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Abstract

Many two-sided platforms (such as search engines and business directories) make

pro�ts from auctioning their user base to advertisers. Yet, auctioning users is di¤er-

ent from selling standard commodities, since the participation decision by users (and,

therefore, the size of the platform�s user base) depends on the bene�t users expect to

receive from joining the platform. In this setting, what is the pro�t-maximizing auc-

tion? And how should a platform structure its user fees? First, I show that if bidders

pro�t from the match more than users, it is optimal for the platform to o¤er subsi-

dies to users, and recoup losses on the user side of the market by inducing aggressive

bidding on the bidder side (loss leader strategy). Second, I show that if the bidders�

willingness to pay for the match is positively a¢ liated with the value users derive from

bidders, the revenue-maximizing mechanism favors bidders with low values to users

(search diversion). In turn, when charging or subsidizing users is not feasible, the plat-

form favors bidders with high (low) user values as a substitute for the subsidies (fees)

it would otherwise implement. In this setting, I also show that competition between

two-sided platforms can decrease total welfare when the supply of users is su¢ ciently

inelastic. This result implies that applying standard antitrust economics to two-sided

markets may be misleading.
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1 Introduction

The most valuable asset of many two-sided platforms is their user base. In a celebrated ex-

ample, Internet search engines (such as Google) derive most of their revenue from auctioning

o¤ the eyeballs of millions of users to advertisers, who pay to be displayed alongside the

search results associated with particular queries.1

Yet, auctioning users is fundamentally di¤erent from selling standard commodities (e.g.,

timber). As is typical in many two-sided markets, more users will participate in the platform

the higher the bene�t they expect to receive. Much of the prior work on two-sided markets

assumes this bene�t is simply a function of the number of participants from the other side

of the market (cross-network externalities). However, in many important examples, users

care about the quality (as opposed to quantity) of the participants (advertisers) on the other

side of the market. In the case of search engines, fewer users click on sponsored links if the

allocation mechanism often selects advertisers who poorly match the users�queries.

Other two-sided platforms that face similar market design problems:

� Business directories, such as YellowPages.com, sell to �rms space in online listings
o¤ered to users who conduct speci�c searches (e.g., a restaurant in "Chicago�s Gold

Coast Neighborhood").2 Clearly, fewer users employ the platform�s services if recom-

mendations consistently favor unsatisfying/expensive restaurants.

� Job-matching agencies, such as Monster.com, sell to potential employers access to
millions of resumes posted by online job seekers.3 Fewer job seekers set up professional

pro�les if the platform often connects job seekers to low-quality employers.

In this paper, I follow a mechanism-design approach to answer the following question:

What is the optimal auction for selling to bidders the right to be matched with users, when

the total supply of users for sale depends on the surplus that the users expect to obtain from

the mechanism?

In my baseline model, a monopolistic platform (Google) has to select one of many bidders

(advertisers) to match with users (in the search-engine example, this simpli�cation means

1In 2007, the US search tra¢ c totalled 86.4 billion queries and paid search revenue amounted to more
eight billion dollars (see Evans (2008)). Dai, Nie, Wang, Zhao, Wen and Li (2006) estimate that 40% of the
queries have commercial potential.

2YellowPages.com processes 140 million searches per month. Reportedly, 74% of its users contact a listed
merchant and 55% conclude transactions with these merchants. Listings with "priority placement" for a
given search may cost more than $1,000 per month (October 2009 values).

3Monster.com claims to have a catalog of 150 million resumes. Employers can access 400 resumes in a
two-week period for $975. Improved matching capabilities and access to 20,000 resumes within a year cost
$9,995 (August 2009 values).
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that Google has a single link to sell). Users are heterogeneous in their outside options relative

to joining the platform, but are homogeneous on the values they derive from being matched

with each bidder (this is the user value associated with a bidder). In turn, bidders di¤er

in the value they attach to being matched with users (this is the bidder value associated

with a bidder). User and bidder values summarize the payo¤s obtained by users and bidders

in their subsequent interaction (e.g., if the advertiser is an online retailer, user and bidder

values represent the consumer and producer surplus from a sale).

The platform observes an informative signal about the user and bidder values associated

with each bidder. In the search-engine example, this signal is shorthand for the web site�s

content and its clicking history from previous searches. The platform�s objective is to design

a mechanism for selling users to bidders, taking into account that the supply of users for sale

increases with the surplus that users expect to obtain from the mechanism.

First, I analyze this problem in a setting where, besides running an auction among

bidders, the platform can charge or subsidize users (I call this a two-sided mechanism). In

this case, the surplus that users expect to obtain from the mechanism is the user value of

the winning bidder net of the fees/subsidies set by the platform. I show that:

� By setting the appropriate fees/subsidies for users, the platform can �x the supply of

users at any desired level (since it can transfer money across sides). As a consequence,

the matching rule associated with the revenue-maximizing auction selects the bidder

who produces the match with highest total virtual value in expectation (the sum of

user and bidder values, adjusted for informational rents).

� If bidders pro�t more from the match than users in expectation, the platform should

follow a loss leader strategy; subsidize users (using proceeds collected from bidders)

to boost supply and further extract rents from bidders. If users pro�t more from the

match than bidders, the optimal mechanism charges both sides of the market.

In my leading example, search engines provide users with a vast wealth of nonmonetary

subsidies (basic searches, scholarly searches and reader capabilities, for example, are all given

for free). Moreover, many business directories (such as Coupon.com) o¤er discount coupons

from advertisers in order to expand their user base. In contrast, some job-matching agencies

specialized in high-paying jobs (such as TheLadders.com) charge access fees to users who

want to create professional pro�les. My model shows that the platform�s decision to adopt

di¤erent business models depends on the relative values that bidders and users expect to

obtain from a match.

Incidentally, the optimal mechanism derived in this paper o¤ers an explanation for why

many two-sided platforms often produce matches with surprisingly low user values (Hagiu
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and Jullien (2009) call it search diversion). Indeed, the sponsored links o¤ered by search

engines are seldom similar to their organic counterparts and usually display links of much

lower relevance to users. Likewise, restaurant recommendations from YellowPages.com are

usually at odds with Zagat�s suggestions. Why do platforms under-provide value to users?

My model provides an informational rationale for this distortion. The same signal used by

the platform to infer the user values associated with bidders (advertisers) reveals information

about the bidders�willingness to pay for a match. As a consequence, the revenue-maximizing

mechanism distorts the matching rule away from e¢ ciency in order to provide stronger

incentives for high bidding. Speci�cally:

� When bidder and user values are positively a¢ liated, the platform adopts a matching

rule that favors bidders with low users values. Intuitively, a¢ liation implies that

advertisers with high user values are more likely to have high bidder values. As such,

with the purpose of maximizing pro�ts, the platform must distort the matching rule

towards bidders with low user values, in order to encourage those with high bidder

values to pay more for a match. This distortion tradeo¤s a larger user base to increase

the rent extraction from bidders (advertisers).

The results discussed above assume that the platform can charge users or subsidize them

(either monetarily or by providing free services). However, many two-sided platforms are

not able (or decide not) to engage in direct transfers to users. Job-matching agencies, for

example, cannot reward users for posting their resumes online, as it would attract a large

number of �ctional job seekers, who create fake resumes with the sole objective of collecting

subsidies. Other examples of two-sided platforms that choose not to make transfers to users

include business directories (such as YellowPages.com and Ariba.com) and online rental

agencies (such as Rent.com).4

With these examples in mind, I study the revenue-maximizing matching mechanism when

charging or subsidizing users is ruled out (I call it a one-sided mechanism). In this setting,

4The literature on electronic commerce emphasizes three reasons why some platforms choose not to
charge/subsidize users. The �rst is based on decision making and transaction costs. If a platform provides
services that are of low value to users ("micro services"), then charging users could have a negative e¤ect on
the business. For example, how much should Google Maps charge users for a search? Many authors argue
that setting up "micro payments" (e.g., a penny per search) would sharply decrease the number of users
due to the decision-making costs (see Szabo (1996)) and transaction costs involved (see Párhonyi, Lambert
and Pras (2005)). The second reason is outlined by Peha and Khamitov (2004), who argue that high rates
of identity theft and �nancial fraud have induced many internet platforms to adopt business models that
do not require users to make payments. According to the third reason, accepting payments only by credit
card could have drastic e¤ects on the number of users who patronize a platform, especially in markets where
users have limited access to �nancial (and payment) instruments. These frictions could render "zero charges"
policies optimal.
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the matching rule induced by the optimal auction is the only instrument the platform can

deploy to attract users while providing the right incentives for bidders to pay high prices for

the match. I then show that:

� When the optimal two-sided mechanism subsidizes users, the optimal one-sided mech-
anism favors bidders with high user values as a substitute for the subsidies it would

otherwise implement. In turn, when the optimal two-sided mechanism charges users,

the optimal one-sided mechanism favors bidders with high bidder values.5

Without fees/subsidies to users, the expected user value induced by the optimal auction

is the sole determinant of the size of the platform�s user base. As a consequence, the user-

supply elasticity plays an important role in the analysis:

� The more elastic is the supply of users, the more the platform distorts its matching

rule to select bidders with high user values. This e¤ect hinders the platform�s ability

to extract rents from bidders. Moreover, if the supply of users is su¢ ciently elastic, I

show that banning transfers may lead to a more e¢ cient matching rule. This result

has interesting implications for the regulation of online platforms.

Two-sided platforms often participate in oligopolistic markets: Google competes for

searches with Yahoo! and Bing, YellowPages.com competes for business searchers with

SwitchBoard.com, and Monster.com competes for job seekers with CareerBuilder.com. It is

then natural to ask what impact competition has on equilibrium matching rules. Is compe-

tition welfare increasing? Do users and bidders bene�t from a more competitive matching

market?

To answer these questions, I embed the optimal mechanism problem of each auctioneer

into a Hotelling model where users are heterogeneous in their preferences for platforms. As

in Evans (2008) and in line with casual empiricism, I assume that users join at most one

platform (single-homing), while bidders join multiple platforms (multi-homing). In my model

of competition, platforms simultaneously announce their mechanisms. The users choose the

one platform, and the bidders, the possibly multiple platforms, they wish to join. I show

that:

� When platforms are allowed to use two-sided mechanisms, competition bene�ts users
due to lower payments (or higher subsidies). Nevertheless, since bidders can advertise

5Interestingly, this result predicts that improvements in the micro payments technology that capacitate
platforms to charge users (when doing so was unfeasible beforehand) should lead to more e¢ cient matching
rules.
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in multiple platforms, a "competitive bottleneck" (see Armstrong (2006)) emerges. As

such, the platforms do not need to compete for bidders, and follow in equilibrium

the same auction protocol derived in the monopolistic case. Since competition helps

increase the market�s user base, a duopolistic matching market produces more welfare

than a monopoly.

� The situation is di¤erent when platforms compete using one-sided mechanisms. In this
case, competition for users pushes platforms to adopt matching rules that favor bidders

with high user values. This e¤ect has two important consequences. First, it weakens

bidders�incentives to pay high prices for the match. As a result, competition in one-

sided mechanisms is bene�cial for users while reducing rent extraction from bidders.

Second, competition in one-sided mechanisms could reduce total welfare when the

supply of users is inelastic (that is, the number of users who join some platform is

�xed). Indeed, as the matching rule is distorted to favor bidders with high user values,

the platform foregoes selecting bidders with high bidder values. If bidders appropriate

a higher share of the total value from the match, this may result in a reduction of total

welfare relative to monopoly.

This last result calls for caution when applying standard antitrust economics to two-sided

markets. In particular, concentrated markets could be welfare improving when platforms

compete with one-sided mechanisms.

1.1 Related Literature

This paper extends the theory of mechanism design to a two-sided market setting in order

to answer the following question: how to sell users to bidders, when the total supply of users

for sale depends on the expected bene�t that users obtain from the mechanism. As such,

this paper belongs to the large body of literature originating from the fundamental works of

Myerson (1981) and Riley and Samuelson (1981).

My analysis hinges on the platform�s con�ict between inducing participation and ex-

tracting rents from both sides of the market. A similar tradeo¤ lies at the heart of the

two-sided-market literature (see Rochet and Tirole (2003, 2006), Armstrong (2006), Cail-

laud and Jullien (2001, 2003), Evans (2003), Hagiu (2006) and Weyl (2009)). This literature

emphasizes cross-network externalities: the payo¤ from agents on one side of the market

depends on the participation (total "quantity") of agents on the other side.6 Instead, in

6Rochet and Tirole (2003) derives the monopoly�s optimal pricing formulas when network externalities
take the form of usage bene�ts. In contrast, Armstrong (2006) solves the monopolist�s problem by assuming
users have heterogeneous membership values. Rochet and Tirole (2006) proposes a general model of two-sided
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my model, while the bidders�payo¤s increase with the total number of users (network or

quantity externality), the participation decision by users depends on the expected quality

associated with bidders from the other side.

