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ABSTRACT. We study the infinite-horizon pricing problem of a seller facing a buyer with single-unit

demand, whose private valuation changes over time. This evolution is modeled as a stochastic shock

to the buyer’s valuation arriving at a random time that is unanticipated by both the buyer and the

seller. The arrival of the shock is unobserved by the seller. We show that the seller’s optimal contract

with commitment consists of two prices: he will charge a low introductory price at the first instant,

and a constant higher price thereafter. We also study a version of the model that allows for multiple

shocks whose arrival times follow a Poisson process. It is assumed that the buyer can only make a

purchase when she receives a shock. We derive the optimal contract with commitment and show that

it consists of an increasing sequence of prices that converges in the limit to the highest buyer type.

We show that, without commitment, the worst equilibrium for the seller is stationary, featuring a

constant price over time. We characterize the set of equilibrium payoffs for the seller using this worst

equilibrium as an optimal penal code.
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1. INTRODUCTION

There is a large body of research in economic theory devoted to explaining the prevalence of in-

tertemporal price discrimination in markets. A typical model for such a pricing problem consists

of a seller facing a single buyer1 who is interested in purchasing a ”durable good.” In our context,

these goods are nonperishable goods that the buyer will only purchase once, for which resale or

renting is not possible and that have the same cost across time for the seller. The buyer stays in

the market until she purchases the good. The vast majority of the literature studies incentives for

the seller to lower his price over time - a phenomenon which is common in practice. However,

there are a variety of products for which the price increases over time. Amusement parks and ski

resorts offer beginning of season discounts, stores offer back to school sales at the beginning of the

academic year and many new products offer discounts when they are launched. In such markets,

the seller often commits to the price increase by advertising the date of expiration of the intro-

ductory price and the regular price to be charged thereafter. If a buyer has rational expectations,

then there is no reason to expect a buyer with a constant valuation to wait and buy the product

at a higher price. The literature has explained this phenomenon by arguing that changing market

conditions, such as the arrival of new buyers, can cause the seller to raise his price. By contrast,

in this paper, we develop a model in which the buyer has a stochastic valuation. We show that

the optimal commitment contract for a seller facing a buyer with a changing valuation features

increasing prices.

A consumer’s valuation can be influenced by a variety of different media - product reviews,

advertising, word of mouth etc. In practice, the seller can observe neither when the buyer’s valu-

ation has been revised as a result of new information nor what the revised valuation is. No seller

can plausibly hope to know when his customers have read or will read a product review or for

that matter which review they read and as a result what their revised valuation will be. Other well

known behavioral factors, such as impulse purchasing, can also affect a buyer’s valuation.

The canonical intertemporal pricing model considers a buyer with a private valuation that does

not change across time. In this model, the seller offers a sequence of prices and if the buyer chooses

to purchase the good at any time the game is over. The fact that the buyer chooses not to purchase

1For ease of exposition, we refer to the seller using masculine pronouns and the buyer using feminine pronouns
throughout this paper.
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the good at a certain time reveals information about her value and provides incentives for the

seller to lower his price in the future to serve the buyer, who has revealed that she has a low

valuation. However, when prices fall over time it would induce some optimally behaving buyers

with rational expectations to delay their purchases. When the monopolist cannot commit to a

sequence of prices, this intertemporal competition can be severe. The celebrated Coase conjecture

(formally shown by Stokey (1981), Gul, Sonnenschein and Wilson (1986) for stationary strategies)

states that, without commitment, it may not be possible for the monopolist to exercise any market

power whatsoever. When the seller can make offers frequently, the competitive market outcome

occurs despite the fact that the durable good is being supplied by a monopolist. There has been

a large body of work examining market conditions where the Coase conjecture does and doesn’t

apply.

A complementary line of research studies optimal pricing when the seller has commitment

power. In her seminal work, Stokey (1979) showed that when the monopolist can commit to a

sequence of prices at the beginning of time, he chooses to offer the monopoly price at each instant

of time. Hence, he makes sales only in the first instant, forgoing all future sales. This shows that

the driving concern for the monopolist is to restrict the buyer’s option value (from postponing

her purchasing decision), to the extent that he makes no future sales, in order to dissuade the

buyer from waiting. Since every equilibrium of the pricing game without commitment can be

implemented by the seller when he has commitment power, the seller cannot expect to get more

than the single period monopoly profit in equilibrium. As a result, the solution with commitment

constitutes an upper bound for the revenue the seller can receive in equilibrium. In an influential

paper, Ausubel and Deneckere (1989) show that a sufficiently patient seller can get arbitrarily close

to the single period monopoly profit even without being able to commit to a sequence of prices.

The above results depend critically on the assumption that the buyer’s valuation is constant

across time. As a motivating example that highlights the tradeoffs, consider the anecdotal problem

of a person deciding whether to go to watch a movie on the weekend of its release.2 She has

information about the movie (having watched a trailer for example) but knows that it is possible

2While a movie is not thought of as a standard durable good, Conlisk (1984) pointed out that it satisfies all the properties
of such a good. And while we use this example solely to highlight the factors influencing a buyer’s decision when she
has a stochastic value, it should be pointed out that intertemporal price discrimination by movie theaters is practiced in
many countries and in a few theaters across the US. The reason that this practice is not widespread in the US is because
of economic and legal factors peculiar to the motion picture industry (see Orbach (2004)). In fact, Orbach and Einav
(2007) conclude that if legal constraints were lifted, exhibitors could increase profits by price discrimination.
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that after reading reviews, she might revise her opinion. Will such a person end up watching the

movie if it cost her 10 dollars to do so while knowing that the price would be the same next week?

What if the theater offered an opening weekend discount price of 5 dollars and she knew that in

the subsequent week the price would go up? Would this override the fact that she had not read a

review yet? Finally, how would the person decide if this lack of information was combined with a

lack of opportunity? Some dates are more convenient than others depending on a person’s work

schedule, the availability of friends to go with, and so on. She might not know for sure when she

will get the opportunity to watch the movie again. How does this influence her decision?

In this paper, we present a model where changes to a buyer’s valuation arrive in the form of

unanticipated stochastic shocks. Conditional on receiving a shock, the buyer draws a new in-

dependent valuation. In the first half of the paper, we focus on a model where there is a single

shock to the buyer’s valuation and both the arrival of the shock and the resulting valuation are

not known ex-ante by either the buyer or the seller. The shock arrives via an exponential process

and the seller does not observe when the buyer’s valuation changes. This models the arrival of

information that allows the buyer to reassess her value of the good. We derive the optimal pricing

contract of the seller when he has commitment power.

In the second half of the paper, we extend the model to allow the buyer to receive multiple

shocks to her valuation. These shocks are assumed to arrive from a Poisson process and their

arrival is not observed by the seller. Once again, conditional on receiving a shock, the buyer draws

an independent private value. We assume, in addition, that the buyer can only make a purchase

when she receives a shock. An interpretation of these shocks is that they represent opportunities

to make a purchase, or an impulse to buy. Impulse purchasing has been studied extensively by a

large marketing literature starting with the seminal work of Clover (1950).3 In fact, recently, there

have been interesting studies of impulse purchasing in settings such as airports (Crawford and

Melewar (2003)) and on the internet (Madhavaram and Laverie (2004)).4 We derive the optimal

contract with commitment and show that it features an increasing price function. When the seller

cannot commit, we show that the worst equilibrium for the seller features a constant price over

time. This is in sharp contrast to the rapidly decreasing prices suggested by the Coase conjecture.

3Stern (1962), Kollat and Willet (1967), Rook (1987), Rook and Fisher (1995) are a few of the many other important
papers.
4The latter being the medium of choice for impulse purchasing by the author of this paper.
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1.1. Overview and Discussion of Results

As we mentioned above, conditional on receiving a shock, the buyer draws a new valuation

independently from a distribution F. A natural interpretation of independent draws is that of

noisy valuations. Assume that the seller knows that the buyer has an intrinsic value ψ for the

object which is subject to fluctuations. These fluctuations can either be a result of information or

the result of behavioral factors such as moods or impulses. When the buyer receives a shock, her

realized valuation is θ = ψ + ε where ε is drawn independently from a distribution F′ and is not

observed by the seller. The assumption of an independent noise parameter is common in empirical

econometric analysis. The distribution F′ on the noise parameter ε induces the distribution F on θ.

We show that when the buyer receives a single shock to her valuation, the optimal contract of

the seller consists of two prices. The seller charges a price p̂ in the first instant and then charges

a higher price q̂ > p̂ thereafter. If a buyer does not purchase at the first instant, she will only buy

the good in the future if she receives the shock and her resulting valuation is higher than q̂. Since

the buyer can receive the shock at any time, the seller can potentially make a sale at all points of

time. As we discussed above, Stokey (1979) shows that when the buyer’s valuation is constant,

the seller’s optimal contract is equivalent to that of a static single period monopoly problem. By

contrast, we show that the solution to the single shock model is essentially the solution to a two

period model where the buyer has a new independent private valuation in each period.

There are considerable technical difficulties associated with deriving the optimal contract. Op-

timal behavior by the buyer involves solving a complex optimal stopping problem that depends

on the prices set by the seller and the seller must take the strategic behavior of the buyer into ac-

count when designing the optimal contract. Moreover, the expected distribution of buyer types at

any time also depends on the prices and on the time that the buyer received the shock - an event

that is unobserved by the seller. We argue that it is difficult for the seller to solve this optimal

control problem and define instead an appropriate “relaxed problem.” In this relaxed problem,

we assume that the seller can observe the shock and can condition his prices on this information

(the conditional price functions are declared at the beginning of time). This removes one level of

asymmetric information, namely, the arrival time of the shock. The seller can always do weakly

better in the relaxed problem as he can choose to ignore the extra information. We solve for the
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optimal contract by showing that the solution to the relaxed problem can be implemented with

unconditional prices.

In the multiple shock extension, we show that the optimal commitment contract of the seller

features a monotonically increasing price function that asymptotically converges to the highest

buyer type in the limit. This means that, in the limit, the seller chooses to price out the buyer.

Moreover, increasing prices imply that the continuation payoff of the buyer is decreasing over

time and this makes it unattractive for the buyer to wait. Once again, this demonstrates that the

seller’s primary concern is reduce the buyer’s outside option even at the expense of making fewer

sales in the future.

We show that there exists a unique stationary equilibrium (the seller charges the same price at

all histories) when the seller cannot commit. We prove that this equilibrium provides the seller

with the lowest payoff R∗ amongst all perfect equilibria irrespective of the discount rate or the ar-

rival rate of the shocks (of course, the stationary equilibrium itself depends on these parameters).

Using this equilibrium as an optimal penal code, we argue that only prices which give the seller

a continuation revenue weakly higher than R∗ at all points of time can be supported in equilib-

rium. In particular, this implies that the optimal commitment contract cannot be supported as an

equilibrium because the seller’s revenue converges to zero as time goes to infinity.

Finally, we would like to point out that the analysis in this paper does not restrict attention to

differentiable price paths - an assumption commonly made in such models. This assumption is

primarily made to solve the buyer’s optimal stopping problem - if the price path is differentiable,

the buyer’s best response can be summarized by a first order condition. In contrast, by working

in the space of cutoff types, we can allow the seller to choose over the space of measurable price

functions. In fact, given that the optimal contract in the single shock case is discontinuous, there

are real benefits from relaxing this assumption.

1.2. Related Literature

This paper is related to two distinct strands of literature - the above mentioned literature on

durable goods problems and the recent literature on dynamic mechanism design. The classical

literature on durable goods makes two critical assumptions - that no new buyers enter the market

and that the valuation of the buyer is constant across time. There are well known models that
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relax the former assumption. Conlisk, Gerstner and Sobel (1984) and Sobel (1991) allow the entry

of an identical cohort of new buyers in each period. Like Stokey (1979), they show that the optimal

strategy involves setting the static monopoly price in each period. Since new buyers enter, there

are sales at each period but no buyer ever delays her purchase. Board (2008) introduces a model

in which new heterogeneous consumers can enter in each period and he derives the optimal seller

contract under commitment. By contrast, there are considerably fewer papers that relax the latter

assumption of constant valuations. Conlisk (1984) and Biehl (2001) analyze a two period, two

type model. Conlisk derives the optimal contract with and without commitment, whereas Biehl

compares sales to leasing and shows that under certain parameter values sales may dominate

leasing.

