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Abstract

We develop a new two-step estimator for a class of Markov decision processes with continuous

control that is simple to implement and does not require a parametric speci�cation on the

distribution of the observables. Making use of the monotonicity assumption similar to Bajari,

Benkard and Levin (2007), we estimate the continuation value functions nonparametrically in

the �rst stage. In the second stage we minimize a minimum distance criterion that measures

the divergence between the nonparametric conditional distribution function and a simulated

semiparametric counterpart. We show under some regularity conditions that our minimum

distance estimator is asymptotically normal and converges at the parametric rate. We estimate

the continuation value function by kernel smoothing and derive its pointwise distribution theory.

We propose to use a semiparametric bootstrap to estimate the standard error for inference since

the asymptotic variance of the �nite dimensional parameter will generally have a complicated

form. Our estimation methodology also forms a basis for the estimation of dynamic models

with both discrete and continuous controls, which can be used to estimate dynamic models of

imperfect competition and other dynamic games.
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1 Introduction

The estimation of dynamic programming models plays an important role in helping us understand

the behavior of forward looking economic agents. In this paper, we develop a new estimator that

is capable of estimating a class of Markovian processes with purely continuous control when one

cannot utilize the Euler equation. Our estimation procedure is intuitive and it is also simple to

implement since it does not solve the model equilibrium and, unlike the other existing estimator in

the literature, we do not impose any parametric distributional assumption on the observables. We

show that our estimation methodology can be extended in several directions, including estimating

models with discrete and continuous controls and estimating dynamic games.

A well known obstacle in the estimation of many structural dynamic models in the empirical

labor and industrial organization literature, regardless whether the controls are continuous, discrete

or mixed, is the presence of the value functions. The value functions and their corresponding contin-

uation values generally have no closed form but are de�ned as solutions to some nonlinear functional

equations. Much work in the dynamic estimation literature focuses on how to alleviate or avoid

repeatedly solving such equations. We follow the strand of research that uses a two-step approach

to estimate the value functions and continuation values in the �rst stage in order to reduce the

burden of having to solve the model equilibrium. This theme of estimation has been growing since

the early work of Hotz and Miller (1993, hereafter HM) in their estimation of an optimal stopping

problem. In particular, instead of solving out for the conditional value functions, one can use the

linear characterization of the conditional value functions on the optimal path known as the policy

value equation that is simple to estimate and solve. In a discrete choice setting, the policy value

equation can be estimated nonparametrically by using Hotz and Miller�s �inversion theorem�. This

is the main insight from the two-step estimation method proposed by HM that has led to many

subsequent two-step estimation procedures in the literature. We note that, although HM proposes

an estimation methodology for a single agent model with discrete controls with �nite time horizon,

their insight can be readily adapted to other frameworks. Of particular relevance to our method-

ology is the estimation of in�nite horizon dynamic games with discrete actions, of Pesendorfer and

Schmidt-Dengler (2008) who use Hotz and Miller�s inversion theorem to estimate the conditional

value function as a solution to some matrix equation in the �rst stage; the continuation value can

then be estimated trivially and used to construct some least square criterion in the second stage.

An alternative methodology, that also relies on Hotz and Miller�s inversion theorem, is introduced

in the paper by Hotz, Miller, Sanders and Smith (1994), who use Monte Carlo method to estimate

the value functions instead of solving a linear equation in the �rst stage. Bajari, Benkard and

Levin (2007, hereafter BBL) apply a closely related simulation idea that is capable of estimating a
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large class of dynamic models that allows for continuous or discrete or mixed continuous-discrete

controls. The �forward simulation�method of BBL uses the preliminary estimates of the policy

function (optimal decision rule) and transition densities to simulate series of value functions for a

given set of structural parameters; these simulated value functions are then used in constructing

some minimum distance criterion based on the equilibrium conditions. The main assumption BBL

use in estimating models that contain continuous control is that of monotone choice. We show that

the monotone choice assumption can also be used to nonparametrically estimate the policy value

equation, hence our methodology adopts HM�s approach in the �rst stage estimation to estimate a

continuous control problem. In addition, our estimator does not require any parametric speci�cation

of the transition law of the observables. This extra �exibility is of fundamental importance since

the transition law is one of the model primitives that is required in the �rst stage estimation. In

contrast, BBL explicitly require their preliminary estimator to converge at the parametric rate, this

condition rules out the nonparametric estimation of the transition law on the observables whenever

the control or the (observable) state variables are continuously distributed.

Although in this paper we focus on models with observable state variables that take �nitely

many values, our estimator can also accommodate continuous state variable. Recently, Bajari, Cher-

nozhukov, Hong and Nekipelov (2009) and Srisuma and Linton (2009) have independently shown

how to estimate such dynamic models with purely discrete choice and continuous state variable. The

main technical di¢ culty that arises when the state variable is continuous is that the policy value

equation becomes an integral equation of type II, given the discounting factor, the solving of such

equation is a well-posed inverse problem, see Srisuma and Linton for a formal discussion. Bajari et al.

(2009) provide some conditions for the per period payo¤ function to be nonparametrically identi�ed

and use the method of sieves in their nonparametric estimation. Srisuma and Linton, using kernel

smoothing, generalize the methodology of Pesendorfer and Schmidt-Dengler (2008) and provide a

set of weak conditions under time series framework to ensure root�T consistent estimation of the
�nite dimensional parameters and also provide pointwise distribution theory for the conditional value

functions and the continuation value functions.

We comment that there is comparatively less work on the development of estimation methodology

with purely continuous control.1 One well known exception to this is a subclass of a general Markov

decision processes known as the Euler class, where one can bypass the issue of solving the Bellman�s

equation and use the Euler equation to generate some moment restrictions, for example see Hansen

and Singleton (1982). However the class of Markov decision models we are interested in do not fall

into this class, for more details see Rust (1996). Our framework is more closely related to the study of

1The other paper that we are aware of that estimates purely continuous control problem in the I.O. literature is

Berry and Pakes (2002), but it is based on quite a di¤erent set of assumptions.
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dynamic auction and oligopoly models, which often allow for discrete choice as well (e.g. entry/exit

decisions);2 we refer to the surveys of Pakes (1994), and more recently, Ackerberg, Benkard, Berry

and Pakes (2005). Although we focus on the estimation of continuous choice models, as illustrated

by Arcidiacono and Miller (2008), our methodology forms a basis which can be used to estimate

models with continuous and discrete decisions with general patterns of unobserved heterogeneity.

Our estimator originates from the large literature on minimum distance estimation, see the mono-

graph by Koul (2002) for a review, where our criterion function measures the divergence between

two estimators of the conditional distribution function. More speci�cally, we minimize some L2�
distance between the nonparametric estimate of the conditional distribution function (implied by the

data) to a simulated semiparametric counterpart (implied by the structural model). In �nite sam-

ples, Monte Carlo simulation causes our objective function to be discontinuous in the parameter, we

use empirical process theory to ensure that our estimator converges to a normal random variable at

the rate of
p
N after an appropriate normalization. However, the asymptotic variance will generally

be a complicated function(al) of various parameters; we discuss and propose the use of a semipara-

metric bootstrap method to estimate the standard errors. The analysis of the statistical properties

of our estimator is similar to the work of Brown and Wegkamp (2002) on minimum distance from

independence estimator, �rst introduced by Manski (1983). Brown and Wegkamp also show that

nonparametric bootstrap can be used for inference in their problem. However, the estimator of

Brown and Wegkamp does not depend on any preliminary estimator that converges slower than the

rate of
p
N , so the treatment is essentially parametric. More recently, Komunjer and Santos (2009)

consider the semiparametric problem of minimum distance estimators of nonseparable models under

independence assumption. In this sense their work is more closely related to our estimator than that

of Brown and Wegkamp. However, Komunjer and Santos use the method of sieves to simultaneously

estimate their �nite dimensional parameters and the in�nite dimensional parameters in some sieve

space and do not discuss estimation of the asymptotic variance. In our case, it is natural to take a

two-step approach. The in�nite dimensional parameter here is the continuation value function, which

is de�ned as the regression of some unobervables to be estimated, and its structural relationship with

the �nite dimensional parameter is an essential feature in the methodology in this literature. We

estimate the continuation value function using a simple Nadaraya-Watson estimator and provide its

pointwise distribution theory.

The paper proceeds as follows. The next section begins by describing the Markov decision model of

interest for a single agent problem and provides a simple example that motivates our methodology, it

then outlines the estimation strategy and discusses the computational aspect. Section 3 provides the

2To our knowledge, Jofre-Bonet and Pesendorfer (2003) are the �rst to show that two-step estimation procedures

can be used to estimate a dynamic game in their study of a repeated auction game.
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conditions to obtain the desired distribution theory. We discuss inference based on semiparametric

bootstrap in Section 4. Section 5 reports a Monte Carlo study of our estimator and illustrates the

a¤ects of ignoring the model dynamics. Section 6 extends our methodology to estimate Markovian

processes with discrete/continuous controls as well as a class of Markovian games and considers the

estimation problem when the observable state space is uncountably in�nite. Section 7 concludes.

The proofs of all theorems can be found in the Appendix A. We collect the Figures and Tables at

the end of the paper.

In this paper: for any matrixB = (bij), de�ne kBk to be the Euclidean norm, namely
p
�max (B0B);

when G is a class of real valued functions g : A � � ! R, continuously de�ned on some compact
Euclidean domain A � �, then denote kgkG = sup�2� kg (�; �)k1, where kgk1 = supa2A jg (a)j is
the usual supremum norm, and kgkG = kgk1 when g does not depend on �; when GJ is a class of
continuous RJ valued functions (gj (�; �)), then denote kgkG = max1�j�J sup�2� kgj (�; �)k1, where
kgk1 = max1�j�J supa2A jgj (a)j, and, kgkG = kgk1 when g does not depend on �.

2 Markov Decision Processes

2.1 Basic Framework

We �rst brie�y describe the Markov decision model that our methodology can estimate. The random

variables in the model are the control and state variables, denoted by a and s respectively. The

control variable, a, belongs to some convex set A � RLA. The state variables, s, is an element in
RLX+1. Time is indexed by t, the economic agent is forward looking in solving an in�nite horizon
intertemporal problem. At time period t, the economic agent observes st and chooses an action at
in order to maximize her discounted expected utility. The per period utility is time separable and is

represented by u (at; st) and agent�s action today directly a¤ects the uncertain future states according

to the (�rst order) Markovian transition density p (dst+1jst; at). The next period utility is subjected
to discounting at some rate � 2 (0; 1). Formally the agent is represented by a triple of primitives
(u; p; �), who is assumed to behave according to an optimal decision rule, A� = f�t (st)g1t=� , in
solving the following sequential problem for any time �

V (s� ) = sup
A�

E

" 1X
t=�

�t��u (at; st)

����� s�
#
; s.t. at 2 A (st) for all t � � :

Under some regularity conditions, there exists a stationary Markovian optimal decision rule � (�) so
that

� (st) = arg sup
a2A(st)

fu (a; st) + �E [V (st+1) jst; at = a]g for all t � 1: (1)
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Furthermore, the value function, V , is the unique solution to the Bellman�s equation

V (st) = sup
a2A(st)

fu (a; st) + �E [V (st+1) jst; at = a]g : (2)

More details of related Markov decision models that are commonly used in economics can be found

in Pakes (1994) and Rust (1994,1996). In order to avoid a degenerate model, we assume that the

state variables st = (xt; "t) can be separated into two parts, which are observable and unobservable

respectively to the econometrician, see Rust (1994) for various interpretations of the unobserved

heterogeneity. We next provide an economic example that naturally �ts in our dynamic decision

making framework.

Dynamic Price Setting Example:

Consider a dynamic price setting problem for a �rm. At the beginning of each period t, the �rm

faces a demand described by D (at; xt; "t) where: at denotes the price that is assumed to belong to

some subset of R; xt is some measure of the consumer�s satisfaction that a¤ects the level of the
demand for the immediate period that is publically observed; "t is the �rm�s private demand shock.

Within each period, the �rm sets a price and earns the following immediate pro�t

u (a; xt; "t) = D (at; xt; "t) (at � c) ;

where c denotes a constant marginal cost. The price setting decision in period t a¤ects the future

sentiment of the demand of the consumers for the next period, xt+1, that can be modelled by some

Markov process. So the �rm chooses price at to maximize its discounted expected pro�t

at = arg sup
a2A

fu (a; xt; "t) + �E [V (xt+1; "t+1) jxt; "t; at = a]g

In Section 5, we focus on a speci�c example of this dynamic price setting decision problem and use a

Monte Carlo experiment to illustrate the �nite sample behavior of our estimator as well as the e¤ects

of ignoring the underlying dynamics in the DGP.

We end this subsection by providing some model assumptions that we assume throughout the

paper.

Assumption M1: The observed data for each individual fat; xtgT+1t=1 are the controlled stochastic

processes satisfying (2) with exogenously known �.

Assumption M2: (Conditional Independence) The transitional distribution has the following

factorization: p (xt+1; "t+1jxt; "t; at) = q ("t+1jxt+1) pX0jX;A (xt+1jxt; at) for all t.
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Assumption M3: The support of st = (xt; "t) is X�E ; where X = f1; : : : ; Jg for some J <1
that denotes the observable state space and E is a (potentially strict) subset of R. The distribution
of "t, denoted by Q, is known, it is also independent of xt and is absolutely continuous with respect

to some Lebesgue measure with a positive Radon-Nikodym density q on E .

Assumption M4: (Monotone Choice) The per period payo¤ function u� : A � X � E ! R
has increasing di¤erences in (a; ") for all x and �; u� is speci�ed upto some unknown parameters

� 2 � � RL.

The �rst two assumptions are familiar from the discrete control problems; M2 is introduced

by Rust (1987). Finiteness of X is imposed for the sake of simplicity, the generalization to more

general compact set is discussed in Section 6. Notice that, unlike under the discrete choice setting, the

estimation problem still requires an estimation of some in�nite dimensional elements despite assuming

that X has �nite elements since A now includes an interval. The distribution of "t is required to

be known, this is a standard assumption in the estimation of structural dynamic programming

models whether the control is continuous or discrete. The independence between xt and "t can be

weakened to the knowledge of the conditional distribution of "t given xt upto some �nite dimensional

unknown parameters. However, unlike dynamic discrete choice models, the support of "t need not

be unbounded, since the unboundedness of E is required to utilize HM inversion theorem. In fact,

as we shall see below, in many cases it is more natural to assume that E is a compact and convex
subset of R when A is also compact and convex. More important is the monotone choice assumption
in M4, which we will discuss further below, it essentially ensures the policy function (1) is invertible

on E for each state x 2 X.

