabilites onX , with typical element `, and `∞ represents the i.i.d.

product measure corresonding to ` ∈ ∆(X ). For recursive VEU preferences, the baseline pos-

teriors p (·|Ft (ω)) admit a similar representation, but the integrating measure is obtained from

µ via Bayes’ Rule. This provides a behavioral foundation for parametric learning in the VEU

model.

As in ES, the key axiom adopted in this paper is dynamic consistency. This requires that,

if the DM deems a plan f at least as good as another plan f ′ at time t + 1, regardless of the

realization of the time-t uncertainty, then she should also rank f above f ′ at time t . ES axioma-

tize recursive maxmin expected-utility (MEU) preferences (Gilboa and Schmeidler, 1989); they

show that dynamic consistency ensures that the DM’s set of initial beliefs will be updated prior-

by-prior via Bayes’ rule. An analogous property holds here: as noted above, the DM’s baseline

prior is updated via Bayes’ Rule. Similar properties do not hold uniformly for all recursive mod-

els of choice under ambiguity; for instance, in the recursive smooth model of Klibanoff et al.

(2009), Bayesian updating of the second-order prior is not a consequence of dynamic consis-

tency alone.

It is also worth noting that the proposed notion of exchangeability is compatible with full

dynamic consistency. Epstein and Seo (2010) axiomatize an exchangeable version of the atem-

poral multiple-priors model; however, they employ a weak (i.e. partial) dynamic consistency

condition. By way of contrast, their exchangeability requirement is stronger than the notion

adopted here.

As an example, this paper considers a version of the Lucas (1978) economy wherein agents

have recursive VEU preferences. A characterization of equilibrium asset prices is provided,

along with preliminary observations on the features of the stochastic discount factor.
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2 Notation and Definitions

2.1 Basics

The following notation is standard. Consider a set Ω (the state space) and a sigma-algebra Σ of

subsets ofΩ (events). It will be useful to assume that the sigma-algebraΣ is countably generated:

that is, there is a countable collection S = (Si )i≥0 such that Σ is the smallest sigma-algebra

containing S . All finite and countably infinite sets, as well as all Borel subsets of Euclidean

n-space, and more generally all standard Borel spaces (Kechris, 1995) satisfy this assumption.

Information is described via an event tree. Formally, fix a sequence (Ft )t≥0 of sigma-algebra

generated by progressively finer, finite partitions of Ω; F0 is assumed to be trivial. For every

ω ∈ Ω and t ≥ 0, denote by Ft (ω) the cell of the partition generating Ft that contains ω. It

is convenient to refer to a pair (t ,ω) as a node, which evokes the underlying event tree. Also

assume that

∀(Ek )k≥0 ⊂
⋃

t≥0

Ft s.t. ∀k , Ek ⊃ Ek+1 :
⋂

k≥0

Ek 6= ;. (4)

That is, any decreasing sequence of conditioning events has a non-empty intersection. This

assumption holds if, for instance, Ω is the set of realizations of a sequence (X t )t≥0 of random

variables, such that each X t takes values in some finite setXt , andFt =σ(X0, . . . , X t−1) (in par-

ticular,F0 = {Ω} by convention). In this case, every E t ∈Ft is of the form E t = {(x0, . . . ,x t−1)}×
∏

τ≥t Xτ; a sequence (Ek ) as in Eq. (4) must then be of the form {(x0, . . . ,x tk−1)} ×
∏

τ≥tk
Xτ

for some non-decreasing sequence (tk )k≥0, and if tk → ∞, then
⋂

k≥0 Ek consists of the point

(x t )t≥0 ∈Ω.

Denote by B0(Σ) the set of Σ-measurable real functions with finite range, and by B (Σ) its

sup-norm closure. The set of countably additive probability measures onΣ is denoted by ca1(Σ).

For any probability measure π ∈ ca1(Σ) and function a ∈ B (Σ), let Eπ[a ] =
∫

Ω
a dπ, the standard

Lebesgue integral of a with respect to π. Finally, a ◦b :X →Z denotes the composition of the

functions b :X →Y and a :Y →Z .

Additional notation is useful to streamline the definition and analysis of the VEU represen-

tation. Given m ∈Z+∪{∞} and a finite or countably infinite collection z = (z i )0≤i<m of elements

of B (Σ), let Eπ[z · a ] = (Eπ[z i ·a ])0≤i<m if m > 0, and Eπ[z · a ] = 0 if m = 0. For any collection
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F ⊂ B (Σ), let E (F ;π, z ) = {Eπ[z ·a ]∈Rm : a ∈ F }. Finally, let 0m denote the zero vector in Rm .

Turn now to the decision setting. Consider a convex set X of consequences (outcomes,

prizes). As in Anscombe and Aumann (1963), X could be the set of finite-support lotteries over

some underlying collection of deterministic prizes (e.g. consumption), endowed with the usual

mixture operation. Alternatively, the set X might be endowed with a subjective mixture op-

eration, as in Casadesus-Masanell et al. (2000) or Ghirardato et al. (2003). It is convenient to

assume that a preference ¼X on X is given at the outset; the orderings considered below will be

assumed to extend ¼X in a suitable sense.

The objects of choice in an atemporal setting are acts, i.e. Σ-measurable functions fromΩ to

X ; the set of all simple (i.e. finite-range) acts is denoted F s . As e.g. in Schmeidler (1989), denote

by F b the set of acts f for which there exist x ,x ′ ∈X such that x ¼X f (ω)¼X x ′ for allω∈Ω.

Turn now to the objects of choice in a dynamic setting. For a given filtrationF = (Ft )t≥0, a

time-t act is anFt -measurable act; the set of time-t acts is denoted by Ft . A plan is a sequence

f = ( f t )t≥0, where, for every t ≥ 0, f t is a time-t act. Note that, since eachFt is finite, Ft ⊂ F s for

all t ≥ 0. We restrict attentions to bounded plans, i.e. plans for which there exist x ,x ′ ∈ X such

that x ¼X f t (ω)¼X x ′. The set of all bounded plans is denoted F p .

Given a sequence (x t )t≥0 of consequences that is bounded for¼X (that is, for all t ≥ 0, x t ∈X

and there exist x ,x ′ ∈X such that x ¼X x t ¼X x ′ for all t ≥ 0), abuse notation and denote the plan

that delivers x t in each state ω by (x t )t≥0. The set of plans corresponding to non-contingent,

bounded consequence streams is denoted F cs. In particular, if x t = x for some x ∈ X and all

t ≥ 0, denote the corresponding act simply by x . The set of such constant plans is denoted F c .

It is sometimes convenient to denote (x t )t≥0 by (x1, . . . ,x t , . . .) or similar notation.

Finally, given a function u : X →R and a set F of acts, let u ◦ F = {u ◦ f ∈ B (Σ) : f ∈ F }.

2.2 VEU representation: atemporal setting

Begin by reviewing the definition of VEU preferences in an atemporal setting. It is convenient

to state it for an arbitrary collection of atemporal acts. It will be assumed throughout that the

preference relation of interest extends ¼X (i.e. agrees with ¼X on constant acts).

Definition 1 Let F be a non-empty subset of F b . A tuple (u , p , n ,ζ, A) is a VEU representation
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of a preference relation¼ on F if

1. u : X →R is non-constant and affine, p ∈ ca1(Σ), n ∈Z+ ∪{∞} and ζ= (ζi )0≤i<n ;

2. for every 0≤ i < n , ζi ∈ B (Σ) and Ep [ζi ] = 0.

3. A : E (u ◦ F ; p ,ζ)→R satisfies A(0n ) = 0 and A(ϕ) = A(−ϕ) for all ϕ ∈ E (u ◦ F ; p ,ζ);

4. for all a ,b ∈ u ◦F , a (ω)≥b (ω) for allω∈Ω implies Ep [a ]+A(Ep [ζ·a ])≥ Ep [b ]+A(Ep [ζ·b ]);

5. for every pair of acts f , g ∈ F ,

f ¼ g ⇔ Ep [u ◦ f ]+A
�

Ep [ζ ·u ◦ f ]
�

≥ Ep [u ◦ g ]+A
�

Ep [ζ ·u ◦ g ]
�

. (5)

In keeping with standard terminological conventions, a VEU preference is a binary relation that

admits a VEU representation. The statement that (u , p , n ,ζ, A) is “a VEU representation on F ”

will be employed when the focus is on the properties of the tuple (u , p , n ,ζ, A) itself, rather than

the preference that it defines or represents via Eq. (5).

Conditions 1 – 5 are discussed in S09. The monotonicity requirement in Condition 4 also

has a differential characterization: see Ghirardato and Siniscalchi (2009) for details.

Example 1 (The three-color-urn Ellsberg paradox) A ball will be drawn from an urn contain-

ing 30 amber balls and 60 blue and green balls; the relative proportion of blue vs. green balls

is unspecified. Let the state space be Ω = {α,β ,γ} in obvious notation, and let the prize space

be X = {0, 1}. The DM is asked to rank the acts fα = (1, 0, 0) vs. fβ = (0, 1, 0), i.e. (representing

acts as vectors) a bet on amber vs. a bet on blue; then, she is asked to rank fαγ = (1, 0, 1) vs.

fβγ = (0, 1, 1), i.e. a bet on amber or green vs. a bet on blue or green.

The modal preferences are fα � fβ and fαγ ≺ fβγ, which contradict the existence of prob-

abilistic beliefs. To accommodate these preferences within the VEU framework, choose a uni-

form baseline prior p , define a single (n = 1) adjustment factor ζ0 = (0, 1,−1), and let the ad-

justment function be A(ϕ) = −|ϕ|. Notice how the specification of ζ0 captures the fact that

ambiguity about β and γ “cancels out.”

Detailed calculations are provided in S09. For a smooth VEU specification that is also con-

sistent with these preferences, let e.g. A(ϕ) =−ϕ · tanhϕ. �

S09 also provides the following notion of “parsimonious” VEU representation. Adapting a

definition due to Ghirardato et al. (2004), say that an act f ∈ F is crisp if, for every x ∈ X that
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satisfies f ∼ x , and for every g ∈ F s and λ∈ (0, 1],

λg +(1−λ)x ∼λg +(1−λ) f . (6)

Definition 2 Let F denote either F s or F b . A VEU representation (u , p , n ,ζ, A) of a preference

relation¼ on F is sharp if (ζi )0≤i<n is orthonormal and, for any crisp act f ∈ F , Ep [ζ ·u ◦ f ] = 0n .

Theorem 1 in S09 shows that, if a preference admits a VEU representation, then it also ad-

mits a sharp VEU representation. The latter conveys more information about the underlying

preferences: see §4.2 in S09. However, non-sharp specifications may sometimes be more con-

venient for analytical purposes. The same is true in the current setting.

2.3 Recursive VEU preferences

Turn now to the dynamic decision environment. The main object of interest is now an “adapted”

collection of preference relations:

Definition 3 A preference system is a collection (¼t ,ω)t≥0,ω∈Ω such that, for every t ≥ 0:

1. for everyω∈Ω,¼t ,ω is a binary relation on F p ;

2. x ¼t ,ω x ′ iff x ¼X x ′ for all x ,x ′ ∈X ; and

3. ω′ ∈Ft (ω) implies¼t ,ω=¼t ,ω′ .

To simplify notation, I will write (¼t ,ω) in lieu of (¼t ,ω)t≥0,ω∈Ω, and similarly ( f t ) in lieu of ( f t )t≥0.