The single shock model in this paper most closely resembles the model of Fuchs and Skrzypacz

(2009). In their model, there is a single exogenous event that arrives from an exponential process

and this event terminates the game. Upon termination, the seller and the buyer receive payoffs

given by an exogenous function that depends on the buyer’s private valuation. They derive the

stationary equilibrium and show that the revenue of the seller is driven down to his outside option

as the time between successive offers goes to 0. Apart from the fact that we study the optimal

contract when the seller has commitment power, the single shock model in this paper differs in

two additional dimensions. Firstly, in this paper, upon arrival of the event, the continuation values

of the buyer and the seller are determined endogenously by the prices set by the seller. Secondly,

and most importantly, the seller does not observe the arrival of the event. This implies that the

game can continue well after the arrival of the event.

There is a recent literature in dynamic mechanism design that analyzes repeated contracting

between a principal and an agent with a stochastic valuation. A few influential papers that gen-

eralize the design of efficient mechanisms in static mechanism design to a dynamic environment

are Athey and Segal (2007), Bergemann and Välimäki (2008). Battaglini (2005) derives the optimal

mechanism for a buyer with two types whose valuation follows a Markov process. Pavan, Segal

and Toikka (2009) study incentive compatibility and revenue maximization in a general dynamic

model with a continuum of types. They also generalize the results of Baron and Besanko (1984)

from two periods to an arbitrary finite time horizon. Their work differs from this paper in three

major ways. Firstly, they assume that the agent desires to contract with the principal in every
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period. This assumption allows them to use an envelope theorem to eliminate the pricing rule

from the incentive compatibility constraints as is standard in static mechanism design. By con-

trast, the buyer in this paper only wants to purchase the object once. Moreover, the analysis in this

paper is in continuous time and there is no obvious analogue of their model in continuous time.

Secondly, they only require the individual rationality condition to hold at the first period. The

principal makes the agent post a bond at the beginning of time and if the agent decides to break

the contract at any period before the end of the game, the bond is forfeit. At the end of the game,

if the agent has not broken the contract then the bond is returned. In expectation, the contract is

individually rational at the beginning of time but along certain paths the agent may end up losing

money. By contrast, in a durable goods problem the lowest type that contracts at any time, gets

rent equal to their continuation payoff which is determined endogenously. Lastly, in their model

the agent’s valuation changes at each period of time and the principal knows that her valuation

is changing at each period. In this paper the seller does not observe when the buyer receives the

shock. While this can, in principle, be modeled as a Markov process, the discrete time analogue

of this process is disallowed in their model as the conditional distribution of types at any time t is

not differentiable.

1.3. Organization

This paper has been organized into the following sections. Section 2 describes the single shock

model. In Section 3.1, we set up the seller’s problem and describe some of the inherent difficulties

in solving this optimal control problem. In Section 3.2, we define the relaxed problem and derive

its solution. Section 3.3 presents the optimal contract and discusses its properties. In Section 4, we

set up the multiple shock extension and derive the optimal contract with commitment. In Section

5, we describe formally the game without commitment, derive a stationary equilibrium and show

that this equilibrium is the worst equilibrium for the seller. Section 6 provides some concluding

remarks. The proofs not included in the body of the paper are in the appendix.

2. THE SINGLE SHOCK MODEL

We consider a continuous time, infinite horizon model consisting of a single buyer and a single

seller where time is indexed by t ∈ [0, ∞). The seller wants to sell a single unit of a perfectly
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durable good, the cost of which is assumed to be constant over time and is normalized to 0. He

is facing a buyer with a single unit demand. The buyer stays in the market until she makes a

purchase (if ever). The game ends when the buyer purchases the object. We assume that both the

seller and the buyer discount the future exponentially with a common discount rate r ∈ (0, ∞).

We normalize the buyer’s valuation to lie in the set [0, 1]. Her valuation at time t is denoted by

θ(t). The buyer draws an initial private valuation θ(0) from a cdf F at the beginning of time 0.

There is an exogenous shock which arrives in the market from an exponential distribution with

parameter λ. If the shock arrives at the beginning of time t, the buyer draws a new valuation

θ(t) independently5 from the same distribution F and the valuation is constant thereafter . Stated

formally, θ(t) ∼ F and θ(t′) = θ(t) for all t′ > t. The seller can observe neither the arrival of the

shock nor the realized valuation. In general, if the buyer does not receive the shock at time t then

θ(t) = θ(t−) where θ(t−) is the limit from the left6 or, in the other words, the value just before

time t. If the buyer does not receive a shock at t, her type is referred to as persistent.

The seller offers a measurable price function p(·) at the beginning of time 0, where

p : [0, ∞)→ [0, 1].

If the buyer purchases the good at time t, she receives discounted payoff e−rt[θ(t) − p(t)] and

the seller gets e−rt p(t). Since we want to focus on the best commitment contract of the seller, we

formally define only the optimal strategies of the buyer. Given any price function p(·) set by the

seller at the start of the game, the optimal strategy requires the buyer to behave optimally at all

points of time conditional on her information. The buyer’s information in this game is her initial

value and if the shock has arrived, its date of arrival and the valuation realized from it. This

saves on notation, as we do not need to define the buyer’s payoff and seller’s revenue from an

arbitrary nonoptimal strategy of the buyer. We will describe formally the buyer’s payoff from

optimal behavior in Section 3.1.

The following assumptions about the distribution F are used in the paper:

A1 F is smooth and has strictly positive density throughout the support.

5This assumption of independent draws has also been used in papers on sequential auctions such as Engelbrecht-
Wiggans (1994) and Said (2009).
6This limit is well defined. If the buyer has not received the shock then θ(t−) = θ(0). If the buyer received the shock at
t′ < t then θ(t−) = θ(t′).
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A2 F satisfies the monotone hazard rate condition or 1−F(·)
f (·) is decreasing.

A2’ F belongs to the family of polynomial distributions or F(θ) = θα where α > 0.

Assumption A1 is an innocuous assumption satisfied by all distributions used in practice. Smooth-

ness is not required for our results although it makes the presentation easier. Assumption A2 is

standard in the mechanism design literature and it implies increasing virtual values. The stronger

assumption A2’ is the family of polynomial distributions. When α ≥ 1 then this implies that F

has a nondecreasing density which in turn implies the monotone hazard rate condition A2. When

0 < α < 1 then F has a decreasing density which does not satisfy the monotone hazard rate con-

dition.7 Assumptions A1 and A2 are assumed to hold throughout the paper except when A2 is

explicitly replaced by A2’. Finally, we define

pM ≡ The profit maximizing static monopoly price at distribution F

≡ The solution to the equation: p− 1− F(p)
f (p)

= 0.

3. OPTIMAL CONTRACT WITH A SINGLE SHOCK

In this section, we derive the optimal contract for the infinite horizon model with a single ex-

ogenous shock to the buyer’s valuation when the seller has commitment. In this game, the seller

sets a price function p(·) at the beginning of time and the buyer decides strategically when to buy

depending on her current valuation and future expected draw. The seller’s problem is to choose

a price function which maximizes his revenue given that the buyer is strategic and has rational

expectations of future prices.

This section is organized as follows. Subsection 3.1 describes the seller’s problem and highlights

some of the key difficulties associated with a durable goods problem with stochastic values. Sub-

section 3.2 describes the relaxed problem. This problem can be used to circumvent some of the

issues associated with the fact that the seller cannot observe when the buyer receives the shock.

Finally, subsection 3.3 presents the result, explains the equivalence to a two period problem and

discusses some comparative statics.

7The first order condition from monopoly profit maximization has a unique solution even when 0 < α < 1. Moreover,
this distribution satisfies the monotone hazard rate condition to the right of the monopoly price which is all we really
require.
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3.1. The Seller’s Problem

As in the standard durable goods model, a strategic buyer with a stochastic valuation will utilize

a cutoff strategy (a formal statement for the relaxed problem is Lemma 2) where the cutoffs depend

on whether the buyer has received the shock or not. This implies that if it is optimal for a type

θ(t) to buy the good at price p(t), then purchasing is also optimal for all types θ > θ(t). The

intuition for this behavior is the following. For the buyer who has already received the shock,

the existence of the cutoff type follows from the linearity of the buyer’s payoff function (see for

instance Stokey (1979)). For the buyer who is yet to receive the shock, the continuation payoff has

two components - the expected payoff conditional on receiving the shock and the expected payoff

conditional on not receiving the shock. The expected payoff to the buyer from receiving the shock

is type independent. The type affects neither the arrival rate of the shock nor the valuation after

a shock as draws are independent. The existence of the cutoff type now once again follows from

the linearity of the buyer’s payoff.

We denote the continuation payoffs of type θ at time t by VS(t, θ), VN(t, θ) where

VS(t, θ) =The continuation payoff of type θ at time t when the shock has been realized,

VN(t, θ) =The continuation payoff of type θ at time t when the shock has not been realized.

Cutoff types at time t are denoted by by cS(t), cN(t) where

cS(t) =The lowest type willing to buy at time t when the shock has been realized,

= inf{θ : θ −VS(t, θ) ≥ p(t)}

cN(t) =The lowest type willing to buy at time t when the shock has not been realized

= inf{θ : θ −VN(t, θ) ≥ p(t)}.

At time t, if the valuation of the buyer θ(t) is higher than cS(t) and she has already received the

shock then it is optimal for the buyer to purchase the good at price p(t). Similarly, if she has

not received the shock, then strategic behavior requires that she purchases at p(t) if θ(t) ≥ cN(t).

These cutoffs are determined by optimal responses to the price function p(·). Notice also that these

cutoff functions need not be continuous or decreasing, as the seller is not restricted to offering a
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continuous or monotonically decreasing price function. They are useful to simplify notation in the

expressions that follow.

Stopping times are denoted by

ηS
t (θ) = inf{t′ : θ ≥ cS(t′) and t′ ≥ t},

ηN
t (θ) = inf{t′ : θ ≥ cN(t′) and t′ ≥ t}.

ηS
t (θ) denotes the earliest time after time t at which type θ will make a purchase conditional on

having already received the shock. Since the cutoffs reflect optimal behavior, this time is the actual

time at which θ will make a purchase. Similarly, ηN
t (θ) denotes the earliest time after time t that

type θ will purchase should she not have received the shock up to that time. Stated differently, if

type θ does not receive the shock till time ηN
t (θ), then it is optimal for her to buy the good at price

p(t). This takes into account the expected payoff of receiving the shock at some time t′ > ηN
t (θ)

in the future. Unlike ηS
t (θ), the buyer may not actually purchase the object at time ηN

t (θ) as she

might receive the shock before then.

We can now use the cutoffs and stopping times to calculate the continuation payoffs of the buyer.

By definition, the following relationship must hold between the prices, cutoffs and continuation

payoffs:

(1) p(t) = cS(t)−VS(t, cS(t)) = cN(t)−VN(t, cN(t)).

This says that the cutoff type must receive her continuation payoff and is hence indifferent be-

tween purchasing at t or waiting. VS(t, θ) satisfies

(2) VS(t, θ) = e−r(ηS
t (θ)−t)[θ − p(ηS

t (θ))].

If the buyer has already received the shock, her continuation payoff is simply the discounted

payoff of purchasing the object at optimal time ηS
t (θ). Similarly

VN(t, θ) = λ
∫ ηN

t (θ)

t
e−(r+λ)(s−t)

∫ 1

0
VS(s, φ)dF(φ)ds + e−(r+λ)(ηN

t (θ)−t)[θ − p(ηN
t (θ))]

When the buyer has yet to receive the shock, her continuation payoff has two components. If the

buyer does not receive the shock till time ηN
t (θ), she will make a purchase at that time because by

definition θ ≥ cN(ηN
t (θ)). Hence, she makes the purchase without realizing the shock and receives
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discounted payoff e−r(ηN
t (θ)−t)[θ − p(ηN

t (θ))]. The probability of not receiving the shock till ηN
t (θ)

is e−λ(ηN
t (θ)−t). If the buyer receives a shock at time t < t′ < ηN

t (θ), she gets continuation payoff

e−r(t′−t)
∫ 1

0 VS(t′, φ)dF(φ). The probability density of receiving the shock at time t′ is given by

λe−λ(t′−t). The first term is then simply the expectation of the event that the shock arrives before

ηN
t (θ).