2.2 Value Functions

Before moving on to the estimation strategy, it will be useful to �rst discuss in details of our treat-

ment regarding the value function. In dynamic structural estimation, it is often necessary to have a

numerical representation for the continuation value function, under M2 this function can be written

as E [V� (st+1) jxt; at]. As mentioned in the introduction, we aim to estimate the continuation value

function rather than approximate it for each �, cf. the methods discussed in Pakes (1994) and Rust

(1994). Under some additional assumptions on the DGP, this conditional expectation is nonpara-

metrically identi�ed if we observe st and know V� (�), the latter is de�ned in (2). Since we know
neither, a standard approach is to consider the value function on the optimal path, which is de�ned

as the solution to some linear equation; this is the approach taken by HM. By marginalizing out the

unobservable states in the linear characterization of the aforementioned linear equation we have the
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conditional value function de�ned as a solution to a linear equation, called the policy value equation.

The continuation value function can then be written as a linear transform of the solution to the

policy value equation. More formally, M1 implies at = ��0 (st), where ��0 : X � E ! R denotes the
policy function de�ned in (1) that re�ects the parameterization by the true structural parameter �0.

On the optimal path, the value function is a stationary solution to the policy value equation when

� = �0, cf. (2)

V� (st) = u� (at; st) + �E [V� (st+1) jst] : (3)

Note that the equation above is also well de�ned for any � that is not equal to �0; then V� is

interpreted as the value function for an economic agent whose underlying preference is � but is using

the policy function that is optimal with respect to �0. Marginalizing out the unobserved states in

(3), under M2 we have the following characterization of the value functions

E [V� (st) jxt] = E [u� (at; st) jxt] + �E [E [V� (st+1) jxt+1] jxt] ; (4)

then, again by M2, that the continuation value function can be written as

E [V� (st+1) jxt; at] = E [E [V� (st+1) jxt+1] jxt; at] : (5)

In what follows, it will be convenient to write (4) succinctly as

m� = r� + Lm�: (6)

where for each j; k = 1; : : : ; J : r� (j) denotes E [u� (at; st) jxt = j]; L is a J � J stochastic matrix

whose (k; j)�th entry represents � Pr [xt+1 = jjxt = k]; m� (j) denotes E [V� (st) jxt = j]. So we can

de�ne R0 = f(r� (j)) = E [u� (at; st) jxt = j] for j = 1; : : : ; J : � 2 �g � RJ to be a set of vectors of
expected per period payo¤ for an agent whose true taste parameter is � 2 �, for all states in X, but
behaves optimally according to �0. Note that (I � L) is invertible by the dominant diagonal theorem,
so the solution to (6) exists and is unique.3 The conditional value function m� is therefore de�ned as

the solution to (6), we denote such a subset of RJ byM0 =
�
m� = (I � L)�1 r� : r� 2 R0

	
. Finally,

the continuation value function can be de�ned by the following linear transformation

g� = Hm�: (7)

Here H is a conditional expectation operator that maps RJ to GJ , where GJ denotes a Cartesian
product of J normed space of functions Gj de�ned on A (to be de�ned more precisely later), so that
for any m 2 RJ , j and a 2 A, Hm (j; a) =

PJ
k=1mk Pr [xt+1 = kjxt = j; at = a]. We denote the set

3A square matrix P = (pij) of size n is said to be (strictly) diagonally dominant if jpiij >
P

j 6=i jpij j for all i. It is a
standard result in linear algebra that a diagonally dominant matrix is non-singular, for example see Taussky (1977).
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of continuation value functions of interest by GJ0 = fHm� (j; �) for j = 1; : : : ; J : m� 2M0g, where
GJ0 = �Jj=1G0;j with G0;j = fHm� (j; �) : m� 2M0g and generally we have that G0;j � Gj for all j,
so it follows that GJ0 � GJ . In this paper we denote a generic element of GJ0 that depends on � by
g0 (�; �) = (g0;j (�; �)) where g0;j (�; �) 2 G0;j for any j; other vector of functions in GJ that depends on
� by g (�; �) = (gj (�; �)) where gj (�; �) 2 Gj for each j; all other functions of GJ that need not depend
on � by g (�). Since we will need to repeatedly work with the derivative of g w.r.t. a, it will be

convenient to use @ag as a shorthand notation for @
@a
g (�). Analogous to

�
Gj;G0;j;GJ ;GJ0

�
, we denote�

G(1)j ;G(1)0;j ;G(1)J ;G
(1)J
0

�
to be sets of functions that (@ag (�; �) ; @ag0 (�; �) ; (@agj (�; �)) ; (@ag0;j (�; �)))

belongs to. It is natural that our estimate of g0 (�; �) satis�es the empirical relations of (6) and (7).
We are now ready to discuss the estimation methodology.

2.3 Estimation Methodology

Since we anticipate a cross-section time-series data, we �rst introduce an additional index i for

di¤erent economic agent. To motivate the choice of our criterion function, we �rst consider the

natural approach of generating some moments from conditional moment restrictions, see Pesendorfer

and Schmidt-Dengler (2008) and Srisuma and Linton (2009) when the control is discrete. Analogous

to the conditional choice probabilities, we can generate a class of estimators from the following

conditional moment restrictions

E
�
1 [ait � a]� FAjX (ajj; �0; @ag0;j (�; �0))

�� xit = j
�
= 0; for a 2 A and j = 1; : : : ; J; (8)

where FAjX (ajj; �0; @ag0;j (�; �0)) is the conditional distribution function of ait given xit = j that we

can estimate, the dependence on @ag will become clear shortly. We see that the empirical counterpart

of (8) is a random function over A. By allowing for pro�ling, one would expect that under some

conditions optimal instruments should exist that will allow the corresponding estimator to achieve

semiparametric e¢ ciency bound, cf. Ai and Chen (2003). E¢ ciency aside, since we have a continuum

of moment restrictions here, cf. Carrasco and Florens (2000), no general theory for semiparametric

moment estimation with a continuum of moments is available at present. Further, we show below that

FAjX (ajj; �; @agj) can be written as an integral that we can approximate by Monte Carlo simulation,
which introduces non-smoothness in the objective function. Another alternative to the moment

based estimator is to maximize the conditional maximum likelihood function, however the maximum

likelihood estimator (MLE) is more computationally demanding, we provide more discussion on MLE

in later part of the paper.

Instead, we focus on another class of minimum distance estimators. Wolfowitz (1953) introduce

the minimum distance method that since has developed into a general estimation technique that

9



have well known robustness and e¢ ciency properties, see Koul (2002) for a review. In this paper, we

de�ne a class of estimators that minimize the following Cramér von-Mises type objective function

MN (�; bg (�; �)) = JX
j=1

Z
A

h eFAjX (ajj; �; @abgj (�; �))� bFAjX (ajj)i2 �j (da) ; (9)

where for each j = 1; : : : ; J : bFAjX (�jj) ; eFAjX (�jj; �; @agj) and @abgj (�; �) are de�ned below in (10), (14)
and (19) respectively; FAjX (�jj) = E [1 [ait � �]jxit = j] denotes the true conditional distribution

function, which is equal to FAjX (�jj; �0; @ag0;j (�; �0)); �j is some user chosen sigma-�nite measure on
A. Clearly the property of b� will generally depend on the choice of ��j	Jj=1, similarly to the papers
from minimum distance from independence literature mentioned in the introduction, we shall leave

the issue of choosing
�
�j
	J
j=1

for future work.

We now discuss how to feasibly compute the objective function in (9); for simplicity we assume

dim (A) = 1. We remark that there are various numerical methods that can approximate the integral

above arbitrarily well, for example see Judd (1998), hence we make no further comments regarding the

numerical error that arises from the integral approximation. Under M1 - M4 and further assumptions

on the DGP, to be made precise below, FAjX (ajj) will be nonparametrically identi�ed for each a; j.bFAjX (ajj) can be generally written as
bFAjX (ajj) = 1

NT

N;TX
i=1;t=1

witN (j)1 [ait � a] ; (10)

depending on the nature of X, the weighting function witN (�) will take di¤erent form. In this paper,
when xit is a discrete random variable we choose witN (j) = 1 [xit = j] =

PN;T
i=1;t=1 1 [xit = j], which

yields the frequency estimator, we consider the case when xit is a continuous random variable in

Section 6. We now describe the estimation of FAjX (ajj; �; @agj). For any � 2 �, j = 1; : : : ; J and

gj 2 Gj, we de�ne a function that is analogous to the discounted expected utility objective in (2)

�j (a; "; �; gj) = u� (a; j; ") + �gj (a) ; (11)

note that, under M2 and M3, we can rewrite (2) as

V�0 (j; "it) = sup
a2A

�j (a; "it; �0; g0;j) for j = 1; : : : ; J:

It will be convenient, at least for theoretically purposes, to assume that the optimal rule is charac-

terized by the �rst order condition as displayed above. Taking �rst derivative of (11) w.r.t. a, we

obtain the following map

�
(1)
j (a; "; �; @agj) = @au� (a; j; ") + �@agj (a) : (12)
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Suppose that the maximizer to �j (�; "; �; gj), for any given ("; �; gj), is characterized by the zero to
(12); using the implicit function theorem in Banach space, we de�ne

�j ("; �; @agj) = arg sup
a2A

�j (a; "; �; gj) :
4 (13)

Therefore the policy pro�le (�j), such that �j : E ���G(1)j ! R, corresponds to the policy function
(1) when @agj 2 G(1)0;j for all j. More generally, for any � 2 �, j = 1; : : : ; J and @agj 2 G

(1)
j we have

FAjX (ajj; �; @agj) = Pr [�j ("it; �; @agj) � a]

= E [1 [�j ("it; �; @agj) � a]] :

If we know the policy function �j, we can approximate FAjX (ajj; �; @agj) to an arbitrary degree
of accuracy by Monte Carlo integration, since we assume the knowledge of Q". In this paper, for

simplicity we use eFAjX (ajj; �; @agj) = 1

R

RX
r=1

1 [�j ("r; �; @agj) � a] ; (14)

where f"rgRr=1 is a random sample from Q. We can also compute the policy pro�le � = (�j) to any

degree of accuracy for any (j; "). In particular the implication of M4, by Topkis�theorem, is that

�j ("; �; @agj) is non-decreasing in " for all j, @agj and �.5,6 Since we are going to be working with a

smooth utility function and " has a convex support, we will assume that the strong form of monotone

choice that will ensure that the policy function is strictly increasing in ". For this reason, the convex

support of ait and "it must be either both bounded or unbounded to avoid internal inconsistency.

For j = 1; : : : ; J , we denote the inverse function of (13) by �j, so that for all " 2 E

�j (�j ("; �; @agj) ; �; @agj) = ";

for any (�; @agj). But M4 permits " to enter u� in a general way, which makes the estimation of r� more

complicated since we do not observe "it. However, by Topkis�theorem, we can generate these terms

nonparametrically. To see this, for any given pair (a; j), FAjX (ajj) = Pr [�j ("; �0; @ag0;j) � a], by

the invertibility of �j, Pr [�j ("it; �0; @ag0;j) � a] = Pr
�
"it � �j (a; �0; @ag0;j)

�
= Q"

�
�j (a; �0; @ag0;j)

�
,

where Q" denotes the known distribution function of "it. So we can uniquely recover "it, which

satis�es �j ("it; �0; @ag0;j) = ait when xit = j by the relation

�j (ait; �0; @ag0;j) = Q�1"
�
FAjX (aitjxit)

�
: (15)

4The implicit function theorem in Banach space is a well established result. The su¢ cient conditions for its validity

generalizes the standard conditions used in Euclidean space, e.g. see Zeidler (1986).
5Topkis�s theorem states that: if f is supermodular in (x; �), and D is a lattice, then x� (�) = argmaxx2D f (x; �)

is nondecreasing in �.
6The monotone choice condition is a common assumption used to analyze comparative statics in economic theory,

for example see Athey (2002) and the reference therein.
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In this paper, we use the following analogue to estimate "it

b"it = Q�1"

� bFAjX (aitjxit)� : (16)

Since FAjX is nonparametrically identi�ed, we can generate fb"itgN;T+1i=1;t=1 nonparametrically.
7 We note

that M4 is also essential in the forward simulation method of BBL (Section 3.2.2) where it is used

in the reverse direction to simulate the optimal choice ar given (j; "r), more speci�cally using our

notation, �j ("r; �0; @ag0;j) = F�1AjX=j (Q" ("r)) where F
�1
AjX=j denotes the inverse of the conditional

distribution function FAjX (�jj). Given fait; xit;b"itgN;T+1i=1;t=1, we can easily estimate r� for each �

er� (j) = 1

NT

N;TX
i=1;t=1

witN (j)u� (ait; xit;b"it) ; (17)

where, for simplicity, witN (j) is the same as the one used in (10). Once we have an estimator for

r�, the estimator of g0 (�; �) is easy to obtain. In particular, assuming further that bpX (j) > 0 for

j = 1; : : : ; J , where bpX (j) denotes the frequency estimator of pX (j) = Pr [xit = j], then the dominant

diagonal theorem implies
�
I � bL��1 exists. So we can uniquely obtain

bm� =
�
I � bL��1 er�: (18)

For the estimator bg (�; �), we can use various nonparametric estimators of a regression function, for
simplicity we use the Nadaraya Watson estimator to approximate the operator H, therefore

bg� = bHbm�; (19)

such that, for any a; j; k

bgj (a; �) =
JX
k=1

bm� (k)
bpX0;X;A (k; j; a)bpX;A (j; a) ; (20)

bpX0;X;A (k; j; a) =
1

NT

N;TX
i=1;t=1

1 [xit+1 = k; xit = j]Kh (ait � a) ; (21)

bpX;A (j; a) =
1

NT

N;TX
i=1;t=1

1 [xit = j]Kh (ait � a) ; (22)

7We can perform a simple test to check for the validity that "it has distribution Q by constructing the following

Cramér von-Mises statistic,

!N = NT

Z
E

h bQ";N (e)�Q" (e)i2 dQ" (e) ;
where bQ";N (e) = 1

NT

PN;T
i=1;t=1 1 [b"it � e]. We can use the standard nonparametric bootstrap to approximate the

asymptotic distribution under the null of !N .
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where bpX0;X;A denotes our choice of estimate for pX0;X;A, the mixed-continuous joint density of

(xit+1; xit; ait); bpX;A and pX;A are de�ned similarly; Kh (�) = 1
h
K
� �
h

�
denotes a user-chosen kernel

and h is the bandwidth that depends on the sample size but for the ease of notation we suppress

this dependence. By choosing a di¤erentiable kernel K, (21) and (22) will also be di¤erentiable in

a, a simple estimator of @ag (�; �) can be obtained by di¤erentiating bg (�; �). We note that other non-
parametric estimators for g0 (�; �) may be preferred to the Nadaraya-Watson estimator. We choose
the local constant estimator for simplicity, so when A has a bounded support we will need to trim

out the boundary since the bias near the boundary will generally be of a higher order of magnitude

than that of the interior. Although trimming at the boundary is simple to implement, as we show

below, we can alternatively use other nonparametric estimators that do not require any boundary

correction, e.g. the local linear regression that is design adaptive, see Fan (1992) for details.