A representation of the preference system (¼t ,ω) can be provided in two ways. The first, and

most convenient for applications, is recursive:

Definition 4 A tuple
�

u ,β , p , (n t ,ω,ζt ,ω, A t ,ω)t ,ω
�

is a recursive VEU representation of a prefer-

ence system (¼t ,ω) if:

1. for every node (t ,ω),ω′ ∈Ft (ω) implies (n t ,ω,ζt ,ω, A t ,ω) = (n t ,ω′ ,ζt ,ω, A t ,ω′); furthermore,
� β

1−β u , p (·|Ft (ω)), n t ,ω,ζt ,ω, A t ,ω
�

is a VEU representation on Ft+1, and ζt ,ω isFt+1-measurable.

2. for every f ∈ F p , the adapted process
�

Ut ( f , ·)
�

t≥0 recursively defined by

Ut ( f ,ω) = u ( f t (ω))+βEp [Ut+1( f , ·)|Ft (ω)]+A t ,ω

�

βEp [ζt ,ω ·Ut+1( f , ·)|Ft (ω)]
�

, (7)
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is bounded: supt ,ω |Ut ( f ,ω)|<∞;

3. for every node (t ,ω) and plans f , g ∈ F p , f ¼t ,ω g iff Ut ( f ,ω)≥Ut (g ,ω).

A recursive VEU representation is sharp if every VEU representation in 1 is sharp as per Def. 2.

Example 2 Consider a coin of ambiguous bias—the individual ignores which of the two sides is

more likely to come up. The coin will be tossed twice; represent the state space in obvious nota-

tion asΩ= {HH , HT , TH , TT}. The event tree is defined byF0 = {Ω};F1 =
�

{HH , HT},{TH , TT}
	

.

In other words, at date 0 the individual has no information; at date 1 she learns the outcome of

the first coin toss; and at date 2 all uncertainty is resolved. We consider a plan f corresponding

to a bet on H on the first toss and T on the second.

To characterize VEU preferences, assume that the baseline prior p is uniform, that utility is

linear, and that, at every t and ω, the adjustment function is A t ,ω(ϕ) = −θ |ϕ|, for some suit-

able θ > 0. The adjustment factors are defined in Table 1, which also explicitly describes the

components (acts) f 0, f 1, f 2 of the plan f .

ω HH HT TH TT

ζ1,HH ,ζ1,HT 1 -1 0 0

ζ1,TH ,ζ1,TT 0 0 1 -1

ζ0,ω 1 1 -1 -1

f 2 0 1 0 1

f 1 1 1 0 0

f 0 0 0 0 0

Table 1: Adjustment factors in the coin-toss example.

I now calculate the utility indices assigned to f at various times t and statesω. First, at the

terminal date t = 2, U2( f ,ω) = f 2(ω), due to the assumption of linear utility. Moving back one

period, we have

U1( f , HH) =U1( f , HT ) = 1+β
�

1

2
0+

1

2
1

�

−θ
�

�

�

�

β

�

1

2
(0)(1)+

1

2
(1)(−1)

�

�

�

�

�

= 1+
1

2
β (1−θ );

similarly U1( f , TH) =U1( f , TT ) = 0+ 1
2
β (1−θ ).
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Finally, at time 0,

U0( f ,ω) = 0+β
�

1

2

�

1+
1

2
β (1−θ )

�

+
1

2

�

0+
1

2
β (1−θ )

��

−βθ
�

�

�

�

1

2

�

1+
1

2
β (1−θ )

�

(1)+
1

2

�

0+
1

2
β (1−θ )

�

(−1)

�

�

�

�

=
1

2
(1−θ )(β +β 2).

�

As noted in the Introduction, recursive VEU preferences are fully specified by “one-step-

ahead” VEU representations, as per part 1 of Def. 4. The utility process (Ut ( f , ·)) is defined

recursively via Eq. (7). Proposition 2 in the Appendix employs standard contraction-mapping

techniques to show that Eq. (7) always admits a unique bounded solution, so the boundedness

requirement in part 2 of Def. 4 is not restrictive.1

The one-step ahead representations employ a rescaled utility function β

1−β u . To see why

this is necessary, observe that, from Eq. (7), Ut ( f ,ω) is the sum of the utility delivered at time

t in state w , u ( f t (ω)), and the VEU evaluation of Ut+1( f , ·), discounted by β . If f delivers

prizes bounded below by x and above by x ′, for suitable x ,x ′ ∈ X , then it stands to reason that

Ut+1( f ,ω′) ∈ [u (x )
1−β , u (x ′)

1−β ] for all ω′ ∈ Ω; indeed, Proposition 2 shows that this is the case. Thus,

to ensure that Ut ( f ,ω) is well-defined for all f ∈ F p , the one-step-ahead VEU representation

employed in Eq. (7) must be defined for functions taking values in β

1−β u (X ), as required in part

1 of Def. 4.

It is worth emphasizing that the monotonicity requirement in Condition 4 is only imposed

on the (induced) preferences over acts in Ft+1—not over plans. Verifying this condition is no

harder than checking for monotonicity in the atemporal setting; in particular, the sufficient

conditions in Appendix A of S09 apply, or one can employ the characterization provided by

Ghirardato and Siniscalchi (2009, Prop. 23). As shown in the proof of necessity in Theorem

1, Condition 4 is enough (given the overall structure of recursive VEU preferences) to deliver

monotonicity with respect to arbitrary plans.

1In principle, there could be unbounded solutions to Eq. (7); such solutions would define preferences that do

not necessarily satisfy the axioms in the following section.
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2.4 Infinite-horizon representation and time-separable adjustments

A preference system can alternatively be represented by functionals defined over entire (contin-

uation) utility processes. This representation will in general not be especially useful in applica-

tions; however, it is a direct extension of the atemporal VEU representation in Def. 1. Theorem 1

shows that the recursive and dynamic VEU representations (with time-separable adjustments)

describe the same behavior; hence, the following definition effectively serves as a bridge be-

tween the atemporal theory in S09 and the recursive theory that is the focus of this paper.

Definition 5 A tuple
�

u ,β , p , (ñ t ,ω, ζ̃t ,ω, Ã t ,ω)t ,ω

�

is a dynamic VEU representation of a prefer-

ence system (¼t ,ω) if:

1. u : X → R is non-constant affine, β ∈ (0, 1), p ∈ ca1(Σ), ñ t ,ω ∈ Z+ ∪ {∞} and ζ̃t ,ω =

(ζt ,ω
iτ )0≤i<ñ t ,ω,τ>t , with ζt ,ω

iτ Fτ-measurable for all i and τ; if ω′ ∈ Ft (ω), then (n t ,ω, ζ̃t ,ω, Ã t ,ω) =

(n t ,ω′ , ζ̃t ,ω′ , Ã t ,ω′); and p (Ft (ω))> 0 for all (t ,ω);

2. for all (t ,ω) and 0≤ i < ñ t ,ω, supτ>t ,ω′∈Ω |ζ
t ,ω
iτ (ω′)|<∞; for all τ> t , Ep [ζ

t ,ω
iτ |Ft (ω)] = 0;

3. for all (t ,ω), Ã t ,ω :
¦

Ep

�
∑

τ≥t+1β
τ−tζt ,ω

τ ·u ◦ fτ|Ft (ω)
�

: f ∈ F p
©

→R satisfies Ã t ,ω(0ñ t ,ω) =

0, Ã t ,ω(ϕ) = Ã t ,ω(−ϕ), and Ã t ,ω = Ã t ,ω for allω′ ∈Ft (ω);

4. for every (t ,ω), the functional Ũt ,ω : F p →R defined by

Ũt ( f ,ω) = Ep





∑

τ≥t

βτ−t u ◦ fτ
�

�Ft (ω)



+ Ã t ,ω

 

Ep





∑

τ≥t+1

βτ−tζt ,ω
τ ·u ◦ fτ

�

�Ft (ω)





!

. (8)

is monotonic: if f , g ∈ F p are such that u ( fτ(ω′))≥ u (gτ(ω′)) for allω′ ∈Ft (ω) and τ≥ t , then

Ũt ,ω( f )≥ Ũt ,ω(g ).

5. for every node (t ,ω), the preference¼t ,ω is represented by Ut ( f ,ω)

A dynamic VEU representation has time-separable adjustments if

Ã t ,ω

 

Ep





∑

τ≥t+1

βτ−tζt ,ω
τ ·u ◦ fτ

�

�Ft (ω)





!

= Ã t ,ω

�

βEp

�

ζt ,ω
t+1 ·Ut+1( f , ·)

�

�Ft (ω)
��

+ (9)

+βEp



Ã t+1,·

 

Ep





∑

τ≥t+2

βτ−t−1ζt+1,·
τ ·u ◦ fτ

�

�Ft+1(·)





!

�

�

�Ft (ω)



 .

As in Def. 4, the adjustment functions Ã t ,ω and factors ζ̃t ,ω are state-dependent and con-

stant on every cellFt (ω); the time-τ> t components ζt ,ω
iτ areFτ–measurable.
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Conditions 1–5 mirror their counterparts in Def. 1. Time-separability of adjustments corre-

sponds to ES’s notion of rectangularity: cf. their Def. 3.1, and also Maccheroni et al. (2006b, Eq.

(11)). The intuition is as follows. Fixing a plan f = ( fτ)∈ F p , and a node (t ,ω), the DM can com-

pute adjustments to the entire utility stream (u ◦ fτ)τ≥t : this is what the l.h.s. of Eq. (19) does.

Alternatively, the DM can compute an adjustment to the continuation values Ut+1( f , ·), which

reflects ambiguity about the resolution of time-(t +1) uncertainty; but this still does not capture

ambiguity about the resolution of subsequent uncertainty. To remedy this, the DM considers

the possible ways in which time-(t + 1) uncertainty can resolve, i.e. imagine her situation at a

node of the form (t +1,ω′) for someω′ ∈Ft (ω), and compute the adjustment to the subsequent

utility stream (u ◦ fτ)τ≥t+1; then, to evaluate such future adjustments from the perspective of the

current node (t ,ω), the individual takes the appropriate conditional expectation. Eq. (19) states

that these two procedures are equivalent.

Thus, time-separability of adjustments, like rectangularity, captures the assumption that

ambiguity about the immediate future can somehow be isolated from ambiguity about the dis-

tant future. This is essential (that is, necessary and sufficient) for dynamic VEU preferences to

admit a recursive VEU representation as well—that is, for dynamic consistency to hold.

3 Axiomatic Characterization of VEU preferences

The axiomatics are similar in spirit to Epstein and Schneider (2003) (ES henceforth), but some

modifications are necessary due to the nature of VEU preferences. Specifically, at each node

(t ,ω), preferences are assumed to satisfy a slight strengthening of the VEU axioms that, es-

sentially, ensures that baseline preferences over consequence streams admit a time-separable

representation. Then, one adds axioms that deliver geometric discounting for consequence

stream, consequentialism, and dynamic consistency.

Begin by adapting the VEU axioms in S09. Mixtures of plans are interpreted state-wise and

time-wise: that is, if f = ( f t )t≥0 and g = (g t )t≥0, then α f +(1−α)g =
�

α f t +(1−α)g t
�

t≥0, where

[α f t +(1−α)g t ](ω) =α f t (ω)+ (1−α)g t (ω) for all t ,ω.

Axiom 1 (Weak Order) For each (t ,ω),¼t ,ω is transitive and complete.

12



Axiom 2 (Monotonicity) For each (t ,ω) and all plans f = ( f t )t≥0, g = (g t )t≥0 ∈ F p , if fτ(ω′)¼t ,ω

gτ(ω′) for all τ≥ 0 andω′ ∈Ω, then f ¼t ,ω g .