The second key di¤erence between this paper and the two-sided-market literature con-

cerns the pricing instruments used by the platform. While the two-sided-market literature

assumes that platforms choose linear prices or two-part tari¤s, I allow the platform to design

a mechanism to sell users to bidders.7

This paper is also related to the burgeoning literature on online advertising. Athey and

Ellison (2007) study a model in which advertisers bid for sponsored slots in a generalized

second price (GSP) auction, and rational users sequentially search through a list of spon-

sored links.8 Assuming bidders�types are one-dimensional (bidder and user values perfectly

coincide), the authors derive the optimal reserve prices of the GSP. In contrast, I allow bid-

ders to have bi-dimensional types (bidder and user values di¤er) and consider the platform�s

problem from a mechanism-design point of view. By following this approach, I�m able to

tackle novel questions, such as the optimal fees/subsidies to users and the e¤ects of compe-

tition between two-sided platforms. In turn, their analysis illuminates many issues that I

do not discuss here. Most notably, they consider multiple advertising slots and discuss how

"learning-by-searching" by users a¤ects the platform�s design choices.9

In Rayo and Segal (2008), users are randomly assigned to an advertiser and then receive

a signal sent by the platform about the quality of the advertiser�s product. In choosing

an optimal disclosure policy, the platform trades o¤ providing credible information to users

and inducing them to make purchases from advertisers. Although concerned with similar

issues, our models di¤er considerably. While I allow the platform to choose an allocation

markets that uni�es these two approaches. Weyl (2009) generalizes Rochet and Tirole (2006) to contrast the
implications of di¤erent forms of users�heterogeneity for pricing and welfare.

7In recent work, Hagiu (2009) develops a model in which a two-sided platform charges access prices to
agents on both sides and can exclude agents from one side of the market if their quality (or user value) is
too low (threshold exclusion policy). As the analysis of my paper shows, restricting attention to threshold
policies is suboptimal, as the the optimal mechanism excludes bidders on the basis of their total virtual
value.

8In the simplest version of the generalized second-price auction, each advertiser submits one bid that
represents his willingness to pay for a click on his link. Slots are then assigned in decreasing order of bids
and each advertiser pays per click the bid submitted by the advertiser immediately below him. See Aggarwal,
Goel and Motwani (2006), Edelman, Ostrovsky and Schwarz (2007), Varian (2007) and Gomes and Sweeney
(2009) for an equilibrium analysis of this auction with di¤erent solution concepts.

9The advertising literature studies how competition in the product market is a¤ected by investments in
advertising (cf., Butters (1977) and Grossman and Shapiro (1984)). More recently, the advent of online
media and targeted advertising motivated the work of Akçura and Srinivasan (2005), Iyer, Soberman and
Villas-Boas (2005), Gal-Or, Gal-Or, May, and Spangler (2006), Esteban and Hernandez (2007) and Galeotti
and Moraga-González (2008). Focusing speci�cally in sponsored search advertising, Chen and He (2006)
and Chen, Liu and Whinston (2009) study models that integrate the advertisers�pricing decisions with their
bidding behavior in the position auction that determines their advertising exposure.
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(matching) mechanism, Rayo and Segal consider information-disclosure rules.10

Hagiu and Jullien (2009) derive the optimal level of search diversion by a platform that

trades o¤ consumer tra¢ c with the extra rents that come from "accidental" shopping. They

assume that the platform has complete information about the advertisers�types, therefore

ignoring the mechanism-design issues that are at the core of this work.

The present work is also related to the literature on auctions with elastic supply (see

Hansen (1988), Lengwiler (1999), Ausubel and Cramton (2004) and LiCalzi and Pavan

(2005) and McAdams (2007)). In these papers, the auctioneer is allowed to condition the

number of units to be sold on the pro�le of bids submitted at the auction. In contrast, the

supply is endogenous in my model due to the users�participation constraints.

Other works have studied competition between two-sided platforms. McAfee (1993),

Peters and Severinov (1997), Caillaud and Jullien (2001, 2003), Ellison, Fudenberg and

Möbius (2004) and Damiano and Li (2007) assume that buyers and sellers have to make

exclusive decisions on which platform to join (universal single-homing). More in line with

the present paper, Rochet and Tirole (2003) and Armstrong (2006) embed a two-sided market

model into a Hotelling duopoly game in which one side single-homes and the other multi-

homes.

This paper is organized as follows. In section 2, I present the primitives of my model.

As a benchmark, I derive the e¢ cient allocation in section 3. In section 4, I study the

platform�s revenue-maximization problem. In section 5, I extend the analysis to consider

competition between two-sided platforms, and conclude in section 6. All proofs omitted in

the text appear in the Appendix.

2 The Model

Two-sided platforms match users with �rms, employers or advertisers that share reciprocal

needs. For a group of users with a certain objective (such as acquiring an airline ticket

to Orlando or �nding a job as an accountant), the platform encounters N bidders with

corresponding interests. The platform then selects one bidder to be matched with users

(this amounts to saying that Google has a single link to sell or business directories issue a

single recommendation per query).11

If bidder j 2 N � f1; :::; Ng is selected, all users derive from a match with j value uj,

10Calzolari and Pavan (2006) study the optimal disclosure policies for principals who contract sequentially
with an agent. They show that privacy is the optimal disclosure policy when principals impose no externalities
on each other.
11This assumption greatly simpli�es the analysis but does not a¤ect the main insights of this work. I

discuss in the conclusion how to extend this model to allow the platform to o¤er multiple bidders to users.
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which I refer to as the user value of bidder j.12 In turn, bidder j earns a value vj per user

he is matched with. I refer to vj as the bidder value associated with bidder j:13

The values associated with each bidder, vj and uj, should be seen as a reduced-form

description of how users and bidders interact. Consider the following examples:

� Users are searchers and bidders are advertisers on a search engine. The user value
of advertiser j, uj, is the payo¤ that searchers derive from visiting the advertiser�s

website. In turn, the bidder value, vj, is the advertiser�s willingness to pay for additional

searchers.

� Users are Rabelaisian gourmands looking for a restaurant in a business directory. In
this case, the bidder value associated with j, vj, is the extra pro�t earned by restaurant

j from being listed online. In turn, the user value, uj, is the consumer surplus derived

from a meal at the restaurant.

� Users are job seekers and bidders are employers who list vacancies with a job-matching
agency. In this case, the user value associated with employer j, uj, is the net surplus

derived by a job seeker who decides to work with j, while the bidder value, vj, is the

net pro�t from employing an extra worker.

2.1 Platform Information

The platform does not observe the bidder and user values, vj and uj. Instead, it observes

for each bidder a signal, �j (also observed by the bidder), which provides information about

vj and uj. In turn, bidders privately know their bidder values, vj, but do not know their

user values, uj (only observed by users). I refer to the pair tj � (�j; vj) as bidder j�s type.
In light of the examples discussed above:

� The search engine does not observe the payo¤ that searchers derive from advertiser

j, uj, nor the advertiser�s willingness to pay for additional searchers, vj. Instead, the

search engine has information on the content of the advertiser�s site and knows its click

history from previous searches, which is captured by �j.

� The business directory does not observe the extra pro�ts from being listed online, vj,

nor the consumer surplus derived from a meal at the restaurant, uj. Instead, it has

12Alternatively, I can assume that users are heterogeneous in their values from interacting with bidders,
but that the platform does not observe (nor can it contract on) this heterogeneity. In this case, let user i
derive value uij from being matched to bidder j, and let uj � E[uij ] be the expected user value associated
with this bidder.
13The bidder value, vj , can also be interpreted as the average pro�t accross users: vj � E[vij ].
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access to a description provided by the restaurant and to reviews posted by users. This

information is summarized by signal �j.

� The job-matching agency does not observe the net surplus from either job seekers or

employers, uj and vj, respectively. Nevertheless, it can infer (vj; uj) from the employer�s

job description (and wage), which I represent by �j.

For each bidder j, the triple (�j; vj; uj) is an independent draw from a trivariate distrib-

ution F with discrete support on

T � �� V � U � f�1; �2; :::; �T1g � fv1; v2; :::; vT2g � fu1; u2; :::; uT3g

and pdf f(�; v; u) > 0 for all (�; v; u) 2 T � R+ �R+ �R+. For convenience, I assume that
the support of F is a grid, i.e., �k = k � " for all k; vl = l � � for all l and um = m � � for all
m.14 Finally, I impose the usual monotone hazard rate condition for each realization of �:
f(vj�)

1�F (vj�) is weakly increasing in v 2 V for all � 2 �.
Most importantly, I consider environments in which, �rst, (�; v; u) are positively a¢ liated:

Assumption 1 (�; v; u) are positively a¢ liated random variables.

This assumption implies that the bidders with a higher willingness to pay to be matched

with users are more likely to provide users with greater bene�ts. Considering once again the

examples provided in the previous subsection, this means that:

� Advertisers who are willing to pay more for new searchers, vj, are more likely to o¤er
products that are more relevant to user queries, i.e., have higher uj.

� Restaurants that derive greater expected pro�ts per user, vj, are more likely to deliver
greater expected surplus for users, uj.

� Employers who pay higher wages to job seekers, uj, are more likely to derive greater
pro�ts from extra hirings, vj.

One can think of many economic situations in which user and bidder values are not

positively a¢ liated. As an example, consider the case of online retailers that sell some

homogenous product (e.g., a camera). Clearly, the retailer who charges higher prices (and

therefore produces lower user values) should have higher bidder values! In subsection 4.2.1,

I relax Assumption 1 to analyze environments in which (v; u) are negatively a¢ liated.

14This purely technical assumption appears in other papers on mechanism design with discrete support
(see, e.g., Pai and Vohra (2008)).
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I denote by t � (t1; :::; tN) a pro�le of bidders�types and by f(t) the joint probability of
pro�le t. I will now describe the platform�s problem of designing a matching mechanism in

order to maximize pro�ts.

2.2 Mechanisms

A matching mechanism has three components. The �rst component is the matching rule Z,

which picks from the set of available bidders the one to be matched with users (in a possibly

non-deterministic manner). According to the Revelation Principle, I can restrict attention

to direct-revelation mechanisms. Therefore, I will consider matching rules that map the

pro�le of bidders�types, t � (t1; :::; tN), into probability distributions over assignments. I

represent this rule by a function Z : TN ! 4(N[f0g), where 4(N[f0g) is the set of
probability distributions with support on the set of bidders N[f0g (f0g means that the
platform assigns no match with users, in which case v0 = �0 = 0). Accordingly, Z maps each

pro�le of types t to a distribution, Z(t), where Z(t) is represented by a vector that lists the

probability that each bidder j obtains a match:

Z(t) � (Zj(t) : j 2 N[f0g) such that Zj(t) � 0 8j and
X

j2N[f0g

Zj(t) = 1: (1)

The second component of a matching mechanism is the bidders�payment rule, P : TN !
RN , which assigns to each bidder j a payment, Pj(t), that depends on the whole pro�le of
bidders�types t.

The �nal component of the platform�s matching mechanism is the (possibly negative)

user fee, Q. One could allow Q to depend on the whole pro�le of bidders�types t. Mainly

in order to economize on notation, I refrain from doing so. As we will see shortly, users

preferences are quasi-linear, due to which this dependence is redundant and restricting the

platform to constant fees is without loss of generality.

For future use, I will refer to the triple (Z; P;Q) as a two-sided mechanism, since it

speci�es transfers to both sides of the market. I will also analyze the platform�s problem

when charging users is not feasible. In this case, the platform chooses a pair (Z; P ), which I

call a one-sided mechanism.

An important class of matching rules can be described by scoring rules. They work as

follows. Each bidder j is assigned a score, s(tj), as a function of his type (�; v) and the

bidder with the highest score obtains the match (ties are broken arbitrarily). Formally:

De�nition 1 A matching rule Z is said to be described by the scoring rule s : t 7! s(t) if

for any two bidders j1 and j2, s(tj1) > s(tj2) implies Zj2(t) = 0.
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The following example introduces an important matching rule.

Example 1 (E¢ cient Matching Rule) Denote by �(�; v) the expectation of the user value
u conditional on signal �:

�(�; v) � E[uj�; v]:

Let ZE be the matching rule that selects the bidder with highest expected total surplus,

�(�; v) + v. Clearly, ZE is described by the scoring rule sE(t) = �(�; v) + v. I refer to

ZE as the e¢ cient matching rule (for reasons that will be clear shortly).