2.4 Practical Aspects

Here we brie�y discuss the practicality of computing (14); the arguments in this section is valid

irrespective of whether X is �nite or uncountably in�nite. We split the discussion into two parts,

the computation of bg (�; �) and then � (�; �; bg (�; �)).8
The main computational burden in the �rst part lies in the estimation of the conditional value

function. This involves solving a matrix equation to compute (or approximate) (18), see Pesendorfer

and Schmidt-Dengler (2008) for the case that X is �nite, and, Srisuma and Linton (2009) when X

includes intervals. We note that the solving of the matrix equation will be a well-posed problem,

even with a continuous state space (with �ne enough grids), with probability approaching to 1

under some regularity conditions. Since we estimate L nonparametrically, independent of �, the

approximation of a potentially large matrix,
�
I � bL��1, only has to be computed once. It is even

more straightforward to compute the sequence of nonparametrically generated residuals, de�ned in

(16), this also only needs to be computed once. The estimation of r� on (or the grid approximating)

X can then be obtained trivially as our nonparametric estimator of r� has a closed-form, see (17).

Once we have the estimates for m�, it is straightforward to obtain the estimates of g� as de�ned in

(20) - (22). A further computational gain is possible if the parameterization of � in u is linear. This

is a common feature given the linearity of the policy value equation, as noted by HM, Hotz et al.

(1994) and BBL. In that case er� (j) becomesPN;T
i=1;t=1witN (j)u (ait; xit;b"it)0 � for each j, and we can

write er� = Wbu� = Wbu�. Following the linearity of the inverse operator of
�
I � bL��1 we can then

8MATLAB programs that carry out the computations in this paper are available upon request. A pro-

gramming suite to perform the estimation proposed in this paper will soon be made available from the website

http://personal.lse.ac.uk/srisuma.
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easily compute bm� =
�
I � bL��1Wbu� for any �. When xit contains a continuous state variable, more

detailed discussion of the approximation, computation and solvability of the empirical version of (6),

and whether to allow the size of the linear system to be independent or grow with sample size, can

be found in Srisuma and Linton (2009).

Now we consider the prospect of approximating the policy function (13). One approach is through

�nding the zero of the empirical analogue of (12), i.e.

0 = �
(1)
j (a; "; �; @abgj (�; �))���

a=�j(";�;@abgj(�;�)) :
Since we know the functional forms of u� and bgj (�; �), their derivatives can be explicitly derived, the
above display can then be easily programmed in practice. Alternatively, since the dimension of A

is generally small, it may be more convenient to approximate (13) directly from the approximation

of (11) by grid-search. As explained in the previous paragraph, we can straightforwardly produce a

vector of estimates of the continuation value function on a grid that approximates A. This approach

is less demanding than it �rst appears since the empirical version of (11) always has an explicit form,

which is easy to program and can be readily computed for each �, this is especially true if � enters

u linearly as discussed in the previous paragraph. Another advantage of using the method of grid-

search over the search for stationary points is that, at least in small sample, a particular stationary

point may not necessary pick up the global maximizer.

3 Asymptotic Theory

Our minimum distance estimator falls in the class of a pro�led semiparametric M-estimator with

non-smooth objective function since (14) is discontinuous in �. There are a few recent econometrics

papers that treat general theories of semiparametric estimation that allows for non-smooth criterions;

Chen, Linton and Van Keilegom (2003) provide some general theorems for a class of Z-estimators;

Ichimura and Lee (2006) obtain the characterization of the asymptotic distribution of M-estimators;

Chen and Pouzo (2008) extend the results of Ai and Chen (2003), on conditional moments models, to

the case with non-smooth residuals. The aforementioned papers put special emphasis on the criterion

that is based on sample averages. However, minimum distance criterions generally do not fall into this

category, for instance consider (9) when
�
�j
	J
j=1

is a sequence of non-random measures. Although

the focus of our paper is not on the general theory of estimation, we �nd it convenient to proceed by

providing a general asymptotic normality theorem for semiparametric M-estimators that naturally

include minimum distance estimators as well as many others commonly used objective functions.

We then provide a set of su¢ cient, more primitive, conditions speci�c to our problem. We note,

as an alternative, the discontinuity in many criterion functions can be overcome by smoothing, e.g.
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see Horowitz (1998), and in some cases there may be statistical gains for doing so, e.g. a reduction

in �nite sample MSE. More speci�cally, we can overcome the discontinuity problem by smoothing

over the indicators in (14), however, the use of unsmoothed empirical function is the most common

approach we see in practice.

To analyze our estimator, it is necessary to introduce the notion of functional derivative in order

to capture the e¤ects from the nonparametric estimate. We denote the (partial-) Fréchet di¤erential

operators by D�; Dg; D��; D�g and Dgg, where the indices denote the argument(s) used in di¤er-

entiating and double indexing denotes second derivative. For any map T : X ! Y and some

Banach spaces X and Y , we say that T is Fréchet di¤erentiable at x, that belongs to some open

neighborhood of X, if and only if there exists a linear bounded map DT : X ! Y such that

T (x+ f)� T (x) = DT (x) f + o (kfk) with kfk ! 0 for all f in some neighborhood of x; we denote

the Fréchet di¤erential at x in a particular direction f by DT (x) [f ]. Since � is a �nite dimensional

Euclidean element, the �rst and second Fréchet derivatives coincide with the usual (partial-) deriva-

tives. For Theorem G below, let �0 and g0 denote the true �nite and in�nite dimensional parameters

that lie in � and G respectively. Since we only need to focus on the local behavior around (�0; g0), for
any � > 0 we de�ne �� = f� 2 � : k� � �0k < �g and G� =

�
g 2 G : kg � g0kG < �

	
, here � can also

be replaced by some positive sequence �N = o (1). The pseudo-norm on G� can be suitably modi�ed
to re�ect the smaller parameter space ��, and the choice of � for �� and G� can be distinct, but
for notational simplicity we ignore this. Let M (�; g (�; �)) denote the population objective function
that is minimized at � = �0, and MN (�; g (�; �)) denote the sample counterpart. Further, we denote
D�M (�; g (�; �)) by S (�; g (�; �)) and D��M (�; g (�; �)) by H (�; g (�; �)).

Theorem G: Suppose that b� p! �0, and for some positive sequence �N = o (1),

G1 MN

�b�; bg ��;b��� � inf�2�MN (�; bg (�; �)) + op (N�1)

G2 For all �, bg (�; �) 2 G�N w.p.a. 1 and sup�2� kbg (�; �)� g0 (�; �)k1 = op
�
N�1=4�

G3 For some � > 0, M (�; g) is twice continuously di¤erentiable in � at �0 for all g 2 G�.
H (�; g) is continuous in g at g0 for � 2 ��. Further, S (�0; g0 (�; �0)) = 0 and H0 = H (�0; g0 (�; �0))
is positive de�nite.

G4 For some � > 0, S (�; g (�; �)) is (partial-) Fréchet di¤erentiable with respect to g, for any
� 2 �� and for all g 2 G�. Further kS (�0; g (�; �0))�DgS (�0; g0 (�; �0)) [g (�; �0)� g0 (�; �0)]k �
BN � sup�2� kg (�; �)� g0 (�; �)k21 for some BN = Op (1).

G5 (Stochastic Di¤erentiability)

sup
k���0k<�N

���� DN (�; bg (�; �))1 +
p
N k� � �0k

���� = op (1) ;

15



where there exist some sequence CN , so that

DN (�; bg (�; �)) (23)

=
p
N

�
MN (�; bg (�; �))�MN (�0; bg (�; �0))� (M (�; bg (�; �))�M (�0; bg (�; �0)))� (� � �0)

0CN
�

k� � �0k
:

G6 For some �nite positive de�nite matrices 
0 and 
, we have the following weak convergencep
NCN ) N (0;
0) and

p
NDN =

p
N (CN +DgS (�0; g0 (�; �0)) [bg � g0])) N (0;
).

Then p
N
�b� � �0

�
) N

�
0; H�1

0 
H
�1
0

�
:

Comments on Theorem G:

Under the identi�cation assumption and su¢ cient conditions for asymptotic normality, one can

often show the consistency of the �nite dimensional parameter in such models directly so we do

not provide a separate theorem for it. Theorem G extends Theorem 7.1 in Newey and McFadden

(1994) to a two-step semiparametric framework. G1 is the de�nition of the estimator. The way

G1 - G4 accommodate for the preliminary nonparametric estimator is standard, cf. Chen et al.

(2003), in fact, a weaker notion of functional derivative such as the Gâteaux derivative will also

su¢ ce here. G5 extends the stochastic di¤erentiability condition of Pollard (1985) and Newey and

McFadden (1994) to this more general case. We note that this is not the only way to impose

the stochastic di¤erentiability condition; we pose our equicontinuity condition in anticipation of

a sequential stochastic expansion whilst Ichimura and Lee (2006) employ an expansion on both

Euclidean and functional parameters simultaneously. Also, the �rst order properties of CN , the

stochastic derivative in (23), will be the same as the case that g0 (�; �) is known.9

Assumption E1:

(i) fait; xitgN;T+1i=1;t=1 is i.i.d. across i, within each i fait; xitg
T+1
t=1 is a strictly stationary realizations

of the controlled Markov process for a �xed periods of T + 1 with exogenous initial values;

(ii) A and E are compact and convex subsets of R;
(iii) � is a compact subset of RL then the following holds for all j = 1; : : : ; J

�j (�; �; @ag0;j (�; �)) = �j (�; �0; @ag0;j (�; �0)) Q� a:e:

if and only if � = �0 where �0 2 int (�);
(iv) For all j = 1; : : : ; J; �j is a �nite measure on A that dominates Q and has zero measure on

the boundary of A;

9An important special case of this theorem is when the preliminary function is independent of �. The formulation

of the conditions for Theorem G remains valid since the pro�ling e¤ects are implicit in the notation of D� and D��.
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(v) For all j = 1; : : : ; J , the density pX;A (j; �) is 5�times continuously di¤erentiable on A and

infa2A pX;A (j; a) > 0;

(vi) For all j; k = 1; : : : ; J , the density pX0;X;A (k; j; �) is 5�times continuously di¤erentiable on
A;

(vii) The distribution function of "it, Q", is Lipschitz continuous and twice continuously di¤er-

entiable;

(viii) For all j = 1; : : : ; J , u� (a; j; ") is twice continuously di¤erentiable in � and a, once contin-

uously di¤erentiable in ", these continuous derivatives exist for all a; " and �. In addition we assume
@2

@a@"
u� (a; j; ") > 0 and @4

@a2@"2
u� (a; j; ") exists and is continuous for all a; " and �;

(ix) K is a 4-th order even and continuously di¤erentiable kernel function with support [�1; 1],
we denote

R
ujK (u) du and

R
Kj (u) du by �j (K) and �j (K) respectively;

(x) The bandwidth sequence hN satis�es hN = dNN
�& for 1=8 < & < 1=6, with dN is a sequence

of real numbers that is bounded away from zero and in�nity;

(xi) Trimming factor 
N = o (1) and hN = o (
N);

(xii) The simulation size R satis�es N=R = o (1);

Comments on E1:

(i) assumes we have a large N and small T framework, common in microeconometric applications,

and for simplicity we assume T is the same for all i;

(ii) restricts dim (A) to 1 for the sake of simplicity. To allow for higher dimension of A, we will

need to ensure that the policy functions (13) is invertible. dim (A) determines the rate of convergence

of the nonparametric estimate, if dim (A) > 1 we can adjust our conditions in a straightforward way

to ensure the root�N consistency of �nite dimensional parameters, e.g. see Robinson (1988) and

Andrews (1995). Compactness of A and E is also assumed for the sake of simplicity. We can use a
well known trimming argument in nonparametric kernel literature if A and E are both unbounded ,
see Robinson (1988); all of our theoretical results and techniques in this paper hold on any compact

subset of A and E , the compact support can then be made to increase without bounds at some
appropriate rate;

(iii) is the main identi�cation condition for �0. We assume there does not exist any other � 2
�n f�0g that can generate the same policy pro�le which �0 generates when (@ag0;j (�; �)) is known.
It can be shown directly that the conditions we impose on the policy functions is equivalent to

imposing that (8) holds if and only if � = �0, which is the standard identi�cation assumption in a

parametric conditional moment model; in the case that xit and "it are not independent we simply

change Q� a:e: to Q"jXj � a:e:, where Q"jXj denotes the conditional distribution of "it given xit = j.