Axiom 3 (Continuity) For each (t ,ω) and all plans f , g , h ∈ F p , the sets {α ∈ [0, 1] : α f + (1−

α)g ¼t ,ω h} and {α∈ [0, 1] : h ¼t ,ω α f +(1−α)g } are closed.

Axiom 4 (Non-Degeneracy) For each (t ,ω), not for all f , g ∈ F p , f ¼t ,ω g .

Axiom 5 (Weak Certainty Independence) For all plans f , g ∈ F p , x , y ∈ X , and α ∈ (0, 1): α f +

(1−α)x ¼t ,ω αg +(1−α)y implies α f +(1−α)x ¼t ,ω αg +(1−α)y .

The following axiom is a version of monotone continuity, adapted to the present dynamic

setting. It is required because, while each partition Ft is finite, the time horizon is infinite,

and so there is a countable infinity of events that are relevant to the individual’s decisions. The

following notation streamlines the statement of the axiom: for f ∈ F p and x ∈ X , let [ f = x ] =

{(t ,ω) : f t (ω) = x }.

Axiom 6 (Monotone Continuity) Fix a node (t ,ω) and consequences x , y , z ∈ X such that x �

y � z . Consider sequences ( f k )k≥0, (g k )k≥0 ⊂ F p such that, for every k ≥ 0 and (t ′,ω′), either

f k
t ′ (ω

′) = z and g k
t ′(ω

′) = x or f k
t ′ (ω

′) = x and g k
t ′(ω

′) = z . If [ f k = z ]⊃ [ f k+1 = z ] and
⋂

k≥0[ f
k =

z ] = ;, then there is k ≥ 0 such that f k �t ,ω y �t ,ω g k .

I now strengthen the axiomatics relative to the atemporal setting. First, note that, unlike

ES, the Monotonicity and Weak Certainty Independence are exactly as in the atemporal setting:

they are merely adapted to the present environment. However, in keeping with the spirit of the

VEU decision model, baseline preferences are required to satisfy an additional time-separability

assumption. To formalize it and the central axiom for VEU preferences, Complementary Inde-

pendence, the following definitions are required.

Definition 6 Two plans f = ( f t )t≥0, f̄ = ( f̄ t )t≥0 ∈ F p are complementary if and only if, for any

two statesω,ω′ ∈Ω, and all times t ≥ 0,

1

2
f t (ω)+

1

2
f̄ t (ω)∼X 1

2
f t (ω′)+

1

2
f̄ t (ω′).

If two plans f , f̄ ∈ F p are complementary, then ( f , f̄ ) is referred to as a complementary pair.

13



Def. 6 adapts the corresponding notion in S09, but is weaker in the present setting. In particular,

the 1
2

: 1
2

mixtures of time-t acts in two complementary plans must be constant within each

time period, but may vary across time periods. The intuition is that there is no need to “smooth

discounted utilities across time”: ambiguity only concerns states and events.

Next, adopt the notion of crisp acts in S09, who in turn borrows/adapts it from Ghirardato

et al. (2004). A crisp act “behaves like a constant” in mixtures:

Definition 7 A plan f ∈ F p is crisp if and only if, for any node (t ,ω), prize x ∈ X , plan g ∈ F p

and λ∈ (0, 1),

f ∼t ,ω x ⇒ λ f +(1−λ)g ∼t ,ω λx +(1−λ)g .

The two main time-separability assumptions can now be stated. First, adopt the Mono-

tonicity axiom of ES, but restrict it to comparisons of complementary plans:

Axiom 7 (Complementary Stream Monotonicity) For each (t ,ω) and all complementary plans

f = ( f t )t≥0, f̄ = ( f̄ t )t≥0 ∈ F p ,
�

f t (ω)
�

t≥0 ¼t ,ω
�

f̄ t (ω))t≥0 for allω∈Ω implies f ¼t ,ω f̄ .

Second, ensure that there is no hedging of discounted utilities across time:

Axiom 8 (Crisp Streams) Every consequence stream (x t )∈ F cs is crisp.

Finally, the key axiom for recursive VEU preferences, Complementary Independence, is

stronger than in S09, because the notion of complementarity is weaker.

Axiom 9 (Complementary Independence) For each (t ,ω), any two complementary pairs ( f , f̄ )

and (g , ḡ ) in F p , and all α∈ [0, 1]: f ¼t ,ω f̄ and g ¼t ,ω ḡ imply α f +(1−α)g ¼t ,ω α f̄ +(1−α)ḡ .

A final assumption is needed (unmodified from S09):

Axiom 10 (Complementary Translation Invariance) For each (t ,ω), all complementary pairs

( f , f̄ ) in F p , and all x , x̄ ∈X with f ∼t ,ω x and f̄ ∼t ,ω x̄ : 1
2

f + 1
2

x̄ ∼t ,ω
1
2

f̄ + 1
2

x .

Next, turn to the axioms pertaining to dynamic choice. I maintain the terminology in ES.

Axiom 11 (Conditional Preference—CP) For all nodes (t ,ω) and f , f ′ ∈ F p : if fτ(ω′) = f ′τ(ω
′)

for all τ≥ t andω′ ∈Ft (ω), then f ∼t ,ω f ′.
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Axiom 12 (Risk Preference—RP) For every (x t )∈ F cs, and x ,x ′, y , y ′ ∈X : if (x0, . . . ,xτ−2,x ,x ′,xτ+1,xτ+2 . . .)¼t ,ω

(x0, . . . ,xτ−2, y , y ′,xτ+1,xτ+2 . . .) for some (t ,ω) and τ ≥ t , then this is true for every (t ,ω) and

τ≥ t .

Axiom 13 (Impatience—IMP) For all nodes (t ,ω), x ∈X , and f , f ∗, f ∗∗ ∈ F p : if f ∗ ≺t ,ω f ≺t ,ω f ∗∗

and f n = ( f 0, . . . , f n ,x ,x , . . .), then f ∗ ≺t ,ω f n ≺t ,ω f ∗∗ for all large n .

As usual, for τ > t , say that A ∈ Ft is ¼t ,ω–null if ( f t ′(ω′))t ′≥0 = ( f ′t ′(ω
′))t ′≥0 for all ω′ 6∈ A

implies that f ∼t ,ω f ′.

The key axiom is the standard consistency requirement, applied to decision trees based

upon the filtrationF .

Axiom 14 (Dynamic Consistency—DC) For every node (t ,ω) and f , f ′ ∈ F p : if fτ = f ′τ for all

τ≤ t , and f ¼t+1,ω′ f ′ for allω′, then f ¼t ,ω; and the latter ranking is strict if the former is strict

at everyω′ in a¼t ,ω–non-null event.

Finally, ensure that all conditioning events “matter”:

Axiom 15 (Full Support–FS) Every A ∈
⋃

t≥0Ft is¼0–non-null.

Note that, since there is a single time-0 preference, we can write ¼0 in lieu of ¼0,ω.

The main characterization result can now be stated.

Theorem 1 Fix a preference system (¼t ,ω) on F p . The following statements are equivalent:

(1) Axioms 1–15 hold

(2) (¼t ,ω) admits a (sharp) recursive VEU representation
�

u ,β , p , (n t ,ω,ζt ,ω, A t ,ω)t≥0,ω∈Ω
�

.

(3) (¼t ,ω) admits a dynamic VEU representation
�

u ,β , p , (ñ t ,ω, ζ̃t ,ω, Ã t ,ω)t≥0,ω∈Ω
�

with time-

separable adjustments.

In (2), p and β are unique, and if
�

ū ,β , p , (n̄ t ,ω, ζ̄t ,ω, Ā t ,ω)t≥0,ω∈Ω
�

is another recursive VEU

representation of (¼t ,ω), then p ′ = p , ū =αu+γ for someα,γ∈Rwithα> 0, and for every (t ,ω)

there is a linear surjection Tt ,ω : E ( β
1−β ū ◦Ft+1; p (·|Ft (ω)), ζ̄t ,ω)→ E ( β

1−β u ◦Ft+1; p (·|Ft (ω)),ζ)
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such that

∀ā ∈
β

1−β
u ◦Ft+1, Tt ,ω

�

Ep [ζ̄t ,ω · ā ]
�

=
1

α
Ep [ζt ,ω·ā ] and Ā t ,ω

�

Ep [ζ̄t ,ω · ā ]
�

=αA t ,ω

�

Tt ,ω

�

Ep [ζ̄t ,ω · ā ]
��

.

(10)

Finally, if the representation in (2) is sharp, then n t ,ω ≤ |Ft+1| −1.

For elaboration on the uniqueness statement, please refer to S09.

4 Exchangeability

In order to analyze exchangeability for recursive VEU preferences, assume that the underlying

uncertainty concerns the realization of a stochastic process (X t )t≥0, where each random vari-

able X t takes values in the finite setX . This is a special case of the environment considered in

Sec. 2, withFt =σ(X0, . . . , X t−1) for all t ≥ 0; it is also, essentially, the environment considered

by Epstein and Seo (2010). Recall that, for every E t ∈Ft ,

E t = {(x0, . . . ,x t−1)}×X∞. (11)

We also let Σ=σ(
⋃

t≥0Ft ), the product sigma-algebra onX∞.

Now fix t > 0 and (x0, . . . ,x t−1) ∈ X t . For y , z ∈ X , the notation (y , (x0, . . . ,x t−1); z ) indicates

the plan f ∈ F p such that fτ = z for τ 6= t , f t (ω) = y forω ∈ {(x0, . . . ,x t−1)}×X∞, and f t (ω) = y

forω 6∈ {(x0, . . . ,x t−1)}×X∞. For y > z , every such plan is a “bet” on the event “X0 = x0, . . . , X t−1 =

x t ” that “pays” y at time t if it is successful, and z otherwise; the bet also pays z at all other

times. Finally, for t > 0, letP t denote the class of permutations of {0, . . . , t −1}.

The main axiom can now be stated. First, although this paper focuses on recursive VEU

preferences, the characterization of exchangeability applies as long as ¼0 is a dynamic VEU

preference, i.e. the time-0 component of a dynamic VEU representation as per Def. 5. Thus,

the focus will be on a dynamic VEU preference ¼0, and the axiom will concern ¼0 alone, rather

than an entire preference system.

For a (time-0) EU preference ¼∗0, the intuition behind exchangeability is simple: a bet on

some time-t realization (x0, . . . ,x t−1) should be just as good as a bet on any permutation (xπ(0), . . . ,xπ(t−1)),

for π∈P t . This basic intuition underlies the exchangeabiity axiom(s) considered, for instance,
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in Epstein and Seo (2010). The proof of Theorem 2 shows that, indeed, such condition is equiv-

alent to the assumption that the probability measure p ∗ representing the EU preference ¼∗0 is

indeed exchangeable, and hence admits a de Finetti-style representation as an average of prod-

uct probability measures.

While ¼0 is not an EU preference in general, the objective of this section is to indentify a

condition that ensures that the baseline prior p in the VEU representation of¼0 is exchangeable.

The restriction just described would be much too strong; however, a suitable assumption can

be formulated leveraging the notion of complementarity, which is central to VEU preferences.

The basic intuition is as follows. Recall that complementary plans (or, in S09, acts) are

ranked solely via their baseline EU evaluation, as adjustment terms cancel out. Now suppose

that a bet f “on” a sequence (x0, . . . ,x t−1) is (weakly) preferred to a complementary plan f̄ , which

must then be, essentially, a bet “against” the same sequence, possibly involving different prizes.