A truthful matching rule Z naturally induces a probability distribution, f(�jZ), over the
type of the bidder who is matched with users. In order to derive it, I �rst de�ne the set of

pro�les T ((�; v)) for which some bidder has type (�; v):

T ((�; v)) � ft : 9j s.t. tj = (�; v)g :

Moreover, for each pro�le t 2 T ((�; v)), let us denote byN(�; v) the set of bidders�indexes
for which tj = (�; v). It then follows that

f((�; v)jZ) =
X

t2T ((�;v))

X
j2N(�;v)

Zj(t) � f(t):

From the measure f(�jZ), I can readily derive the marginal distributions f�(�jZ) and
fv(�jZ) over the signal and bidder values from the selected bidder. Having derived distri-

butions f(�jZ), f�(�jZ) and fv(�jZ), I can compute E[ (t)jZ] for any function  : T !
R.

2.3 Payo¤s

As in Armstrong (2006), users are heterogeneous in their outside options relative to using

the platform�s matching services. To capture this heterogeneity, I normalize the population

of users to one and index users by their reservation values ci, distributed according to the

cdf Gc with compact support Sc � [0; C]. The distribution Gc(�) is twice di¤erentiable and
log concave.15

Users make their participation decisions before learning the realized match induced by

mechanism (Z; P;Q).16 It then follows that a user with reservation value ci joins the platform

15This assumption is satis�ed by many popular distributions of compact support, e.g., the uniform and
the beta with parameters � � 1 and � � 1.
16More generally, one can consider mechanisms in which the matching rule Z and the user fee Q for each

user i are allowed to depend on the user�s outside option ci. Because of the timing assumption, this depence
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if and only if

E [ujZ]�Q� ci � 0; (2)

where E [ujZ] is the expected user value from the winning bidder.17

In light of our leading example, web searchers click on sponsored links (or use the search

engine in the �rst place) only when their alternative search resources, captured by ci, o¤er

a lower payo¤. This implies that the total number of users available to the platform equals

S(Z;Q) = Gc(E [ujZ]�Q):

I refer to S(Z;Q) as the platform�s user base (or supply of users). Note that the supply of

users increases in the surplus that users expect to obtain from the platform, E [ujZ]�Q.

Denote by z(�; v̂) the probability that a bidder reporting bidder value v̂ obtains the match

when his signal is � and all other bidders truthfully report their bidder values,

z(�; v̂) � Et�j [Zj((�; v̂); t�j)] ;

and by pj(�; v̂) the expected payment from doing so,

pj(�; v̂) � Et�j [Pj((�; v̂); t�j)] :

Equipped with this notation, I can now write the individual rationality (IR) constraints

for each bidder j who joins the platform:

S(Z;Q) � zj(�; v) � v � pj(�; v) � 0: (3)

The �rst term in (3) is the expected value appropriated by a bidder with type (�; v) from

joining the platform. Importantly, this term crucially depends on the total number of users,

S(Z;Q). In an analogous manner, the incentive compatibility (truth-telling) constraint for

each bidder j and for each type (�; v) takes the following form:

S(Z;Q) � zj(�; v) � v � pj(�; v) (4)

� S(Z;Q) � zj(�; v̂) � v � pj(�; v̂) for all v; v̂.

turns out to be redundant, since in the optimal implementable mechanism Z would be invariant on ci and
ask the platform to post uniform prices for users. Therefore, in order to simplify the exposition, I restrict
attention to the relevant class of mechanisms in which Z and Q are anonymous.
17The participation decision from users can be interpreted as a decision to avoid exposure to advertising.

See Van Zandt (2004), Anderson and de Palma (2007), Anderson and Gans (2006), and Johnson (2009) for
detailed models of advertising avoidance.
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As is standard in the mechanism-design literature, I say a matching rule Z is imple-

mentable if there is a pair of bidder payments and user fee (P;Q) such that (Z; P;Q) satis�es

the IR and IC constraints (3) and (4).

The platform�s expected pro�ts equal its revenue from charging users plus the expected

payments from bidders:

�(Z; P;Q) = S(Z;Q) �Q+
NX
j=1

E [Pj(t)] : (5)

The expression for pro�ts in (5) makes clear the two-sidedness of the platform�s problem.

On the one hand, the choice of the matching rule Z a¤ects the user base, S(Z;Q). On the

other hand, it a¤ects the rents that can be extracted from bidders, as the payment rule P (t)

has to satisfy constraints (3) and (4). Thus, the pro�t-maximizing matching rule Z, together

with the payment rule P and the user fee Q, has to weigh the e¤ects on extracting rents

from both sides of the market.

The timing of the model is as follows:

1. The platform announces its matching mechanism (Z; P;Q),

2. Users and bidders simultaneously decide to join the platform�s matching services,

3. Participating bidders report v̂ and the platform observes signals �,

4. The platform selects the match according to Z, and

5. Users and bidders make payments according to Q and P .

I start the analysis by deriving the e¢ cient allocation.

3 E¢ ciency

To set a benchmark, I will now characterize the allocation of users and bidders that maximizes

the ex-ante e¢ ciency produced by the platform.

Denote by �c the threshold such that all users with reservation values ci � �c join the

platform and all users with ci > �c do not join the platform. The e¢ cient allocation of users

and bidders is described by a matching rule Z and a threshold �c that solve:

max
Z;�c

Gc(�c) � [E [u+ vjZ]� E[cjc � �c]] :

14



The expression above is intuitive. The term inside the brackets is the expected value of a

match, E [u+ vjZ], net of the average (opportunity) cost of all users that join the platform,
E[cjc � �c]. The term outside the brackets, Gc(�c), is the total number of matches produced

by the platform.

Now note that by the law of iterated expectations:

E [ujZ] = E [E[uj�; v]jZ] = E [�(�; v)jZ] ;

As a consequence, the platform�s problem becomes:

max
Z;�c

Gc(�c) � [E [�(�; v) + vjZ]� E[cjc � �c]] : (6)

Recall that the matching rule ZE (see Example 1) picks for every pro�le of bidders�

types the one that produces the match with the highest score sE(t) = �(�; v) + v. Since the

objective function in (6) is strictly increasing in E [�(�; v) + vjZ], this obviously implies that
no matching rule can produce matches that lead to higher welfare than ZE. Moreover, it is

immediate from (6) that, at the optimum, a user with reservation value ci should join the

platform if and only if ci � �c� = E
�
�(�; v) + vjZE

�
.

The next proposition describes a variant of the Vickrey-Clark-Groves (VCG) mechanism

that implements the e¢ cient allocation in our two-sided-market setting. In order to do so,

let�s denote by t(l) = (�(l); v(l)) the type of the bidder with the l-th highest score sE(t) (ties

are broken arbitrarily). De�ne by �v the solution (if one exists) to:

�v � minfv : �(�(2); v(2)) + v(2) � �(�(1); v) + vg:18 (7)

We can then state:

Proposition 1 (E¢ ciency) The ex-ante e¢ cient allocation is such that:

1. the winning bidder is selected according to the matching rule ZE, and

2. all users with reservation values ci � �c� = E
�
u+ vjZE

�
join the platform.

Consider a mechanism (ZE; PE; QE) such that QE = �E
�
vjZE

�
and

PEj (t) = Gc(�c
�) � 1ftj = t(1)g � (�(�(2); v(2)) + v(2) � �(�(1);�v));

where 1ftj = t(1)g is an indicator function that equals one if and only if tj = t(1). Then

18If �(�(2); v(2)) + v(2) > �(�(1); v) + v for all v 2 V , then I set �v � +1.
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the e¢ cient mechanism (ZE; PE; QE) satis�es the IR and IC constraints (3) and (4),

that is, ZE is implementable.19

Though simple, the ex-ante e¢ cient solution has two important features: �rst and fore-

most, users and bidders are matched to maximize the total expected surplus from the match.

Second, the deadweight loss from the supply of users is zero, since all users whose reservation

values, ci, are smaller than the expected total surplus from the match, E
�
u+ vjZE

�
, join

the platform.

4 The Monopolistic Platform

By the Revelation Principle, all matching rules that can be supported in a Bayes-Nash

equilibrium of an indirect mechanism can also be supported as the outcome of a truthful

direct revelation mechanism. As such, the platform�s problem is to select a mechanism

(Z; P;Q) to maximize the pro�t function (5) subject to the bidders�participation constraints

(3) and incentive compatibility constraints (4). We �rst characterize the set of implementable

matching rules.

4.1 Implementability

The next lemma uses standard mechanism design techniques to pin down the IC and IR

constraints that bind at the optimum:

Lemma 1 Fix the user fee Q and let Z and P be matching and payment rules that maximize
pro�ts (5) subject to the IR constraints (3) and the IC constraints (4). Then the only

constraints that bind at the optimum are the IC constraints

S(Z;Q) � zj(�k; vl) � vl � pj(�
k; vl) = S(Z;Q) � zj(�k; vl�1) � vl � pj(�

k; vl�1)

for all k 2 f1; :::; T1g, l 2 f1; :::; T2g (8)

and the IR constraints for bidders with bidder values v1:

pj(�
k; v1) = S(Z;Q) � zj(�k; v1) � v1

for all k 2 f1; :::; T1g: (9)

19The mechanism (ZE ; PE ; QE) extends to a two-sided-market setting the construction of Dasgupta and
Maskin (2000).
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Moreover, (8) and (9) imply conditions (3) and (4), provided zj(�; v) weakly increases in v

for all � and j.

By solving the recursion (8) with initial condition (9), we obtain that the expected

payment of a bidder with type (�; v) induced by the allocation Z and the fee Q is given by

pj(�; v) = Gc(E [ujZ]�Q) �
(
zj(�; v) � v � � �

X
v0<v

zj(�; v
0)

)
: (10)

Expression (10) extends the celebrated payo¤ equivalence formula to a two-sided setting.

Unlike the one-sided problem, though, bidders�payments depend not only on the matching

rule Z, but also on the user fee Q (as it determines participation from users).

Plugging this expression into the objective function (5), we can characterize the platform�s

revenue in terms of Z and Q. This is the subject of our next lemma:

Lemma 2 Fix the user fee Q, and let Z and P be the matching rule and the payment rule

that maximize pro�ts (5) subject to the IR constraints (3) and the IC constraints (4). Then

the revenue generated by this mechanism can be expressed as a function of Z and Q:

Gc(E [ujZ]�Q) � (Q+ E [!(�; v)jZ]) ;

where

!(�; v) = v � � � 1� F (vj�)
f(vj�) for all (�; v) 2 �� V:

Assumption 1 implies that virtual bidder value, !(�; v), is weakly decreasing in � for all

v 2 V . In turn, the monotone hazard rate condition implies that !(�; v) is strictly increasing
in v for all � 2 �.
The lemma above is of fundamental importance for solving the platform�s problem. In-

deed, it implies that one can eliminate bidders�payments and write the platform�s problem

as one of choosing a matching rule Z and fees Q to

max
Z;Q

Gc(E [ujZ]�Q) � (Q+ E [!(�; v)jZ]) : (11)

I start with two-sided mechanisms.

4.2 The Revenue-Maximizing Two-Sided Mechanism

I will now derive the matching rule Z and the user fee Q that solve problem (11). To this

end, consider the following matching rule:
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De�nition 2 (Virtual E¢ cient Matching Rule) The matching rule ZII selects the bid-
der with the highest nonnegative score:

sII(t) = �(�; v) + !(�; v): (12)

I refer to ZII as the virtual e¢ cient matching rule.

The next lemma shows that, for any matching rule Z, the platform can always increase

pro�ts by moving to rule ZII and adjusting fees appropriately:

Lemma 3 Let a two-sided mechanism (Z; P;Q) satisfy the IR constraints (3) and the IC

constraints (4). Now consider the supply-preserving fee �Q satisfying

E [ujZ]�Q = E
�
ujZII

�
� �Q;

where ZII is the virtual e¢ cient matching rule of De�nition 2 and P II are payments satisfy-

ing equation (10). The platform�s pro�ts are weakly greater under (ZII ; P II ; �Q) than under

(Z; P;Q).

Proof. First, note that scoring rule sII(t) is strictly increasing in v, since �(�; v) weakly
increases in v by Assumption 1 and !(�; v) strictly increases in v from the monotone hazard

rate condition. Therefore, the interim probability zII(t) implied by ZII is strictly increasing

in v, which implies that ZII is implementable by Lemma 1.

Second, note that, by the law of iterated expectations,

E [u+ !(�; v)jZ] = E [�(�; v) + !(�; v)jZ] ;

which implies that the matching rule ZII from De�nition 2 maximizes E [u+ !(�; v)jZ]
among all rules Z that are implementable.