Lastly, given �, under some primitive conditions on the DGP (contained in E1) (@ag0;j (�; �)) will be
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nonparametrically identi�ed hence we only have to consider the identi�cation of �0;

(iv) ensures that the identi�cation condition of (iii) is not lost through the user chosen measures,

cf. Domínguez and Lobato (2004). One simple choice of
�
�j
	J
j=1

that satis�es this condition is a

sequence of measures which are dominated by the Lebesgue measure on the interior of A and has

zero measure on the boundary. We can also allow the support of ait to depend on the conditioning

state variable xit but common support is assumed for notational simplicity;

(v)-(vi) impose standard smoothness and boundedness restrictions on the underlying distribution

of the observed random variables in the kernel estimation literature. They ensure we can carry out

the usual expansion on our nonparametric estimators of pX;A and pX0;X;A and their derivatives in

anticipation of using a 4-th order kernel;

(vii) imposes standard smoothness on Q" that is necessary for our statistical analysis;

(viii) imposes standard smoothness assumptions on the per period utility function, to be used

in conjunction with earlier conditions, to obtain uniform rates of convergence for our nonparametric

estimates. The cross partial derivative is the analytical equivalence of M4. We note that these

conditions appear particularly straightforward, this is due to the fact that u is a continuous function

on a compact domain, so boundedness makes it simple to obtain uniform convergence results. On

the other hand, had we allowed for unbounded A and E , then we will need some conditions to ensure
the tail probability of u� (ait; xit; "it) is su¢ ciently small. For example, one su¢ cient condition would

be that all the functions mentioned belong in L2 (P ), and there exists a function ju� (a; x; ")j �
U (a; x; ") for all a; x; " and � such that E [exp fCU (ait; xit; "it)g] < 1 for some C > 0. The latter

is equivalent to the Cramér�s condition, see Arak and Zaizsev (1988), that allows us to use Bernstein

type inequalities for obtaining the uniform rate of convergence of the nonparametric estimates;

(ix) The use of a 4-th order kernel is necessary to ensure the asymptotic bias will disappear for

certain range of bandwidths. The compact support assumption on the kernel is made to keep our

proofs simple, other 4-th order kernel with unbounded support can also be used, e.g. if it satis�es

the tail conditions of Robinson (1988);

(x) imposes the necessary condition on the rate of decay of the bandwidth corresponding to using

a 4-th order kernel. The speci�ed rate ensures the uniform convergence of the �rst two derivatives

of a regular 1-dimension nonparametric density estimate, as well as, the uniform convergence of

k@abg � @agkG at a rate faster than N�1=4 and for the asymptotic bias (of order
p
Nh4) to converge

to zero;

(xi) This is the rate that the trimming factor diminishes, it su¢ ces to only trim out the region

in a neighborhood the boundary where the order of the bias di¤ers from other interior points;

(xii) The simulation size must increase at a faster rate than N to ensure the simulation error

from using (14) does not a¤ect our �rst order asymptotic theory.
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In relation to Theorem G, beyond the identi�cation conditions (iii) - (iv), most of the conditions

in Assumption E1 will ensure that G2 holds. We now must impose some additional smoothness

conditions on (�j) to satisfy the other conditions of Theorem G. In particular, in order to apply

the results from empirical processes literature, we need to restrict the size of the class of functions

that the continuation value functions belong to. For a general subset of some metric space
�
G; k�kG

�
,

two measures of the size, or level of complexity, of G that are commonly used in the empirical
processes literature are the covering number N

�
";G; k�kG

�
and the covering number with bracketing

N[]
�
";G; k�kG

�
respectively, see van der Vaart and Wellner (1996) for their de�nitions. We need the

covering numbers of
�
G; k�kG

�
to not increase too rapidly as " ! 0 (to be made precise below) and

this possible, for example, if the functions in G satisfy some smoothness conditions. We now de�ne
a class of real valued functions that is popular in nonparametric estimation, suppose A � RLA, let �
be the largest integer smaller than �, and

kgk1;� = maxj�j��
sup
a

��@j�ja g (a)��+maxj�j=�
sup
a 6=a0

���@j�ja g (a)� @
j�j
a g (a0)

���
ka� a0k���

; (24)

where @j�ja = @j�j=@a
�1
1 : : : @a

�LA
LA

and j�j =
PLA

l=1 �l, then C
�
M (A) denotes the set of all continuous

functions g : A ! R with kgk1;� � M < 1; let l1 (A) denotes the class of bounded functions
on A. If G = C�M (A), then by Corollary 2.7.3 of van der Vaart and Wellner log

�
N
�
";G; k�kG

��
�

const:� "�LA=2. For our purposes, the precise condition for controlling the complexity of the class of
functions is summarized by the following uniform entropy condition

R1
0

q
logN

�
";G; k�kG

�
d" <1.

So G satis�es the uniform entropy condition if � > LA=2. Given the assumptions in E1 we can

now be completely explicit regarding our space of functions and its norm. It is now clear that

G0;j � C2M (A) � l1 (A) for some M > 0 for each j = 1; : : : ; J w.r.t. to the norm k�kG described in
the introduction. Next, since we are required to de�ne the notion of functional derivatives, it will be

necessary to let our class of functions be an arbitrary open and convex set of functions that contains

G0. So we de�ne for all j = 1; : : : ; J , Gj = fg (�) 2 C2M (A) : supa2A kg (�)� g0;j (�; �)k1 < � for any

� 2 �g for some � > 0, then it is also natural to also have Gj endowed with the norm k�kG.10 Finally,
since we will be using results from empirical processes for a class of functions that are indexed by

parameters in A���G, we de�ne the norm for each element (a; �; g) by k(a; �; g)k� = k(a; �)k+kgkG.

Assumption E2:

(xiii) For all j = 1; : : : ; J , the inverse of the policy function �j : A���Gj ! R is twice Fréchet
di¤erentiable on A��� Gj and sup�;a;gj2��A�Gj



Dg�j (a; �; @agj)


 <1;

10Note that for any g 2 Gj for any j, kgkG � �+max1�j�J sup�;a2A�� jgj (a; �)j <1 holds by the triangle inequality.
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(xiv) For some j = 1; : : : ; J , the following L� L matrixZ
A

[q(�j(a; �0; @agj (�; �0)))]2D�(�ja; �0; @ag0;j (�; �0))D��j(a; �0; @ag0;j (�; �0))0�j (da)

is positive de�nite;

(xv) For all j = 1; : : : ; J , the Fréchet di¤erential of �j w.r.t. @ag in the direction [@abgj (�; �0)�
@ag0;j (�; �0)] is asymptotically linear: in particular for any a 2 int (A)

Dg�j (a; �0; @agj (�; �0)) [@abgj (�; �0)� @ag0;j (�; �0)] =
1

NT

N;TX
i=1;t=1

 0;j (ait; xit; a) + op
�
N�1=2� ; (25)

with E
�
 0;j (ait; xit; a)

�
= 0 and E

�
 20;j (ait; xit; a)

�
< 1 for all i; t; in addition, the display above

holds uniformly on any compact subset AN of A and  0;j (ait; xit; �) 2 	j;N where 	j;N is some class
of functions on AN that is a Donsker class for all N .

Comments on E2:

We �rst note that although it would appear more primitive to impose conditions on the pol-

icy function de�ned as in (13), the notation will be very cumbersome. Given the existence and

smoothness of the inverse map we instead work with the inverse of the policy function, this is done

without any loss of generality by using implicit, inverse and Taylor�s theorems in Banach space.11

Although these assumptions are hard to verify in practice, they are mostly mild conditions on the

smoothness of � that one would be quite comfortable in imposing if G belongs to a Euclidean space
(at least for (xii) - (xiii)); in a similar spirit the same can be said regarding (xiv). For each j and

a, Dg�j (a; �0; @agj (�; �0)) is a bounded linear functional and [@abgj (�; �0)� @ag0;j (�; �0)] is a continu-
ous and square integrable function in L2 (A;�),12 by Riesz representation theorem there exists some

%j 2 L2 (A;�) such that Dg�j (a; �0; @agj (�; �0)) [@abgj (�; �0)� @ag0;j (�; �0)] =
R
%j (a

0; a) @abgj (a0; �0)
�@ag0;j (a0; �0) d�(a0). Given our assumptions, for a smooth %j, it is not di¢ cult to show the validity
of (25) since @abgj (�; �0) � @ag0;j (�; �0) has an asymptotic linear form. This is not an uncommon
approach when dealing with a general semiparametric estimator, see Newey (1994), Chen and Shen

(1998), Ai and Chen (2003) and Chen et al. (2003), and in particular, Ichimura and Lee (2006) for

the characterization of a valid linearization. However, since our
�
�j
�
does not have a closed form it is

not clear how one can obtain
�
%j
�
. Once we obtain (25), standard CLT yields pointwise convergence

in distribution (for each a; x) but this is still not enough for our minimum distance estimator since

we will need a full weak convergence result, i.e. let  N;j =
1p
NT

PN;T
i=1;t=1  0;j (ait; xit; �) be a random

11See Chapter 4 of Ziedler (1986) for these results.
12Here L2 (A;�) denotes a Banach space of measurable functions de�ned on A that is square integrable w.r.t. some

measure �.
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element in l1 (A) we need  N;j   j as N ! 1, where  denotes weak convergence and  j is

some tight Gaussian process that belongs to l1 (A). The Donsker property can be satis�ed for a

large class of functions, see Van der Vaart and Wellner (1996). We note also that joint normality

condition of G6 in Theorem G will also be easy to verify since we will end up working with sums of

two Gaussian processes, each underlying asymptotic is driven by averages of zero mean functions of

f(ait; xit)gN;T+1i=1;t=1.

Theorem 1: Under E1: For any a 2 int (A) ; � 2 � and j = 1; : : : ; J ; if bgj (�; �) satis�es (19)
then

p
Nh (bgj (a; �)� g0;j (a; �)�BN;j (a;m�))) N

�
0;

�2 (K)

TpX;A (j; a)
var (m� (xit+1) jxit = j; ait = a)

�
;

where

BN;j (a;m�) =
1

4!
h4�4 (K)

JX
k=1

m� (k)

 
@4

@a4
pX0;X;A (k; j; a)

pX;A (j; a)
+
pX0;X;A (k; j; a)

@4

@a4
pX;A (j; a)

p2X;A (j; a)

!
;

furthermore, bgj (a; �) and bgk (a0; �) are asymptotically independent when k 6= j or a0 6= a.

We note that, for each j, the pointwise asymptotic property of bgj (a; �) in Theorem 1 is identical

to that of a Nadaraya-Watson estimator of E [m� (xit+1) jxit = j; ait = a] when m� is known. In other

words, the nonparametric estimation of m�, as well as the generation of the nonparametric residuals

(16), does not a¤ect the �rst order asymptotic of (bgj (�; �)). The reason behind this is due to the fact
that

�er�; bm�; bL� converges uniformly (over ��X) in probability to
�er�; bm�; bL� at the rate close to

N�1=2, which is much faster than 1=Nh.

In order to apply Theorem G, we now de�ne the population and sample objective functions for

our estimator. For any � 2 � and g (�; �) 2 G, we have de�ned MN (�; g (�; �)) earlier (see (9)), its
population analogue is

M (�; g (�; �)) =
JX
j=1

Z
A

�
FAjX (ajj; �; @agj (�; �))� FAjX (ajj)

�2
�j (da) :

Theorem 2: Under E1-E2: For (bg (�; �0)) that satis�es (19), if b� satis�es G1 with MN (�; g (�; �))
as de�ned in (9) then b� p! �0.

Theorem 3: Under E1-E2: For (bg (�; �0)) that satis�es (19), if b� satis�es G1 with MN (�; g (�; �))
as de�ned in (9) then p

N
�b� � �0

�
) N

�
0; H�1

0 
H
�1
0

�
;
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where


 = lim
N!1

var

0BBBBB@�2
JX
j=1

Z
2666664

�
D�FAjX (ajj; �0; @ag0;j (�; �0))

�
�

p
N

24 � bFAjX (ajj)� FAjX (ajj)
�

�
�
DgFAjX (ajj; �0; @ag0;j (�; �0)) [@abgj (�; �0)� @ag0;j (�; �0)]

�
35

3777775�j (da)
1CCCCCA ;

H0 = 2

JX
j=1

Z
A

�
D�FAjX (ajj; �0; @ag0;j (�; �0))

� �
D�FAjX (ajj; �0; @ag0;j (�; �0))

�0
�j (da) :

Next theorem provides the pointwise distribution theory of
�bgj ��;b��� that can be used to esti-

mate (g0;j (�; �0)).

Theorem 4: Under E1-E2: For any a 2 int (A) and j = 1; : : : ; J ; if bgj (�; �) satis�es (19) andb� satis�es G1 then
p
Nh

�bgj �a;b��� g0;j (a; �0)�BN;j (a;m�0)
�
) N

�
0;

�2 (K)

TpX;A (j; a)
var (m�0 (xit+1) jxit = j; ait = a)

�
;

where BN;j (a;m�0) has the same expression as in Theorem 1 when � = �0. Furthermore, bgj �a;b��
and bgk �a0;b�� are asymptotically independent when k 6= j or a0 6= a.

Theorem 4 implies that
�bgj ��;b��� and (bgj (�; �0)) have the same �rst order asymptotic. This

follows since bg (and g) is smooth in �, and b� converges to �0 at a faster rate than 1=pNh. Note
that, if we want to construct consistent con�dence intervals for g0;j (a; �0), we may use a di¤erent

bandwidth in estimating bg to the one used in computing b�.
4 Bootstrap Standard Errors

The asymptotic variance of the �nite dimensional estimator in semiparametric models can have a

complicated form that generally is a functional of the in�nite dimensional parameters and their

derivatives. Not only it is di¢ cult to estimate such object, the estimate often works poorly in

�nite sample. In this section we propose to use semiparametric bootstrap to estimate the sampling

distribution of the estimator described in this paper.

The original bootstrap method was proposed by Efron (1979). The bootstrap is a general method

that is very useful in statistics, for samples of its scope see the monographs by Hall (1992), Efron

and Tibshirani (1993), as well as Horowitz (2001) for a survey that is specialized for an econometrics
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audience. In this paper we concentrate on the use of bootstrap as a tool to estimate the standard

error of b� de�ned in Theorem 3. Generally, bootstrap methods under i.i.d. framework are simpler to
implement but are not appropriate for dependent data as it fails to capture the dependence structure

of the underlying DGP. One well known exception to this rule is the case of the parametric bootstrap.

Bose (1988, 1990) show that bootstrap approximation is valid and obtain higher order re�nements

for AR and MA processes. The main feature of an ARMA model is that the DGP is driven by

the noise terms, since consistent estimators for the ARMA coe¢ cients can be obtained under weak

conditions, it is easy to construct bootstrap samples that mimic the dependence structure of the true

DGP when the distribution of the noise terms is assumed.