Then, if g , ḡ are complementary, g represents a bet “on” a permutation (xπ(0), . . . ,xπ(t−1)) of the

original sequence, and ḡ represents a bet “against” that permutation, the exchangeability intu-

ition suggests that g ¼0 ḡ —provided, of course, the prizes involved in the bets f , g and, respec-

tively, f̄ , ḡ are the same. This is precisely what the following axiom requires.

Axiom 16 (Complementary Exchangeability) For all t > 0, (x0, . . . ,x t−1) ∈ X t , π ∈ P t , and

y , z ∈ X with y � z : if ( f , f̄ ) and (g , ḡ ) are complementary pairs with f = (y , (x0, . . . ,x t−1); z ),

g = (y , (xπ(0), . . . ,xπ(t−1)); z ), and 1
2

fτ+ 1
2

f̄τ = 1
2

gτ+ 1
2

ḡτ for all τ≥ 0, then f ¼0 f̄ implies g ¼0 ḡ .

The main result of this section can now be stated. Denote ba1(2X ) simply by ∆(X ); for

`∈∆(X ), let `∞ be the corresponding i.i.d. product measure onX∞, endowed with the product

sigma-algebra.

Theorem 2 Let¼0 be a dynamic VEU preference, with baseline prior p . Then Axiom 16 holds if

and only if there exists a (unique) µ∈∆(X ) such that p =
∫

∆(X )
`∞dµ(`).

The result holds a fortiori for recursive VEU preferences. Thus, Complementary Exchange-

ability is compatible with full dynamic consistency; by comparison, as noted in the Introduc-

tion, Epstein and Seo (2010) are careful to point out that their notion of exchangeability can

only be accommodated in a setting where a weak form of dynamic consistency holds.

17



Recall that Bayesian updating of the baseline prior is a key feature of recursive VEU prefer-

ences, and one that is ensured by Axiom DC. Theorem 2 then has an immediate,2 but important

Corollary:

Corollary 1 Let (¼t ,ω) be a recursive VEU preference system, with p ∈ ca1(Σ) as baseline prior;

also let µ be as in Theorem 2. Then, for every t > 0, (x0, . . . ,x t−1) ∈ X t , and rectangle A =

A0×A2× . . .∈Σ,

p (A |X0 = x0, . . . , X t−1 = x t−1) =

∫

∆(X )

∏

τ≥t

`(Aτ)dµ(x0,...,xt−1)(`),

where

dµ(x0,...,xt−1)(`) =

∏t−1
τ=0 `(xτ)dµ(`)

∫

∆(X )

∏t−1
τ=0

¯̀(xτ)dµ(¯̀)
.

In other words, once Dynamic Consistency and Complementary Exchangeability are com-

bined, one concludes that (1) all conditional preferences are exchangeable, and (2) the beliefs

µ(x0,...,xt−1) are obtained from µ via Bayes’ Rule. This provides a straightforward behavioral foun-

dations for specifications of recursive VEU preferences that feature “learning about parame-

ters.”

5 Applications: Lucas (1978)

I now sketch an application of recursive VEU preferences to the celebrated dynamic stochas-

tic general-equilibrium model developed by Lucas (1978). The objective of the discussion is to

highlight the similarities with the usual EU analysis of this well-known model, and the tractabil-

ity and flexibility of recursive VEU preferences.

The economy features a single, stand-in consumer, characterized by recursive VEU pref-

erences. The stochastic environment is Markovian, with infinite horizon; states of nature can

be represented as ω = (x0,x1, . . .), where x t ∈ X ≡ RJ
+, for some J ≥ 1 (the interpretation will

be provided momentarily). The filtrationF0,F1, . . . reveals the information that, at time t and

state ω = (xτ)τ≥0, only the initial realizations (x0,x1, . . . ,x t−1) is known; this filtration is defined

in the usual way.

2Just note that p (A |X0 = x0, . . . , X t−1 = x t−1) =
∫

∆(X )

∏t−1
τ=0 `(xτ)

∏

τ≥t `(Aτ)dµ(`)
∫

∆(X )

∏t−1
τ=0

¯̀(xτ)dµ(¯̀)
.
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To interpret, imagine that there are J firms, denoted j = 1, . . . , J , producing a single con-

sumption good. Firm j ’s ouput at time t is a random variable x̃ j
t , with realization x j

t . The vector

of random output and realized output for all firms are denoted x̃ t and x t respectively. Thus,

each state encodes the sequence of output realizations for each firm in the economy.

To simplify notation, it is convenient to write expectations in the form Ex [a ] =
∫

a (x̃ )dπ(x̃ |x ),

where I denote the representative agent’s prior byπ and reserve the lowercase letter p for prices.

Similarly, let Ix (a (x̃ )) = Ex [a ]+A(Ex [a ·ζ]): this indicates that we assume stationary adjustment

functions and one-period-ahead adjustment factors ζ = (ζi )0≤i<n . Also assume for simplicity

that A is concave and suitably differentiable, with i -th partial derivative ∂ A/∂ ϕi .

Note that, in this Markovian formulation, adjustment factors are necessarily “about” the

current-period realization of output x̃ (omitting time indices for simplicity), which will become

known only in the next period. In other words, one can write ζ = ζ(x̃ ). Also observe that the

analysis would not change much if adjustment factors and functions were allowed to vary with

the current state x .

In each period, the agent is endowed with a fraction of shares in each firm, and is entitled

to a corresponding share of their output (dividend). This constitutes the agent’s sole source of

income. The agent then decides how much dividend to consume, and how much to adjust his

ownership shares.

Thus, in this economy, an equilibrium is a price function p :X →R+ and a value function

v :RJ+1→R such that:

v (z ,x ) = max
z ′∈[0,1]J ,c≥0

u (c )+ Ix (βv (z ′, x̃ ))

s. to c +p (x ) · z ′ ≤ [x +p (x )] · z

and furthermore, for each x ∈X , v (1J ,x ) is attained by

c =
∑

j

x j and z ′ = 1S .

The latter is the market-clearing condition for both consumption and asset markets. This no-

tion follows closely Lucas’s definition, except that the VEU functional Ix is employed in lieu of

the standard expectation operator.

The following preliminary results can be established:
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Proposition 1 (1) If u orX are bounded, then for every price function p (·) there exists a unique

value function v (·, ·), concave in z .

(2) If p (·) and v (·, ·) constitute an equilibrium, then for all j = 1, . . . , J and x ∈X ,

p j (x ) = Ex

h

Mx (x̃ ) · [x̃ j +p j (x̃ )]
i

,

where Mx is the stochastic discount factor:

Mx (x̃ ) =β
u ′
�
∑

k x̃k

�

u ′
�
∑

k xk

�

(

1+
∑

0≤i<n

∂ A(Ex [βv (1J , x̃ ) ·ζ])
∂ ϕi

ζi

)

.

This result follows by adapting Propositions 1 and 2 in Lucas (1978); the proof is omitted.

A general proof of existence of equilibrium is in progress; for specific parameterizations of the

adjustment factors and function, existence can be established directly, and of course it is not an

issue if the horizon is assumed to be finite.

It is important to emphasize that, in (3), the usual pricing formula via a pricing kernel or

stochastic discount factor (SDF) is obtained: informally, “price = E[SDF · payoff ].” It must be

emphasized that the SDF emerges easily from calculations, just as in the EU case; analogous

pricing exercises employing ambiguity-sensitive preferences often require more complex ma-

nipulations (e.g. Ju and Miao, 2009).

Furthermore, the SDF for VEU preferences has an interesting multiplicative form: it equals

the standard, EU SDF times an “ambiguity adjustment.”

A Proof of Theorem 1

Sufficiency: (1)⇒ (3)⇒ (2). I proceed in a roughly similar fashion as ES’s proof of Theorem 1.

However, differences in the properties of the underlying static preferences necessitate several

departures. The proof of sufficiency is divided up into a sequence of steps.

Atemporal VEU representation. Consider the state space Ω̂ ≡ T ×Ω, where T = {t : t ≥ 0},

endowed with the sigma-algebra Σ̂ generated by F̂ ≡
⋃

t≥0{{t }× E : E ∈ Ft }. Note that, since

F̂ is countably infinite, Σ̂ is countably generated.

It is possible, and useful, to provide further details on the sigma-algebra Σ̂. I claim that Σ̂

consists of all countable unions of elements of F̂ (including by convention the empty union,
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which is equal to ;). Denote by Σ̃ the collection of sets just described; clearly, Σ̃ ⊂ Σ̂, so it is

enough to show that Σ̃ is a sigma-algebra. Note first that F̂ is countably infinite, because each

Ft is finite. Therefore, Ω̂ ∈ Σ̃. It is clear that Σ̃ is closed under countable unions, so it remains

to be shown that it is closed under complements. Fix Ê ∈ Σ̃; then there is a (possibly empty)

collection Ê ⊂ F̂ such that Ê =
⋃

Ê . But then the (possibly empty) collection F̂ \Ê is countable

and its union is Ω̂ \ Ê . This proves the claim.

Every plan f = ( f t ) ∈ F p maps to a bounded, Σ̂–measurable function f̂ : Ω̂ → X (i.e. a

bounded act on Ω̂), by letting f̂ (t ,ω) = f t (ω) for all (t ,ω). Conversely, given a bounded Σ̂–

measurable f̂ : Ω̂ → X , let f t (ω) = f̂ (t ,ω) for all (t ,ω); then f −1
t (x ) = {ω : f t (ω) = x } = {ω :

f̂ (t ,ω) = x }= {ω : {t }×E ⊂ f̂ −1(x )}, which is a union of (finitely many) elements ofFt .

The (sole) preference relation¼0≡¼0,ω then induces a preference ordering ¼̂ over the set F̂ b

of bounded acts on Ω̂. Axioms 1–5 and 10 translate directly into the corresponding axioms of

S09; moreover, for x , y ∈ X , with the usual abuse of notation, x ¼̂y iff x ¼0 y iff x ¼X y . Axiom 9

instead yields a stronger form of the Complementary Independence axiom, because the notion

of complementarity in Def. 6 in is weaker than the corresponding notion in S09. As in ES, the

intuition is that ambiguity pertains to smoothing across states, not across time.

So, it remains to be shown that ¼̂ satisfies Monotone Continuity. Fix consequences x �̂y �̂z

and consider a sequence (Âk )k≥0 ⊂ Σ̂ such that Âk ⊃ Âk+1 and
⋂

k≥0 Âk = ;. For every k , define

f k , g k ∈ F p so that f k
t (ω) = z and g k

t (ω) = x for (t ,ω) ∈ Âk , and f k
t (ω) = x and g k

t (ω) = z for

(t ,ω) 6∈ Âk . Thus, f k and g k correspond to the acts z Âk x and x Âk z on Ω̂. Then the sequences

( f k ) and (g k ) satisfy the assumptions of Axiom 6, so there is k such that f k �0 y �0 g k , hence

z Âk x �̂y �̂x Âk z , as required by Monotone Continuity.