These expressions begin to highlight the difficulties associated with solving such a problem. The

continuation payoff of the buyer is type dependent and also depends on whether the buyer has re-

ceived the shock or not - something that the seller cannot observe. Moreover, the buyer is solving

an optimal stopping problem in continuous time where the shock is unanticipated, the realization

of the shock is random and the prices need not be monotone.8 As equation (1) shows, the contin-

uation payoffs of the cutoff types are critical in determining the revenue as they relate prices to

cutoffs. The above expression shows that the flow of the continuation payoff dVN(t, cN(t))/dt de-

pends potentially on future prices. Thus we cannot express the evolution of VN(t, cN(t)) in terms

of local time t variables. This is in contrast to evolution of the continuation payoff of the cutoff type

in a standard durable goods problem with persistent values or for that matter to the evolution of

continuation payoff VS(t, cS(t)). It is easy to express dVS(t, cS(t))/dt in terms of VS(t, cS(t)) and

cS(t) (this can be seen in equation (6)). This precludes using standard optimal control to maximize

the revenue where the seller maximizes over the set of measurable functions p(·).

We now derive an expression for the time 0 expected distribution of types remaining in the

market at time t in response to a price p(·). Naturally, this distribution depends on the time at

which the shock arrived (if ever). Moreover, it depends both on the prices before time t and on

the prices after, as these determine the continuation payoffs. This dependence on prices can be

expressed succinctly using the cutoff types. We denote this distribution at time t by F̃(t, ·).

F̃(t, θ) =The probability that the buyer will be in the market at t

and that she will have a valuation less than or equal to θ.

8Zuckerman (1986) and Stadje (1991) study a job search model with random wage draws in continuous time where
offers arrive stochastically. While they allow for multiple draws, they assume that the cost of job search is nondecreasing
in time which corresponds to nondecreasing prices p(·) in our context. To the best of our knowledge, the problem with
non-monotone costs has not been solved.
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This implies that F̃(t, 1) is simply the probability that the buyer is still in the market at time t.

Clearly, it is possible that F̃(t, 1) < 1. While F̃ is not a probability measure, it is the relevant

measure for the seller for profit maximization. Before we derive the expression for F̃ we need the

following notation:

cN(s, s′) = inf
{

cN(t) : s ≤ t < s′
}

,

cS(s, s′) = inf
{

cS(t) : s ≤ t < s′
}

.

These cutoffs are the minimum cutoffs in a given interval. Clearly, these are the relevant cutoffs

that determine the distribution of types. F̃ can be written in terms of the cutoffs and has two

components as shown below.

(3) F̃(t, θ) = e−λt min
{

F (θ) , F
(

cN(0, t)
)}

+
∫ t

0
λe−λsF

(
cN(0, s)

)
min

{
F (θ) , F

(
cS(s, t)

)}
ds.

The first term is the event that the shock does not arrive till t, the probability of which is e−λt. The

probability that the buyer is still in the market is just the probability that her type is lower than

the lowest cutoff type till t. This is given by F
(
cN(0, t)

)
. Finally, the probability that the buyer’s

type is lower than θ is simply the minimum of F(θ) and F
(
cN(0, t)

)
. The second term deals with

the event of the shock occurring before t. The density of the shock arriving at time s is λe−λs.

The probability that the buyer is still in the market at s is F
(
cN(0, s)

)
. Conditional on being in

the market at s, the probability that the valuation she realizes as a result of the shock at s is low

enough that she does not make a purchase between s and t is F
(
cS(s, t)

)
. The integral reflects that

the fact that the shock can arrive at any time prior to and including t.

Any price function p(·) set by the seller induces a measure over time that gives the probability

of making a sale . For any measurable subset T ⊂ R, we define

µ(T) = The probability of making a sale at a time in the set T.

For example µ((t, t′)) is the probability that the seller makes a sale between times t and t′. Clearly,

the probability of making a sale before t is given by µ([0, t)) = 1− F̃(t, 1). Since prices are not

restricted to be continuous, it is possible that the seller chooses to discontinuously change the

price at some point of time, thereby serving a positive mass of buyers at that instant. As a result,

the measure µ might have atoms. We can decompose µ into two parts µL and µC where µL is

absolutely continuous with respect to the Lebesgue measure and µC is absolutely continuous with
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respect to the counting measure. These measures have densities µ′L(·) and µ′C(·) respectively. We

use µ′(t) = µ′L(t) + µ′C(t) to denote the sum of the densities. This allows us to define the revenue

as a single integral.

The optimal revenue R̂ of the seller can now be written as maximization problem in terms of the

price function p(·) as follows

(4) R̂ ≡ max
p(·)

∫ ∞

0
e−rt p(t)µ′(t)dt.

There is no obvious way to solve the above optimal control problem. The density µ′(t) depends on

the prices via the cutoffs. As previously mentioned these cutoffs are the solution to a nonstandard

optimal stopping problem. As we can see from equation (3) the density µ′(t) depends on the rate

of change of the distribution F̃. The rate of change of the distribution depends potentially on fu-

ture prices and as a result it is not possible to use standard optimal control and reduce (4) to a local

optimization problem. A common strategy employed in such problems is to work in the cutoff

space (see for example Board (2008)). This strategy involves rewriting the problem, expressing the

seller’s revenue function only in terms of the cutoff types thereby allowing the seller to maximize

revenue by choosing these types. The optimal prices are then backed out from the optimal cut-

offs.9 In the above problem, this would involve eliminating the prices and allowing the seller to

choose cS(·) and cN(·). Even if the price function could be eliminated in a straightforward way, in

our setting, the seller cannot choose these cutoffs functions arbitrarily as they must be generated

by a price path. Restricting attention to the space of cutoffs generated by prices introduces sim-

ilar difficulties to working in the space of prices directly. We now define an appropriate relaxed

problem that allows us to circumvent these issues.

3.2. The Relaxed Problem

The difficulty for the seller in solving for the optimal contract lies partly in the fact that he could

not observe when the buyer received the shock. In this section, we define a relaxed problem

where the seller does observe the arrival of the shock. Moreover, we allow the seller to condition

the prices he offers on this information. Any contract in the original problem can be implemented

in this problem because the seller can simply choose to ignore the information about the shock.

9This strategy is analogous to the use of the envelope theorem in mechanism design to eliminate the pricing rule from
the principal’s objective function and expressing it solely in terms of the allocation function (see Myerson (1981)).
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Hence, the highest revenue in the relaxed problem must be weakly greater than in the original.

Finally, we show that the optimal contract in the relaxed problem can be “implemented” in the

original problem, which implies that it in turn is optimal.

In this relaxed problem, the seller offers conditional price functions p(·), q·(·) where

p(t) = Price offered at t if buyer has not received the shock yet,

qt(t′) = Price offered at t′ if buyer received shock at t ≤ t′.

The seller sets these functions at the beginning of the game with the intention of maximizing

revenue. The price at time 0 is p(0). If the buyer has not received the shock until time t, the price

she faces is p(t). If the buyer receives the shock at time t, she faces price qt(t) at t and prices qt(t′)

at all times t′ > t in the future. We assume that p(·) is measurable with respect to the Lebesgue

measure on [0, ∞) and q·(·) is measurable with respect to the Lebesgue measure on [0, ∞)× [0, ∞).

The buyer knows these price functions at the beginning of time and behaves optimally in response

to these prices. The solution to this problem involves choosing price functions p(·), q·(·) that

maximize revenue. We denote the maximum revenue that the seller can achieve in this problem

by R. The following lemma is the formal statement of the fact that the seller can be weakly better

in this problem than the original.

Lemma 1. Let R̂ be the revenue to the seller from the optimal contract of the original problem (4) and let R

be the revenue from the optimal solution to the relaxed problem. Then R ≥ R̂.

Proof. Let prices p̂(·) correspond to the optimal contract of the original problem (4) that gives the

seller revenue R̂. Setting prices

p(t) = p̂(t),

and

qs(t) = p̂(t) for all s ≤ t.

in the relaxed problem gives the seller R̂ in the relaxed problem. This is because setting these

prices induces the same behavior for the buyer as in the original problem. But the revenue from

the optimal solution to the relaxed problem must be weakly better than this particular choice of

contract or R ≥ R̂. �
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The price functions p(·), q·(·) induce continuation payoffs for each type at each point of time

conditional on the information regarding the arrival (or not) of the shock. The continuation payoff

of a type θ who has not received the shock till time t is denoted by

V(t, θ) = Continuation payoff of type θ at time t when the shock has not arrived.

In other words, V(t, θ) is the payoff to a type θ from not purchasing the good at time t and be-

having optimally in the future where she will face different prices depending on when the shock

arrives. If the buyer receives the shock at time t, the continuation payoff of a type θ (which is

drawn as a realization of the shock) at time t′ ≥ t is denoted by

Wt(t′, θ) = Continuation payoff of type θ at time t′ when the shock arrived at t.

We define XN(t) as the set of types remaining in the market at time t conditional on the buyer not

having received the shock till time t. Similarly, we define XS
t (t′) to be the set of types remaining in

the market at time t′ conditional on the buyer having received the shock at t. As in the previous

section, it is more convenient to work in the space of cutoff types. These types summarize optimal

behavior by the buyer and are denoted as follows:

c(t) = sup{θ : θ ∈ XN(t) and θ −V(t, θ) ≤ p(t)},

bt(t′) = sup{θ : θ ∈ XS
t (t′) and θ −Wt(t′, θ) ≤ qt(t′)}.

Cutoff type c(t) represents the highest persistent type left in the market who is unwilling to pur-

chase the good at p(t). Notice that this does not imply that type c(t) is indifferent between pur-

chasing at p(t) or waiting. It is possible that all the remaining types in the market strictly prefer to

wait if the price is too high. bt(t′) is the analogous cutoff type at t′ when the shock was observed

at t. Hence, it follows that

c(t) is non-increasing in t and bt(t′) is non-increasing in t′ for all t.

We say that the cutoff functions defined above describe optimal buyer behavior in response to the

price functions p(·), q·(·).

In this relaxed problem, it is straightforward to express the continuation payoffs of the buyer

solely in terms of the cutoffs c(·) and b·(·). As we show below, this allows us to maximize over



18 RAHUL DEB

the cutoff space and then use the cutoffs to back out prices. The continuation payoff V(t, c(t)) of

the cutoff type c(t) is denoted by shortened notation V(t):

(5) V(t) = V(t, c(t)) = c(t)− (r + λ)
∫ ∞

t
e−(r+λ)(s−t)c(s)ds + λ

∫ ∞

t
e−(r+λ)(s−t)W(s)ds,

where

W(t) = Expected continuation payoff if the buyer receives the shock at t.

A derivation of the above equation is given in the appendix. The continuation payoff of the cutoff

type has two components. The first consists of the payoff from waiting and not receiving the

shock. The second part is the expected benefit from receiving the shock where the expectation is

taken over time. We can now compute an expression for W(t).

Clearly

W(t) =
∫ 1

0
Wt(t, θ)dF(θ).

Finally, we define

ηt(θ) = inf{t′ : θ ≥ bt(t′) and t′ ≥ t}

or in other words, ηt(θ) is the time at which type θ drawn at time t purchases the object. We can

now write

(6) Wt(t, θ) = e−r(ηt(θ)−t)θ − r
∫ ∞

ηt(θ)
e−r(s−t)bt(s)ds.

We can also express the total surplus and the revenue for the seller in terms of ηt. The expected

surplus S(·) and expected revenue R(·) conditional on receiving a shock at time t are given by

S(t) =
∫ 1

0
e−r(ηt(θ)−t)θdF(θ)

and

R(t) = S(t)−W(t).

Before we continue, it is important to point out that it is without loss of generality to work in the

cutoff space. This is stated in the following lemma.

Lemma 2. Given any measurable price functions p(·), q·(·), there are unique non-decreasing measurable

cutoff functions c(·), b·(·) that describe optimal buyer behavior in response to the price. Conversely, given
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any non-decreasing measurable cutoff functions c(·), b·(·), there are measurable price functions p(·), q·(·)

such that the given cutoff functions describe optimal behavior in response to these price functions.

The first part of the above lemma simply says that optimal behavior of the buyer has the cutoff

property. This comes from the linearity of the buyer’s payoff and from the fact that, conditional on

receiving the shock, the buyer draws a new value independently. The second part of the lemma

says the converse. It says that we can always construct price functions to correspond to the given

cutoffs and hence it is without loss of generality to focus on the cutoff space. The sequence of

prices corresponding to given cutoff functions need not be unique, however, they will be outcome

equivalent.