The structural models we are interested in seem to possess enough structures suitable for a

resampling scheme akin to that of the parametric bootstrap. Indeed, Kasahara and Shimotsu (2008a)

has recently developed a bootstrap procedure for parametric discrete Markov decision models, where

they use parametric bootstrap framework of Andrews (2002,2005) to obtain higher order re�nements

of their nested pseudo likelihood estimators. However, our problem is a semiparametric one. Recall

that the primitives of the controlled Markov decision processes is the triple (�; u�; p), since we assume

the complete knowledge of the discounting factor and the law of the unobserved error, the remaining

primitives are � and pX0jX;A, both of which can be consistently estimated as shown in the previous

sections. Therefore the semiparametric bootstrap seems to be a natural resampling method to use

since we know the DGP for the controlled processes up to an estimation error. We now give the

details to obtain the bootstrap samples.

Step 1:

Given the observations fait; xitgN;T+1i=1;t=1 we obtain the estimators
�b�; bg ��;b��� as described in Sec-

tion 2.

Step 2:

We use fxi0gNi=1 to construct the empirical distribution of the initial states, F
X0
N and draw (with

replacement) N bootstrap samples fx�i1g
N
i=1. These are to be used as the bootstrap initial states for

each i to construct N series of length T + 1.

Step 3:

For each i, "�it is independently drawn fromQ. Using the estimated policy pro�le
�
�j

�
�;b�; @bgj ��;b����,

we compute for each x�it = j; a�it = �j

�
"�it;
b�; @bgj ��;b���. Also for each x�it = j and a�it, x

�
it+1 is drawn

from the nonparametric estimate of the transitional distribution bpX0;X;A

�
x�it+1; j; a

�
it

�
=bpX;A (j; a�it).

Beginning with t = 0, this process is continued successively to obtain fa�it; x�itg
N;T+1
i=1;t=1.

Step 4:
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Using fa�it; x�itg
N;T+1
i=1;t=1 to obtain the bootstrap estimates

�b��; bg� (�; �)� as done with the original
data.

Step 5:

Steps 2-4 is repeated B�times to obtain B�bootstrap estimates of
nb��(b); bg�(b) (�; �)oB

b=1
.

Then
nb��(b); bg�(b) (�; �)oB

b=1
can be used as a basis to estimate the statistic of interest. One should

be able to show that the method described above can be used to show the sampling distribution

of
p
NT

�b� � �0

�
can be consistently estimated by

p
NT

�b�� � b��, possibly with an additional bias
correction term. The proof strategy analogous to the arguments of Arcones and Giné (1992), see also

Brown and Wegkamp (2002), can be shown to accommodate a two-step semiparametric M-estimators

considered in this paper.

5 Numerical Example

In this section we illustrate some �nite sample properties of our proposed estimator in a small

scale Monte Carlo experiment. Since the generation of controlled Markov processes can be quite

complicated, for simplicity, we consider a dynamic price setting problem for a representative �rm

described in Section 2 with the following speci�cation.

Design:

Each �rm faces the following demand

D (at; xt; "t) = D � �1at + �2 (xt + "t) :

such that at belongs to some compact and convex set A � R; xt takes value either 1 or �1, where
1 signi�es an increase in demand towards the �rm�s product and vice versa; the �rm�s private shock

in demand "t has a known distribution. D can be interpreted as the upper bound of the supply

and (�1; �2) are the parameters representing the market elasticities. Unlike xt, the evolution of

the private shocks "t, are completely random and transitory. The distribution of the consumer

satisfaction measure depends on the previous period�s price set by the �rm, which is summarized

by Pr [xt+1 = �1jxt; at] = at�a
a�a , where a and a denote the minimum and maximum possible prices

respectively. It is a simple exercise to show that the policy function can be characterized in terms of

the conditional value function E [V� (xt+1; "t+1) jxt], in particular, the �rm�s optimal pricing strategy
has the following explicit form

� (xt; "t) =

�
D + �2 (xt + "t) + c�1 � �

��;1 � ��;2
a� a

�
=2�1; (26)
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where ��;1 = E [V� (xt+1; "t+1) jxt+1 = 1] and ��;2 = E [V� (xt+1; "t+1) jxt+1 = �1]. It can be shown
that D (at; xt; "t) (at � c) will be is supermodular in (at; "t) if (�1; �2) is positive, as expected from

Topkis�theorem, the policy function above will then be strictly increasing in "t. If we ignore that

the �rm is forward looking, the optimal static pro�t can be characterized by the following pricing

policy

�s (xt; "t) =
�
D + �2 (xt + "t) + c�1

�
=2�1: (27)

Intuitively, we expect �rms which do not take into the account of the consumer�s adverse response

to high prices will overprice relative to their forward looking counterparts. This is con�rmed by the

expressions in the displays above since we expect ��;1 � ��;2 (and �1) to be positive, i.e. the latter

implies �s (x; ") > � (x; ") for any pair of (x; "). From (26) - (27), identi�cation issue aside, we also

note that performing linear regression of ait on xit will yield estimable objects that are functions of

the model primitives
�
D; �1; �2; c

�
that may have little economic interpretation.

In our design, we assign the following values to the parameters

D = 3; �1 = 1; �2 = 1=2; c = 1;

and let "t � Uni [�1; 1]. It can be shown that a� a = 1 and

L = �

 
Pr [xt+1 = 1jxt = 1] Pr [xt+1 = �1jxt = 1]
Pr [xt+1 = 1jxt = �1] Pr [xt+1 = �1jxt = �1]

!

= �

 
0:25 0:75

0:75 0:25

!
:

A numerical method that mirrors our estimation of the policy value equation in Section 2 can be used

to show that ��;1 � ��;2 = 1=1:45. Combining these information, it is then straightforward to simu-

late the controlled Markov processes that are consistent with optimal pricing behavior in (26) that

underlies the dynamic problem of interest. We generate 1000 replications of such controlled Markov

processes with for various sizes of N 2 f20; 100; 200; 500g random samples of decision series over 5

time periods; this leads to �ve sets of experiments with the total sample size, NT , of 100; 500; 1000

and 2500.

Implementation:

We are interested in obtain estimates for the demand parameters (�1; �2) and assume the knowl-

edge of
�
D; c

�
. In estimating the nonparametric estimator of g0 (�; �), we construct a truncated 4-th

order kernel based on the density of a standard normal random variable, see Rao (1983). For each

replication, we experiment with 5 di¤erent bandwidths
�
h& = 1:06s (NT )

�& : & = 1
5
; 1
6
; 1
7
; 1
8
; 1
9

	
. We

provide two estimators for each of (�1; �2), one without trimming and another one that trims out
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calculations involving bg (�; �) for a that lies within a bandwidth neighborhood of the boundary. For
the simulation of FAjX (ajj; �; @gj), we take R = N log (N) random draws from Q. We approximate

the policy function (13) by using grid-search instead of computing the derivative of the continuation

value. The measures (�1; �2) we use in constructing the minimum distance estimator in (9) simply

put equal weights on all a and x.

Comments and Results:

The �rst observation is that our simulation design does not satisfy all of the conditions of E1. In

particular, the support of price di¤ers depending on the observable level of the popularity measure.

This knowledge can be used in the estimation procedure without a¤ecting any of our asymptotic

results, as we commented in the previous sections, we assume common full support for each state for

simplicity.

All of the Figures and Tables can be found at the end of the paper. We report the bias, median

of the bias, standard deviation and interquartile range (scaled by 1:349) for the estimators of �1
and �2. The rows are arranged according to the total sample size and bandwidths. We have the

following general observations for both estimators regardless of bandwidth choice and trimming:

(i) the median of the bias is similar to the mean; (ii) the estimators converge to the true values

as N increases and their respective standard deviations are converging to zero; (iii) the standard

deviation �gures are similar to the corresponding scaled interquartile range.13 However, the e¤ect

of trimming is unclear. In the case of the estimator of �1, the magnitude of the bias is signi�cantly

reduced by trimming that appear to far outweights the increase in variation in the MSE sense. On

the contrary, trimming generally slightly increase the bias of the estimator for �2. We check the

distribution of our estimators by using QQ-plots. We only provide QQ-plots of the numerical results

for the case of the trimmed estimator using & = 1=7 for the bandwidth h& . Figures 1-4 plot the

quantiles of
�b�1 � Eb�1� =SE �b�1� with that of a standard normal for di¤erent sample sizes, where

the dashed line denotes the 45 line and plots are marked by �+�; Figures 5-8 do the same for b�2. The
distributional approximation supports our theory that b� behaves more like a normal random variable
as N increases. We �nd that the untrimmed estimators produce similar plots to their untrimmed

counterparts across all bandwidths considered especially for the larger sample sizes, however, the

quality of the QQ-plots varies across di¤erent bandwidth choices.

We also report analogous summary statistics for the structural estimation assuming the model is

static, they can also be found in Table 1 and 2 in the rows labelled static. Note that the estimation

of the static model does not involve the continuation value function so it does not depend on the

bandwidth choice. It is clear that the estimators under static environment do not converge to

13(iii) is a characteristic of a normal random variable.
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(�1; �2) = (1; 0:5), instead they converge to some values around (1:26; 0:68) with very small standard

errors. Since our minimum distance estimators re�ect the model that best �t the observed data, the

upwards bias of the elasticity parameters estimates is highly plausible. To see this, �rst recall from

(27) that �rms who do not take into the account of the future dynamics will overprice relative to the

forward looking �rms. The �rms that only maximize their static pro�ts will therefore, on average,

need to expect the market elasticities to be more sensitive in order to generate more conservative

pricing schemes consistent with the behaviors of their forward looking counterparts. Thus, in this

example, ignoring the model dynamics leads to overestimating the elasticity parameters.

6 Extensions

6.1 Discrete and Continuous Controls

In this subsection we outline how one can estimate dynamic models with discrete as well as continuous

controls. The �exibility to estimate models with both discrete and continuous choices is very impor-

tant, for example, the economic agents in the empirical study of oligopoly or dynamic auction models

often endogenously choose whether to participate in the market before deciding on the price or in-

vestment decisions. The framework of the decision problem here is similar to Section 4 of Arcidiacono

and Miller (2008). For each economic agent, the model now consists of the control variables (at; dt) 2
A�D, whereA � R andD = f1; : : : ; Kg, and the state variables st =

�
xt; "t; v

K
t

�
2 X�E�VK , where

X = f1; : : : ; Jg ; E � R and VK � RK so vKt = (vt (1) ; : : : ; vt (K)). The sequential decision problem
can be stated as follows: at time t, the economic agent observes

�
xt; v

K
t

�
and choose an action k 2

f1; : : : ; Kg to maximize E
�
u
�
at; dt; xt; "t; v

K
t

�
jxt; vKt ; dt = k

�
+�E

�
V� (st+1) jxt; vKt ; dt = k

�
, sequen-

tially, she then observes "t and chooses a that maximizes u
�
a; dt; xt; "t; v

K
t

�
+�E [V� (st+1) jst; dt; at = a].

The decisions made within and across period generally will a¤ect the consequential state variables,

we impose the conditions on the transition of the state variables within and across periods in the

set of assumptions below. More formally, the decision problem (subject to the transition law) within

each period t leads to the following policy pair

�
�
xt; v

K
t

�
= arg max

1�k�K

�
E
�
u
�
at; dt; xt; "t; v

K
t

�
jxt; dt = k

�
+ �E [V (st+1) jxt; dt = k]

	
;

�
�
xt; "t; v

K
t ; dt

�
= sup

a2A

�
u
�
at; dt; xt; "t; v

K
t

�
+ �E [V (st+1) jxt; at = a; dt]

	
:

We impose the following assumptions to ensure we can employ the estimation techniques that has

been developed from purely discrete choice and continuous choice literature without much alteration.

Assumption DC1: The observed data fat; dt; xtgTt=1 are the controlled stochastic processes de-
scribed above with known �.
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Assumption DC2: (Conditional Independence) The transitional distribution has the following

factorization: p
�
xt+1; "t+1; v

K
t+1jxt; "t; vKt ; at; dt

�
= z

�
"t+1; v

K
t+1jxt+1

�
pX0jX;A;D (xt+1jxt; at; dt).

Assumption DC3: The support of st =
�
xt; "t; v

K
t

�
is X � E � VK ; where X = f1; : : : ; Jg

for some J < 1 that denotes the observable state space, E is a (potentially strict) subset of R
and VK � RK. The distribution of vKt is i.i.d. distributed across K�alternatives, denoted by
W , is known, it is also independent of xt and is absolutely continuous with respect to some Lebesgue

measure with a positive Radon-Nikodym densities w. The distribution of "t, denoted by Q, is known,

it is also independent of xt and dt, and it is absolutely continuous with respect to some Lebesgue

measure with a positive Radon-Nikodym density q on E.

Assumption DC4: (Additive Separability) The per period payo¤ function u : A�D�X � E �
VK ! R can be written as u

�
at; dt; xt; "t; v

K
t

�
= uC (at; dt; xt; "t) + vt (dt) :

Assumption DC5: (Monotone Choice) The per period payo¤ function, speci�c to discrete choice

dt, uC� : A � D � X � E ! R has increasing di¤erences in (a; ") for all d; x and �, where uC� is

speci�ed upto some unknown parameters � 2 � � RL.

Comments on DC1-DC5:

DC1 is standard. Similar to M2, DC2 implies that all the unobservable state variables are

transitory shocks across time period. DC3 makes a simplifying assumption on the distribution of the

unobservable state variables, for example, vKt does not need to have random sampling across K�
alternatives, it is also straightforward to model the conditional distribution of "t given (xt; dt), and

we do not need full independence of
�
"t; v

K
t

�
and xt as commented in Section 2. DC4 imposes the

additive separability of the choice speci�c unobserved shock, which is familiar from the discrete choice

literature. DC5 ensures that the per period utility function for each discrete alternative satis�es the

monotone choice assumption analogous to M4.