Hence, Theorem 1 in S09 delivers (u , p̂ , ζ̂, Â) such that V0( f̂ ) = Ep̂ [u ◦ f̂ ] + Â(Ep̂ [ζ̂ · u ◦ f̂ ])

represents ¼̂, and hence also ¼0. Assume throughout that this representation is sharp. It is

convenient to map ζ̂= (ζ̂i )0≤i<n to a collection of plans (ζi )0≤i<n , where ζi t (ω) = ζ̂i (t ,ω) for all

(t ,ω). If f ∈ F p is the plan corresponding to f̂ ∈ B (Σ̂, u (X )), it is useful to denote the projection

map from T ×Ω to Ω by πΩ, and write

Ep̂ [u ◦ f̂ ] =
∑

t≥0

Ep̂ [u ◦ f̂ 1{t }×Ω] =
∑

t≥0

Ep̂ [u ◦ f t ◦πΩ1{t }×Ω]≡
∑

t≥0

Ep̂ [u ◦ f t ; t ]
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and, similarly,

Ep̂ [ζ̂i u ◦ f̂ ] =
∑

t≥0

Ep̂ [ζ̂i u ◦ f̂ 1{t }×Ω] =
∑

t≥0

Ep̂ [(ζi t ◦πΩ)(u ◦ f t ◦πΩ)1{t }×Ω] =
∑

t≥0

Ep̂ [ζi t u ◦ f t ; t ]

and thus V0( f ) =
∑

t≥0 Ep̂ [u ◦ f t ; t ]+A
�
∑

t≥0 Ep̂ [ζt ·u ◦ f t ; t ]
�

.

Factorizing p̂ ; Conditional expectation of adjustment factors. The next step is to employ the

stronger axioms adopted here (i.e. Axiom 7, Complementary Stream Monotonicity; Axiom 8,

Crisp Streams; and the stronger form of Complementary Independence) to specialize the rep-

resentation. First, consider a consequence stream (x t ) ∈ F cs: we have, using the fact that states

do not influence outcomes,

V0
�

(x t )
�

=
∑

t≥0

p̂ ({t }×Ω)u (x t )+ Â

 

∑

t≥0

Ep̂ [ζt ; t ]u (x t )

!

.

Now let (x̄ t )∈ F cs be such that 1
2

u (x t )+ 1
2

u (x̄ t ) = γ for all t ; since (x t ) is bounded, such sequence

can always be constructed, as shown in S09. Notice that

Â

 

∑

t≥0

Ep̂ [ζt ; t ]u (x̄ t )

!

= Â

 

∑

t≥0

Ep̂ [ζt ; t ][2γ−u (x t )]

!

= Â

 

−
∑

t≥0

Ep̂ [ζt ; t

!

= Â

 

∑

t≥0

Ep̂ [ζt ; t ]u (x t )

!

,

where the second equality follows from the fact that
∑

t≥0 Ep̂ [ζt ; t ] = Ep̂ [ζ̂] = 0 and the third

from symmetry of Â. Furthermore, let x , x̄ ∈ X be such that (x t ) ∼0 x and (x̄ t ) ∼0 x̄ (these

consequences exist by standard arguments). Since any two consequence streams are comple-

mentary in the sense of Def. 6, Axiom 9 implies that then 1
2
(x t ) + 1

2
(x̄ t ) ∼0

1
2

x + 1
2

x̄ . Then the

equality of adjustment terms derived above, and the fact that 1
2

u (x t )+ 1
2

u (x̄ t ) = γ for all t , imply

that Â
�
∑

t≥0 Ep̂ [ζt ; t ]u (x t )
�

= 0. Thus,

V0
�

(x t )
�

=
∑

t≥0

u (x t )p̂ ({t }×Ω). (12)

Furthermore, by Axiom 8, (x t ) is crisp, and since the VEU representation chosen above is

sharp,
∑

t≥0 Ep̂ [ζt ·u (x t ); t ] = 0. Finally, for every t ≥ 0, fix x , y ∈ X with x �X y and construct a

stream (xτ) such that x t = x and xτ = y for τ 6= t ; then 0 =
∑

τ≥0 Ep̂ [ζτ ·u (xτ);τ] =
∑

τ≥0 Ep̂ [ζτ ·

u (y );τ]+Ep̂ [ζt · (u (x )−u (y )); t ] = Ep̂ [ζt ; t ][u (x )−u (y )]. Thus,

ζ0 = 0, ∀t > 0, Ep̂ [ζt ; t ] = 0 (13)
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where the first equality follows from the fact that ζ0 is measurable wrtoF0 = {Ω}.

I now claim that, for every t ≥ 0, p̂ ({t } × Ω) > p̂ ({t + 1} × Ω) > 0. To see this, Suppose

first that p̂ ({t } × Ω) = 0 for some t ≥ 0. By Monotonicity and Non-Degeneracy (Axioms 2

and 4), there exist x , y ∈ X with x � y . Fix (z t ) ∈ F cs: by Eq. (12) and the stated assumption,

(z 0, . . . , z t−1,x , z t+1, . . .)∼ (z 0, . . . , z t−1, y , z t+1, . . .); but then, Axiom 12, also (z 0, . . . , zτ−1,x , zτ+1, . . .)∼

(z 0, . . . , zτ−1, y , zτ+1, . . .) for any τ ≥ 0. By Eq. (12), this implies that p̂ ({τ} ×Ω) = 0 for all τ ≥ 0:

contradiction.

Similarly, suppose that p̂ ({t }×Ω)≤ p̂ ({t+1}×Ω) for some t ≥ 0. Then, with x , y , (z t ) as above,

Eq. (12) implies (z 0, . . . , z t−1,x , y , z t+2, . . .)´ (z 0, . . . , z t−1, y ,x , z t+2, . . .) and Axiom 12 then implies

(z 0, . . . , zτ−1,x , y , zτ+2, . . .)´ (z 0, . . . , zτ−1, y ,x , zτ+2, . . .) for all τ≥ 0, so p̂ ({τ}×Ω)≤ p̂ ({τ+ 1}×Ω)

for all τ ≥ 0. In particular, 0 < p̂ ({0} ×Ω) ≤ p̂ ({τ} ×Ω) for all τ ≥ 0, which contradicts the fact

that
∑

τ≥0 p̂ ({τ}×Ω)= 1.

Now let λt = p̂ ({t }×Ω) for all t ; also, write Ep̂ [·|{t }×Ω] ≡ Ep̂ [·|t ]. Then λt > λt+1 > 0 for all

t ≥ 0, and for any f ∈ F p ,

V0( f ) =
∑

t≥0

λt Ep̂ [u ◦ f t ◦πΩ|t ]+ Â

 

∑

t≥0

λt Ep̂ [ζt ·u ◦ f t ◦πΩ|t ]

!

.

From p̂ on Ω̂ to p on Ω. The next step is to show that the conditional expectations with re-

spect to p̂ can be replaced with unconditional ones with respect to a measure p on Ω. To sim-

plify the notation, let p̂ (E |t )≡ p̂ (E ×T |Ω×{t }). A preliminary result is required; just like atem-

poral VEU preferences represent the DM’s ranking of complementary acts via their baseline EU

evaluation, recursive VEU preferences represent the ranking of complementary pairs via their

baseline discounted EU evaluation. This requires a proof, because the notion of complemen-

tary plans is weaker than is assumed in S09. The proof relies upon Eq. (13), and thus on Axiom

8 and the strengthened Axiom 9.

Claim: if ( f , f̄ ) are complementary plans, then

f ¼0 f̄ ⇔
∑

t≥0

λt Ep̂ [u ◦ f t ◦πΩ|t ]≥
∑

t≥0

λt Ep̂ [u ◦ f̄ t ◦πΩ|t ]. (14)

To see this, suppose that (γt )t≥0 ⊂R is such that, for every t ≥ 0, u ◦ f t+u ◦ f̄ t = γt . Then, for every

t ≥ 0, λt Ep̂ [ζt ·u ◦ f̄ t ◦πΩ|t ] = Eπ[ζt ·u ◦ f̄ t ; t ] = Eπ[ζt ·γt ; t ]−Eπ[ζt ·u ◦ f t ; t ] =−Eπ[ζt ·u ◦ f t ; t ] =
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−λt Eπ[ζt · u ◦ f t ◦πΩ|t ], where the third equality follows from Eq. (13). Since Â is symmetric

around 0, it follows that A
�
∑

t≥0λt Ep̂ [ζt ·u ◦ f t ◦πΩ|t ]
�

= Â
�
∑

t≥0λt Ep̂ [ζt ·u ◦ f̄ t ◦πΩ|t ]
�

, and

so V0( f )≥V0( f̄ ) reduces to Eq. (14).

Return to the main step. I claim that, for all t ≥ 0 and E ∈Ft , if τ≥ t then p̂ (E |τ) = p̂ (E |t ).

To see this, note first that it is wlog to assume that 0 ∈ int u (X ). Now fix t , E ∈ Ft and find

x , y ∈X such that u (x ), u (y )> 0 and u (x )λt = u (y )λt+1. To see that such prizes exist, recall that

λt > λt+1 > 0, and pick y such that u (y ) > 0. Then u (y )λt > u (y )λt+1 > 0, so there is x with

u (x )∈ (0, u (y )) such that u (x )λt = u (y )λt+1. Finally, define z = λt

λt+λt+1
x + λt+1

λt+λt+1
y . Note that

t−1
∑

τ=0

λτu (z )+λt u (x )+λt+1u (y )+
∑

τ>t+1

λτu (z ) =
t−1
∑

τ=0

λτu (z )+(λt +λt+1)u (z )+
∑

τ>t+1

λτu (z ) = u (z ).

Since 0∈ int u (X ), it is then possible to construct plans f , f̄ such that, for some α> 0,

∀τ,ω, u ◦ fτ(ω) =



















α[u (x )−u (z )] τ= t , ω∈ E

α[u (y )−u (z )] τ= t +1, ω∈ E

0 otherwise,

and u ◦ f̄τ(ω) =−u ◦ fτ(ω).

Clearly, f , f̄ are complementary. Furthermore, the above calculation implies that
�

fτ(ω)
�

τ≥0 ∼
�

f̄τ(ω)
�

τ≥0 for all ω, because
∑

τ≥0λτu ◦ fτ(ω) = 0 = −
∑

τ≥0λτu ◦ fτ(ω) =
∑

τ≥0λτu ◦ f̄τ(ω).

Axiom 7 then implies that f ∼0 f̄ . Therefore,

λtα[u (x )−u (z )]p̂ (E |t )+λt+1α[u (y )−u (z )]p̂ (E |t +1) =

=λtα(−1)[u (x )−u (z )]p̂ (E |t )−λt+1α(−1)[u (y )−u (z )]p̂ (E |t +1)

which simplifies to

λt [u (x )−u (z )]p̂ (E |t )+λt+1[u (y )−u (z )]p̂ (E |t +1) = 0.

Move u (z ) to the rhs and divide both sides by λt p̂ (E |t )+λt+1p̂ (E |t +1):

λt p̂ (E |t )
λt p̂ (E |t )+λt+1p̂ (E |t +1)

u (x )+
λt+1p̂ (E |t +1)

λt p̂ (E |t )+λt+1p̂ (E |t +1)
u (y ) = u (z ) =

λt

λt +λt+1
u (x )+

λt+1

λt +λt+1
u (y ).

Since x 6∼ y because λt >λt+1, this requires

λt p̂ (E |t )
λt p̂ (E |t )+λt+1p̂ (E |t +1)

=
λt

λt +λt+1
⇔ (λt +λt+1)p̂ (E |t ) =λt p̂ (E |t )+λt+1p̂ (E |t +1)
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which implies that p̂ (E |t ) = p̂ (E |t +1), as required.