Moreover, for any �xed P , the platform�s payo¤ from adopting the mechanism (Z; P;Q)

is

�(Z; P;Q) = Gc (E [ujZ]�Q) � (Q+ E [!(�; v)jZ])
= Gc

�
E
�
ujZII

�
� �Q

�
� (Q+ E [!(�; v)jZ])

= Gc
�
E
�
ujZII

�
� �Q

�
�
�
E [u+ !(�; v)jZ]� E

�
ujZII

�
+ �Q

�
� Gc

�
E
�
ujZII

�
� �Q

�
�
�
E
�
u+ !(�; v)jZII

�
� E

�
ujZII

�
+ �Q

�
= Gc

�
E
�
ujZII

�
� �Q

�
�
�
�Q+ E

�
!(�; v)jZII

��
= �((ZII ; P; �Q);
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where the second equality follows from the construction of �Q and the inequality (in the

fourth line) uses the fact that ZII maximizes E [u+ !(�; v)jZ] among all rules Z that are

implementable. This proves the lemma.�

To build intuition for Lemma 3, consider the extreme case in which all users have reserva-

tion value ci = 0 (that is, Gc is degenerate at 0). In this case, the platform can fully extract

rents from users by setting Q = E [ujZ]. Since the platform extracts E [!(�; v)jZ] from
bidders for every user who joins the platform, maximizing pro�ts amounts to selecting the

matching rule Z that produces matches with the highest total virtual value in expectation:

E [u+ !(�; v)jZ]. As shown above, this is accomplished by rule ZII .
More generally, the platform has to leave some rents to users (as the support of Gc has

positive measure). Nevertheless, Lemma 3 shows that ZII is still optimal. As the proof

above makes clear, the ability to charge the user fee Q is key to this result: by setting the

appropriate Q, the platform can �x the supply of users at any given level. Once it has done

so, the rents enjoyed by the platform depend only on the total virtual value, E [u+ !(�; v)jZ],
which is maximized by ZII .

We can now solve for the optimal user fee, QII . It follows from equation (11) and Lemma

3 that we can rewrite the platform�s problem (11) only in terms of Q:

max
Q

Gc
�
E
�
�(�; v)jZII

�
�Q

�
�
�
Q+ E

�
!(�; v)jZII

��
: (13)

Taking the �rst-order condition leads to

QII + E
�
!(�; v)jZII

�
=

E
�
�(�; v)jZII

�
�QII

� (E [�(�; v)jZII ]�QII)
; (14)

where � (�) denotes the elasticity of supply with respect to user surplus:

� (x) � x � gc(x)
Gc(x)

:

The formula (14) is reminiscent of the classical Lerner formula: its left-hand side captures

the marginal gain from adding one extra user to the platform (E
�
!(�; v)jZII

�
accounts for

the rents collected from the bidder side of the market and reads like a negative marginal

cost), while its right-hand side captures the inframarginal losses from decreasing user fees.

To guarantee an interior solution to the problem, I make the technical assumption that

the support of Gc, [0; C], is such that E
�
u+ !(�; v)jZII

�
< C. I can then state:

Proposition 2 The optimal two-sided mechanism employs the virtual e¢ cient matching rule
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ZII , sets user fees QII according to the Lerner formula (14) and sets payments for bidders

P II according to the payo¤ equivalence formula (10) evaluated at ZII and QII . Moreover,

users are subsidized (QII < 0) if and only if

E
�
�(�; v)jZII

�
� (E [�(�; v)jZII ]) � E

�
!(�; v)jZII

�
: (15)

As Proposition 2 makes clear, the division of the expected total value (�(�; v) + !(�; v))

from the match determines whether users are charged or subsidized at the optimum. Indeed,

after controlling for the supply conditions captured in � (�) and replacing bidder values by
virtual values (which adjusts for informational rents), condition (15) simply compares the

expected bidder and user values from the match. If the platform can extract more rents from

bidders than from users, then the optimal pricing policy is to subsidize users (using proceeds

collected from bidders) to boost supply and further extract rents from bidders. This is the

familiar loss leader strategy so common in online platforms. The next example illustrates

Proposition 2:

Example 2 (Linear Supply) Let the users� reservation values be uniformly distributed
over [0; 1], such that S(ZII ; Q) = E

�
�jZII

�
�QII . Then the following fee is optimal:

QII =
E
�
�(�; v)� !(�; v)jZII

�
2

:

In this case, �
�
E
�
�jZII

��
= 1 and users are subsidized if and only if

E
�
�(�; v)jZII

�
< E

�
!(�; v)jZII

�
:

In practice, some platforms do o¤er subsidies per transaction to users. In keyword adver-

tising, for example, LiveSeacrh (now Bing) introduced its cash-back program in May 2008.

Through this program, Microsoft mails back to users a fraction of the posted price of a pur-

chase from qualifying sponsored links.20 Perhaps the most notorious example of subsidies in

online matching platforms is that of Coupon.com. This platform matches users to retailers

o¤ering discount coupons on selected products.

Aside from monetary subsidies awarded on a per-transaction basis, two-sided platforms

o¤er a variety of services intended to attract users with whom the platform matches its

bidders. In the case of search engines, users are attracted by free search services, which

are directly �nanced by the revenue collected from advertisers. In my model, QII can be

20See Chen, Ghosh, McAfee and Pennock (2008) for an analysis of the impact of di¤erent cash-back rules
on advertisers�bidding behavior and on the auction revenue.
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interpreted as the optimal level of free services for users.

In contrast, platforms that generate more surplus for users than for bidders tend to

charge the former group: job-matching agencies specializing in high-paying jobs (such as

TheLadders.com) charge users for posting professional pro�les online.

The direct revelation mechanism (ZII ; P II ; QII) has many features in common with the

actual auctions used by search engines. Google uses a modi�ed Generalized Second Price

auction (see footnote 8) that assigns a score to each advertiser based on his bid and on his

quality to users.

We will now compare the revenue-maximizing matching rule ZII with the e¢ cient rule

ZE regarding the vale they bring to users. This is subject of our next de�nition:

De�nition 3 Call matching rule Z more user-friendly than rule Ẑ if E[ujẐ] � E[ujZ].

The next proposition compares the revenue-maximizing two-sided mechanism with the

e¢ cient mechanism derived in Proposition 1. Before presenting this result, let us de�ne the

bias function B(�; v), which computes the expected di¤erence between scoring rules sII(t)

and sE(t) as a function of (�; v):

B(�; v) � E
�
sE(t)� sII(t)j�; v

�
:

The bias function captures how, relative to e¢ ciency, the virtual e¢ cient rule ZII distorts

the assignment of bidders to users. Assume for a moment that the bias function B(�; v)

increases in � and decreases in v. This means that the e¢ cient scoring rule, sE(t), increases

more quickly in � and less quickly in v than scoring rule sII(t). By the positive a¢ liation

between � and u, this means that bidders with higher user values and lower bidder values

are more likely to be selected by the e¢ cient rule ZE than by the virtual e¢ cient rule ZII .

We can then state:

Proposition 3 Relative to the e¢ cient mechanism (ZE; PE; QE), the optimal two-sided

mechanism (ZII ; P II ; QII):

1. attracts a smaller user base:

S(ZII ; QII) < S(ZE; QE);

2. reduces total welfare by precluding socially e¢ cient matches for which bidder values v

are smaller than the "reserve prices" de�ned by:

r(�) � inf fv 2 V : �(�; v) + !(�; v) � 0g ; (16)
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3. is less user-friendly, as E[ujZII ] � E[ujZE]. Moreover, its bias function, given by

B(�; v) = � � 1� F (vj�)
f(vj�) ;

increases in � and decreases in v.

The �rst distortion from Proposition 3 indicates that the revenue-maximizing two-sided

mechanism serves fewer users than e¢ ciency dictates, as we can see from equation (14). This

follows from the standard trade-o¤ in monopoly pricing between attracting a larger user base

and increasing the revenue per transaction.

The second distortion introduces reserve prices. Reserve prices handicap bidders with low

bidder values in order to encourage those with high bidder values to pay more for the match.

Interestingly, reserve prices vary across �. In the search-engine example, this translates into

Google setting up di¤erent reserve prices for bidders with di¤erent click-through rates.

The third distortion is a key insight of my model. At the heart of the platform�s problem

lies a con�ict between extracting rents from bidders and attracting users. On the one hand,

bidders with high signals � are more likely to yield high user values, as captured by the

fact that �(�; v) weakly increases in � (it follows from Assumption 1). As such, in order to

attract users to the platform, the optimal matching rule has to assign higher scores to bidders

with higher signals � (this is the user-base e¤ect). On the other hand, because of positive

a¢ liation, bidders with high signals � are more likely to have high bidder values v. In order

to encourage them to pay more for the match, the platform has to distort the matching rule

away from e¢ ciency to favor bidders with low signals. This is captured by the fact that

!(�; v) weakly decreases in � (I call it the rent-extraction e¤ect). Proposition 3 shows that

the rent-extraction e¤ect biases the revenue-maximizing matching rule ZII towards bidders

with low user values.

The analysis above o¤ers an intuitive explanation to the search diversion puzzle (see, for

example, Hagiu and Jullien (2009)). In the revenue-maximizing mechanism, the platform

uses the information provided by signals � to incentivize bidders to pay high prices for the

match. The optimal way to do so is to handicap bidders with high signals, which lowers the

expected user value from the match relative to the e¢ cient matching.

The next example narrows our discussion to the case in which � is perfectly informative

about the user value, u.

Example 3 (Fully Informative Signal) Assume that � = u, that is, the platform can

directly observe user values, u. In this case, the pro�t-maximizing matching rule is described
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by the scoring rule:

sII(t) = u+ !(u; v):

Figure 1 depicts the indi¤erence curves associated with scoring rules sII(t) and sE(t) in the

(v; u) axis. Circles represent original types (v; u), while squares represent "virtual types"

(!(u; v); u). Clearly, type (va; ua) is more e¢ cient than (vb; ub). Nevertheless, in order to

maximize pro�ts, ZII favors bidders with low user values: sII(t) gives a higher score to

(vb; ub) than to (va; ua). Therefore, E[ujZII ] < E[ujZE]:

The next example shows that if the signal � provides no information regarding user and

bidder values, then the optimal mechanism can be implemented by a standard second-price

auction. More importantly, the expected user values from rules ZII and ZE are the same:

Example 4 (Uninformative Signal) Assume that the signal � is independent of user and
bidder values u and v. In this case, the matching rule ZII can be implemented by a second-

price (Vickrey) auction with reserve price r� given by

�(r�) + !(r�) = 0;

where �(r�) � �(�; r�) and !(r�) � !(�; r�) (which are invariant in �). If �(v1)+!(v1) � 0,
in which case the optimal reserve price is zero, the expected user value of the winning bidder

is the same under the revenue-maximizing rule, ZII , or the e¢ cient rule ZE: E[ujZII ] =
E[ujZE].
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Before proceeding to one-sided mechanisms, I will analyze in the next subsection how

the extend the characterization of Propositions 2 to environments in which the assumption

of positive a¢ liation is relaxed.

4.2.1 The Case of Negative A¢ liation

Consider the example of N online retailers selling a homogeneous product. In order to

be matched with potential customers, retailers join a two-sided platform. Since products

are homogeneous across stores, the retailers who charge higher prices (and have lower user

values) are the ones who exhibit higher bidder values (pro�ts per sale). This example violates

Assumption 1, which posits that user and bidder values are positively a¢ liated.

In order to analyze economic situations like the one described above, I replace Assumption

1 with the following:

Assumption 2 (v; u) are negatively a¢ liated.

Importantly, from the negative a¢ liation between u and v, it follows that �(�; v) is now

weakly decreasing in v. As before, the monotone hazard rate condition implies that !(�; v)

is strictly increasing in v.

The next proposition shows that the mechanism (ZII ; P II ; QII) remains optimal under

Assumption 2 if and only if the e¤ect of bidder values v is higher on virtual values !(�; v)

than on expected user values �(�; v).21

Proposition 4 Under the alternative Assumption 2, the optimal two-sided mechanism em-

ploys the virtual e¢ cient matching rule ZII if and only if:

���(�; vl+1)� �(�; vl)
�� � ��!(�; vl+1)� !(�; vl)

�� for all l and � 2 �.

If this condition holds, the optimal user fee QII is given by equation (14) and bidder payments

P II satisfy equation (10) evaluated at ZII and QII .

The condition for the matching rule ZII to be optimal under Assumption 2 requires that

the scoring rule sII is strictly increasing in v. This condition may be violated if the negative

a¢ liation between u and v is so strong that �(�; v) decreases faster in v than !(�; v) increases

in v. In this case, the optimal matching rule is an "ironed" version of ZII .22.