To illustrate how assumptions DC1 - DC5 put us on a familiar ground, consider the value function

on the optimal path, which is a stationary solution to the following equation, cf. (2)

V� (st) = u�
�
at; dt; xt; "t; v

K
t

�
+ �E [V� (st+1) jst] ;

where, given the sequential framework, by DC1 - DC4 dt = ��
�
xt; v

K
t

�
and at = �� (xt; "t; dt) such

that

��
�
xt; v

K
t

�
= arg max

1�k�K

�
E
�
uC� (at; dt; xt; "t) jxt; dt = k

�
+ vt (k) + �E [V (st+1) jxt; dt = k]

	
;

�� (xt; "t; dt) = sup
a2A

�
uC� (a; dt; xt; "t) + �E [V (st+1) jxt; at = a; dt]

	
:
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Marginalizing out the unobserved states of the value function, under DC2, we obtain the following

familiar characterization of the value functions

E [V� (st) jxt] = E
�
u�
�
at; dt; xt; "t; v

K
t

�
jxt
�
+ �E [E [V� (st+1) jxt+1] jxt] : (28)

As seen previously, by DC2, that the continuation value function (onto the next time period) can be

written as

E [V� (st+1) jxt; at; dt] = E [E [V� (st+1) jxt+1] jxt; at; dt] : (29)

To estimate �0, in the �rst step, we provide an estimate for the continuation value function. The

main di¤erence here lies in the estimation of the analogous equation to (6), where we need to

nonparametrically estimate E
�
u�
�
at; dt; xt; "t; v

K
t

�
jxt
�
. Using DC2 - DC4, we have

E
�
u�
�
at; dt; xt; "t; v

K
t

�
jxt
�
= E

�
uC� (at; dt; xt; "t) jxt

�
+ E [vt (dt) jxt] ;

=
KX
k=1

Pr [dt = kjxt]E
�
uC� (at; dt; xt; "t) jxt; dt = k

�
+

KX
k=1

Pr [dt = kjxt]E [vt (dt) jxt; dt = k] :

The �rst term can be estimated nonparametrically using the method described in Section 2. In partic-

ular, under DC5, we can generate "t by the relationb"t = Q�1"

� bFAjX;D (atjxt; dt)�, where bFAjX;D (ajj; k)
is nonparametric estimator for Pr [at � ajxt = j; dt = k]. Since the conditional choice probabilities

are nonparametrically identi�ed we can estimate the �rst term in the display above nonparametri-

cally for any �. The second term is the selectivity term that arises from the discrete choice problem,

which can be estimated nonparametrically by using Hotz and Miller�s inversion theorem as in a purely

discrete choice problem. Since E [V� (st) jxt] is de�ned as the solution to (28), note that the transition
probability in the linear equation is nonparametrically identi�ed, we can estimate E [V� (st) jxt] by
solving a linear equation analogous to (6) once we have the estimate for E

�
u�
�
at; dt; xt; "t; v

K
t

�
jxt
�
.

The continuation value in (29) can then be obtained by transforming E [V� (st) jxt] by the a condi-
tional expectation operator E [�jxt; at; dt], which di¤ers from H, see (7) for de�nition, precisely by
increasing the conditioning variable to include dt in addition to (xt; at). The second step of the

estimation procedure involves minimizing (maximizing) some criterion function to identify �0. Obvi-

ously, one method is to construct a minimum distance criterion based on the conditional distribution

function of at given (xt; dt), analogous to (9), as described in Section 2.

6.2 Markovian Games

The development of empirical methods to analyze of dynamic games has been growing in the em-

pirical industrial organization literature, we refer to Ackerberg, Benkard, Berry and Pakes (2005)
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and Aguirregabiria and Mira (2008) for recent surveys, where the latter specialize on discrete action

games. A class of Markovian games can be de�ned by considering a �nite set of endogenously linked

MDP, whose interactions are to be made precise below.

(Cf. Section 2.1) For each period t there are N players, indexed by the ordered set fig. Each
player i is forward looking in solving her intertemporal problem. At each period t, player i obtains

information sit = (xt; "it) 2 X � Ei, where xt denotes public information and "it denotes the private
information, and chooses an action ait 2 Ai in order to maximize her discounted expected utility

V�;i (sit;��i) = sup
ai2Ai

(
E [u�;i (ait;��i (s�it) ; sit) jsit; ait = ai]

+�iE [V�;i (sit+1;��i) jsit; ait = ai]

)
; (30)

where the present period utility is time separable and is denoted by u�;i (at; sit), with at = (ait; a�it)

and a�it denotes the actions of all other players except player i; ��i = (�j)j 6=i denotes a pro�le of

(pure) strategies of all other players apart from player i, where for each i a strategy can be represented

by a map �i : X � Ei ! Ai. A strategy pro�le � = (�i;��i) constitutes to a stationary Markov

perfect equilibrium if for each i, for all alternative Markov strategies �0i, �i satis�es

E [V�;i (sit;��i) jxt;�i;��i] � E [V�;i (sit;��i) jxt;�0i;��i] (31)

= E

"
u�;i (�

0
i (sit) ;��i (s�it) ; sit)

+�iE [V�;i (sit+1;��i) jsit; at = (�0i (sit) ;��i (s�it))]

����� xt
#
;

where E [V�;i (sit;��i) jxt;�i;��i] denotes the integration over the unobserved states assuming that
strategies (�i;��i) are in play.14 We now introduce a set of assumptions that are analogous to

Conditions M1 - M4:

Assumption M10: For each market, the observed data fait; xitgN;T+1i=1;t=1 are the controlled stochas-

tic processes that satisfying (30) for all i with a unique equilibrium pro�le � that satis�es (31) with

exogenously known f�ig
N
i=1.

Assumption M20: (Conditional Independence) The transitional distribution has the following

factorization: p (xt+1; "t+1jxt; "t; at) = q ("t+1jxt+1) pX0jX;A (xt+1jxt; at).

Assumption M30: The support of st = (xt; "t) is X � E1 � : : : � EN ; where X = f1; : : : ; Jg
for some J <1 that denotes the observable state space. For all i, Ei is a (potentially strict) subset
of R, the distribution of "it, denoted by Qi, is known, it is also independent of xt and is absolutely
continuous with respect to some Lebesgue measure with a positive Radon-Nikodym density qi on Ei.
14Doraszelski and Satterthwaite (2007) provide conditions for the existence of the equilibrium in a closely related

model.
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Assumption M40: (Monotone Choice) The per period payo¤ function u�;i : A�AN�1�X�Ei ! R
has increasing di¤erences in (ai; ") for all a�i; x and �, where u� is speci�ed upto some unknown

parameters � 2 � � RL

Assumption M50: (Private Values) "t is also jointly independent across all players, i.e. q ("t) =QN
i=1 qi ("t).

From comparing the above assumptions with M1 - M4, with the exception of M50, we observe

that, for each player i, the controlled process fait; xitgN;T+1i=1;t=1 only di¤ers from the single agent case in

that the per period payo¤ function and transition law are a¤ected by other players�actions, and each

player forms an expectation, in (30), using the beliefs she has over the distribution of other players�

actions. In addition to the conditional independence and monotone choice assumptions, the private

value assumption is a standard condition for the estimation of a dynamic game, see the surveys

mentioned earlier.

The practical aspect of the estimation is very similar to the single agent case. First consider the

estimation of the continuation value functions. For each player i, by marginalizing out the private

information of all the other players of (30) in equilibrium (cf. (3)), using M20, we have the generalized

policy value equation

E [V�;i (sit) jxt] = E [u�;i (ait; a�it; sit) jxt] + �iE [E [V�;i (st+1) jxt+1] jxt] : (32)

As seen previously, for each i, (32) can be expressed analogously to the matrix equation (6) in

Pesendorfer and Schmidt-Dengler (2008).as

m�;i = r�;i + Lim�;i;

where the meaning of (m�;i; r�;i;Li) is now obvious. As seen previously, fLigNi=1 will be a sequence of
contraction maps such that Li = �iL for each i, where L is a J �J stochastic matrix that represents
whose (k; j)�th entry represents Pr [xt+1 = jjxt = k]. M40 implies that the optimal strategy (policy

function) of each player will be strictly increasing in "it therefore Topkis�theorem can be applied to

allow feasible estimation of r�;i. The sequence of N linear equations can be estimated and solved

independently. Hence we only need to approximate the operator (I � Li)�1 once for each player.
The characterization of the action speci�c value function is then completed by

g�;i = Him�;i;

whereHi : RJ ! Gi is a linear operator such thatHim (j; ai) =
PJ

k=1m (k) Pr [xt+1 = kjxt = j; ait = ai]

for any m 2 RJ , ai 2 Ai and j = 1; : : : ; J . The estimator for g�;i can then be used to estimate
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FAijX (aijx; �; @agi), the only change here is how we compute the optimal strategy for each player.
Analogously to (11), we de�ne for each state j

�i;j (ai; "i; �; gi;j) = E�i [u�;i (ai; a�it; j; "i)] + �igi;j (ai) ;

since player i forms a belief (i.e. a distribution over a�it given xit), E�i denotes the conditional

expectation consistent with player i�s belief. For each j, we approximate E�i [u�;i (ai; a�it; j; "i)]

by
R
u�;i (ai; a�i; j; "i) d bFA�ijX(a�ijj) where bFA�ijX (a�ijj) denotes any consistent nonparametric esti-

mate of the conditional distribution function of all other players. For example, if we use the empirical

analogue of bFA�ijX (a�ijj) then R u�;i (ai; a�i; j; "i) d bFA�ijX (a�ijj) is simply 1
T

PT
t=1 u�;i (ai; a�it; xit; "i)

�1 [xit = j] =bp (j). Although we do not observe "it, it can be generated nonparametrically by (16) by
replacing bFAjX with bFAijX . Then for each j; FAijX (aijj; �; @agi;j) can be estimated using Monte Carlo
method by eFAijX (ajj; �; @agi;j) = 1

R

RX
r=1

1 [�i;j ("r; �; @agi;j) � a] ;

where �i;j : Ei ��� G(1)i;j ! R is de�ned by

�i;j ("i; �; @agi;j) = arg max
ai2Ai

b�i;j (ai; "i; �; @agi;j) ;
with b�i;j di¤ering from �i;j by replacing E�i [u�;i (ai; a�i; x; ")] by

R
u�;i (ai; a�i; j; "i) d bFA�ijX(a�ijj).

A minimum distance estimator can then be constructed, with any nonparametric estimates bFAijX
and fbgi;j (�; �)gN;Ji=1;j=1

b� = argmin
�2�

N;JX
i=1;j=1

Z h eFAijX (aijj; �; @abgi;j (�; �))� bFAijX (ajj)i2 d�i;j (ai) ;
where �i;j is some ���nite measure for each i and j. We note that the framework discussed in this
section is to have �xed N , to appeal to the asymptotic results of Section 3 we need to assume T is

also �xed but we have i.i.d. data across a number of markets, say W markets, so the asymptotic

results will correspond to the limiting case when W !1.

6.3 Continuous State Space X

It is easy to see that when X contains an interval the principles of the methodology described in

Section 2 is still valid. The key di¤erence lies in the estimation of g0 (�; �). As shown in Srisuma
and Linton (2009), instead of solving a matrix equation in (6), one instead needs to solve an in-

tegral equation of type II that intuitively behaves just like a matrix equation. Their method is
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directly applicable when ait is a continuous random variable since equation (6) is de�ned regard-

less of the nature of ait. If X is some compact interval, we can choose witN (x) in (10) can be

Kh (xit � j) =
PN;T

i=1;t=1Kh(xit � j), this will yield the local constant kernel estimator. m� and r�

then become elements on some Banach space (C (X) ; k�kX), and L now represents a linear operator
that generalizes the discounted stochastic matrix mentioned previously. Srisuma and Linton provide

weak conditions that ensure the approximation of the in�nite dimensional, empirical analogue of (6)

is a well-posed inverse problem and its solution has good convergence properties. In practice, the

approximation of the integral equation is done on a �nite grid, which can be represented by a matrix

equation that is invertible with w.p.a. 1.

However, one must be aware of some theoretical di¤erences. Clearly, in addition to the dimension

of A, the number of continuously distributed state variables in xit will contribute to the curse of

dimensionality in the estimation of g (�; �). This is in contrast to the estimation of discrete choice
models, where only the dimensionality of X can cause slower rate of convergence as A is �nite.

In terms of the asymptotic distribution of the estimator of the continuation value, we note that

the asymptotic variance in Theorems 1 and 4 will remain the same, only that pX;A now denotes

a joint density of continuously distributed random variables instead of a mixed continuous-discrete

density. The reason behind this is the fact that the stochastic term in the estimation of g (�; �) is a
higher dimension object than the estimator of m�, we also see this in Theorem 1 and 4 when X is

�nite, therefore the variance of the nonparametric estimator of conditional expectation operator H
dominates. In contrast, the bias from the nonparametric estimation of

�
f"itgN;T+1i=1;t=1 ; r�;L

�
will now

have the same order of magnitude as the bias from estimating H. Therefore there will be a change
in the bias term in Theorem 1 and 4, it can be shown that these terms can be written explicitly as a

linear transform of (I � L)�1 and H, the steps in the calculations of analogous results in estimating
a discrete choice model, which is directly applicable, can be found Srisuma and Linton (2009). As for

Theorem 2 and 3, we need to adjust E1 and E2 to ensure that our nonparametric estimators converge

at an appropriate rate and full weak convergence of the appropriate terms to hold to maintain the

consistency and asymptotic normality of our �nite dimensional parameters. Essentially, we will need

to impose more smoothness on various functions, see the comments to the assumptions E1 and E2

in Section 3.

7 Conclusion

In this paper we develop a new two-step estimator for a class of Markov decision processes with

continuous control that. Our criterion function has a simple interpretation and is also simple to

construct; we minimize a minimum distance criterion that measures the divergence between two
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estimators of the conditional distribution function of the observables. In particular, we compare the

conditional distribution functions, one implied purely by the data with another constructed from the

structural model. Unlike the methodology of BBL, which is also capable of estimating the same class

of models without having to solve for the equilibrium, we do not need to impose any distributional

assumptions on the transition law of the observables. This additional �exibility is very important

since the transition law is a model primitive. We provide the distribution theory of both the �nite

dimensional parameters as well as the conditional value functions and propose to use semiparametric

bootstrap to estimate the standard error for inference. We illustrate the performance of our estimator

in a Monte Carlo experiment on a dynamic pricing problem and compare our estimates to the ones

which ignore the model dynamics. We also highlight how our estimation methodology with purely

continuous control problem can be used to estimate more complex dynamic models, in particular we

consider models which contains discrete as well as continuous control variables, dynamic games and

accommodate for continuously distributed observable state variables.