We use x(t) to denote the probability that the buyer is still in the market at time t if she has not

received the shock till t.10 The flow of x(t) is the decrease in the probability that the buyer remains

in the market. Hence, the negative of the flow of x(t) is the instantaneous mass of types being

served at any instant. Since c(t) is the highest remaining type unwilling to purchase the good at

time t

x(t) = F(c(t)).

Since x(·) may be discontinuous, we can once again decompose it into two parts - one absolutely

continuous with respect to the Lebesgue measure and the other absolutely continuous with respect

to the counting measure. We use x′(t) to denote sum of the densities corresponding to these

measures at time t. We are now in a position to write the seller’s revenue R from the relaxed

problem in terms of c(·), V(·), R(·) and W(·).

R ≡
{∫ ∞

0
λe−(r+λ)tR(t)F(c(t))dt−

∫ ∞

0
e−(r+λ)t[c(t)−V(t)]x′(t)dt

}
.

The seller maximizes R by choosing cutoff functions c(·) and b·(·). This implies that the seller’s

optimal contract involves a continuum of functions, an inherently nonstandard problem. We show

below that the choice space of the seller can be reduced to two functions. We first plug in c(t)−

V(t) from (5) to get

R ≡
∫ ∞

0
λe−(r+λ)tR(t)F(c(t))dt(7)

10This x(t) is simply the measure of the set XN(t) with respect to probability measure F.
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−
∫ ∞

0
e−(r+λ)t

[∫ ∞

t
(r + λ)e−(r+λ)(s−t)c(s)ds + λ

∫ ∞

t
e−(r+λ)(s−t)W(s)ds

]
x′(t)dt.

Using integration by parts on (7) (the details are in the appendix) and simplifying, we get

(8) R ≡
∫ ∞

0
λe−(r+λ)t {S(t)F(c(t))−W(t)} dt + (r + λ)

∫ ∞

0
e−(r+λ)tc(t)[1− F(c(t))]dt.

We first observe that after the buyer receives a shock at t, we are in a setting similar to that of the

standard durable goods setting of Stokey (1979). The key difference is that the prices qt(t′) affect

the continuation payoffs not just between t and t′ but prior to t as well. The following lemma

shows that the intuition from a standard durable goods problem can be extended here. In the

optimal solution of the relaxed problem, the seller charges qt(t′) = qt(t) for all t′ ≥ t, that is, a

constant price conditional on the shock arriving. This means that if the seller observes that the

buyer received a valuation shock at t, then the seller only makes sales at t and forgoes sales to

lower types in the future. This is summarized and formally shown in the following lemma.

Lemma 3. In the optimal contract for the relaxed problem, the seller sets cutoffs bt(t′) = bt(t) or equiva-

lently prices qt(t′) = qt(t) for all t′ ≥ t and for all t.

This result implies that we can reduce the dimension of the seller’s problem. The seller now

simply needs to choose cutoffs c(t) and cutoffs bt(t) as it is not optimal for him to make sales

to any persistent types at a time t′ > t conditional on having observed a shock at t. Notice that

this also implies that in the optimal solution qt(t) = bt(t). For notational convenience, we drop

the subscript on b and denote bt(t) as simply b(t). We can now state the seller’s maximization

problem as

(9)

max
c(·),b(·)

{∫ ∞

0
λe−(r+λ)t

∫ 1

b(t)

[
F(c(t))θ − 1− F(θ)

f (θ)

]
dF(θ)dt + (r + λ)

∫ ∞

0
e−(r+λ)tc(t)[1− F(c(t))]dt

}
,

where c(·) is a non-increasing measurable function and b(·) is measurable.

This is a well defined calculus of variations problem. We ignore the monotonicity restriction on

c(·) and show instead that the solution of the unconstrained problem features a non-increasing

c(·). The following lemma characterizes the solution.

Lemma 4. The seller’s relaxed problem (9) has a solution. Moreover:
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i Every solution satisfies the following system of two Euler equations in two variables

c(t)− 1− F(c(t))
f (c(t))

=
λ

r + λ

∫ 1

b(t)
θdF(θ),

F(c(t))b(t)− 1− F(b(t))
f (b(t))

= 0.

ii Every solution lies in the open interval (pM, 1).

This shows that the cutoff types c(t), b(t) satisfy the same two equations for all t. Stokey (1979)

argued that when values are completely persistent, the first order condition at each point in time

is the same and is independent of the discount rate. In that case, the monotone hazard rate as-

sumption guarantees that the necessary first order condition has a unique solution and is thus

also sufficient. In turn this implies that the seller charges the static monopoly price at each point

of time. By contrast, in the relaxed problem with stochastic values, the Euler equations depend on

the arrival rate and the discount rate. Moreover, it is no longer immediate that this system of two

equations in two variables has a solution or that the solution is unique. Lemma 4 demonstrates

that this system has a solution and Lemma 5 shows that when F satisfies A2’ these equations have

a unique solution.

Since there are only two cutoffs in the relaxed problem, what we have effectively shown is that

the solution to the relaxed problem consists of two prices such that

p(t) = p for all t ≥ 0

qt(t′) = q for all 0 ≤ t ≤ t′.

The seller chooses to make some sales in the first instant. If the buyer does not purchase in the

first instant, she waits until she receives the shock at some time t. If her value θ(t) is greater than

the price q she makes a purchase else she never buys the good. This is because the seller never

chooses to drop the price and serve any of the persistent types. The following lemma states that

this contract features increasing prices.

Lemma 5. When F satisfies A2’, the system of equations in Lemma 4 have a unique solution. Moreover,

the solution features an increasing price or p < q.
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It should be pointed out that while assumption A2’ is required to show this result analytically,

both the uniqueness of the solution of the equations in Lemma 4 and the property of increasing

prices seem to be fairly robust in simulations with a variety of different distributions.

3.3. The Optimal Contract

We can derive the optimal contract by using the solution to the relaxed problem. We have argued

that the seller is always weakly better in the relaxed problem as he has added information that he

can choose to ignore. Consider the following contract using the optimal prices from the relaxed

problem. The seller charges the price p at the first instant and q thereafter. With these prices, types

that do not purchase at the first instant will not do so until they receive a new shock as the price

has gone up. When they do receive a shock they will only make a purchase if their type θ is greater

than q. This behavior is identical to the behavior of buyer in the relaxed problem. Hence, this price

function yields the same revenue for the seller as that in optimal solution to the relaxed problem.

This yields the following theorem.

Theorem 1. When F satisfies A2’, the optimal contract consists of two prices - an introductory price p̂ at

time 0 and price q̂ > p̂ at all times t > 0. These prices induce cutoff types ĉ, b̂ where these are the unique

solutions to following two equations

(10) ĉ− 1− F(ĉ)
f (ĉ)

=
λ

r + λ

∫ 1

b̂
θdF(θ)

(11) F(ĉ)b̂− 1− F(b̂)
f (b̂)

= 0

These cutoff types lie in the open interval (pM, 1). Prices are given by

(12) p̂ =
1− F(ĉ)

f (ĉ)
+

λ

r + λ
b̂[1− F(b̂)]

(13) q̂ = b̂

That the optimal contract consists of two increasing prices is intuitive. The increasing price

implies that if the buyer does not have a high enough valuation in the first instant to make a

purchase, she will not do so in the future unless she receives new information about the product
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that makes her revise her valuation upwards. From the seller’s perspective, the standard intuition

for the durable goods monopoly problem applies. It is too costly to serve a persistent type. The

gain the seller gets from serving a type who chose to not purchase at time 0 and who has not

received a shock is offset by the loss due to the additional rent he has to give the types who make

a purchase in the first instant. This is because the seller can only serve persistent types by dropping

the price and this increases the continuation payoff at time 0.

Once the seller infers that it is not optimal for him to make a sale to any type who did not

purchase at time 0 and who has not received a shock, the stationarity of the price after time 0

follows from the arrival process of the shock. The seller only wants to serve the buyer when she

receives a shock and her valuation as a result is sufficiently high. By an identical argument to

that given above, if the buyer receives a shock at time t and her type θ(t) is too low to be served

at time t, the seller has no incentive to serve that type in the future. But since the shock arrives

from an exponential process, the expected duration of arrival of the shock is the same at every

point of time conditional on not having received it. Hence, in essence, the problem after period 0

is ‘stationary’.

3.3.1. Equivalence to the Two Period Problem. Stokey showed that the standard durable goods mo-

nopoly problem with constant buyer valuations essentially boiled down to a static single period

monopoly problem. When the buyer can receive a shock, Theorem 1 shows that the seller’s prob-

lem is effectively a two period problem. This is explained as follows.

Consider a discrete time two period problem where the buyer draws an initial private valuation

in period 1 from F and a new independent private valuation from F again in period 2. The com-

mon discount rate is given by δ. The seller sets prices p̂ in period 1 and q̂ in period 2. These prices

induce cutoffs ĉ and b̂ in periods 1 and 2 respectively. Given that the game ends after period 2, the

buyer’s continuation payoff in the second period is zero or q̂ = b̂.

Let the continuation payoff of the buyer in period 1 be given by V̂. Since the buyer draws a new

valuation in period 2, this continuation payoff is type independent. V̂ satisfies

V̂ = δ
∫ 1

b̂
[θ − b̂]dF(θ) = δ

∫ 1

b̂

1− F(θ)
f (θ)

dF(θ).
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The seller solves the following problem:

(14) max
ĉ,b̂

{
[ĉ− V̂][1− F(ĉ)] + δF(ĉ)b̂[1− F(b̂)]

}
.

In the above expression, the expected revenue in the first period is p̂[1 − F(ĉ)] where p̂ = ĉ −

V̂. The probability that the buyer reaches the second period is F(ĉ) and conditional on reaching

period 2, the expected revenue is given by b̂[1− F(b̂)]. Taking first order conditions with respect

to ĉ and b̂, we get

(15) ĉ− 1− F(ĉ)
f (ĉ)

= δ
∫ 1

b̂
θdF(θ),

(16) F(ĉ)b̂− 1− F(b̂)
f (b̂)

= 0

respectively. It is immediate from the above first order conditions that the solution to such a two

period problem satisfies the same equations as those of the continuous time single shock model

(10 and 11) where the discount rate is δ = λ/(r + λ). We can now interpret these equations by

comparing them to the first order condition of a standard static monopoly problem where the

seller has a linear cost function. We first rewrite the seller’s revenue maximization problem (14) in

integral form (using integration by parts) as

max
ĉ,b̂

{∫ 1

ĉ

(
θ︸︷︷︸

Period 1 Surplus

− 1− F(θ)
f (θ)︸ ︷︷ ︸

Period 1 Buyer’s Rent

)
dF(θ)+ δ

∫ 1

b̂

(
F(ĉ)θ︸ ︷︷ ︸

Period 2 Surplus

− 1− F(θ)
f (θ)︸ ︷︷ ︸

Period 2 Buyer’s Rent

)
dF(θ)

}
.

In this two period problem, the cost of serving the buyer in the first period is essentially the

opportunity cost of not serving her in the second period instead. By decreasing the first period

cutoff type ĉ, the seller gains more from sales in the first period, however, this reduces the chance

of making a sale in the second period. This is because the probability that the buyer makes a

purchase in the first period 1− F(ĉ) goes up. Similarly, the cost of serving the buyer at price b̂ in

the second period is the opportunity cost of the continuation value it provides to the buyer in the

first period. By decreasing b̂, the seller increases his revenue from sales in the second period but

the seller loses revenue in the first period as now the continuation payoff to the buyer has gone

up. Notice that the period 2 surplus term is scaled by the probability of reaching period 2. This

reflects the fact that a sale can only be made in the second period if the buyer chose not to purchase
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in the first. The period 2 rent term however is not scaled; this is because whether or not the buyer

makes a purchase in period 1, she gets at least her type independent continuation payoff V̂.

Equations (15) and (16) capture the above intuition. Consider the first order condition (15) with

respect to ĉ. The term on the left side of the equation is the marginal gain in revenue from serving

more types in period 1. The marginal cost of serving additional types in the first period is the

marginal loss in expected surplus from period 2 as the probability of reaching period 2 goes down.

All types in period 1 (not just the types who purchase the object) receive the continuation payoff

from the price b̂ in period 2 and hence the period 2 rent does not enter the equation.