Proposition 4 shows that the optimality of (ZII ; P II ; QII) is robust to environments in

which the positive a¢ liation between user and bidder values is relaxed. I will now analyze
21This condition is analogous to that of Dasgupta and Maskin (2000).
22See Skreta (2007) for a general treatment of ironing procedures, for discrete, mixed and continuous

distributions.

24



the platform�s problem with one-sided mechanisms. From now on, I assume that Assumption

1 holds.

4.3 The Revenue-Maximizing One-Sided Mechanism

In many two-sided markets, charging or subsidizing users is not practical. Online job-

matching agencies cannot pay users for each uploaded resume, as one can easily create

fake pro�les with the sole intent of collecting subsidies. More generally, transaction and

decision-making costs may prevent matching platforms from directly charging users for their

services.

In such cases, the platform has to choose among one-sided mechanisms (Z; P ). This

amounts to solving problem (11) subject to the additional constraint that Q = 0. We can

then rewrite this program as

max
Z

Gc(E [ujZ]) � E [!(�; v)jZ] = max
Z

Gc(E [�(�; v)jZ]) � E [!(�; v)jZ] ; (17)

where the equality follows from the law of iterated expectations.

In order to solve this problem, take a matching rule Z and an arbitrary pro�le of types

t. Let Z assign a positive probability to the event that bidder j with type (�; v) obtains the

match, and consider a bidder |̂ with type (�̂; v̂). Now let us perturb Z by picking bidder |̂

instead of j with probability q, whenever bidder j is selected for the match. The marginal

gain from doing so is given by

@�

@q
(Z) / gc(E [�jZ]) � (�(�̂; v̂)� �(�; v)) � E [!(�; v)jZ]| {z }

user-base e¤ect

(18)

+ Gc(E [�jZ]) � (!(�̂; v̂)� !(�; v))| {z }
rent-extraction e¤ect

:

The �rst term in expression (18), gc(E [�jZ]) � (�(�̂; v̂) � �(�; v)) � E [vjZ], accounts for
the impact of swapping (�; v) and (�̂; v̂) on the supply of users. If, for example, �(�̂; v̂) >

�(�; v), then more users come to the platform once its matching rule picks bidders with type

(�̂; v̂) rather than (�; v). This is the familiar user-base e¤ect, in the context of one-sided

mechanisms.

The second term, Gc(E [�jZ]) � (!(�̂; v̂)� !(�; v)), captures the impact on the total rents
collected from bidders. If, for example, !(�̂; v̂) < !(�; v), then the platform extracts less rents

from bidders as its matching rule favors (�̂; v̂) rather than (�; v). This is the rent-extraction

e¤ect.
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Denote by ZI the solution to problem (17). Clearly, expression (18) evaluated at ZI has

to satisfy @�
@q
(ZI) � 0 for any bidder |̂ in pro�le t, as otherwise the platform could strictly

increase pro�ts by matching users with |̂ (instead of j). Therefore, at the optimum ZI , a

bidder with type (�; v) obtains the match when a bidder |̂ with type (�̂; v̂) is available if and

only if

!(�̂; v̂) + �
�
E
�
�(�; v)jZI

��
�
E
�
!(�; v)jZI

�
E [�(�; v)jZI ] � �(�̂; v̂) (19)

� !(�; v) + �
�
E
�
�(�; v)jZI

��
�
E
�
!(�; v)jZI

�
E [�(�; v)jZI ] � �(�; v):

Interestingly, condition (19) reveals that the gain from swapping any two bidders with

signals and bidder values (�; v) and (�̂; v̂) is the same regardless of the pro�le t. This implies

that the optimal matching rule ZI can be described by a scoring rule, as stated by the next

proposition:

Proposition 5 The pro�t-maximizing one-sided mechanism employs the matching rule ZI

implicitly described by the scoring rule:

sI(t) = !(�; v) + �
�
E
�
�(�; v)jZI

��
�
E
�
!(�; v)jZI

�
E [�(�; v)jZI ] � �(�; v): (20)

Moreover, the bidders�payment rule P I satis�es equation (10) evaluated at the matching rule

ZI and Q � 0.

The �xed-point formula (20) shows that the platform places more weight on the expected

user values, �(�; v), as it can extract more rents from the bidder side of the market,
E[!(�;v)jZI]
E[�(�;v)jZI ] .

This is the one-sided analogue of the loss leader strategy described in the context of two-

sided mechanisms: the platform wishes to provide a higher surplus to users (and increase

supply) as it extracts more rents from bidders.

Assume for a moment that E
�
�(�; v)jZII

�
= �

�
E
�
�(�; v)jZII

��
� E
�
!(�; v)jZII

�
, which

implies by Proposition 2 that QII = 0. Under this condition, as direct inspection can

con�rm, the pro�t-maximizing two-sided matching rule ZII solves the �xed-point equation

(20) and, therefore, ZI = ZII . In this case, Proposition 3, which lists the distortions relative

to e¢ ciency produced by ZII , also applies to ZI . Namely, ZI produces three types of

ine¢ ciencies: it serves a smaller user base, it introduces ine¢ cient reserve prices and it is

biased towards bidders with low user values.

But there is more: whenever the two-sided mechanism charges or subsidizes users, the

one-sided mechanism has to distort its matching rule further to account for the fees/subsidies
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it can no longer implement.

To formalize this idea, let us now de�ne the class of scoring rules, �, that linearly

combines the virtual bidder value, !(�; v), and the expected user value, �(�; v):

� = fs(t) : s(t) = !(�; v) + b � �(�; v) for some b 2 Rg :

Clearly, the scoring rules sI(t) and sII(t) that represent rules ZI and ZII , respectively,

belong to class �. Now, consider two matching rules, Z and Ẑ, represented by scoring

rules s(t); ŝ(t) 2 � with coe¢ cients b and b̂, respectively. It is easy to show that Z is more
user-friendly than Ẑ (that is, E[ujZ] � E[ujẐ]) if and only if b � b̂.

Our next proposition uses this observation to establish that matching rule ZI is more

user-friendly than the virtual e¢ cient rule ZII if the pro�t-maximizing two-sided mechanism

subsidizes users, and is more bidder-friendly if the pro�t-maximizing two-sided mechanism

charges users.

Proposition 6 The matching rule ZI is more user-friendly than the virtual e¢ cient rule
ZII if and only if users are subsidized under the pro�t-maximizing two-sided mechanism, that

is,

bI = �
�
E
�
�(�; v)jZI

��
�
E
�
!(�; v)jZI

�
E [�(�; v)jZI ] � 1 = bII , QII � 0:

The next example illustrates Proposition 6 when the supply of users is linear:

Example 5 (Linear Supply with One-Sided Mechanisms) Consider the primitives of
Example 2, where the supply of users assumes the linear form S(Z;Q) = E [�jZ] � Q. The

one-sided matching rule ZI is more user-friendly than the virtual e¢ cient rule ZII if and

only if E
�
�(�; v)jZII

�
< E

�
!(�; v)jZII

�
.

The scoring rule in Proposition 5 optimally trades o¤ attracting users to the platform

and extracting rents from bidders. Absent the fees/subsidies for users, the matching rule ZI

is the sole instrument the platform can deploy to manage both sides of the market. As a

consequence, it must directly incorporate the user-supply elasticity, � (�).
The supply of users S(Z;Q) = Gc (E [ujZ]�Q) is said to be more elastic than Ŝ(Z;Q) =

Ĝc (E [ujZ]�Q) if their respective elasticity mappings, � (�) and �̂ (�), satisfy � (�) � �̂ (�) at
every point. The next corollary shows that the pro�t-maximizing one-sided matching rule is

more user-friendly the more elastic is the supply curve S(Z;Q). Intuitively, a more elastic

supply curve tips the balance towards the user-base e¤ect, inducing the matching rule ZI to

give more weight to the expected user value from bidders.
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Naturally, as the user-base e¤ect becomes more prominent, the platform foregoes extract-

ing rents from bidders. This e¤ect is more pronounced for bidders with the highest possible

signal �T1. To understand why, let�s compute from (10) the informational rents per user

earned by a bidder with type (�; v):

� �
X
v0<v

zj(�; v
0)

As the matching rule ZI becomes more user-friendly (giving more weight to �(�; v)), the

probability that bidders with signals �T1 win the auction increases. From the expression

above it then follows that the informational rents per user earned by bidders with types

(�T1 ; v) must increase. The opposite happens to bidders with the lowest possible signal �1,

as their interim probabilities of obtaining the match decreases for all possible bidder values

v 2 V . For intermediate signals �1 < � < �T1, the direction of change on informational

rents depends nontrivially on the distribution F . Yet, the overall e¤ect in the total rents

collected from bidders is clearly negative, that is, E
�
!(�; v)jZI

�
decreases as ZI becomes

more user-friendly.

Corollary 1 The optimal matching rule in a one-sided mechanism ZI is more user-friendly

the more elastic is the supply of users. Moreover, bidders with types
�
(�T1 ; v) : v 2 V

	
enjoy

higher informational rents per user, while bidders with types
�
(�1; v) : v 2 V

	
enjoy lower in-

formational rents per user. Overall, as the supply of users becomes more elastic, the platform

extracts lower rents from bidders in expectation, E
�
!(�; v)jZI

�
.

Regulatory interventions in two-sided markets may lead to unexpected outcomes. What

is the e¤ect of banning fees/subsidies for users of online recommendation systems (such

as those of Amazon, Borders and Barnes and Noble)? The next example shows that, when

QII < 0, the new distortion brought by ZI (intended to compensate for the lack of subsidies)

countervails the bias towards bidders with low user values exhibited by the virtual e¢ cient

rule ZII . As it turns out, these con�icting forces may actually render matching rule ZI more

e¢ cient.

Example 6 (Banning Subsidies for Users May Lead to More E¢ cient Matching)
Assume that � = u, in which case the pro�t-maximizing two-sided mechanism employs the

virtual e¢ cient rule ZII . Further, assume that u; v are drawn from a distribution with binary

support U � V = fuL; uHg � fvL; vHg:
As depicted in Figure 2, type (vL; uH) is more e¢ cient than type (vH ; uL). Nevertheless,

the rule ZII scores (vH ; uL) higher than (vL; uH), introducing a bias towards bidders with low
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user values.23 When QII < 0, the one-sided matching rule ZI introduces a countervailing

bias, represented by the counter-clockwise rotation in the indi¤erence curve. If the supply

of users S(Z;Q) is su¢ ciently elastic, this new bias is such that sI(�L; vH) < sI(�H ; vL).

Therefore, banning subsidies for users restores e¢ ciency in matching!

I now examine competition between matching platforms.

5 Competing Platforms

Markets in which two-sided platforms operate are usually dominated by a handful of �rms,

which compete with one another through their matching rules as well as by setting payments

to each side of the market. Examples of such oligopolies can be found in disparate busi-

nesses, such as Internet-based travel agencies (Expedia, Orbitz, Kayak, etc.), rental agencies

(Rent.com, ForRent.com, etc.) and job agencies (Monster.com, CareerBuilder.com, etc.).

In this section, I extend my baseline model to study the competition between matching

platforms. Following Evans (2008) and in line with casual empiricism, I assume that users

patronize a single platform (single-homing), while bidders can join more than one platform

(multi-homing). I �rst analyze the case in which platforms can freely charge or subsidize

users. I then proceed to the case in which platforms are not able to charge user fees.

23ZII scores (vH ; uL) higher than (vL; uH), overturning e¢ ciency, if and only if v
H�vL
� � 1 + f(vH ;uH)

f(vL;uH)
:
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5.1 Competition with Two-Sided Mechanisms

For simplicity, only two platforms, A and B, compete in the user market. They simultane-

ously choose two-sided matching mechanisms MA = (ZA; PA; QA) and MB = (ZB; PB; QB),

after which bidders and users decide which platform they wish to join.

Users have innate preferences regarding platforms A and B. Some users may be more

inclined to consult platform A, for example, because that was the one recommended by their

Internet browser. To capture the users�heterogeneity regarding the choice of platform, I

introduce the idiosyncractic preference parameter di, which (by convention) measures user

i�s inclination for platform B. As before, instead of joining one of the two platforms, each

user i may choose an outside option that gives him a payo¤ ci. As a consequence, user i

joins platform A if and only if

E [ujZA]�QA � ci � maxfE [ujZB]�QB � ci + di; 0g

and joins platform B if and only if

E [ujZB]�QB � ci � maxfE [ujZA]�QA � ci � di; 0g:

Note that preference parameter di does not a¤ect the users�decision on whether to stick

to the outside option or join some platform. Instead, it only a¤ects the comparison across

platforms, and, accordingly, should be thought of as a brand e¤ect.