By construction, the two-step estimators along the line of HM that we and others have developed

consist of the estimation of the continuation value function which is then use in the second stage

optimization. We note that the two steps are independent of one another. This is not uncommon

in semiparametric estimation, see MINPIN estimators of Andrews (1994a). Hence there is a variety

of criterion functions one can choose to de�ne the �nite dimensional structural parameters. These

choices will lead to varying degree of the ease of use, robustness and e¢ ciency consideration. In

this paper we propose a minium distance criterion that is easy to compute and leads to estimators

with good robustness property but not necessarily e¢ cient. We are currently working on a semipara-

metric maximum likelihood version of the estimator, which frees us from the need to select
�
�j
	J
j=1

arbitrarily and should be generally more e¢ cient, however, this estimator is computationally more

demanding than the proposed minimum distance estimator.

There are also other important aspects of dynamic models we do not discuss in this paper. We

end with a brief note of two issues that are particularly relevant to our framework. The �rst is

regarding unobserved heterogeneity. The absence of unobserved heterogeneity has long been the

main criticism against two-step approaches developed along the line of HM. Recently, �nite mixtures

have been used to add unobserved components in related two-step estimation methodologies, for

example see Aguirregabiria and Mira (2007) and Arcidiacono and Miller (2008), Kasahara and Shi-

motsu (2008a,b). Finite mixture models can also be used with the estimator developed in this paper.

Secondly, our paper focuses on estimation and assumes the model is point identi�ed through some

a conditional moment restrictions. There are ongoing research on the nonparametric and semipara-

metric identi�cation of Markov decision models of single and multiple agents, for some samples, we

refer interested readers to Aguirregabiria (2008), Bajari et al. (2009), Heckman and Navarro (2007)
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and Hu and Shum (2009) for examples.
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A Appendix

A.1 Proofs of Theorems G, 1-4

Proof of Theorem G. The argument proceeds in a similar fashion to the case with no preliminary

estimates of Newey and McFadden (1994, Theorem 7.1), see also Pollard (1985), by �rst showing

that b� converge to �0 at rate N�1=2. By de�nition of the estimator, we have MN

�b�; bg ��;b��� �
MN (�0; bg (�; �0)) � op (N

�1), and

MN

�b�; bg ��;b����MN (�0; bg (�; �0))
= M

�b�; bg ��;b����M (�0; bg) + C 0N

�b� � �0

�
+N�1=2




b� � �0




DN �b�; bg ��;b���
�

�
CN + S

�
�0; bg ��;b����0 �b� � �0

�
+ C0




b� � �0




2 (1 + op (1)) +N�1=2



b� � �0




DN �b�; bg ��;b���
= Op

�
N�1=2�0 �b� � �0

�
+ C0




b� � �0




2 + op

�
N�1=2




b� � �0




+ 


b� � �0




2� :
The �rst equality follows from the de�nition ofDN in (23). For the inequality, we expandM

�b�; bg ��;b���
around �0, since H (�; g) is continuous around (�0; g0) and H0 is positive de�nite by G3, there exists

some C0 > 0 such that, w.p.a. 1, (� � �0)
0H (�0; bg (�; �0)) (� � �0) + op

�
k� � �0k2

�
� C0 k� � �0k2.

Notice that CN + S (�0; bg (�; �0)) = Op
�
N�1=2�, the �rst term follows from assumption G6 and the

latter by G3 and G6 since

kS (�0; bg (�; �0))k � kS (�0; bg (�; �0))�DgS (�0; g0 (�; �0)) [bg (�; �0)� g0 (�; �0)]k

+ kDgS (�0; g0 (�; �0)) [bg (�; �0)� g0 (�; �0)]k

� op
�
N�1=2�+Op

�
N�1=2�

= Op
�
N�1=2� :

By completing the square�


b� � �0




+Op
�
N�1=2��2 + op

�
N�1=2




b� � �0




+ 


b� � �0




2� � op
�
N�1� ;

thus



b� � �0




 = Op
�
N�1=2�. To obtain the asymptotic distribution we de�ne the following re-

lated criterion, JN (�) = DN (� � �0) +
1
2
(� � �0)

0H0 (� � �0), note that JN (�) is de�ned for eachbg (�; �) that satis�es the conditions of Theorem G2, implicit in DN . JN (�) is a quadratic ap-

proximation of MN (�; bg (�; �)) � MN (�0; bg (�; �0)), whose unique minimizer is e� = �0 � H�1
0 DN ,

and
p
N
�e� � �0

�
) N

�
0; H�1

0 
H
�1
0

�
. Next, we show the approximation error of JN (�) from
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MN (�; bg (�; �))�MN (�0; bg (�; �)) is small. For any �N = �0 +Op
�
N�1=2� in ��N ,

MN (�N ; bg (�; �N))�MN (�0; bg (�; �0))
= M (�N ; bg (�; �N))�M (�0; bg (�; �0)) + C 0N (�N � �0) +

k�N � �0kp
N

DN (�N ; bg (�; �N))
= (CN + S (�0; bg (�; �0)))0 (�N � �0) +

1

2
(�N � �0)

0H
�
�; bg ��; ��� (�N � �0) +

k�N � �0kp
N

DN (�N ; bg (�; �N))
= D0

N (�N � �0) +
1

2
(�N � �0)

0H0 (�N � �0) + op

�
k�N � �0kp

N
+ k�N � �0k2

�
= JN (�N) + op

�
1

N

�
:

The equalities in the display follow straightforwardly from the de�nition of the DN , G3, G4 and G5.
In particular, this implies that MN (�N ; bg (�; �N)) �MN (�0; bg (�; �0)) = JN (�N) + op

�
1
N

�
for �N = b�

and e�, hence we have
JN

�b�� =
�
JN

�b��� (MN (�N ; bg (�; �N))�MN (�0; bg (�; �0)))�
+(MN (�N ; bg (�; �N))�MN (�0; bg (�; �0)))

� JN

�e��+ op

�
1

N

�
;

where the inequality follows from the relation derived from the previous display and G1. Since

JN

�e�� � JN

�b��,
op

�
1

N

�
= JN

�b��� JN

�e��
= DN

�b� � �0

�
+
1

2

�b� � �0

�0
H0

�b� � �0

�
�DN

�e� � �0

�
� 1
2

�e� � �0

�0
H0

�e� � �0

�
= �

�e� � �0

�0
H0

�b� � �0

�
+
1

2

�b� � �0

�0
H0

�b� � �0

�
+
1

2

�e� � �0

�0
H0

�e� � �0

�
=

1

2

�b� � e��0H0

�b� � e�� ;
this implies that




b� � e�


2 = op
�
1
N

�
. Since

p
N
�e� � �0

�
has the desired asymptotic distribution,

this completes the proof.�
For the proof of Theorems 2 and 3 we �nd it convenient to introduce the following nota-

tions: M (�; g (�; �)) =
PJ

j=1

R
A
E2j (�; @agj (�; �)) d�j where Ej (�; @agj (�; �)) = FAjX=j (�; @agj (�; �))�

FAjX=j, and, FAjX=j (�; @agj (�; �)) and FAjX=j are functions de�ned on A that are the shorthand nota-
tions for FAjX (�jj; �; @agj (�; �)) and FAjX (�jj) respectively;MN (�; g (�; �)) =

PJ
j=1

R
A
E2N;j (�; @agj (�; �)) d�j

where EN;j (�; @agj (�; �)) = eFAjX=j (�; @agj (�; �))� bFAjX=j, and, eFAjX=j (�; @agj (�; �)) and bFAjX=j are
functions de�ned on A that are the shorthand notations for eFAjX (�jj; �; @agj (�; �)) and bFAjX (�jj)
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respectively; F0;j is a function de�ned on A that is the shorthand notation for F0 (�jj). In addition,
for j = 1; : : : ; J , we de�ne the class of functions Fj =

�
1
�
� � �j (a; �; @agj)

�
: a 2 A; � 2 �; gj 2 G

	
,

and let �R;j denote the empirical process indexed by (�; @agj) 2 � � G(1)j to be a random element

that takes value over A, i.e. �R;j (�; @agj) = 1p
R

PR
r=1 1

�
"r � �j (�; �; @agj)

�
�Q"

�
�j (�; �; @agj)

�
. We

will continue to use the multi-index notation to de�ne higher order derivatives @j�ja and @j�j� , of a and

� respectively for some natural number �, as seen in (24). We next present the some lemmas that

will be useful in proo�ng Theorems 1-3.

Lemma 1. Under E1



 bL � L


 = Op

�
N�1=2�.

Lemma 2. Under E1: For any r� 2 R0 and j = 1; : : : ; J; er� (j) = r� (j) + erR� (j) such that
max1�j�J sup�2�

��erR� (j)�� = op
�
N��� for any � < 1=2.

Lemma 3. Under E1: For any m� 2 M0 and j = 1; : : : ; J; bm� (j) = m� (j) + bmR
� (j) such that

max1�j�J sup�2�
�� bmR

� (j)
�� = op

�
N��� for any � < 1=2.

Lemma 4. Under E1: For any � 2 �, j = 1; : : : ; J; and a 2 A, bgj (a; �) = gj (a; �) + bgBj (a; �) +bgSj (a; �) + bgRj (a; �) such that
max
1�j�J

sup
�;a2��AN

��bgBj (a; �)�� = Op
�
h4
�
;

max
1�j�J

sup
�;a2��AN

��bgSj (a; �)�� = op

�
N �

p
Nh

�
;

max
1�j�J

sup
�;a2��AN

��bgRj (a; �)�� = op

�
h4 +

N �

p
Nh

�
:

Lemma 5. Under E1: For all j = 1; : : : ; J;max0�l�2;1�j�J sup�;a2��AN

���@jlja bgj (a; �)� @
jlj
a g0;j (a; �)

��� =
op (1).

Lemma 6. Under E1: max0�l;p�2;1�j�J sup�;a2��AN

���@jlja @jpj� bgj (a; �)� @
jlj
a @

jpj
� g0;j (a; �)

��� = op (1).

Lemma 7. Under E1 and E2: for all j = 1; : : : ; J , Fj is a Donsker class.
Lemma 8 Under E1 and E2: For any j = 1; : : : ; J and some positive sequence �N = o (1) as

N !1

lim
N!1

sup
(a;�;@agj)2A���G(1)j ;

k(a0�a;�0��;@ag0j�@agj)k<�N

����� 1
N

PN
i=1

�
1
�
"i � �j

�
a0; �0; @ag

0
j

��
�Q"

�
�j
�
a0; �0; @ag

0
j

���
� 1
N

PN
i=1

�
1
�
"i � �j (a; �; @agj)

�
�Q"

�
�j (a; �; @agj)

�� ����� = 0:
Lemma 9 Under E1: For any j = 1; : : : ; J

p
N
� bFAjX=j � FAjX=j

�
 Fj;

where Fj is a tight Gaussian process that belongs to l1 (A).
Lemma 10: Under E1 and E2: For any j = 1; : : : ; J

p
N(FAjX=j (�0; @abgj (�; �0))� FAjX=j (�0; @ag0;j (�; �0))) Gj;
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where Gj is a tight Gaussian process that belongs to l1 (A).
Proof of Theorem 1. This follows from Lemma 4. For the asymptotic distribution, we only

have to calculate the variance of (40), the rest follows by standard CLT. Asymptotic independence

will follow if we can show
p
Nhcov(bgj (a; �) ; bgk (a0; �)) = o (1) for any k 6= j and a0 6= a, this is trivial

to show.�
Proof of Theorem 2. We �rst show that M (�; g0 (�; �)) has a well separated minimum at �0.

By assumption (ii) - (iii) and (vii) we have M (�; g0 (�; �)) �M (�0; g0 (�; �0)) for all � in the compact
set � with equality only holds for � = �0. For each a and j, we have FAjX (ajj; �; @agj (�; �)) =
Q"
�
�j (a; �; @ag0 (�; �))

�
which is continuous in � given assumptions (vii) and (xiii), this ensures a

well-separated minimum. By standard arguments, consistency will now follow if we can show

sup
�2�

jMN (�; bg (�; �))�M (�; g0 (�; �))j = op (1) : (33)

By the triangle inequality, we have

jMN (�; bg (�; �))�M (�; g0 (�; �))j � 4
JX
j=1

Z ��� eFAjX=j (�; @abgj (�; �))� FAjX=j (�; @abgj (�; �))��� d�j
+4

JX
j=1

Z ��FAjX=j (�; @abgj (�; �))� FAjX=j (�; @ag0;j (�; �))
�� d�j

+4
JX
j=1

Z ��� bFAjX=j � FAjX=j

��� d�j
= A1 + A2 + A3:

For A1, for each j and any � > 0 we have

Pr

�
sup
�2�

��� eFAjX (ajx; �; @abg (�; �))� FAjX (ajx; �; @abg (�; �))��� > �

�
� Pr

"
sup

�;a2��AN

����� 1R
RX
r=1

1
�
"r � �j (a; �; @abgj)��Q"

�
�j (a; �; @abgj)�

����� > �

#

� Pr

24 sup
�;a;@agj2��AN�G(1)j

����� 1R
RX
r=1

1
�
"r � �j (a; �; @agj)

�
�Q"

�
�j (a; �; @agj)

������ > �

35
+Pr

h
@abgj (�; �) =2 G(1)j i :

From Lemma 7, Fj is Q�Glivenko-Cantelli by Slutsky�s theorem, therefore the �rst term of the last

inequality above converges to zero asR!1 by assumption (xii). By Lemma 6, Pr
h
@abgj (�; �) =2 G(1)j i =

o (1) hence by �niteness of �j it follows that jA1j = op (1) uniformly over �. For A2, for each j we
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have��FAjX=j (�; @abgj (�; �))� FAjX=j (�; @agj (�; �))
�� =

��Q" ��j (a; �; @abgj (�; �))��Q"
�
�j (a; �; @ag0;j (�; �))

���
� C0

���j (a; �; @abgj (�; �))� ��j (a; �; @ag0;j (�; �))��� ;
where the inequality follows from the mean value theorem (MVT) and the fact that the derivative of

Q" is uniformly bounded. Given the smoothness assumption on
�
�j
�
in assumption (xiii), by MVT in

Banach space supa2AN j�j (a; �; @abgj (�; �))���j (a; �; @ag0;j (�; �))� j � sup�;a;@agj2��A�G(1)j



D@ag�j (a; �; @agj)