Rewriting the first order condition (16) with respect to b̂ as

F(ĉ)

[
b̂− 1− F(b̂)

f (b̂)

]
= [1− F(ĉ)]

[
1− F(b̂)

f (b̂)

]
,

provides a similar interpretation. The term on the left side is once again the gain in marginal

revenue at period 2 from serving additional types. Since the seller is maximizing revenue at the

beginning of the game, this term includes the probability that the buyer is still in the market at

period 2. Moreover, this term also accounts for the information rent to the buyer in the second

period. The term on the right is the cost to the seller in the form of the marginal gain in the

continuation payoff provided to the types that make a purchase in the first period.

While we have tried to provide compelling intuition for the optimal contract to feature increas-

ing prices, it should be pointed out that the result depends on the assumptions we made about

the distribution F and is not true in general for all distributions. The following is a well known

example of a two period two type model from Conlisk (1984) in which, for appropriate parameter

values, it is optimal for the monopolist to drop the price from the first to the second period. Given

the equivalence stated above between our model and the two period model, this example can be

modified in the obvious way to our infinite time horizon.

Example 1 (Conlisk (1984)). Consider a two period model where types can only take two values:

θ ∈ {θL, θH}. The buyer draws an independent private value from the distribution F in both

periods. Let the probability function f corresponding to F be given by

f (θ) =

 β if θ = θH,

1− β if θ = θL.
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When

1− δ(1− β)2

(1− δβ)
< β

θH

θL
< 1− β(1− β),

it is optimal for the seller to charge a decreasing price sequence p̂ > q̂ given by

p̂ = δβθL + (1− δβ)θH,

q̂ = θL.

The seller chooses to serve the high type at the first period and both types in the second period.

The high type does not want to delay her purchase both due to discounting and due to the pos-

sibility that she might draw a low valuation in period two. It is easy to approximate the discrete

distribution in this example by a smooth distribution peaked about θH and θL and not affect the

result. The distribution function in this example clearly does not satisfy the monotone hazard rate

condition - an essential assumption for the analysis of the paper.

3.3.2. Comparative Statics. Finally, we derive a simple comparative static result. When λ increases

and r decreases, this raises the effective discount factor of the seller. As the seller loses less in

discounting, he would rather make a sale in the future as opposed to at time 0. This is because

types served at time 0 must receive rent at least equal to their continuation payoff. After time 0,

the seller offers continuation payoff 0 to indifferent type (this type is only present after the buyer

has received the shock). This is summarized in the following proposition.

Proposition 1. The cutoff types move in the following way as the arrival rate of the shock and the discount

rate change:

(i) When r increases, ĉ decreases and b̂ increases.

(ii) When λ increases, ĉ increases and b̂ decreases.

The above proposition implies that the price at time t > 0 decreases as the effective discount

factor λ/(r + λ) goes up. The price at time 0 is effected by two different factors - the cutoff type

and the continuation payoff. The cutoff type increases, however, the continuation payoff of the

buyer increases as well. This implies that the impact of an increase of the effective discount rate

on the price at time 0 is ambiguous.
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4. MULTIPLE SHOCKS

In this section, we examine a model with multiple shocks. The buyer can now get repeated

shocks that arrive from a Poisson process with parameter λ. We assume that the buyer can only

purchase the object when she receives a shock (in particular, this implies that she may not want

to purchase at time 0). Specifically, if the buyer receives a shock to her valuation at time t and the

next shock at time t′ > t, the buyer cannot make a purchase at any time s (t < s < t′ ) in between.

As we pointed out in the introduction, shocks in this model can represent opportunities to buy or

can capture the ubiquitous phenomenon of impulse purchasing.

In spite of allowing multiple shocks, the restriction of purchasing conditional on receiving the

shock somewhat simplifies the seller’s problem. This is because the buyer’s continuation payoff is

no longer type dependent, moreover, the seller expects that at any point in the future she is either

facing a buyer unwilling to make a purchase or a buyer with distribution F. This simplification

allows us to study both the case where the seller has commitment and where she cannot commit.

In the subsection below, we derive the optimal contract with commitment and then in the next

section, we discuss the set of equilibria when the seller cannot commit.

4.1. Commitment

Once again, any price function will induce a function of cutoff types. This is because the prob-

ability of drawing a shock is type independent and conditional on a shock, values are drawn

independently. The buyer only makes a purchase if her type is above the cutoff type c(t) at the

given time t. The continuation payoff of the buyer is no longer type dependent. Each type will

not purchase the object in the future unless she gets the opportunity or has an impulse to do so

and conditional on this happening, the new valuation is drawn independently. We denote the

continuation payoff of the buyer at time t by Y(t) and it is given by

(17) Y(t) = λ
∫ ∞

t
e−r(s−t)

∫ 1

c(s)
[θ − c(s)]dF(θ)ds

This expression has the following interpretation. Since the shocks arrive from a Poisson distribu-

tion, the probability that the buyer receives a shock during a small period of time ∆t is simply λ∆t.

Conditional on receiving the shock, she will buy only if her type θ is above the cutoff type c(t).

The rent she will get is θ − p(t) which is simply θ − c(t) + Y(t). This intuition is captured in the
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discrete time approximation using small time increments ∆t below

Y(t) = e−r∆tλ∆t
∫ 1

c(t)
[θ − p(t)] + e−r∆tF(c(t))Y(t + ∆t)

≈ λ∆t
∫ 1

c(t)
[θ − c(t)] + e−r∆tY(t + ∆t)

Plugging in the recursive expression for Y(t + ∆t) and so on, we can obtain a discrete time sum-

mation analogous to the integral in (17). We denote the probability that the buyer is still in the

market at time t by w(t). This is given by

w(t) = e−λ
∫ t

0 [1−F(c(s))]ds.

We observe that w(t) is differentiable and hence it follows the flow equation

w′(t) = −λ[1− F(c(t))]w(t).

In the above flow equation, λ is the instantaneous probability of receiving the shock and the prob-

ability the buyer leaves the market after receiving the shock is 1− F(c(t)). In addition, the buyer

is only present at time t with probability w(t).

The seller’s revenue equation can be expressed in terms of this flow equation and is given by

R̃ ≡ −
∫ ∞

0
e−rt[c(t)−Y(t)]w′(t)dt.

Plugging in the expression for Y(t) from (17), integrating by parts and simplifying (details in the

appendix), we get

(18) R̃ ≡
∫ ∞

0
e−rt

{
λ
∫ 1

c(t)

(
θw(t)− 1− F(θ)

f (θ)

)
dF(θ)

}
dt

Setting a cutoff c(t) at time t has three effects. It sets the profit of a sale made at time t, it affects the

continuation payoffs to the buyer at all times before t and it determines the probability of making a

sale after time t through w(t). The surplus from making a sale at time t depends on the probability

w(t) that the buyer is still in the market. The rents, however, are not just paid to the buyer at time

t but to all types at all times in the past via their continuation payoffs. Whether or not the buyer

actually ends up waiting till time t to make a purchase, she always has the option of doing so and
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this option value provides her a payoff in expectation. This explains why the surplus term θ is

weighted down by w(t) but not the rent term [1− F(θ)]/ f (θ).

The seller maximizes R̃ by choosing a cutoff function c(t). We observe that the principle of op-

timality applies to the above problem and hence we can rewrite it as a dynamic programming

problem where the state variable is w(t). As an aside, it is interesting that the seller’s commit-

ment problem can be written as a dynamic programming problem that is normally the method of

choice in problems without commitment. Assuming that R̃ is differentiable, the Hamilton-Jacobi-

Bellman equation is

(19) rR̃(w) = max
c

{
λ
∫ 1

c

(
θw− 1− F(θ)

f (θ)

)
dF(θ)− λw[1− F(c)]R̃′(w)

}
The Hamilton-Jacobi-Bellman equation is a sufficient condition for optimality because the above

problem is bounded and has discounting. Solving this Hamilton-Jacobi-Bellman equation, we can

derive the following properties of the optimal contract.

Theorem 2. The optimal contract satisfies the following properties

(i) c(t) is smooth.

(ii) c(t) is monotonically increasing and as t→ ∞, c(t)→ 1.

(iii) The price function p(t) that generates c(t) is smooth, monotonically increasing and p(t)→ 1.

In the proof, we also derive an expression for the cutoffs. c(t) is given by

(20) w(t)c(t)− 1− F(c(t))
f (c(t))

= λ
∫ ∞

t
e−r(s−t)w(s)

∫ 1

c(s)
θdF(θ)ds.

Since F is smooth and the right side of the above equation is differentiable, we can conclude that

c(t) is differentiable (as w(·) is differentiable). But if c(·) is differentiable, then the right side of the

above equation is twice differentiable which implies that c(·) is twice differentiable. Repeating

this argument, we can conclude that c(·) is smooth.11 The term on the right hand side is the

expected surplus from time t onwards. This is clearly bounded below by 0 and above by 1. As

time progresses, the probability w(t) that the buyer is still in the market gets smaller. Hence the

benefits from making a sale get smaller relative to the loss from the rent this sale will provide at all

times in the past. In the limit, we show that this tradeoff is severe and as a result the seller chooses

11If F is not smooth, the degree of differentiability of c(·) will depend on the degree of differentiability of F.
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not to make any sales. This limit behavior can then be used to establish the monotonicity of the

cutoff function. We show that any inflection point of c(·) must be a local maximum. This implies

that if an inflection point were to exist, the cutoff would decrease to its right and the only way in

which the limit result can hold is if the cutoff increases at some point in the future which would

result in a local minimum. This gives the desired contradiction.

This result once again corroborates the intuition of the single shock model. When the seller has

commitment, her primary concern is to reduce the continuation payoff of the buyer. When the

buyer can receive multiple shocks, the seller needs to “defend” against each shock. In the single

shock model, the seller raised the price once to counter the effect of the single shock. In this case,

the seller needs to keep increasing prices and price out the buyer in the limit to ensure that her

incentives to wait are reduced to a minimum while still allowing for the possibility of making

sales in the future.

The best commitment solution is an upper bound for the revenue that the seller can achieve

in equilibrium of the dynamic game without commitment. This is because the seller can always

commit to charging the same prices as those on the equilibrium path for any equilibrium. In

the next section, we study the set of equilibria of the dynamic game without commitment. We

derive the worst equilibrium for the seller and show that a variety of different price paths can be

supported as equilibria using the worst equilibrium as an optimal penal code. Finally, we point

out that the seller is strictly better off with commitment power.

5. MULTIPLE SHOCKS WITHOUT COMMITMENT

When the monopolist does not have commitment power, we are in the setting of a dynamic

game. In this game, the seller’s strategy at time t is a price p(t) whereas the buyer’s strategy is a

binary decision to purchase or not. We restrict attention to measurable histories. Histories at time

t are

H t
S ≡ {p(s) : 0 ≤ s < t , p(·) measurable },

H t
B ≡ {(φ(s), p(s)) : 0 ≤ s ≤ t , p(·) measurable}, 12
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where

φ(s) =

 θ(s) if the buyer receives the shock at time s,

−1 if the buyer does not receive the shock at time s.

H t
B is the set of histories of the buyer at time t. It consists of all the prices offered by the seller

prior to time t, the price offered at the current time and the history of shocks and valuations

drawn including the current valuation. The fact that the buyer’s history contains the price at

time t, reflects the fact that the seller offers the price first and then the buyer makes her purchase

decision. Hence, she can condition her strategy on the price offered by the seller at the current

time. The seller cannot observe the buyer’s valuation so his history H t
S consists only of the prices

he has offered prior to time t. Clearly, the fact that the game has not ended by time t implies

that the buyer has chosen to not purchase the object until t. The value φ(t) = −1 corresponds to

the buyer not receiving a shock at time t. Setting this negative valuation is purely for notational

convenience as, in equilibrium, the buyer will never find it optimal to make a purchase with a

negative valuation. This ensures that, in equilibrium, purchases are only made during shocks.

The set of all possible histories are given by

HS ≡ ∪t∈[0,∞)H
t

S and HB ≡ ∪t∈[0,∞)H
t

B .

The seller sets a price conditional on the previous prices he has offered and the buyer makes a

purchase decision conditional on the previous prices, valuations and on the current price and

value. We define F t
S to be the filtration generated by the price path or

F t
S = σ({p(s) : s < t}).