As before, let ci be distributed according to the cdf Gc(�) with support on [0; C]. Further,
di is distributed according to the unimodal symmetric cdf Gd(�) with support on [�D;+D].
The distributions Gc(�) and Gd(�) are assumed to be log concave and twice di¤erentiable. To
simplify the analysis, ci and di are independent for each user i. As a consequence, platforms

A and B face the following supply system:

SA(MA;MB) = Gd (E [ujZA]�QA � E[ujZB] +QB) �Gc (E [ujZA]�QA) ; (21)

SB(MA;MB) = (1�Gd (E [ujZA]�QA � E[ujZB] +QB)) �Gc (E[ujZB]�QB) : (22)

I look for a pro�le of matching mechanisms (M II
A ;M

II
B ) that constitute a Nash equilibrium

of this game. As such, for each platform J , the selected mechanism (ZIIJ ; P
II
J ; Q

II
J ) should

constitute a best response to M II
�J :

M II
J = argmaxMJ

SJ(MJ ;M
II
�J) �QJ +

NX
j=1

E [PJ;j(t)] ; (23)
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subject to the bidders�IR, IC and feasibility constraints (3), (4) and (1), respectively.

Since bidders are allowed to multi-home, their decisions to join each platform are inde-

pendent, that is, the decision whether to join platform A depends on MA but is not a¤ected

by the mechanism MB adopted by platform B. As a consequence, we can apply the same

techniques used before to assess which IR and IC constraints bind at each platform�s max-

imization problem. In particular, Lemmas 1 and 2 can be immediately replicated, and we

can rewrite (23) as

M II
J = argmaxMJ

SJ(MJ ;M
II
�J) � (QJ + E [!(�; v)jZJ ]) ; (24)

subject to the now familiar monotonicity constraint that zJ;j(�; v; u) is weakly increasing in

v for all �; u and j.

The next lemma extends the results about the optimal matching rule derived in Lemma

3 to a strategic setting:

Lemma 4 In any Nash equilibrium of duopolistic competition with two-sided mechanisms,

platforms A and B choose the virtual e¢ cient matching rule ZII from De�nition 2.

As in the monopoly case, the ability to charge users is key to Lemma 4: by setting the

appropriate fee Q, the platform can adjust the size of its user base (taking MB as given).

Once it has done so, the rents enjoyed by platform A only depend on the total virtual value

E [u+ !(�; v)jZ], which is maximized by ZII .
We can now derive the equilibrium user fees, QIIA and QIIB . Lemma 4 transforms each

platform�s maximization problem into a one-dimensional program with control variable QJ .

As such, by taking the �rst-order conditions of problem (24), we obtain that the equilibrium

fees QIIA and QIIB must satisfy the following system of best replies:

1

QIIA + E [!jZII ] =
�c
�
E
�
�(�; v)jZII

�
�QIIA

�
E [�(�; v)jZII ]�QIIA

+
�d
�
QIIB �QIIA

�
QIIB �QIIA

(25)

1

QIIB + E [!jZII ] =
�c
�
E
�
�(�; v)jZII

�
�QIIB

�
E [�(�; v)jZII ]�QIIB

+
hd
�
QIIB �QIIA

�
QIIB �QIIA

(26)

where �d(x) �
xgd(x)
Gd(x)

is the elasticity associated with the "supply"Gd(�) (from the perspective
of �rm A), and hd(x) � x�gd(x)

1�Gd(x) is the elasticity associated with the supply 1� Gd(�) (from
the perspective of �rm B). As before, �c(x) �

xgc(x)
Gc(x)

. We are now ready to characterize the

unique equilibrium of this duopoly game:

Proposition 7 The unique Nash equilibrium of duopolistic competition with two-sided mech-
anisms is symmetric. In this case, both platforms choose the matching rule ZII , and the
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equilibrium user fees QIIA and QIIB are given by

1

QIIJ + E [!jZII ] =
�c
�
E
�
�(�; v)jZII

�
�QIIJ

�
E [�(�; v)jZII ]�QIIJ

+ 2gd(0): (27)

Finally, the equilibrium payment rules for bidders P IIA and P IIB satisfy equation (10) when

evaluated at the matching rule ZII and QIIJ as above.

Consider equation (27), which pins down the duopoly equilibrium fees, QIIA and Q
II
B . The

only di¤erence between equation (27) and the monopolistic Lerner formula (14) lies in the

extra term 2gd(0). This term accounts for the e¤ect of user competition in the platforms�

pricing decisions. The higher is gd(0), the higher is the number of users who are indi¤erent

between platforms A and B.

A market described by the cdf Gd(�) is said to have a higher degree of substitutability than
a market with cdf Ĝd(�) if gd(0) > ĝd(0). Since by assumption Gd(�) is a unimodal symmetric
distribution, the above de�nition implies that in a market described by Gd(�) users are more
responsive to changes in the relative surplus between both platforms. The next corollary

shows that users pay lower fees when platforms are closer substitutes:

Corollary 2 The higher is the degree of substitutability between platforms, the lower are the
expected user payments QIIA and QIIB in equilibrium.

The analysis above shows that competition between two-sided platforms leads to lower

payments (or higher subsidies) for users relative to monopoly. As such, competition reduces

the deadweight loss from the supply of users. Nevertheless, since bidders can join multiple

platforms, a competitive bottleneck emerges, and in equilibrium both platforms choose the

same auction protocol as in a monopoly. Therefore, competition has the e¤ect of reducing

the distortions on the user side of the market, but not on the bidder side.

The supply of users is said to be perfectly inelastic when the distribution of users�outside

options Gc is degenerate at zero. It follows from Corollary 2 that the total number of users

who join some platform, SA(MA;MB)+SB(MA;MB), weakly increases as platforms become

closer substitutes (but stays constant when the supply of users is perfectly inelastic). The

next corollary builds on this observation to assess the e¤ect of competition on welfare:

Corollary 3 Competition in two-sided mechanisms weakly increases welfare relative to monopoly.
If the supply of users is perfectly inelastic, welfare is the same under duopoly or monopoly.

This result is no longer true when platforms compete using one-sided mechanisms. This

is the subject of the next subsection.
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5.2 Competition with One-Sided Mechanisms

Many platforms are unable to (or decide not to) charge or subsidize users. In this case, they

must compete in one-sided mechanisms. How does competition in one-sided mechanisms

di¤er from competition in two-sided mechanisms? Is it bene�cial for users and bidders?

What is its impact on welfare? To investigate these issues, I extend the duopoly model

developed above to a setting in which platforms cannot charge or subsidize users.

By de�nition, one-sided mechanisms are such that QA = QB = 0. Therefore, the plat-

forms face the following supply system:

SA(ZA; ZB) = Gd (E [ujZA]� E[ujZB]) �Gc (E [ujZA]) ;
SB(ZA; ZB) = (1�Gd (E [ujZA]� E[ujZB])) �Gc (E [ujZB]) :

By the same arguments developed in the previous section, a Nash equilibrium of this

duopoly game boils down to a pro�le of matching rules (ZIA; Z
I
B) that best respond each

other:

ZIJ = argmaxZJ SJ(ZJ ; Z
I
�J) � E [!(�; v)jZJ ] : (28)

I proceed as in the monopoly case (subsection 4.3) to �nd the equilibria of (28). I �rst

derive the best-reply function of platform A. In order to do so, I �x ZB and take an arbitrary

matching rule ZA and a pro�le t. Let ZA assign a positive probability to the event that bidder

j with type (�; v) obtains the match, and consider a bidder |̂ with type (�̂; v̂). Now let rule

Z pick bidder |̂ instead of j with probability q whenever bidder j is selected for the match.

The marginal gain from doing so is proportional to

@�A
@q

(ZA; ZB) /
�
�c (E [�(�; v)jZA])
E [�(�; v)jZA]

+
�d (E [�(�; v)jZA]� E[�(�; v)jZB])
E [�(�; v)jZA]� E[�(�; v)jZB]

�
�(�(�̂; v̂)� �(�; v)) � E [!(�; v)jZA] + (!(�̂; v̂)� !(�; v)): (29)

Denote by ZA(ZB) the best response of platform A to ZB. Clearly, the expression above

evaluated at ZA(ZB) must satisfy @�A
@q
(ZA(ZB)) � 0 for any bidder |̂ in pro�le t, as otherwise

the platform could strictly increase pro�ts by matching the bidder with |̂. By the same

reasoning, one can compute the best reply ZB(ZA) for platform B (which is similar to the

expression above with indexes appropriately changed).

As in the monopoly case, the platforms�best-reply matching rules do not depend on the

pro�le t (as one can see from (29)). Therefore, ZA(ZB) and ZB(ZA) can be described by

scoring rules. The next proposition characterizes the unique symmetric equilibrium of this

game:
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Proposition 8 In the unique symmetric Nash equilibrium of duopolistic competition with

one-sided mechanisms, platforms A and B choose matching rules implicitly described by the

scoring rule:

sIJ(�; v) = !(�; v) +

 
�c
�
E
�
�(�; v)jZIJ

��
E [�(�; v)jZIJ ]

+ 2gd(0)

!
� E
�
!(�; v)jZIJ

�
� �(�; v);

The equilibrium payment rules P IA and P
I
B follow from the payo¤ equivalence formula (10)

evaluated at ZIJ and QA = QB � 0.

The only di¤erence between the duopoly matching rule from Proposition 8 and its

monopoly counterpart (20) is the extra term 2gd(0). This term captures the impact of

competition on the weight the platform gives to the expected user value �(�; v) from bid-

ders.

As it turns out, as platforms become closer substitutes in the eyes of users, equilib-

rium matching rules become more user-friendly. As before, this extra distortion hinders the

platforms�ability to extract rents from bidders.

Corollary 4 The higher is the degree of substitutability between platforms, the more user-
friendly are the equilibrium matching rules ZA and ZB. Moreover, the platform extracts

lower rents from bidders in expectation, E
�
!(�; v)jZI

�
.

Interestingly, competition between platforms could lead to a reduction in total welfare

when the supply of users is perfectly inelastic (that is, number of users who join some platform

is �xed). To see why, let us �rst consider a monopolistic market. It is clear from (17) that

with a perfectly inelastic supply of users, the pro�t-maximizing matching rule selects the

bidder with the highest virtual bidder value. This matching rule, denoted by ZW , can be

described by the scoring rule sW (t) = !(�; v) and leads to total welfare:

E
�
� + vjZW

�
:

Now consider a duopolistic market in which users regard both platforms as perfect sub-

stitutes, that is, Gd is degenerate at zero. In this case, by a Bertrand-type argument, the

unique symmetric equilibrium involves both platforms selecting the bidder with the highest

expected user value. This is accomplished by the matching rule ZO described by the scoring

rule sO(t) = �(�; v), which leads to total welfare:

E
�
� + vjZO

�
:
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It is easy to construct examples in which E
�
� + vjZO

�
< E

�
� + vjZW

�
(in the case

of a binary state space, all we need is for vH to be su¢ ciently larger than �H). We just

established:

Proposition 9 Let E
�
� + vjZO

�
< E

�
� + vjZW

�
. If the platforms are perfect substitutes

and the supply of users is perfectly inelastic, then welfare decreases as the market moves from

monopoly to duopoly.

Intuitively, competition between platforms has two e¤ects: �rst, it increases the user

base relative to a monopolistic market and, second, it pushes both platforms to adopt more

user-friendly matching rules. This �rst e¤ect has a clearly positive impact on total welfare.

The second e¤ect may be negative, though, if the bidder side of the market contributes more

to welfare than the user side. As a consequence, competition could reduce total welfare when

the supply of users is su¢ ciently inelastic (in which case the �rst e¤ect is negligible).

6 Conclusion

This paper derives the optimal mechanism for a platform willing to sell to bidders access to

its user base. My analysis o¤ers positive as well as normative implications.

On the positive side, I �rst show that the platform�s decision whether to charge or

subsidize users depends on the shares that users and bidders expect to derive from the

match. If bidders appropriate most of the surplus from matches, the platform should follow

a loss leader strategy by subsidizing users and recouping losses on the bidder side of the

market. In contrast, platforms in which user pro�ts are higher than those of bidders tend to

adopt business models that charge users access or subscription fees.

Second, my model develops an informational rationale for why many two-sided platforms

generate matches with ine¢ ciently low user values (search diversion). Since the signal ob-

served by the platform regarding the user value of a bidder contains information on his bidder

value, the revenue-maximizing auction distorts the matching rule as a way to induce high

bidding. When user and bidder values are positively a¢ liated, this distortion favors bidders

with low user values, resulting in search diversion.

Third, my analysis predicts that, when platforms compete with one-sided mechanisms,

more competitive markets lead to matching rules that favor bidders with high user values.

This prediction can be tested by assessing how online recommendation systems (e.g., from

Amazon, Barnes and Noble, and Borders) react to di¤erent market conditions.