Now consider S = {;} ∪
⋃

t≥0Ft . Then S is a semiring;3 Define p : S → [0, 1] by p (E ) =

p̂ (E |t ) for E ∈ Ft , and p (;) = 0. It remains to be shown that p thus defined is countably addi-

tive on S , as then the Caratheodory extension theorem will imply that p is countably additive

on σ(S ). Thus, suppose (Ek )k≥0 is a collection of pairwise disjoint elements of S such that
⋃

k Ek = E ∈S (assume E 6= ;, or there is nothing to show). Let Ēk = E \
⋃k
`=0 Ek ; if all such sets

are non-empty, (Ēk ) satisfies the conditions of Eq. (4), and therefore
⋂

k Ēk 6= ;, contradiction.

Thus, Ēk = ; for some k , and hence E =
⋃k
`=0 E`, Ek = ; for ` > k . Let t` be such that E` ∈Ft` for

each `= 0, . . . , k , and define t =max`=0,...,k t`. Then p̂ (E`|t ) = p̂ (E`|t`) = p (E`), and furthermore,

if E ∈Ft̄ , then also t̄ ≤ t and so p̂ (E |t ) = p̂ (E |t̄ ) = p (E ). Hence p (E ) = p̂ (E |t ) =
∑k
`=0 p (E`|t ) =

∑k
`=0 p (E`) =

∑

k≥0 p (Ek ), as required. This completes the proof of the claim.

Finally, for every plan f ∈ F p , Ep̂ [u ◦ f t ◦πΩ|t ] =
∑

E∈Ft
p̂ (E |t )u ◦ f t (ωE ) =

∑

E∈Ft
p (E )u ◦

f t (ωE ) = Ep [u ◦ f t ], whereωE is a generic element of E . Similarly, Ep̂ [ζi t ·u ◦ f t ◦πΩ|t ] = Ep [ζt ·

u ◦ f t ]. Thus, we can write

V0( f ) =
∑

t≥0

λt Ep [u ◦ f t ]+Â

 

∑

t≥1

λt Ep [ζt ·u ◦ f t ]

!

= Ep





∑

t≥0

λt u ◦ f t



+Â

 

Ep





∑

t≥1

ζt ·λt u ◦ f t





!

where Ep [ζi t ] = 0 for all i , t due to Eq. (13). Since ζi 0 = 0, the t = 0 term in the adjustment can

be omitted.

The argument can now be replicated for each (t ,ω), leading to representations

Vt ( f ,ω) = Ep t ,ω





∑

τ≥0

λt ,ω
τ u t ,ω ◦ f t



+ Â t ,ω

 

Ep t ,ω





∑

τ≥t+1

λt ,ω
τ ζ

t ,ω
τ ·u

t ,ω ◦ f t





!

.

The final part of the argument used in the proof of ES’s Lemma A.1 applies here, too; see also

Appendix B therein and note that, while I do not assume ES’s Axiom BW, I do restrict attention to

plans (and constant streams) that are bounded above and below. Conclude that, under Axioms

RP, CP and IMP, for some Bernoulli utility u and discount factor β ∈ (0, 1),

Ut ( f ,ω) = Ep t ,ω





∑

τ≥t

βτ−t u ◦ fτ



+A t ,ω

 

Ep t ,ω





∑

τ≥t+1

βτ−tζt ,ω
τ ·u ◦ fτ





!

, (15)

3By definition ; ∈S . If A, B ∈S , then A∩B is either empty or it coincides with one of A or B . Finally, if A, B ∈S ,

then A \ B is either empty or, if A ∈Ft and B ∈Ft ′ with t ′ > t , it is a union of elements ofFt ′ ⊂S .
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where the adjustment function has been adjusted to account for the normalization of the dis-

count factors; this is a dynamic VEU representation (the properties of A t ,ω and ζt ,ω in Def. (5)

correspond directly to properties of adjustment functions/factors in the atemporal VEU repre-

sentation). Furthermore, Ep t ,ω[ζt ,ω
iτ ] = 0 for all i ,τ, and for all complementary pairs f , f̄ ,

f ¼t ,ω f̄ ⇔ Ep t ,ω





∑

τ≥t

βτ−t u ◦ fτ



≥ Ep t ,ω





∑

τ≥t

βτ−t u ◦ f̄τ



 . (16)

Axiom DC and first recursive formulation. Now consider the implications of Axiom DC. Fix a

node (t ,ω) and a plan f ; then, define a plan g as follows. Let gτ = g t for τ≤ t ; then, for eachω′,

choose g t+1(ω′) ∈ X such that g t+1(ω′)∼t+1,ω′ f [note that the lhs represents a constant stream

equal to g t+1(ω′) in every state and period]; finally, for τ> t +1, let gτ = g t+1.

Hence, by construction (and using the representation derived above), g ∼t+1,ω′ f for allω′,

and Axiom DC then implies that f ∼t ,ω g . Furthermore, by Eq. (15) and the fact that gτ(ω′) =

g t+1(ω) for τ > t + 1 andω′ ∈Ft (ω),
∑

τ≥t+1β
τ−t−1u ◦ gτ(ω′) =Ut+1( f ,ω′) for all τ≥ t + 1 and

allω′ ∈Ft (ω). Hence,

Ut ( f ,ω) =Ut (g ,ω) = Ep t ,ω
�

u ◦ f t +βUt+1( f , ·)
�

+A t ,ω

�

Ep t ,ω

�

ζt ,ω
t+1 ·βUt+1( f , ·)

��

=

=u ◦ f t (ω)+βEp t ,ω
�

Ut+1( f , ·)
�

+A t ,ω

�

βEp t ,ω

�

ζt ,ω
t+1 ·Ut+1( f , ·)

��

.

As in Def. 4, henceforth denote the size of the vector ζt ,ω by n t ,ω. This is almost the recursive

representation in Eq. (7), except for the appearence of the so far arbitrary measures p t ,ω.

Bayesian updating and full support. I now show that p t ,ω = p 0(·|Ft (ω)). As above, it is wlog

to assume that 0 ∈ int u (X ); let z ∈ X be such that u (z ) = 0. Also choose ε > 0 so that [−ε, 2ε]⊂

u (X ), and let x ∈X be such that u (x ) = ε. Now fix a node (t ,ε) and E ∈Ft+1(ω).

Define a plan f by letting fτ = z for τ ≤ t + 1 or τ > t + 2, f t+2(ω′) = x for ω′ ∈ E , and

f t+2(ω′) = z otherwise. Finally, let f̄ be a plan complementary with f and such that f ∼t+1,ω f̄ .

To see that such a plan exists, let y ∈ X be such that u (y ) = 2ε, and w ∈ X be such that u (w ) =

−ε; then the plan g ′ that yields x at time t + 2 for ω′ ∈ E , and y elsewhere, is complementary

with f and at least as good as f by Monotonicity; similarly, the plan g ′′ that yields w at time t +2

forω′ ∈ E and z elsewhere is also complementary with f and at most as good as f . Mixtures of

g ′ and g ′′ are complementary to f , and one such mixture f̄ will be conditionally indifferent to

it given (t +1,ω).
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By Eq. (16) we then have

βp t+1,ω(E )ε=β
�

γ−p t+1,ω(E )ε
�

⇔ p t+1,ω(E ) =
1

2
γ,

where u ( fτ(ω′))+u ( f̄τ(ω′)) = γ for all (τ,ω′). Let z̄ ∈X be such that u (z̄ ) = 1
2
γ.

Now consider complementary plans (g , ḡ ) such that gτ = ḡτ = z̄ for τ ≤ t + 1 or τ > t +

2, g t+2(ω′) = f t+2(ω′) and ḡ t+2(ω′) = f̄ t+2(ω′) for ω′ ∈ Ft+1(ω), and g t+2(ω′) = ḡ t+2(ω′) = z̄

elsewhere. Then by Axiom CP we again have g ∼t+1,ω ḡ . Furthermore, by Axiom DC, since g

and ḡ agree outsideFt+1(ω), g ∼t ,ω ḡ . Again by Eq. (16),

1

2
γ(1+β )+β

�

p t ,ω(E )ε+p t ,ω(Ft+1(ω) \E ) ·0+[1−p t ,ω(Ft+1(ω))]
1

2
γ

�

+
β 2

1−β
1

2
γ=

=
1

2
γ(1+β )+β

�

p t ,ω(E )(γ−ε)+p t ,ω(Ft+1(ω) \E ) ·γ+[1−p t ,ω(Ft+1(ω))]
1

2
γ

�

+
β 2

1−β
1

2
γ.

Canceling common terms yields

p t ,ω(E )ε= p t ,ω(E )(γ−ε)+p t ,ω(Ft+1(ω) \E ) ·γ ⇔ p t ,ω(E ) = p t ,ω(Ft+1(ω))
1

2
γ,

i.e., substituting for 1
2
γ,

p t ,w (E ) = p t ,ω(Ft+1(ω)) ·p t+1,ω(E ).

The result will follow once it is shown that p 0(Ft (ω))> 0 for all (t ,ω). But this follows from

Axiom FS. Suppose that p 0(Ft (ω)) = 0. If the plans f , f ′ satisfy fτ(ω′) = f ′τ(ω
′) for all τ and

ω′ 6∈ Ft (ω), it follows that Ep 0[u ◦ f t ] = Ep 0[u ◦ f t 1Ω\Ft (ω)] = Ep 0[u ◦ f ′t 1Ω\Ft (ω)] = Ep 0[u ◦ f ′t ], and

similarly Ep 0[ζt+1 ·u ◦ f t ] = Ep 0[ζt+1 ·u ◦ f ′t ], so f ∼0 f ′: that is,Ft (ω) is ¼0-null, contradiction.

Summing up, henceforth we let p ≡ p 0 and obtain the recursive representation

Ut ( f ,ω) = u ◦ f t (ω)+βEp

�

Ut+1( f , ·)
�

�Ft (ω)
�

+A t ,ω

�

βEp

�

ζt ,ω
t+1 ·Ut+1( f , ·)

�

�Ft (ω)
��

; (17)

since Ut ( f ,ω) is bounded by monotonicity and the assumption that f ∈ F p , the above equation

shows that (2) holds, taking ζt ,ω = ζt ,ω
t+1.

Furthermore, we obtain the non-recursive representation

Ut ( f ,ω) = Ep





∑

τ≥t

βτ−t u ◦ fτ
�

�Ft (ω)



+A t ,ω

 

Ep





∑

τ≥t+1

βτ−tζt ,ω
τ ·u ◦ fτ

�

�Ft (ω)





!

. (18)
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Time-separability. Now use Eq. (18) to substitute for Ut+1( f ,ω′) in Eq. (17):

Ut ( f ,ω) = u ◦ f t (ω)+βEp



Ep





∑

τ≥t+1

βτ−t−1u ◦ fτ

�

�

�Ft+1(·)





�

�

�Ft (ω)



+

+βEp



A t+1,·

 

Ep





∑

τ≥t+2

βτ−t−1ζt+1,·
τ ·u ◦ fτ

�

�Ft+1(·)





!

�

�

�Ft (ω)



+

+A t ,ω

�

βEp

�

ζt ,ω
t+1 ·Ut+1( f , ·)

�

�Ft (ω)
��

.

Comparing the above expression with Eq. (18) yields

A t ,ω

 

Ep





∑

τ≥t+1

βτ−tζt ,ω
τ ·u ◦ fτ

�

�Ft (ω)





!

= A t ,ω

�

βEp

�

ζt ,ω
t+1 ·Ut+1( f , ·)

�

�Ft (ω)
�

,ω
�

+ (19)

+βEp



A t+1,·

 

Ep





∑

τ≥t+2

βτ−t−1ζt+1,·
τ ·u ◦ fτ

�

�Ft+1(·)





!