The seller’s strategy

σS : HS → [0, 1]

is an FS adapted process. Similarly, we define the filtration F t
B generated by the values and prices

as

F t
B = σ({(φ(s), p(s)) : s ≤ t}).

The buyer’s strategy

σB : HB → {0, 1}

12φ(·) is measurable by definition as it is simply the realized independent draws from the Poisson process.
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is an FB predictable process. The seller’s strategy is simply to set a price between 0 and 1 at each

history. The buyer makes a purchasing decision where 1 denotes buying the object and 0 denotes

not buying and waiting instead.

We should point out that restricting attention to pure strategies is without loss of generality.

Since the seller posts his price before the buyer makes her decision, in equilibrium, he has no

incentive to mix as the buyer will only condition her strategy on the realized price. Due to linearity

of the buyer’s payoff, there will be a only single type for the buyer (the cutoff type) that will be

indifferent between buying and waiting. This type is a set of measure 0 and hence her decision

does not affect the outcome.

For any histories ht
S ∈ HS for the seller, ht

B ∈ HB for the buyer, there is a continuation game

(which is the infinite horizon dynamic game that begins at time t) following history ht
S or ht

B. While

we are not in the setting of a repeated game, the above dynamic game has a recursive structure

that allows us to define continuation strategies in the standard way. For any strategy profile σS, σB

we denote

σS|ht
S
(ht′

S) = σS(ht
Sht′

S), ∀ht′
S ∈HS,

σB|ht
B
(ht′

B) = σB(ht
Bht′

B), ∀ht′
B ∈HB,

as the behavior implied by strategies σS, σB in the continuation game following ht
S, ht

B, where

ht
Sht′

S , ht
Bht′

B denote the concatenation of histories. For notational convenience, we define the no-

tion of compatible histories.

Definition 5.1 (Compatible Histories). Consider histories ht
S, ht

B and a strategy σs. These histories

are said to be compatible with respect to strategy σS if the prices charged by the seller in history ht
S

at all points of time t′ < t due to strategy σs, are the same as the prices in history ht
B . Moreover,

the price at time t at ht
B is σS(ht

S).

A compatible history is simply a tuple of histories that can be jointly reached by a strategy σS.

Consider any history ht
S for the seller and a compatible history ht

B. Let p(t) = σS(ht
S) and let φ(t)

be the value of the buyer at time t. The payoffs uS, uB corresponding to strategies σS, σB at time t
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are given by

uS|ht
S
(σS, σB) =

 p(t) if σB(ht
B) = 1

0 if σB(ht
B) = 0

uB|ht
B
(σS, σB) =

 φ(t)− p(t) if σB(ht
B) = 1

0 if σB(ht
B) = 0

Since there are shocks that affect the buyer’s valuation throughout time, there is a probability mea-

sure over histories corresponding to each pair of strategies. We refer to this measure by ν(σB, σS).

The probability measure of future histories conditional on having reached history ht
S for the seller

is denoted by ν|ht
S
(σB, σS) and by ν|ht

B
(σS, σB) at ht

B. Expected revenue and payoff at any pair of

compatible histories can now be defined informally in terms of ν and u as

US|ht
S
(σS|ht

S
, σB|ht

B
) = Expected continuation revenue generated by uS and ν|ht

S
(σB, σS),

UB|ht
B
(σS|ht

S
, σB|ht

B
) = Expected continuation payoff generated by uB and ν|ht

B
(σB, σS).

It should be pointed out that in continuous time, it is well known that even well defined strategies

need not lead to outcomes (see for example, Simon and Stinchcombe (1989)). However, as can

be seen above, outcomes correspond to strategies trivially in our setting. Perfect equilibrium can

now be defined naturally.

Definition 5.2. A perfect equilibrium is a pair of strategies σB, σS such that for all σ′B, σ′S:

(i) US|ht
S
(σS|ht

S
, σB|ht

B
) ≥ US|ht

S
(σ′S|ht

S
, σB|h′ tB

) at all ht
S ∈ HS and for each pair of histories ht

B, h
′t
B

compatible with ht
S and with common buyer valuations such that the price at time t in

ht
B, h

′t
B is σS(ht

S), σ′S(ht
S) respectively.

(ii) UB|ht
B
(σS|ht

S
, σB|ht

B
) ≥ UB|ht

B
(σS|ht

S
, σ′B|ht

B
) at all ht

B ∈HB where ht
S is compatible with ht

B.

An important aspect of equilibrium in this game is that the seller cannot punish the buyer for

deviating as he cannot observe her type and hence has no way of knowing that she is not following

the equilibrium strategy. We can also define a stationary equilibrium in this environment.

Definition 5.3. A stationary equilibrium is a perfect equilibrium where

(1) The seller offers the same price p∗ at all histories.
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(2) There is history independent function y : [0, 1]× [0, 1] → {0, 1} that describes the buyer’s

purchasing decision at any history. At any time t, the buyer will purchase the good when

her current value is φ(t) and the current price is p(t) if and only if y(φ(t), p(t)) = 1.

Thus in a stationary equilibrium, the seller offers the price p∗ irrespective of the prices he has

offered previously. In equilibrium, the buyer best responds and hence follows a cutoff strategy.

The stationarity of the buyer’s strategy implies that there is a constant time independent continu-

ation payoff Y∗, such that at any time t, if the seller offers a price p(t), the buyer will purchase if

and only if

φ(t) ≥ p(t) + Y∗.

A price p∗ at every point of time induces a constant cutoff c∗ = p∗ + Y∗. We can express the rent

Y∗ which is the continuation payoff to the buyer from a constant price function p∗ in terms of the

cutoff c∗ as

Y∗ =
λ

r

∫ 1

c∗
(θ − c∗)dF(θ).

For such an equilibrium to exist, it must be optimal for the seller to charge the same price p∗ at

any history when the buyer’s behavior is stationary. Moreover, in equilibrium, Y∗ should be the

continuation payoff from this constant p∗. The seller’s maximization problem can then be written

in terms of the cutoffs at any history ht
S ∈HS as follows

R∗ht
S
≡ max
{c(s):s≥t}

−
∫ ∞

t

{
e−r(s−t)[c(s)−Y∗]w′(s)

}
ds,

where

w′(s) = −λ[1− F(c(s))]w(s).

We observe that this problem is identical at all histories, so we can drop the subscript on R∗ht
S
. Once

again this calculus of variations problem can be expressed as the following dynamic programming

problem:

rR∗(w) = max
c

{
λ[c−Y∗][1− F(c)]w− λw[1− F(c)]

dR∗(w)
dw

}
.

In the appendix, we solve the above dynamic programming problem and show that there is a

unique stationary equilibrium. The solution involves proving first that the best response of the

seller to a stationary strategy by the buyer is a stationary strategy and then showing that Y∗ is

sequentially rational. The following proposition summarizes this.
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Proposition 2. A stationary equilibrium exists and is unique. The stationary cutoff contract c∗, given by

the unique solution to the following equation, is the unique stationary equilibrium.

(21) c− 1− F(c)
f (c)

=
λ

r + λ[1− F(c)]

∫ 1

c
θdF(θ)

The equation in the above proposition is easy to interpret. On the left side is the marginal gain

in revenue by slightly decreasing the cutoff type served. On the right side is the marginal loss

from having a lower mass of buyers in the market in the continuation game. This lower mass is

the result of serving more types at the current time. Unlike the contract with commitment, the

seller is not concerned about how the price today affects the continuation payoff of the buyer at

all previous times.

An interesting comparison is when we compare the stationary equilibrium to the optimal sta-

tionary contract with commitment. This contract can be derived by maximizing equation (18)

where the cutoff function c(·) is restricted to the family of constant functions. It is easy to show

that the optimal stationary contract with commitment c is the solution to the following equation

(22) c−
(

r + λ[1− F(c)]
r

)(
1− F(c)

f (c)

)
=

λ

r + λ[1− F(c)]

∫ 1

c
θdF(θ)

By definition, the stationary contract with commitment c offers a higher revenue to the seller than

c∗. Moreover, the term on the left hand side now indicates that the seller’s choice of cutoff is also

determined by the rent it provides in expectation to the buyer through her continuation payoff. By

comparing the equations (22) and (21) we can conclude that c > c∗. In the commitment solution,

the seller can commit to offering the buyer a lower outside option which results in higher revenue

even though it implies that fewer sales are being made at each point of time. Moreover, it is

possible to show that the total surplus13 is lower under c than c∗. In other words, not only is the

seller better off, the buyer is strictly worse off when the seller has commitment power.

Finally, we show that the stationary equilibrium is in fact the worst equilibrium for the seller.

This result is similar to what Mason and Välimäki (2008) find in a dynamic moral hazard model.

They show that when a principal hires an agent to complete a project, the worst equilibrium for

the principal features a constant wage to the agent over time.

13Note that a uniformly higher cutoff does not necessarily imply higher surplus as values are stochastic.
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Proposition 3. Let R∗ be the lowest revenue that the seller can achieve in a perfect equilibrium. Then the

revenue from the stationary equilibrium R∗ = R∗.

Proof. To make the intuition transparent, we prove this result by considering the discrete time

game with small time increments ∆t and this can be generalized in the obvious way to continuous

time (in particular, taking the limit ∆t → 0 yields the stationary equilibrium in continuous time).

The stationarity of our dynamic game implies that we can use the well known argument of Abreu

(1988). This states that every equilibrium can be supported by optimal penal equilibrium R∗.

Specifically, any deviation by the seller results in reverting to seller worst equilibrium R∗. We

denote the expected ex-ante payoff to the buyer in the seller worst equilibrium by Y. Let the price

offered at the first instant of equilibrium R∗ be p. Then for any price deviation p 6= p that induces

a cutoff c it must be the case that

R∗ ≥ λ∆t(c−Y)[1− F(c)] + e−r∆t(1− λ∆t[1− F(c)])R∗,

as deviations from equilibrium must be punished. By continuity in c we get

R∗ ≥ max
c
{λ∆t(c−Y)[1− F(c)] + e−r∆t(1− λ∆t[1− F(c)])R∗}.

The right side corresponds to the maximum over all prices that the seller can offer at the current

time. But this implies that the right side corresponds to an equilibrium payoff and therefore by

minimality of R∗ we get

(23) R∗ = max
c
{λ∆t(c−Y)[1− F(c)] + e−r∆t(1− λ∆t[1− F(c)])R∗}.

The above expression immediately tells us that any worst equilibrium must offer the same ex-ante

expected payoff to the buyer. Let us assume that there are two equilibria which gave the seller

the same payoff R∗ and give different ex-ante expected payoffs Y 6= Y′ to the buyer. Since both

equilibria can act as optimal penal codes, this would imply that the above equation (23) must hold

for both Y and Y′ which is not possible. Hence, the worst equilibrium must offer a unique ex-ante

expected payoff Y to the buyer. But then if c is the argmax of equation (23), it must be the case that

Y =
e−r∆tλ∆t
1− e−r∆t

∫ 1

c
[θ − c]dF(θ).
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But now equation (23) is simply the problem of the seller in the stationary equilibrium and this

completes the proof. �

This result allows for a simple characterization of the set of perfect equilibria. Any price function

p(·) can be supported as an equilibrium of the dynamic game as long as the expected continuation

revenue to the seller does not fall below R∗ at any time t. Moreover, since at each point of this

dynamic game, the seller charges the price first and then the buyer decides, any deviation by the

seller can be immediately punished by the buyer. Therefore this set of equilibria can be supported

irrespective of discount rate r. In particular, this implies that the best stationary commitment

contract can be supported as a perfect equilibrium. Finally, the continuation vale of the seller

in the optimal commitment contract goes to 0 as t → ∞. It is immediate then that the optimal

commitment contract cannot be supported as an equilibrium of the dynamic game.

6. CONCLUDING REMARKS

6.1. Conclusion

In this paper, we developed a model of a durable goods monopolist facing a buyer with a sto-

chastic valuation. We examined the case where the buyer receives information about the product

in the form of a single random shock and showed that, with commitment, the seller charges a

low introductory price at time 0 and a higher price thereafter. This shows that the primary con-

cern for the monopolist is to reduce the continuation payoff of the buyer even at the expense of

making fewer sales. We demonstrated that this problem is equivalent to a two period problem

(in which the buyer draws an independent private value in each period) in the same way that

the standard durable goods monopoly problem (with persistent values) is equivalent to a static

monopoly problem.

We extended the model to consider the case of multiple shocks arriving from a Poisson process.