On the normative side, this work suggests that the conventional wisdom from one-sided

markets may be misleading when it comes to evaluating the welfare e¤ects of mergers in
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two-sided markets. Indeed, I show that when two-sided platforms compete with one-sided

mechanisms, monopoly may produce more welfare than duopoly.

This work can be extended to accommodate the case in which the platform selects mul-

tiple bidders (a list) to match with users. In such a model, users sequentially search through

the list of selected bidders and complete a transaction when (given the mechanism) the

expected gains from further searches are no grater than the payo¤ from purchasing from

previous bidders. This extension might bring new and interesting insights regarding the

design of revenue-maximizing position auctions.

This work is a �rst step towards incorporating price discrimination (here, in the form of

an auction mechanism) in a two-sided market context. Still, much work remains to be done

on the subject. In particular, the special form of bidder heterogeneity (only in interaction

values) and user heterogeneity (only in membership values) calls for a more general analysis.

First, I plan to analyze the general nonlinear pricing problem in two-sided (or N -sided)

markets when agents on both sides are heterogeneous in interaction and membership values

(extending the one-sided model of Rochet and Stole (2002)). Such a model conveniently

describes business to business electronic commerce platforms (see Lucking-Reiley and Spulber

(2001)) and can be applied to study the optimal regulation of N -sided platforms.

Second, I plan to study a model in which the platform designs one-to-one matching

rules (unlike the one-to-many matching studied here) to associate agents (heterogeneous in

interaction values) from both sides of the market. Such a model captures important features

of labor and marriage markets.
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Appendix: Proofs

Proof of Proposition 1: Note that, given the mechanism (ZE; PE; QE), the user with

the highest reservation value, �c, that joins the platform is such that:

�c = E[ujZE]�QE = E[u+ vjZE] = �c�:

I will now show that the mechanism (ZE; PE; QE) satis�es the IC constraints (4). It is

immediate from 18 that sE(�(1); v(1)) � sE(�(2); v(2)) if and only if v(1) ��v. Consider a bidder
with type (�; v) who reports b > v. If there is no type (~�; ~v) such that sE(�; b) > sE(~�; ~v) �
sE(�; v), the bidder is no better by reporting b > v than by reporting v. If instead there is

a type (~�; ~v) such that sE(�; b) > sE(~�; ~v) � sE(�; v), then the bidder�s payo¤ is:

v � (�(~�; ~v) + ~v � �(~�;�v))

= v + �(~�;�v)� �(~�; ~v)� ~v <�v + �(~�;�v)� �(~�; ~v)� ~v = 0;

where the inequality follows from the fact v < �v and the last equality follows from the

de�nition of�v. Now consider a bidder with type (�; v) who reports b < v. If there is no type

(~�; ~v) such that sE(�; v) � sE(~�; ~v) � sE(�; b), the bidder is no better by reporting b < v

than by reporting v. If instead there is a type (~�; ~v) such that sE(�; v) � sE(~�; ~v) � sE(�; b),

than by deviating to b < v the bidder is worse o¤, since he obtains a zero payo¤ while by

reporting v he would have enjoyed a payo¤:

v � (�(~�; ~v) + ~v � �(~�;�v) >�v + �(~�;�v)� �(~�; ~v)� ~v = 0;

where the inequality follows from the fact v >�v. This shows that the mechanism (ZE; PE; QE)

induces truth-telling in dominant strategies. It is immediate from the discussion above that

this mechanism induces nonnegative payo¤s to bidders, therefore satisfying the IR constraints

(3).�

Proof of Lemma 1: The arguments here are standard in the literature (see for example
Bolton and Dewatripont (2004) for a textbook treatment of the baseline mechanism design

problem with discrete types). It is easy to see that the IR constraint has to bind for v1 for

all j and �k. Otherwise, the platform could strictly increase pro�ts by increasing the bidder

payments Pj(�
k; v1) by " > 0 small enough, in which case the IR would still hold and no IC

37



would be a¤ected. Hence, using the IC constraints for types (�k; vl) with l > 1, we see that:

S(Z;Q) � zj(�k; vl) � vl � pj(�
k; vl) � S(Z;Q) � zj(�k; v1) � vl � pj(�

k; v1)

> S(Z;Q) � zj(�k; v1) � v1 � pj(�
k; v1) = 0;

what shows that IR constraints are slack for all signals and bidder values (�k; vl) with l > 1.

Fixing �k, consider the reciprocal IC constraints for types (�k; vl) and (�k; vl
0
):

S(Z;Q) � zj(�k; vl) � vl � pj(�
k; vl) � S(Z;Q) � zj(�k; vl

0
) � vl � pj(�

k; vl
0
);

S(Z;Q) � zj(�k; vl
0
) � vl0 � pj(�

k; vl
0
) � S(Z;Q) � zj(�k; vl) � vl

0 � pj(�
k; vl):

Summing them up leads to:

(vl � vl
0
) � (zj(�k; vl)� zj(�

k; vl
0
)) � 0:

It then follows that zj(�
k; vl) has to be weakly increasing in v for all �k and j.

Now consider the local downward incentive constraints for types (�k; vl+1) and (�k; vl
0
):

S(Z;Q) � zj(�k; vl+1) � vl+1 � pj(�
k; vl+1) � S(Z;Q) � zj(�k; vl) � vl+1 � pj(�

k; vl);

S(Z;Q) � zj(�k; vl) � vl � pj(�
k; vl) � S(Z;Q) � zj(�k; vl�1) � vl � pj(�

k; vl�1):

Using the weak monotonicity of zj(�
k; vl), the IC constraint above implies that:

S(Z;Q) � zj(�k; vl) � vl+1 � pj(�
k; vl) � S(Z;Q) � zj(�k; vl�1) � vl+1 � pj(�

k; vl�1):

Therefore:

S(Z;Q) � zj(�k; vl+1) � vl+1 � pj(�
k; vl+1) � S(Z;Q) � zj(�k; vl�1) � vl+1 � pj(�

k; vl�1);

what shows that if the local downward IC constraint holds, then all downward IC constraints

should hold as well. An analogous argument shows that the same is true for all upward IC

constraints.

Finally, every local downward IC constraint should bind. To see why, let:

S(Z;Q) � zj(�k; vl) � vl � pj(�
k; vl) = S(Z;Q) � zj(�k; vl�1) � vl � pj(�

k; vl�1) + ";

where " > 0. Consider a new payment rule P̂ that di¤ers from P only for bidder j on

types (�k; vl
0
) with vl

0 � vl, in which case p̂j(�
k; vl

0
) = pj(�

k; vl
0
) + ". Clearly, all IC and IR
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constraints are una¤ected by this change, but the platform now extracts more rents from

type (�k; vl). This shows that all local downward IC constraints should indeed bind at the

optimum. This proves necessity.

For su¢ ciency, consider the binding IC constraint for type (�k; vl) and bidder j:

S(Z;Q) � zj(�k; vl) � vl � pj(�
k; vl) = S(Z;Q) � zj(�k; vl�1) � vl � pj(�

k; vl�1):

Since zj(�
k; vl) is weakly increasing in v for all �k and j by assumption, it follows that:

S(Z;Q) � zj(�k; vl) � vl�1 � pj(�
k; vl) � S(Z;Q) � zj(�k; vl�1) � vl�1 � pj(�

k; vl�1),

what shows that upward IC constraints hold for all types and bidders. The same reasoning

shows that binding local IC constraints and the monotonicity of zj(�
k; vl) are su¢ cient for

conditions (3) and (4) to hold for all bidders j and types (�k; vl).�

Proof of Lemma 2: From the payo¤ equivalence formula (10), we know that:

NX
j=1

E [Pj(t)] =
NX
j=1

X
k;l

f(�k; vl)pj(�
k; vl)

= S(Z;Q) �
(

NX
j=1

X
k;l

f(�k; vl)

"
zj(�

k; vl) � vl �
X
l0<l

zj(�
k; vl

0
) � �
#)

= S(Z;Q) �
( PN

j=1

P
k;l f(�

k; vl) � zj(�k; vl) � vl

�
PN

j=1

P
k;l f(�

k; vl)
P

l0<l zj(�
k; vl

0
) � �

)

Now notice that, using summation by parts:

X
k;l

f(�k; vl)
X
l0<l

zj(�
k; vl

0
) � � =

X
k

T�1X
l=1

(
zj(�

k; vl) � � �
X
l0>l

f(�k; vl
0
)

)
:

Therefore:

NX
j=1

E [Pj(t)] = S(Z;Q) �
NX
j=1

X
k;l

f(�k; vl) � zj(�k; vl) � vl

�S(Z;Q) �
NX
j=1

X
k

T�1X
l=1

(
zj(�

k; vl) � � �
X
l0>l

f(�k; vl
0
)

)

= S(Z;Q) �
NX
j=1

X
k;l

f(�k; vl) � zj(�k; vl) �
(
vl � � �

P
l0>l f(�

k; vl
0
)

f(�k; vl)

)
;
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where (vT2+1 � vT2)
P
l0>T2

f(�k;vl
0
)

f(�k;vT2 )
� 0. We can now rewrite the expression above as:

NX
j=1

E [Pj(t)] = S(Z;Q) �
NX
j=1

X
t�j

X
k;l

f(t) � Zj(t) �
�
vl � � � 1� F (vlj�k)

f(vlj�k)

�
= S(Z;Q) � E [!(�; v)jZ] ;

where !(�; v) is the the bidder�s virtual surplus. Plugging the result above in the objective

function (5) gives (11).�

Proof of Proposition 2: Lemma 3 implies that the e¢ cient matching rule ZII is always
optimal for the platform. As a consequence, the optimal fee QII has to solve program (??)
with Z evaluated at ZII . For convenience, de�ne the univariate real function  (x) as:

 (x) �
Gc(E

�
�(�; v)jZII

�
� x)

gc(E [�(�; v)jZII ]� x)
� E

�
!(�; v)jZII

�
:

Condition (14) can be rewritten as the �xed point of this function:

 (QII) = QII :

Now note that at the optimum�E
�
!(�; v)jZII

�
� QII , as otherwise the platform�s pro�ts

are negative. Moreover, QII � E
�
�(�; v)jZII

�
, as otherwise no users join the platform. As

a consequence, we can restrict attention to payment rules such that:

�E
�
!(�; v)jZII

�
� Q � E

�
�(�; v)jZII

�
:

Clearly,

 (�E
�
!(�; v)jZII

�
)� (�E

�
!(�; v)jZII

�
) =

Gc(E
�
�(�; v) + !(�; v)jZII

�
)

gc(E [�(�; v) + !(�; v)jZII ]) > 0

and:

 (E
�
�(�; v)jZII

�
)� (E

�
�(�; v)jZII

�
) = �E

�
�(�; v) + !(�; v)jZII

�
< 0:

Since  (x)� x is a continuous function, we can apply the intermediate value theorem to

conclude that there is a fee:

QII 2 (�E
�
!(�; v)jZII

�
; E
�
�(�; v)jZII

�
)

satisfying  (QII) = QII (or, alternatively, condition (14)).
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I will now argue that the solution to (14) is a local maximum. Indeed, the second-order

derivative of the objective function (13) with respect to Q is:

@2�(Z; P;Q)

(@Q)2
= g0c(E

�
�(�; v)jZII

�
�Q) �

�
E
�
!(�; v)jZII

�
+Q

�
�2gc(E

�
�(�; v)jZII

�
�Q):

Evaluating this condition at QII (by using (14)) leads to:

@2�(Z; P;QII)

(@Q)2
= g0c(E

�
�(�; v)jZII

�
�QII) �

Gc(E
�
�(�; v)jZII

�
�QII)

gc(E [�(�; v)jZII ]�QII)

�2gc(E
�
�(�; v)jZII

�
�QII);

which is strictly negative since Gc(�) is log concave. This shows that any solution to (14) is
a local maximum.

Because Gc(�) is log concave, the function  (�) is a weakly decreasing. As a consequence,
it has only one �xed point, what implies that condition (14) is both necessary and su¢ cient

for the optimum. Finally, its �xed point is weakly smaller than zero if and only if  (0) � 0.
This is precisely condition (15).�

Proof of Proposition 3: It is immediate from equation (14) that S(ZE; QE) > S(ZII ; QII).

The reserve prices from Claim 2 follows from De�nition 2.

I will now prove Claim 3. In order to do so, take two types (�; v) and (�̂; v̂) such that

�(�; v) < �(�̂; v̂). Now let �(�; v) + v > �(�̂; v̂) + v̂. This obviously implies that v > v̂.