�

�

�Ft (ω)



 .

Therefore, (3) holds as well. In particular, note that ζt ,ω in Def. 4 is ζ̃t ,ω
t+1 in Def. 5, and A t ,ω in

Def. 4 coincides with the restriction of Ã t ,ω in Def. 5 to E ( β
1−β u ◦ Ft+1, p ,ζt ,ω).

Finally, iterating Eq. (19) yields

A t ,ω

 

Ep





∑

τ≥t+1

βτ−tζt ,ω
τ ·u ◦ fτ

�

�Ft (ω)





!

=
∑

τ≥t

βτ−t Ep

�

Aτ,·
�

βEp

�

ζτ,·
τ+1 ·Uτ+1( f , ·)

�

�Fτ(·)
��

�

�

�Ft (ω)
�

.

(20)

Necessity of the axioms. It is clear that (3)⇒ (2), defining A t ,ω,ζt ,ω as indicated after Eq.

(19) above, so assume (2) and show that it implies (1).

Suppose that the preference system (¼t ,ω) has a recursive VEU representation as per Def.

4. A VEU-like representation over F p will be constructed first; then, the latter will be employed

to verify that the axioms hold. [Note that, alternatively, one could construct a time-separable,

dynamic VEU representation from the intermediate one obtained here, and hence show that

(2) implies (3); then, showing that (3) implies (1) would be straightforward.]

Preliminaries. Since the baseline p is fixed in this argument, write Et [a ] in lieu of Ep [a |Ft ]

and Et ,ω[a ] in lieu of Ep [a |Ft (ω)]. Similarly, write I t ,ω(a ) = Et ,ω[a ]+A t ,ω(Et ,ωζ
t
t+1 ·a ]).

Since I t ,ω is a niveloid, it has a (minimal) niveloidal extension from (1− β )−1βu ◦ Ft+1 =

B0(σ(Ft+1), (1− β )−1βu (X )) to all of B0(σ(Ft+1)) (Maccheroni et al., 2006a, p. 1476); denote

this extension by Î t ,ω. Also recall that a niveloid satisfies a Lipschitz condition with Lipschitz
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constant 1. Finally, for every a ∈ B0(σ(Ft+1)), denote by Î t (a ) the Ft -measurable map ω 7→

I t ,ω(a ).

Existence of utility over F p . Define the setU of sequences υ = (u t )t≥0 of real-valued func-

tions on Ω such that each u t isFt –measurable, and ‖υ‖ ≡ supt ,ω |u t (ω)|<∞. There is a natural

mapping betweenU and the set of bounded, Σ̂-measurable functions on Ω̂ = T ×Ω, where Ω̂

and Σ̂ are as in the proof of sufficiency. In particular, U is a Banach, hence complete metric

space.

The following result is the key step in the proof of sufficiency; as noted in the main text,

it implies that, once one-step-ahead VEU preferences have been specified, a bounded utility

process Ut (·,ω) that satisfies the recursive relation in Eq. (17) is uniquely pinned down. The

proof is standard.

Proposition 2 Fix β ∈ (0, 1), a Bernoulli utility function u : X →R, and an adapted collection of

niveloids (Jt ,ω)t≥0,ω∈Ω, where Jt ,ω is defined on B (σ(Ft+1)) for every node (t ,ω).

Then, for every f ∈ F p , the map T f :U →U defined by letting

∀υ= (u t )t≥0 ∈U , T t
t (υ)(ω) = u ◦ f t (ω)+ Jt ,ω(βu t+1)

has a unique fixed point υ∗ = (u ∗t )t≥0 in U ; if ξ,ξ′ ∈ R are such that u ◦ f t (ω) ∈ [ξ,ξ′] for all

(t ,ω), then u ∗t (ω) ∈ [
ξ

1−β , ξ′

1−β ] for all (t ,ω). Finally, for every υ0 ∈ U , u ∗ = limN→∞[Tf ]N (υ0),

where [Tf ]N denotes the N -fold application of T f .

Proof: Fix f ∈ F p . Note first that T f indeed maps intoU , because u ◦ f t (ω) ∈ [ξ,ξ′] for some

ξ,ξ′ ∈ R and min a ≤ Jt ,ω(a ) ≤ max a for all a ∈ B (σ(Ft+1)). Next, for all υ = (u t )t≥0,υ′ =

(u ′t )t≥0 ∈U , and all nodes (t ,ω),

|T f
t (υ)(ω)−T f

t (υ
′)(ω)|= |Jt ,ω(βu t+1)− Jt ,ω(βu ′t+1)| ≤β‖u t+1−u ′t+1‖

because the niveloid Jt ,ω has Lipschitz constant 1. Since this is true for all t ≥ 0 and ω ∈ Ω,

‖Tf (υ)−Tf (υ′)t ‖ ≤β supt≥0 ‖u t+1−u ′t+1‖=β‖υ−υ′‖, i.e. T f is a contraction. Therefore, by the

Contraction Mapping Theorem (e.g Aliprantis and Border, 1994, Theorem 3.48) it has a unique

fixed point u ∗ ∈U (ξ,ξ′), that can be approached by iterating T f .

Now, adapting an argument due to Marinacci and Montrucchio (2010, p. 24), letU (ξ,ξ′) =

{υ= (u t )t≥0 ∈U : ∀(t ,ω), u t (ω) ∈ [(1−β )−1ξ, (1−β )−1ξ′]}, where ξ,ξ′ are as in the statement.
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Then U (ξ,ξ′) is a closed subset of U , and hence it is complete; furthermore, if υ = (u t )t≥0 ∈

U (ξ,ξ′), then T f
t (υ)(ω) = u ◦ f t (ω)+ Jt ,ω(βu t+1)≤ ξ′+β ξ′

1−β =
ξ′

1−β ; similarly, T f
t (υ)(ω)≥

ξ

1−β . In

other words, T f mapsU (ξ,ξ′) into itself. Hence, T f has a unique fixed point υ∗∗ ∈U (ξ,ξ′); but

sinceU (ξ,ξ)⊂U , υ∗∗ =υ∗.

VEU-like representation of utility. Return to the proof of necessity. Since by assumption
�

Ut ( f , ·)
�

t≥0 is bounded and recursive for every f ∈ F p , by Prop. 2 it is the unique such repre-

sentation of (¼t ,ω).

Now let x ,x ′ ∈ X be such that x ′ ¼ f t ′(ω′) ¼ x for all (t ′,ω′), and let φ = 1
2

u (x ) + 1
2

u (x ′).

Define υ0 = (φ) (the constant function equal to φ). Since φ ∈ u (X ), υ0 ∈ U (u (x ), u (x ′)), so

that ([T f (0)]N ) ∈U (u (x ), u (x ′)) for all N , as shown in the proof of Prop. 2. But this implies that

Î t ,ω(β ([T f (0)]N−1)t+1) = I t ,ω(β ([T f (0)]N−1)t+1), which is a VEU functional (Î t ,ω need not be).

For every n ≥ 0, define the adapted processes (a n
t ), (u

n
t ) as follows: for every (t ,ω),

a 0
t ( f ,ω) = 0

u 0
t ( f ,ω) = u ◦ f t (ω)+βφ

a n
t ( f ,ω) = E t ,ω[βa n−1

t+1 ( f , ·)]+A t ,ω(βE t ,ω[ζt ,ω ·u n−1
t+1 ( f , ·)])

u n
t ( f ,ω) =

t+n
∑

τ=t

Et ,ω[βτ−t u ◦ fτ]+βn+1φ+a n
t ( f ,ω).

I now inductively rewrite u n
t and at the same time verify that the definition of a n

t is well-

posed (in particular, βEt ,ω[ζt
t+1 · u

n−1
t+1 ( f , ·)] is in the domain of A t ,ω). For n = 0, a 0

t ( f ,ω) = 0,

which is obviously well-defined; moreover, note that, for all τ,ω′, u 0
τ( f ,ω′) = u ◦ fτ(ω′)+βφ ≤

u (x ′) + β u (x ′)
1−β =

u (x ′)
1−β and similarly u 0

τ( f ,ω′) ≥ u (x ′)
1−β . By assumption, I t ,ω is well-defined for

functions with values in β

1−β (u (X )), hence in particular for βu 0
t+1( f , ·); thus, A t ,ω(βEt ,ω[ζt ,ω ·

u 0
t+1( f , ·)]) is indeed well-defined. Inductively, assume that u n−1

τ ( f ,ω′) ∈ [ β
1−β (x ),

β

1−β (u (x
′))] for

all τ,ω′; then a n
t ( f , ·) is well-defined; furthermore, rewrite u n

t ( f ,ω) as follows, breaking up the
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summation and substituting for a n
t ( f , ·):

u n
t ( f ,ω) =u ◦ f t (ω)+β

(t+1)+(n−1)
∑

τ=t+1

Et ,ω[βτ−t−1u ◦ fτ]+βnφ+E t ,ω[βa n−1
t+1 ( f , ·)]+A t ,ω(βE t ,ω[ζt ,ω ·u n−1

t+1 ( f , ·)]) =

=u ◦ f t (ω)+Et ,ω[βu n−1
t+1 ( f , ·)]+A t ,ω(Et ,ω[ζt ,ω ·βu n−1

t+1 ( f , ·)]) = (21)

=u ◦ f t (ω)+ I t ,ω[βu n−1
t+1 ( f )];

It then follows that u n
t ( f ,ω)≥ u (x )+β u (x )

1−β =
u (x )
1−β and similarly u n

t ( f ,ω)≤ u (x ′)
1−β , by monotonicity

of I t ,ω and the induction hypothesis. This completes the induction step.

Eq. (21) also shows that, letting υn =
�

u n
t ( f , ·

�

t≥0,

u n
t ( f , ·) = T f (υn−1) = . . .= [T f (u 0)]n ,

and therefore u n
t ( f , ·)→Ut ( f , ·). Since

∑t+n
τ=t Et ,ω[βτ−t u ◦ fτ] +βn+1φ →

∑

τ≥t Et ,ω[βτ−t u ◦ fτ],

a n
t ( f , ·) also has a well-defined limit, denoted a t ( f , ·), and one can write

Ut ( f , ·) =
∑

τ≥t

Et ,ω[βτ−t u ◦ fτ]+a t ( f , ·). (22)

Finally, observe that, since Et ,ω[ζt ,ω ·βφ] = 0,

a n
t ( f ,ω) =E t ,ω[βa n−1

t+1 ( f , ·)]+A t ,ω

 

βE t ,ω



ζt ,ω ·

 

(t+1)+(n−1)
∑

τ=t+1

Et+1[βτ−(t+1)u ◦ fτ]+a n−1
t+1 ( f , ·)

!



!

=

=E t ,ω[βa n−1
t+1 ( f , ·)]+A t ,ω

 

E t ,ω





t+n
∑

τ=t+1

ζt ,ω ·βτ−t u ◦ fτ



+Et ,ω

�

ζt ,ω ·βa n−1
t+1 ( f , ·)

�

!

.

(23)

Verification of the axioms. I now employ Eqs. (22) and (23) to show that the axioms hold.

For the basic preference axioms, focus on ¼0 (the argument for other conditional preferences

is analogous). Note first that, if f , g ∈ F p are such that u ◦ f −u ◦ g is a deterministic process

(γt )t≥0, then inductively, using Eq. (23), a n
t ( f ,ω) = a n

t (g ,ω); hence, the same is true in the limit.