These shocks represented buying opportunities or purchasing impulses for the buyer. We showed

that the intuition from the single shock case generalizes; the optimal commitment contract for the

seller is an increasing price function that converges to the highest type in the limit. In this case,

the seller constantly increases prices over time to reduce the continuation payoff of the buyer who

may potentially receive a shock at any point of time, irrespective of what has happened in the



38 RAHUL DEB

past. We showed that without commitment, in worst equilibrium R∗ for the seller, he charges a

constant price. We argued that any price function can be supported as an equilibrium by threat

of deviating to the aforementioned stationary equilibrium as long as the continuation revenue

for the seller never falls below R∗ at any history. Since the prices in the optimal commitment

contract converge to the highest type, the continuation revenue of the seller converges to zero

and as a result the optimal commitment contract cannot be supported as an equilibrium without

commitment.

6.2. Robustness

The analysis in the paper was done in continuous time primarily because it makes the intuition

transparent and it reduces the algebra to a minimum. The majority of the results in the paper

are robust to analysis in discrete time. Theorem 1 can be restated in the obvious way where the

introductory price is charged in the first period as opposed to the first instant. The limit result

for the cutoffs in the multiple shock case (Theorem 2) also holds. However, the monotonicity of

prices no longer necessarily holds in discrete time. The proof of this result relied crucially on

calculus through the fact that the instantaneous probability of receiving a shock is zero as shocks

are drawn from a Poisson process. In the equivalent discrete time model, shocks will be drawn

from a Bernoulli process and hence between periods, there is a strictly positive probability that the

buyer receives the shock. Finally, the results without commitment generalize as well. The details

of the analysis in discrete time can be found in a supplemental appendix to the paper.

We assumed that conditional on receiving a shock, the seller always draws a new valuation from

the same distribution F. This assumption has different implications for the single and multiple

shock case. In the single shock case, we are free to assume that the shock comes from some other

distribution G as long as the solution to the relaxed problem features an increasing price. This can

be determined in a straightforward way by analyzing the solution to the system of two equations

in Theorem 1 rewritten in terms of G. These equations are rewritten below

ĉ− 1− F(ĉ)
f (ĉ)

=
λ

r + λ

∫ 1

b̂
θdG(θ),

F(ĉ)b̂− 1− G(b̂)
g(b̂)

= 0.
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When the solution to the above system of cutoffs results in an increasing price, it will coincide

with the optimal contract. The intuition is identical. If the buyer does not purchase the good at

the first instant, she will not buy the good unless she receives the shock and has a suitably high

valuation. If the solution to the relaxed problem has a decreasing price due to the distribution G,

then the buyer can find it optimal to purchase the good even without receiving the shock which

implies that the solution to the relaxed problem gives strictly higher revenue.

The multiple shock model can allow draws from different distributions. At time t, we can as-

sume that the buyer draws a valuation from distribution G(t) (which needs to be appropriately

“well behaved” across time) conditional on receiving the shock. The analysis will follow and we

can get appropriately redefined versions of the necessary conditions for the cutoffs. While, the

limit result Theorem 2 will still follow, it is no longer necessary that the prices are monotone.

Naturally, we will also lose the stationarity in the equilibrium for the game without commitment.

Finally, we assume in this paper that conditional on receiving a shock, the new valuation is

drawn independently. This assumption is hard to relax. Allowing correlation, conditional on a

shock, significantly complicates the analysis. The primary difficulty is that optimal behavior may

no longer be a cutoff strategy. A higher type may find it optimal to wait when a lower type finds it

optimal to purchase. As a result, we can no longer to work in the cutoff space and optimal buyer

behavior must be derived by solving complicated optimal stopping problems.

6.3. Multiple Shocks with Persistence

Another interesting model is one where a buyer’s valuation is subject to multiple shocks but

where she can purchase the good between the arrival of shocks. This models the arrival of re-

peated information that causes the buyer to adjust her valuation. This model is simply the mul-

tiple shock model in this paper where the buyer is not restricted to purchasing conditional on a

shock. This problem is far more complicated than the single shock case in this paper as the buyer

can receive new private information repeatedly and the seller cannot observe when this informa-

tion arrives. Surprisingly, we conjecture that the solution to this problem will be identical to the

solution of the multiple shock model in this paper. This is explained below.

Theorem 2 shows that the optimal contract for the multiple shock model features increasing

prices. This implies that even if the buyer were allowed to purchase between shocks it will not
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be optimal for her to do so in response to these prices. As argued earlier, the only incentive for

the seller to ever lower the price is to serve the lower buyer types. This incentive is most stark

when the buyer has a completely persistent valuation. However, we know that when the buyer

has a completely persistent value, the seller never chooses to lower his price. Hence, there is no

reason to expect him to do so in this stochastic environment where there is a positive probability of

making a sale even by increasing the price. The proof of this conjecture is left for future research.
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APPENDIX: PROOFS

Proof of Lemma 2. The fact that prices yield cutoff types is a standard result from the literature

(see for example Lemma 1 in Board (2008). Hence, we focus on showing that it is possible to

construct prices that correspond to a given cutoff functions c(·) and bt(·). We set

qt(t′) = bt(t′)−Wt(t′, bt(t′))

where

Wt(t′, bt(t′)) = bt(t′)− r
∫ ∞

t′
e−r(s−t′)bt(s)ds.

Similarly

p(t) = ct −V(t)

where V is given by equation (5). By definition these constructed prices correspond to the cutoffs.

�

Derivation of Equation (8).

∫ ∞

0
λe−(r+λ)tR(t)F(c(t))dt

−
∫ ∞

0
e−(r+λ)t

[∫ ∞

t
(r + λ)e−(r+λ)(s−t)c(s)ds + λ

∫ ∞

t
e−(r+λ)(s−t)W(s)ds

]
x′(t)dt

=
∫ ∞

0
λe−(r+λ)tR(t)F(c(t))dt−

∫ ∞

0

[∫ ∞

t
(r + λ)e−(r+λ)sc(s)ds + λ

∫ ∞

t
e−(r+λ)sW(s)ds

]
x′(t)dt

=
∫ ∞

0
λe−(r+λ)tR(t)F(c(t))dt−

∫
x′(s)ds

[∫ ∞

t
(r + λ)e−(r+λ)sc(s)ds + λ

∫ ∞

t
e−(r+λ)sW(s)ds

] ∣∣∣∣∞
0

−
∫ ∞

0

∫
x′(s)ds

[
(r + λ)e−(r+λ)tc(t)dt + λe−(r+λ)tW(t)dt

]
dt

=
∫ ∞

0
λe−(r+λ)t {R(t)F(c(t))− [1− F(c(t))]W(t)} dt + (r + λ)

∫ ∞

0
e−(r+λ)tc(t)[1− F(c(t))]dt

Proof of Lemma 3. The seller maximizes (8) by choosing the cutoffs. As stated the objective func-

tion is additively separable. Hence, his optimization problem is equivalent to maximizing with

respect to bt(·) for fixed c(t) and then maximizing over c(t). The first term from (8) is the following

∫ ∞

0
λe−(r+λ)t[S(t)F(c(t))−W(t)]dt
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The maximum for this term is achieved by maximizing S(t)F(c(t))−W(t) pointwise for each time

t. Observe now that the term S(t)F(c(t))−W(t) is simply the standard durable goods problem

of Stokey (1979) where types are drawn from [0, 1] and the valuation corresponding to a type θ is

simply F(c(t))θ. She shows that in the optimal solution to S(t)F(c(t))−W(t) the seller charges a

constant price at each point of time. Hence qt(t) = qt(t′) for all t′ > t. �

Proof of Lemma 4. We need to show that calculus of variations problem (9) has a solution where

c(·) is non-increasing. We will ignore the constraint of non-increasing c(·) and show that the

unconstrained problem satisfies this constraint. We observe that the flow revenue does not contain

a derivative of the controls. Hence the revenue in the unconstrained problem can be maximized

by the pointwise maximization of

(24) λ
∫ 1

b(t)

[
F(c(t))θ − 1− F(θ)

f (θ)

]
dF(θ) + (r + λ)c(t)[1− F(c(t))]

at each point of time t by choosing c(t) and b(t). Since these cutoffs are chosen from compact

set [0, 1] the pointwise maximum must exist. Since it is never optimal to choose either 0 or 1,

this implies that the pointwise maximum of (24) must satisfy the necessary first order conditions.

Differentiating with respect to c(t) and b(t) we get the Euler equations of Lemma 4:

c(t)− 1− F(c(t))
f (c(t))

=
λ

r + λ

∫ 1

b(t)
θdF(θ),

F(c(t))b(t)− 1− F(b(t))
f (b(t))

= 0.

It is immediate from the above equations that c(t), b(t) ∈ (pM, 1). This follows from the monotone

hazard rate condition to the right of the monopoly price. Let c and b be any maximizers of (24).

We can set c(t) = c and b(t) = b for all t and these controls would be maximizers of the calculus

of variations problem (9). Hence, the solution to the unconstrained calculus of variations problem

is nonincreasing.

These equations must have a solution as they are necessary for optimality. We now show this

explicitly while showing that the implicit functions c(b) from each of the two first order conditions

are strictly decreasing and that they cross an odd number of times between pM and 1. Implicitly
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differentiating the first Euler equation, we get

d
dc

[
c− 1− F(c)

f (c)

]
dc
db

= − λ

r + λ
b f (b)

=⇒ dc
db

= −
λ

r+λ b f (b)
d
dc

[
c− 1−F(c)

f (c)

]
Since F satisfies the monotone hazard rate condition the denominator is positive and hence dc

db < 0.

Moreover, for this equation c(pM) < 1 and c(1) = pM. Implicitly differentiating the second

equation we get

f (c)b
dc
db

= − ∂

∂b

[
F(c)b− 1− F(b)

f (b)

]
=⇒ dc

db
= − 1

b f (c)
∂

∂b

[
F(c)b− 1− F(b)

f (b)

]
Again from the monotone hazard rate condition between pM and 1, the right side is negative and

hence dc
db < 0. Also, for this equation c(pM) = 1 and c(1) = 0. Hence, The graphs of both these

implicit equations must cross an odd number of times between pM and 1.

�

Proof of Lemma 5. We begin by showing that the system of equations has a unique solution when

F ∼ θα. The second equation can be written as

cαb− 1− bα

αbα−1 = 0

=⇒ b = [1 + αc]−
1
α

Plugging this into the first equation we get

cα(1 + α) +
λ

r+λ α

1 + α
[1 + αc]−

α+1
α − c1−α

α
=

λ
r+λ α

1 + α

For α > 0 the left side is monotone when c ≥ pM so there must be a unique solution. We now

show that the prices are increasing. From the first order condition with respect to c we know that

p =
1− F(c)

f (c)
+

λ

r + λ
b[1− F(b)]
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and

q = b.

Since p < c, if c ≤ b we are done. Hence, we consider the case of c > b. Now

p− q =
1− F(c)

f (c)
+

λ

r + λ
b[1− F(b)]− b

<
1− F(c)

f (c)
+ b[1− F(b)]− b =

1− F(c)
f (c)

− bF(b)

We now show that 1−F(c)
f (c) < bF(b) which in turn implies p < q. Using the first order condition

1− F(c)
f (c)

< bF(b)

⇐⇒ [1− F(c)] f (b)
[1− F(b)] f (c)

<
F(b)
F(c)

⇐⇒F(c)[1− F(c)]
f (c)

<
F(b)[1− F(b)]

f (b)

We finally show that F(·)[1−F(·)]
f (·) is decreasing for values greater than the monopoly price when

F ∼ θα. Since, c > b > pM, this is sufficient to prove that p < q. Evaluating at arbitrary θ > pM,

we get
F(θ)[1− F(θ)]

f (θ)
=

1
α

θ[1− θα].