Moreover,

!(�; v)� !(�̂; v̂) = v � v̂ � �
1� F (vj�)
f(vj�) + �

1� F (v̂j�̂)
f(v̂j�̂)

= v � v̂ + �

 
1� F (v̂j�̂)
f(v̂j�̂)

� 1� F (v̂j�)
f(v̂j�)

!
| {z }

A

+�

�
1� F (v̂j�)
f(v̂j�) � 1� F (vj�)

f(vj�)

�
| {z }

B

:

A > 0 as a consequence of Assumption 1 (positive a¢ liation) and B > 0 because of the
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monotone hazard rate condition. We can then conclude that:

!(�; v)� !(�̂; v̂) > v � v̂

> �(�̂; v̂)� �(�; v):

This implies that E[ujZE] = E[�(�; v)jZE] � E[�(�; v)jZII ] = E[ujZII ].
Finally,

B(�; v) = E
�
sE(t)� sII(t)j�; v

�
= E

�
� � 1� F (vj�)

f(vj�) j�; v
�
= � � 1� F (vj�)

f(vj�) ;

as we wanted to show.�

Proof of Proposition 4: We only need to show that the matching rule ZII is imple-
mentable under the alternative Assumption 2. Having done so, the arguments from Lemma

3 and Proposition 2 guarantee that the mechanism (ZII ; P II ; QII) is revenue-maximizing.

As we know from Lemma 1, the implementability of ZII is equivalent to showing that

zII(�; v) is weakly increasing in v for all �. This, in turn, is equivalent to showing that the

scoring rule sII(t) = �(�; v) +!(�; v) is weakly increasing in v for all �. Since �(�; v) weakly

decreases in v (by Assumption 2) and !(�; v) strictly increases in v (by the monotone hazard

rate condition), sII(t) is weakly increases in v if and only if

���(�; vl+1)� �(�; vl)
�� � ��!(�; vl+1)� !(�; vl)

�� for all l and � 2 �,

as we wanted to show.�

Proof of Proposition 5: From the expression (19) we know that ZI can be described

by a scoring rule of the form:

sb(�; v) = !(�; v) + b � �(�; v):

Denote by Z(b) the matching rule associated to the scoring rule sb(�; v). With slight

abuse of notation, de�ne E [!(�; v)jZ(b)] as the correspondence that associates to each b
the set of real numbers x such that E [!(�; v)jZ(b)] = x for some tie-breaking rule (that

resolves ties between (�; v) and (�̂; v̂) with sb(�; v) = sb(�̂; v̂)). Clearly, E [!(�; v)jZ(b)] is a
continuous and weakly decreasing correspondence with empty interior.24

24A weakly decreasing correspondence is such that if b � b̂, then E
h
~vjZ(b̂)

i
� E [~vjZ(b)] in the strong set

order.
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Analogously, de�ne E [�(�; v)jZ(b)] as the correspondence that associates to each b the
set of real numbers x such that E [�(�; v)jZ(b)] = x for some tie-breaking rule. Clearly,

E [�(�; v)jZ(b)] is a continuous and weakly increasing correspondence with empty interior.
From the argument derived in the text, we know that ZI is the unique �xed point that

solves:

b 2 � (E [�(�; v)jZ(b)]) � E [!(�; v)jZ(b)]
E [�(�; v)jZ(b)] : (30)

Because Gc(�) is log concave, it follows that �(x)
x
is a strictly decreasing function in

x. Therefore, � (E [�(�; v)jZ(b)]) � E[!(�;v)jZ(b)]
E[�(�;v)jZ(b)] is a continuous and weakly decreasing cor-

respondence in b. Since � (E [�(�; v)jZ(0)]) � E[!(�;v)jZ(0)]
E[�(�;v)jZ(0)] is bounded away from zero and

� (E [�(�; v)jZ(b)]) � E[!(�;v)jZ(b)]
E[�(�;v)jZ(b)] is uniformly bounded, we can conclude that a solution to

(30) exists. Uniqueness follows from the fact that � (E [�(�; v)jZ(b)]) � E[!(�;v)jZ(b)]
E[�(�;v)jZ(b)] has empty

interior.�

Proof of Proposition 6: We will show that:

�
�
E
�
�(�; v)jZI

��
�
E
�
!(�; v)jZI

�
E [�(�; v)jZI ] � 1 , �

�
E
�
�(�; v)jZII

��
�
E
�
!(�; v)jZII

�
E [�(�; v)jZII ] � 1:

I start by proving su¢ ciency ((). I proceed by contradiction. So let�s assume that
�
�
E
�
�(�; v)jZI

��
� E[!(�;v)jZ

I]
E[�(�;v)jZI ] < 1. By de�nition, the e¢ cient matching rule is such that a

bidder j with type (�; v) obtains the match when a bidder |̂ with type (�̂; v̂) is available if

and only if:

�(�; v) + !(�; v) � �(�; v) + !(�; v):

Hence, from the fact that �
�
E
�
�(�; v)jZI

��
� E[!(�;v)jZ

I]
E[�(�;v)jZI ] < 1 and condition (19), we can

conclude that E
�
!(�; v)jZI

�
� E

�
!(�; v)jZII

�
and E

�
�(�; v)jZI

�
� E

�
�(�; v)jZII

�
. Since

�(x)
x
is strictly decreasing (because Gc(�) is log concave), it follows that:

1 > �
�
E
�
�(�; v)jZI

��
�
E
�
!(�; v)jZI

�
E [�(�; v)jZI ] � �

�
E
�
�(�; v)jZII

��
�
E
�
!(�; v)jZII

�
E [�(�; v)jZII ] ;

contradicting the maintained assumption that �
�
E
�
�(�; v)jZII

��
� E[!(�;v)jZ

II]
E[�(�;v)jZII ] � 1.

I will now prove necessity ()) by establishing the counter-positive: if �
�
E
�
�(�; v)jZII

��
�

E[!(�;v)jZII]
E[�(�;v)jZII ] < 1, then �

�
E
�
�(�; v)jZI

��
� E[!(�;v)jZ

I]
E[�(�;v)jZI ] < 1. I will proceed by contradiction. So

let�s assume that �
�
E
�
�(�; v)jZI

��
� E[!(�;v)jZ

I]
E[�(�;v)jZI ] � 1.

It is then immediate from condition (19) that E
�
!(�; v)jZI

�
� E

�
!(�; v)jZII

�
and
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E
�
�(�; v)jZI

�
� E

�
�(�; v)jZII

�
. Since �(x)

x
is strictly decreasing, it follows that:

1 � �
�
E
�
�(�; v)jZI

��
�
E
�
!(�; v)jZI

�
E [�(�; v)jZI ] � �

�
E
�
�(�; v)jZII

��
�
E
�
!(�; v)jZII

�
E [�(�; v)jZII ] ;

contradicting the maintained assumption that �
�
E
�
�(�; v)jZII

��
� E[!(�;v)jZ

II]
E[�(�;v)jZII ] < 1.�

Proof of Corollary 1: Since �(x)
x
is a strictly decreasing function in x, it follows that

� (E [�(�; v)jZ(b)]) � E[!(�;v)jZ(b)]
E[�(�;v)jZ(b)] is a continuous and weakly decreasing correspondence of b.

As a consequence, if we take two demands Gc(�) and Ĝc(�) satisfying � (x) � �̂ (x), it follows

that the solution b to (30) associated to Gc(�) will be weakly greater than the solution b̂ to
(30) associated to Ĝc(�).�

Proof of Lemma 4: Let platformB choose an arbitrary mechanismMB = (ZB; PB; QB)

and assume that platform A picks a mechanism MA = (ZA; PA; QA). Now consider a new

mechanism �MA = (Z
II ; PA; �QA) with the user fee �QA chosen to satisfy:

E [� �QAjZA] = E
�
� � �QAjZII

�
:

By the exact same arguments developed on Lemma 3, one can see that rule ZII is

implementable.

Note that, by construction, SA( �MA;MB) = SA(MA;MB). I will now show that�A( �MA;MB) �
�A(MA;MB) for any mechanism MB. For simplicity we will write ! to mean !(�; v) and �

to mean �(�; v). Indeed:

�A(MA;MB) = SA(MA;MB) � (E [QA + !jZA])
= SA( �MA;MB) �

�
E [! + jZA]� E

�
�jZII

�
+ E

�
�QAjZII

��
� SA( �MA;MB) �

�
E
�
! + �jZII

�
� E

�
�jZII

�
+ E

�
�QAjZII

��
= SA( �MA;MB) �

�
E
�
�QA + !jZII

��
= �A( �MA;MB);

where the second equality follows from the construction of �QA and the inequality (in the

third line) uses the fact that the matching rule ZII maximizes E [! + �jZ] among all imple-
mentable rules Z (see Lemma 3). This shows that it is weakly dominant for the platform to

choose a mechanism of the form (ZII ; PA; QA). By symmetry, the same reasoning establishes

the claim for platform B.�

Proof of Proposition 7: Lemma 4 states that it is a weakly dominant strategy for
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platforms A and B to choose the matching rule ZII . As a consequence, the equilibrium

payment rules QDA and Q
D
B have to solve the system of best responses (25) and (26) obtained

from di¤erentiating program (24) evaluated at ZJ = ZII for J 2 fA;Bg.
From the log concavity of Gc (�) and Gd (�), it follows that �c(x)

x
and �d(x)

x
are strictly

decreasing functions. Therefore, it is straight-forward to show that the best-reply functions

QA(QB) and QB(QA), implicitly de�ned by equations (25) and (26) respectively, are strictly

increasing.

Moreover, from the symmetry of the cdf Gd(�), we know that �c (x) = hd (�x). As a
consequence, the function QA(QB) is the inverse of the function QB(QA). This implies that

any solution to the system (25)-(26) has to be symmetric.

Plugging QA(QB) = QB(QA) into the system (25)-(26) leads to equation (27). By using

the same arguments from the proof of Proposition 2, one can easily see that there is only one

solution to (27), and that this solution is a maximum of program (24). Therefore, we can

conclude that the duopoly game has a unique pure strategy Nash equilibrium which users�

payment rules are given by (27).

Finally, since the bidders�reports in each matching mechanismMA andMB are indepen-

dent, we can apply Lemma 1 to conclude that equilibrium payments for bidders are given

by equation (10) evaluated at ZII and QA.�

Proof of Proposition 8: ZA(ZB) is the best response of platform A to ZB. Clearly,

the expression (29) evaluated at ZA(ZB) has to satisfy @�A
@q
(ZA(ZB)) � 0 for any bidder |̂

in pro�le t, as otherwise the platform could strictly increase pro�ts by matching the bidder

to |̂. Therefore, according to the best reply ZA(ZB), a bidder j with type (�; v) obtains the

match when a bidder |̂ with type (�̂; v̂) is available if and only if:

!(�; v) +

�
�c (E [ujZA(ZB)])
E [ujZA(ZB)]

+
�d (E [ujZA(ZB)]� E[ujZB])
E [ujZA(ZB)]� E[ujZB]

�
� E [!(�; v)jZA(ZB)] � �(�; v)

� !(�̂; v̂) +

�
�c (E [ujZA(ZB)])
E [ujZA(ZB)]

+
�d (E [ujZA(ZB)]� E[ujZB])
E [ujZA(ZB)]� E[ujZB]

�
� E [!(�; v)jZA(ZB)] � �(�̂; v̂)

By the same reasoning, the best reply ZB(ZA) selects a bidder j with type (�; v) when a

bidder |̂ with type (�̂; v̂) is available if and only if:

!(�; v) +

�
�c (E [ujZB(ZA)])
E [ujZB(ZA)]

+
hd (E [ujZA]� E[ujZB(ZA)])
E [ujZA]� E[ujZB(ZA)]

�
� E [!(�; v)jZB(ZA)] � �(�; v)

� !(�̂; v̂) +

�
�c (E [ujZB(ZA)])
E [ujZB(ZA)]

+
hd (E [ujZA]� E[ujZB(ZA)])
E [ujZA]� E[ujZB(ZA)]

�
� E [!(�; v)jZB(ZA)] � �(�̂; v̂):

In the unique symmetric equilibrium of this game ZIA = ZA(Z
I
B) = ZB(Z

I
A) = ZIB. Making
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this substitution in the best responses above leads to the scoring rule in the statement of

Proposition 8.�

Proof of Corollary 2: The optimal fees to users QII satis�es the �xed point equation:

�(QII) = QII ;

where the function �(�) is de�ned by:

�(x) � 1
gc(x)
Gc(x)

+ 2fd(0)
� E

�
!(�; v)jZII

�
:

Because Gc(�) is log concave, one can see that �(�) is a weakly decreasing function of x
and a strictly decreasing function of gd(0). Therefore, the �xed point associated to gd(0) will

be strictly smaller than the �xed point associated to ĝd(0) whenever gd(0) > ĝd(0).�

Proof of Corollary 4: The proof is analogous to that of Corollary 1, and is therefore
omitted.�
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