Similarly, if f t (ω)≥ g t (ω) for all (t ,ω), then inductively, using Eq. (21), u n
0 ( f ,ω)≥ u n

0 (g ,ω), and

so again U0( f ,ω) ≥U0(g ,ω). These observations imply that, if Ω̂ = T ×Ω and F̂ b is the set of

bounded acts on Ω̂ corresponding to adapted sequences in F p , the functional Î : u ◦ F̂ b → R

defined by Î (u ◦ f̂ ) = (1−β )U0( f ,ω) (anyω), is a normalized niveloid [if x ∈ X , then U0(x ,ω) =
u (x )
1−β , so the adjustment factor (1−β ) is required]. Hence, the corresponding preference ¼̂0 on
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F̂ b satisfies the atemporal Weak Order, Monotonicity, Continuity, Non-Degeneracy and weak

constant Independence axioms in Maccheroni et al. (2006a), which implies that ¼0 satisfies

Axioms 1–5.

By induction using Eq. (23), a n
0 ((x t )t≥0,ω) = 0 for all deterministic consumption streams

(x t )t≥0, so the same is true in the limit. This implies Axioms 8.

Again, by induction, if ( f , f̄ ) are complementary then inductively, using Eq. (23), a n
0 ( f ,ω) =

a n
0 ( f̄ ,ω), and so a 0( f ,ω) = a 0( f̄ ,ω); this implies that Axioms 9 and 10 hold. Axiom 7 also holds,

because EU preferences satisfy this axiom and complementary plans are evaluated using their

baseline EU evaluation.

Because ¼0 satisfies Axioms 9 and 10, the corresponding preference ¼̂0 satisfies Comple-

memtary Independence and Complementary Translation Invariance, so Lemma 5 and the ar-

gument on p. 842 of S09 imply that ¼̂0 satisfies Monotone Continuity, so that¼0 satisfies Axiom

6 (see the proof of sufficiency for details on how to map between the two domains).

Axioms 11, 12, 15 and 14 are immediate; for the first two, again recall that a 0((x t )t≥0,ω) = 0

for all consumption streams (x t )t≥0. For 13 (IMP), observe that, if f ∗, f , f n , f ∗∗,x are as in the

Axiom and φ is as in the above construction of the process u t ( f , ·), we have a m
t ( f

n ,ω) = 0 =

a 0
t ( f ,ω) for allω, t ≥ n and m ≥ 0 by induction on m and t ; therefore, a m−n

0 ( f n ,ω) = a n
0 ( f ,ω)

for m ≥ n , so a 0( f n ,ω) = a n
0 ( f ,ω). Therefore,

u 0( f n ,ω) =
n
∑

t=0

E0[β t u ◦ f t ]+βn+1 u (x )
1−β

+a 0( f n ,ω) =

=
n
∑

t=0

E0[β t u ◦ f t ]+βn+1φ+βn+1

�

u (x )
1−β

−φ
�

+a n
0 ( f ,ω) =

= u n
0 ( f ,ω)+βn+1

�

βu (x )
1−β

−φ
�

→ u 0( f ,ω),

which implies that IMP holds.

Sharp representation and uniqueness. Any recursive VEU representation
�

u ,β , p , (n t ,ω,ζt ,ω, A t ,ω)t ,ω
�

yields a VEU representation
� β

1−β u , p (·|Ft (ω)), n t ,ω,ζt ,ω, A t ,ω
�

on Ft+1 at each (t ,ω); if this repre-

sentation is not sharp, Theorem 1 in S09 shows that a sharp representation
� β

1−β ū , p (·|Ft (ω)), n̄ t ,ω, ζ̄t ,ω, Ā t ,ω
�

can be constructed. In particular, since preferences over X must be preserved, one may as well

assume that ū = u , so that Ā t ,ω(Et ,ω[ζ̄t ,ω ·a ]) = A t ,ω(Et ,ω[ζt ,ω ·a ]) for all a ∈ β

1−β u ◦Ft+1. But then,

one can indifferently construct the sequences u n
t , a n

t as in the proof of necessity in terms of Ā t ,ω
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and ζ̄t ,ω, or in terms of the original A t ,ω and ζt ,ω: hence, the utility indices Ūt generated using

the sharp VEU representations at each node (t ,ω) coincide with the original ones, Ut . Hence,
�

u ,β , p , (n̄ t ,ω, ζ̄t ,ω, Ā t ,ω)t ,ω

�

is a sharp recursive VEU representation of the same preferences.

Also, since acts f t+1 ∈ Ft+1 can be seen as maps f̂ t+1 :Ft+1 → X on a finite “state space” Ft+1,

Theorem 1 in S09 implies that n̄ t ,ω ≤ |Ft+1| −1.

The uniqueness claim follows directly from S09, again after noticing that every recursive

VEU representation induces a VEU representation on Ft+1 at each (t ,ω).

B Proof of Theorem 2

Sufficiency. Note first that, if f , f̄ and g , ḡ are as in the statement of the axiom, then one can

exchange the role of ( f , f̄ ) and (g , ḡ ), using π−1 as the permutation of {0, . . . , t −1}, to conclude

that f ¼0 f̄ if and only if g ¼0 ḡ .

As shown in the proof of Theorem 1, for any complementary pair (h, h̄), h ¼0 h̄ iff Ep [
∑

t≥0β
t u ◦

h t ] ≥ Ep [
∑

t≥0β
t u ◦ h̄ t ]. Assume wlog that 0 ∈ int u (X ), and let z ∈ u−1(0); also fix ε > 0 such

that [−ε, 2ε]⊂ u (X ) and let y ∈ u−1(ε).

Now construct ( f , f̄ ) and (g , ḡ ) as follows: f , g are as in Axiom 16; f̄τ = ḡτ = z for τ 6= t ; and

1
2

u ◦ f t + 1
2

u ◦ f̄ t = 1
2

u ◦g t + 1
2

u ◦ ḡ t ≡ γt , a parameter that shall be determined momentarily. Then

f ¼0 f̄ iff Ep [u ◦ f t ]≥ 2γt −Ep [u ◦ f t ], i.e. iff Ep [u ◦ f t ]≥ γt ; similarly, g ¼0 ḡ iff Ep [u ◦ g t ]≥ γt .

Now let γt = Ep [u ◦ f t ]; I claim that this is possible, i.e. that 2γt −u ◦ f t (ω) ∈ u (X ) for allω.

To see this, note that Ep [u ◦ f t ]∈ [0,ε], so γt ∈ [0, 2ε]; hence, 2γt −u ◦ f t ∈ [−ε, 2ε]⊂ u (X ) by the

choice of ε> 0.

This completes the definition of f , f̄ , g , ḡ ; by the above arguments, f ∼0 f̄ , and so Axiom 16

implies that g ∼0 ḡ as well. But then

p (X0 = x0, . . . , X t−1 = x t−1) =
1

ε
Ep [u ◦ f t ] =

1

ε
Ep [u ◦ g t ] = p (X0 = xπ(0), . . . , X t−1 = xπ(t−1)). (24)

Since this holds for all t > 0 and π ∈P t , this implies that p is exchangeable, as e.g. per the

definition of Hewitt and Savage (1955) (who actually use the term “symmetric”); the result then

follows. For completeness, I provide the details.

Now fix a finite permutation of T = {t : t ≥ 0}, i.e. a map π∞ : T → T that is one-to-one
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and such that π∞(t ) 6= t for finitely many t ∈ T . Then there is T ≥ 0 such that t > T implies

π∞(t ) = t ; furthermore, for all t ≤ T , π∞(t )≤ T : otherwise, if t ′ =π∞(t )> T for some t ≤ T , we

would have π∞(t ′) = t ′ = π∞(t ) and t ′ > t , a contradiction. Hence, for every such π∞ there is

T ≥ 0 and π∈P T such that π∞(t ) =π(t ) for t ≤ T , and π∞(t ) = t for t > T .

LetC = {(
∏t
τ=0 Cτ)×X∞ : t ≥ 0,Cτ ⊂X∀τ}, the class of “cylinders.” Note thatC generates

Σ (it contains all sets E t as in Eq. (11), and every A ∈C is a finite union of such sets E t ), and

p

  

t
∏

τ=0

Cτ

!

×X∞

!

= p (X0 ∈C0, . . . , X t ∈C t ) =
∑

(x0,...,xt )∈X t+1 : xτ∈Cτ∀τ

p (X0 = x0, . . . , X t = x t )

For A ∈Σ, let π∞[A] = {(x t )t≥0 : (xπ∞(t ))t≥0 ∈ A}. In particular, for t ≥ T ,

π∞





 

t
∏

τ=0

Cτ

!

×X∞



=

(

(xτ)τ≥0 : (xπ(0), . . . ,xπ(T ),xT+1, . . . ,x t )∈
t
∏

τ=0

Cτ

)

and therefore

p

 

π∞





 

t
∏

τ=0

Cτ

!

×X∞





!

=
∑

(x0,...,xT ,...,xt )∈X t+1 :
xπ(τ)∈Cτ∀0≤τ≤T, xτ∈Cτ∀T+1≤τ≤t

p (X0 = x0, . . . , X t = x t ) =

=
∑

(x0,...,xT ,...,xt )∈X t+1 :
xπ(τ)∈Cτ∀0≤τ≤T, xτ∈Cτ∀T+1≤τ≤t

p (X0 = xπ(0), . . . , XT = xπ(T ), . . . , X t = x t ) =

=
∑

(x0,...,xt )∈X t+1 : xτ∈Cτ∀τ

p (X0 = x0, . . . , X t = x t ) =

= p

  

t
∏

τ=0

Cτ

!

×X∞

!

.

The second equality follows by considering π′ ∈ P t with π′(τ) = π(τ) = π∞(τ) for τ ≤ T , and

π′(τ) = τ= π∞(τ) for τ > T , and applying Eq. (24). Finally, the third equality follows by simply

relabeling xπ(τ) as xτ for 0≤τ≤ T , as we have both Xτ = xπ(τ) and xπ(τ) ∈Cτ.

Hence, p (π∞A) = p (A) for all A ∈ C with T ≥ t non-trivial components; since some Cτ’s

can be equal toX , this is true for all A ∈ C . Then, by standard arguments (e.g. Aliprantis and

Border, 2007, Theorem 10.10), this is true for all A ∈σ(C ) = Σ.

Necessity. Consider t > 0, (x0, . . . ,x t−1), y , z , f , f̄ , g , ḡ as in the Axiom. Letting 1
2

u ◦ fτ+ 1
2

u ◦
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f̄τ = γτ for all τ, we have f ¼0 f̄ iff

∑

τ6=t

βτu (z )+β t {u (z )+ [u (y )−u (z )]p (X0 = x0, . . . , X t−1 = x t−1)} ≥

≥
∑

τ6=t

βτ[2γτ−u (z )]+β t {2γt −u (z )− [u (y )−u (z )]p (X0 = x0, . . . , X t−1 = x t−1)}

and therefore iff

β t [u (y )−u (z )]p (X0 = x0, . . . , X t−1 = x t−1)≥
∑

τ≥0

βτ[γτ−u (z )].

Similarly, g ¼0 ḡ iff

β t [u (y )−u (z )]p (X0 = xπ(0), . . . , X t−1 = xπ(t−1))≥
∑

τ≥0

βτ[γτ−u (z )].

If p (X0 = x0, . . . , X t−1 = x t−1) =
∫

∆(X )

∏t−1
τ=0 `(xτ)dµ(`), then clearly Eq. (24) holds, so that f ¼0 f̄

iff g ¼0 ḡ , as required.
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