But the right term is simply 1/α times the monopoly profit by setting the price θ. But since this

choice of F satisfies the monotone hazard rate (to the right of pM when α < 1), we know that the

monopoly profit is decreasing when the price is greater than the monopoly price. Hence p < q. �

Proof of Proposition 1. The proof of this result is fairly straightforward and hence we present an

intuitive informal proof. Consider the implicit equation ĉ(b̂) defined by the first equation (10). As

λ/(r + λ) increases this curve shifts upwards. For each b̂ the value of ĉ(b̂) is strictly higher. Since,

both implicit equations are downward sloping and since the fist implicit equation starts below it

must be the case that it intersects the second implicit equation earlier. This provides the relevant

comparative static. The proof is summarized in the following figure �

Derivation of Equation (18)

−
∫ ∞

0
e−rt[c(t)−Y(t)]w′(t)dt
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FIGURE 1

=−
∫ ∞

0
[e−rtc(t)− λ

∫ ∞

t
e−rs

∫ 1

c(s)
[θ − c(s)]dF(θ)ds]w′(t)dt

=λ
∫ ∞

0
e−rtc(t)[1− F(c(t))]w(t)dt + λw(t)

∫ ∞

t
e−rs

∫ 1

c(t)
[θ − c(t)]dF(θ)ds

∣∣∣∣∞
0

+ λ
∫ ∞

0
w(t)e−rt

∫ 1

c(t)
[θ − c(t)]dF(θ)dt

=λ
∫ ∞

0
e−rtc(t)[1− F(c(t))]w(t)dt + λ

∫ ∞

0
e−rt[w(t)− 1]

∫ 1

c(t)
[θ − c(t)]dF(θ)dt

=λ
∫ ∞

0
e−rtw(t)

∫ 1

c(t)

(
θ − 1− F(θ)

f (θ)

)
dF(θ)dt + λ

∫ ∞

0
e−rt[w(t)− 1]

∫ 1

c(t)

(
1− F(θ)

f (θ)

)
dF(θ)dt

=λ
∫ ∞

0
e−rt

∫ 1

c(t)

(
w(t)θ − 1− F(θ)

f (θ)

)
dF(θ)dt

Proof of Theorem 2. We assume that the function R̃(·) is twice differentiable and later verify that

this is true. Taking a derivative of the HJB with respect to w using the envelope theorem we get

0 = λ
∫ θ

c
θdF(θ)− λ[1− F(c)]R̃′(w)− λw[1− F(c)]R̃′′(w)− rR̃′(w).

Setting

ψ(t) = R̃′(w(t)) =⇒ ψ′(t) = R̃′′(w(t))w′(t) = −λw(t)[1− F(c)]R̃′′(w(t)),
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we get

(25) ψ′(t) = (r + λ[1− F(c(t))])ψ(t)− λ
∫ θ

c(t)
θdF(θ).

Moreover

c(t) ∈ argmax
c

{
λ
∫ θ

c

(
θw(t)− 1− F(θ)

f (θ)

)
dF(θ)− λw(t)[1− F(c)]ψ(t)

}
.

The first order condition yields

λ

(
c(t)w(t)− 1− F(c(t))

f (c(t))

)
f (c(t)) = λw(t) f (c(t))ψ(t)

=⇒ ψ(t) = c(t)− 1
w(t)

1− F(c(t))
f (c(t))

.(26)

We first observe from the above equation that ψ(t) ∈ [0, 1] for all t. We now prove the following

property of the cutoffs.

(?) For any c < 1 and for any t, there exists a time t′ > t such that c(t′) > c.

We consider two cases. First consider w(t) → 0. Since, ψ(t) = R̃′(w) > 0, it must be the case

that for the first order condition (26) to hold at all t, c(t) gets close to 1 as t gets large and this

implies that property (?) holds. If c(t) does not get close to 1 as t → ∞ then the rent term [1−

F(c(t))]/[w(t) f (c(t))] would explode as t → ∞ and this would make the right side of the above

equation (26) negative which is not possible. Let us now consider the case w(t) 9 0. This implies

that
∫ ∞

0 [1− F(c(s))]ds < ∞ which in turn implies that property (∗) holds. This is because if we

could choose a c < 1 and a t such that c(t′) ≤ c for all t′ > t then
∫ ∞

t [1− F(c(s))]ds would diverge

which is a contradiction.

Solving the above differential equation (25) by integrating from 0 to t, we get

ψ(t) =
ert

w(t)

[
ψ(0)− λ

∫ t

0
e−rsw(s)

∫ 1

c(s)
θdF(θ)ds

]
.

As t → ∞ we observe that ert

w(t) → ∞. But since ψ(t) is bounded, it must be the case that the term

inside the brackets goes to 0. But that implies

ψ(0) = λ
∫ ∞

0
e−rsw(s)

∫ 1

c(s)
θdF(θ)ds,
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which in turn yields

(27) ψ(t) =
λ

w(t)

∫ ∞

t
e−r(s−t)w(s)

∫ 1

c(s)
θdF(θ)ds.

From (26) we can express the above equation in terms of c(t) to get

c(t)− 1
w(t)

1− F(c(t))
f (c(t))

=
λ

w(t)

∫ ∞

t
e−r(s−t)w(s)

∫ 1

c(s)
θdF(θ)ds.

Clearly, the right side is differentiable as w(·) is differentiable. But since F is smooth this implies

that c(·) is differentiable. But if c(·) is differentiable, this implies that the right side is twice differ-

entiable which in turn would imply that c(·) is twice differentiable as F is smooth. We can keep

differentiating the right side to conclude that c(·) is smooth. Finally, we know

R̃(w(t)) =
∫ ∞

t
λe−r(s−t)

∫ 1

c(s)

[
w(s)θ − 1− F(θ)

f (θ)

]
dF(θ)ds.

Since c(·) is smooth, this implies R̃ is smooth. Moreover, we show below that c(t) monotonically

converges to 1 and from equation (27), we can conclude that ψ(t)→ 0.

We now show that c(t) monotonically converges to 1. Differentiating (27) and equating it to

ψ′(t) from equation (25), we get

(28)[
1− 1

w(t)
∂

∂c

(
1− F(c(t))

f (c(t))

)]
c′(t) =

∂

∂t

(
1

w(t)

)
1− F(c(t))

f (c(t))
+ (r + λ[1− F(c(t))])ψ(t)−λ

∫ θ

c(t)
θdF(θ).

By the monotone hazard rate assumption the term in the square brackets on the left side is positive.

Simplifying the right side term

∂

∂t

(
1

w(t)

)
1− F(c(t))

f (c(t))
+ (r + λ[1− F(c(t))])ψ(t)− λ

∫ θ

c(t)
θdF(θ)

=
λ(1− F(c(t))

w(t)
1− F(c(t))

f (c(t))
+ (r + λ[1− F(c(t))])ψ(t)− λ

∫ θ

c(t)
θdF(θ)

=rψ(t) + λ[1− F(c(t))]c(t)− λ
∫ θ

c(t)
θdF(θ)

=rψ(t)− λ
∫ θ

c(t)
[θ − c(t)]dF(θ)

We need to show c′(t) > 0 which implies cutoffs are increasing. Consider any inflection point,

that is, a time t∗ such that c′(t∗) = 0. We will now show that this inflection point must be a local
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maximum. Differentiating the left side of (28) at t∗ we get.

d
dt

{[
1− 1

w(t∗)
∂

∂c

(
1− F(c(t∗))

f (c(t∗))

)]
c′(t∗)

}
=c′(t∗)

d
dt

{[
1− 1

w(t∗)
∂

∂c

(
1− F(c(t∗))

f (c(t∗))

)]}
+
[

1− 1
w(t∗)

∂

∂c

(
1− F(c(t∗))

f (c(t∗))

)]
c′′(t∗)

=
[

1− 1
w(t∗)

∂

∂c

(
1− F(c(t∗))

f (c(t∗))

)]
c′′(t∗)

Differentiating the right side with respect to time, we get

rψ′(t∗)− ∂

∂c

[
λ
∫ θ

c(t∗)
[θ − c(t∗)]dF(θ)

]
c′(t∗) = rψ′(t∗) = − ∂

∂t

(
1

w(t∗)

)
1− F(c(t∗))

f (c(t∗))
< 0.

The above follows from the fact that c(t) is never equal to 1 at any time t and that c′(t∗) = 0.

This implies c′′(t∗) < 0 and therefore every inflection point t∗ is a local maximum, that is, c(t∗)

must weakly decrease to the right of t∗. But then there cannot exist an inflection point as the choice

of cutoff c(t∗) and the time t∗ would violate Property (?). Moreover, Property (?) also precludes a

cutoff sequence that is always strictly decreasing. Hence, c(·) is strictly increasing.

Prices are given by

p(t) = c(t)−Y(t) = c(t)− λ
∫ ∞

t
e−r(s−t)

∫ 1

c(s)
[θ − c(s)]dF(θ).

Taking the derivative Y(t), we get

Y′(t) = −λ
∫ 1

c(t)
[θ − c(t)]dF(θ) + rλ

∫ ∞

t

{
e−r(s−t)

∫ 1

c(s)
[θ − c(s)]dF(θ)

}
dt

= −rλ

[∫ ∞

t

{
e−r(s−t)

∫ 1

c(t)
[θ − c(t)]dF(θ)

}
dt−

∫ ∞

t

{
e−r(s−t)

∫ 1

c(s)
[θ − c(s)]dF(θ)

}
dt
]

Since c(·) is increasing, when s > t

∫ 1

c(t)
[θ − c(t)]dF(θ) >

∫ 1

c(s)
[θ − c(s)]dF(θ)

This implies Y′(t) < 0 and hence p′(t) = c′(t)−Y′(t) > 0 which completes the proof. �
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Proof of Proposition 2. We conjecture first the solution consists of constant cutoffs c∗, that is, the

best response of the seller to a stationary strategy by the buyer is a constant cutoff function. Hav-

ing assumed this, we can derive an expression for R̃∗(y) given by

R∗(y) =
∫ ∞

0
e−rt[c∗ −Y∗]w′(t)dt

where w(0) = y. Using the expression w(t) = w(0)e−λ[1−F(c∗)]t we solve

R∗(y) = −λ[c∗ −Y∗][1− F(c∗)]
∫ ∞

0
e−rtw(t)dt

= λy
[c∗ −Y∗][1− F(c∗)]

r + λ[1− F(c∗)]

It is immediate that if the right hand side of the HJB is maximized at c∗ then the above value

function R∗(·) satisfies the HJB. Since the HJB equation is sufficient for an optimal solution, this

would in turn imply that c∗ constitutes a stationary equilibrium. We now find a value for c∗ for

which the right hand side of the HJB is maximized at c∗. This c∗ must satisfy

c∗ ∈ argmax
c

{
λ[c−Y∗][1− F(c)]w− λw[1− F(c)]

dR∗(w)
dw

}
≡c∗ ∈ argmax

c

{
λ[c−Y∗][1− F(c)]w− λ2w[1− F(c)]

[c∗ −Y∗][1− F(c∗)]
r + λ[1− F(c∗)]

}
Taking a first order condition with respect to c yields

1− F(c)
f (c)

− [c−Y∗] + λ
[c∗ −Y∗][1− F(c∗)]

r + λ[1− F(c∗)]
= 0.

c = c∗ must satisfy the above expression. Plugging it in and using the expression for Y∗ gives us

the required equation

1− F(c∗)
f (c∗)

− [c∗ −Y∗] +
[c∗ −Y∗]λ[1− F(c∗)]

r + λ[1− F(c∗)]
= 0

=⇒ r
r + λ[1− F(c∗)]

c∗ − 1− F(c∗)
f (c∗)

=
r

r + λ[1− F(c∗)]
Y∗ =

λ

r + λ[1− F(c∗)]

{∫ 1

c∗
θdF(θ)− c∗[1− F(c∗)]

}
=⇒ c∗ − 1− F(c∗)

f (c∗)
=

λ

r + λ[1− F(c∗)]

∫ 1

c∗
θdF(θ)

If there exists a stationary equilibrium c∗, it must satisfy the above equation. We now show that

this equation has a unique solution which in turn implies that the equation is also sufficient for
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equilibrium. Hence, the unique solution to the above equation would constitute the unique sta-

tionary equilibrium

We can rearrange the first order condition to get

c(r + λ[1− F(c)])− λ
∫ 1

c
θdF(θ) = (r + λ[1− F(c)])

(
1− F(c)

f (c)

)
By evaluating both sides of the above equation at 0 and 1, we can show that the line given by the

equation on the right side must cross the line given by the equation on the left at least once. This

implies the existence of a solution. The right side is clearly decreasing because of the monotone

hazard rate assumption. We will show that the left side is increasing and hence the equation has

at most a single solution. Differentiating the left side we get

(r + λ[1− F(c)])− λc f (c) + λc f (c) = (r + λ[1− F(c)]) > 0

Hence the left hand side is increasing and this completes the proof. �
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