� sup�;a2��AN j@abgj (a; �)�@ag0;j (a; �) j. Since �j has zero measure on the boundary of A, by Lemma
5,
R
jFAjX=j (�; @abgj (�; �))�FAjX=j (�; @ag0;j (�; �)) jd�j � C0 sup�;a2��AN j@abgj (a; �)� @ag0;j (a; �) j+

2�j (AnAN) = op (1). So we also have jA2j = op (1) uniformly over �. Lastly for A3, for each j we

write

bFAjX (ajj)� FAjX (ajj) =
1

pX (j)

h bFA;X (a; j)� FA;X (a; j)
i

�
bFAjX (ajj)
pX (j)

[bpX (j)� pX (j)] ;

where bFA;X (a; j) = 1
NT

PN;T
i=1;t=1 1 [ait � a; xit = j], then w.p.a. 1

max
1�j�J

sup
a2A

��� bFAjX (ajj)� FAjX (ajj)
���

� 1

min1�j�J pX (j)
max
1�j�J

sup
a2A

��� bFA;X (a; j)� FA;X (a; j)
���

+

����max1�j�J [bpX (j)� pX (j)]

min1�j�J pX (j)

���� :
By Lemma 9, the class of functions f1 [� � a; xit = j]� FA;X (�; j) : a 2 Ag is also a Glivenko-Cantelli
class, so: the �rst term on the RHS of the inequality above converges in probability to zero; the second

term also converges in probability to zero since bpX (j)� pX (j) = op (1) for each x 2 X. Since A3 is
independent of �, the uniform convergence in (33) holds and consistency follows.�
Proof of Theorem 3. To proof Theorem 3 we set out to show that our assumptions imply we

satisfy all the conditions of Theorem G. We showed consistency in Theorem 2. G1 is the de�nition of

the estimator. For G2, it su¢ ces to show @abgj (�; �) 2 G�N ;j w.p.a. 1 and sup�2� k@abgj (�; �)� @ag0;j (�; �)k1
= op

�
N�1=4� for all j = 1; : : : ; J . The former is implied by Lemma 6, from the proof of Lemma

5, the latter holds if h4 + N�
p
Nh3

= o
�
N�1=4�, this is certainly the case when h is in the suggested

range. G3 and G4 simply requires translating the smoothness we impose in E1 and E2 to satisfy

these conditions. Now we show G5, in particular we need to show that

MN (�; bg (�; �))�MN (�0; bg (�; �0))� (M (�; bg (�; �))�M (�0; bg (�; �0)))� (� � �0)
0CN (34)

= op

�
k� � �0k2 +

k� � �0kp
N

+
1

N

�
;
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holds uniformly for k� � �0k < �N . Then for any pair (�; @abgj (�; �)) we can write
E2j (�; @abgj (�; �))� E2j (�0; @abgj (�; �0)) =

�
FAjX=j (�; @abgj (�; �))� FAjX=j (�0; @abgj (�; �0))���
FAjX=j (�; @abgj (�; �)) + FAjX=j (�0; @abgj (�; �0))� 2FAjX=j� ;

and analogously

E2N;j (�; @abgj (�; �))� E2N;j (�0; @abgj (�; �0)) =
� eFAjX=j (�; @abgj (�; �))� eFAjX=j (�0; @abgj (�; �0))��� eFAjX=j (�; @abgj (�; �)) + eFAjX=j (�0; @abgj (�; �0))� 2 bFAjX=j� :

Combing these we have

MN (�; bg (�; �))�MN (�0; bg (�; �0))
=

JX
j=1

Z
2666664

"
R�1=2 (�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0)))
+
�
FAjX=j (�; @abgj (�; �))� FAjX=j (�0; @abgj (�; �0))�

#

�

24 R�1=2 (�R;j (�; @abgj (�; �)) + �R;j (�0; @abgj (�; �0)))
+
�
FAjX=j (�; @abgj (�; �)) + FAjX=j (�0; @abgj (�; �0))� 2 bFAjX=j�

35

3777775 d�j

=
JX
j=1

Z
E2j (�; @abgj (�; �))� E2j (�0; @abgj (�; �0)) d�j

�2
JX
j=1

Z �
FAjX=j (�; @abgj (�; �))� FAjX=j (�0; @abgj (�; �0))� � bFAjX=j � FAjX=j

�
d�j

+R�1=2
JX
j=1

Z 2664
[�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0))]
�
"

FAjX=j (�; @abgj (�; �))
+FAjX=j (�0; @abgj (�; �0))� 2 bFAjX=j

# 3775 d�j
+R�1=2

JX
j=1

Z "
[�R;j (�; @abgj (�; �)) + �R;j (�0; @abgj (�; �0))]

�
�
FAjX=j (�; @abgj (�; �))� FAjX=j (�0; @abgj (�; �0))�

#
d�j

+R�1
JX
j=1

Z "
[�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0))]
� [�R;j (�; @abgj (�; �)) + �R;j (�0; @abgj (�; �0))]

#
d�j

= M (�; bg (�; �))�M (�0; bg (�; �0)) +B1 +B2 +B3 +B4:

We now show that, out of fBig4i=1, B1 is the leading term that contains CN in (34), the rest are of

smaller stochastic order. Since we are only interested in what happens as k� � �0k ! 0, in what

follows, the little �o�and big �O�terms will be implicitly assumed to hold with k� � �0k ! 0 and

N !1.
For B1 :
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By mean value expansion

B1 = �2 (� � �0)
0
JX
j=1

Z
D�FAjX=j

�
�j; @abgj ��; �j�� � bFAjX=j � FAjX=j

�
d�j

= �2 (� � �0)
0
JX
j=1

Z
D�FAjX=j (�0; @ag0;j (�; �0))

� bFAjX=j � FAjX=j

�
d�j

�2 (� � �0)
0
JX
j=1

Z 24 �D�FAjX=j
�
�j; @abgj ��; �j���D�FAjX=j (�0; @ag0;j (�; �0))

�
�
h bFAjX=j � FAjX=j

i 35 d�j
= B11 +B12;

where for each j; �j is some intermediate value between � and �0 that corresponds to the MVT w.r.t.

the j � th summand. We �rst show that B11 is the leading term that is equal to (� � �0)
0CN in (34)

and that
p
NCN converges to a normal random variable. By Lemma 9

p
N
� bFAjX=j � FAjX=j

�
 Fj

where Fj is a tight Gaussian process that belongs to l1 (A) for all j, by Slutsky theorem and a similar
argument used in the proof of Lemma 9, it is easy to show thatD�FAjX=j (�0; @ag0;j (�; �0))

p
N( bFAjX=j

� FAjX=j) also converges weakly to a tight Gaussian process. To see the latter, note that for any

@agj (�; �) 2 G(1)j

D�FAjX (ajj; �; @agj (�; �))

= q
�
�j (a; �; @agj (�; �))

� �
@��j (a; �; @agj (�; �)) +D@ag�j (a; �; @agj (�; �)) [@�@ag (�; �)]

�
;

where, @� denotes the ordinary L�dimensional partial derivative, @=@�, w.r.t. in the argument �. This
is continuous on A for any j. Now, if we de�ne a linear continuous map Tj : l1 (A)! R (w.r.t. sup-
norm) so that Tjf =

R
D�FAjX=j (�0; @ag0;j (�; �0)) fd� for any f 2 l1 (A) then the map is linear and

continuous, the boundedness follows from the observation that supa2A


D�FAjX=j (�0; @ag0;j (�; �0))



 <
1. Then, by continuous mapping theorem (CMT)Z

D�FAjX=j (�0; @ag0;j (�; �0))
p
N
� bFAjX=j � FAjX=j

�
d�j  

Z
D�FAjX=j (�0; @ag0;j (�; �0))Fjd�j:

Furthermore, the limit is also Gaussian since we know Gaussianity is preserved for any tight Gaussian

process that is transformed by a linear continuous map, see Lemma 3.9.8 of VW. So we let

p
NCN =

JX
j=1

Z
D�FAjX=j (�0; @ag0;j (�; �0))

p
N
� bFAjX=j � FAjX=j

�
d�j; (35)

then
p
NCN also converges a Gaussian variable.
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For B12, for each j, by Cauchy Schwarz inequality we have����(� � �0)
0
Z �

D�FAjX=j
�
�j; @abgj ��; �j���D�FAjX=j (�0; @ag0;j (�; �0))

� � bFAjX=j � FAjX=j

�
d�j

����
�

"
(� � �0)

0
Z " �

D�FAjX=j
�
�j; @abgj ��; �j���D�FAjX=j (�0; @ag0;j (�; �0))

�
�
�
D�FAjX=j

�
�j; @abgj ��; �j���D�FAjX=j (�0; @ag0;j (�; �0))

�0
#
d�j (� � �0)

#1=2

�
�Z h bFAjX=j � FAjX=j

i2
d�j

�1=2
;

where for each j; �j is some intermediate value between �j and �0;j that corresponds to the MVT

w.r.t. the j � th summand. Let @�l denotes the l�th element of @� then��D�lFAjX=j
�
�j; @abgj ��; �j���D�lFAjX=j (�0; @ag0;j (�; �0))

��
�

����� q
�
�j
�
a; �j; @abgj ��; �j��� @�l�j �a; �j; @abgj ��; �j��

�q
�
�j (a; �0; @ag0;j (�; �0))

�
@�l�j (a; �0; @ag0;j (�; �0))

�����
+

����� q
�
�j
�
a; �j; @abgj ��; �j���D@ag�j

�
a; �j; @abgj ��; ��� �@�l@abgj ��; �j��

�q
�
�j (a; �0; @ag0;j (�; �0))

�
D@ag�j (a; �0; @ag0;j (�; �0)) [@�l@ag0;j (�; �0)]

����� :
First note that the terms on the RHS are uniformly bounded, it is easy to see that the terms on

the RHS of the inequality are o (1) as


�j � �0



 ! 0 since
�
�j; @abgj ��; �j�� p! (�0; @ag0;j (�; �0)) by

Lemma 5 and continuity in � of @ag0;j (�; �). Then it will follow by DCT that"
(� � �0)

0
Z " �

D�FAjX
�
�j; @abgj ��; �j���D�FAjX (�0; @ag0;j (�; �0))

�
�
�
D�FAjX

�
�j; @abgj ��; �j���D�FAjX (�0; @ag0;j (�; �0))

�0
#
d� (� � �0)

#1=2
= op (k� � �0k) :

From Lemma 9 and CMT,
�R h bFAjX=j � FAjX=j

i2
d�

�1=2
= Op

�
N�1=2�. Since we have �nite j then

jB12j = op
�
N�1=2 k� � �0k

�
.

For B2 :

For each j

FAjX=j (�; @abgj (�; �)) + FAjX=j (�0; @abgj (�; �0))� 2 bFAjX=j
=

�
FAjX=j (�; @abgj (�; �))� FAjX=j (�0; @abgj (�; �0))�
+2
�
FAjX=j (�0; @abgj (�; �0))� FAjX (�0; @ag0;j (�; �0))

�
�2
� bFAjX=j � FAjX=j

�
;
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then we can write B2 as

B2 = R�1=2
JX
j=1

Z "
[�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0))]

�
�
FAjX=j (�; @abgj (�; �))� FAjX=j (�0; @abgj (�; �0))�

#
d�j

+2R�1=2
JX
j=1

Z "
[�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0))]

�
�
FAjX=j (�0; @abgj (�; �0))� FAjX (�0; @ag0;j (�; �0))

� # d�j
�2R�1=2

JX
j=1

Z
(�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0)))� bFAjX=j � FAjX=j

�
d�j

= B21 +B22 +B23:

We �rst show
R
[�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0))]2 d�j = op (1) for any j. By Lemma 6

@abgj 2 G(1)j w.p.a. 1, and by Lemma 8 it su¢ ces to show that k@abgj (�; �)� @abgj (�; �0)k p! 0 as

k� � �0k. This follows from the triangle inequality since k@abgj (�; �)� @abgj (�; �0)k is bounded above
by k@abgj (�; �)� @ag0;j (�; �)k+k@abgj (�; �0)� @ag0;j (�; �0)k + k@ag0;j (�; �)� @ag0;j (�; �0)k, and the fact
that the �rst two terms of the majorant converge to zero by Lemma 5 and the last term converges

to zero by the continuity of @ag0;j (�; �) in �. For B21

B21 = 2R�1=2
JX
j=1

Z "
[�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0))]

�
�
FAjX=j (�; @abgj (�; �))� FAjX=j (�0; @abgj (�; �0))�

#
d�

= 2R�1=2
JX
j=1

Z "
[�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0))]

�D�FAjX=j
�
�j; @abgj ��; �j��0

#
d� (� � �0) ;

by Cauchy Schwarz inequality

jB21j � op
�
R�1=2

�
�

max
1�j�J

�
(� � �0)

0
Z h

D�FAjX=j
�
�j; @abgj ��; �j��D�FAjX=j

�
�j; @abgj ��; �j��0i d� (� � �0)

�1=2
= op

�
R�1=2

�
Op (k� � �0k)

= op
�
N�1=2 k� � �0k

�
;

the �rst inequality follows from the stochastic equicontinuity condition of Lemma 8, then it is easy to

show the outer product term inside the integral is also bounded in probability and the last equality

follows from N = o (R). This same argument using Cauchy Schwarz inequality again be applied for

B22 and B23, in particular, it follows from Lemma 10 and Lemma 9 respectively that jB22j = o (N�1)

and jB23j = o (N�1).

For B3 :
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For each j

�R;j (�; @abgj (�; �)) + �R;j (�0; @abgj (�; �0)) = 2�R (�0; @ag0;j (�; �0))

+ (�R;j (�; @abgj (�; �))� �R (�0; @ag0;j (�; �0)))

+ (�R;j (�0; @abgj (�; �0))� �R (�0; @ag0;j (�; �0))) ;

then we can write B3 as

B3 = 2S�1=2
JX
j=1

Z
�R;j (�0; @ag0;j (�; �0))

�
FAjX=j (�; @abgj (�; �))� FAjX=j (�0; @abgj (�; �0))� d�j

+R�1=2
JX
j=1

Z "
[�R;j (�; @abgj (�; �))� �R (�0; @ag0;j (�; �0))]

�
�
FAjX=j (�; @abgj (�; �))� FAjX=j (�0; @abgj (�; �0))�

#
d�j

+R�1=2
JX
j=1

Z "
[�R;j (�0; @abgj (�; �0))� �R (�0; @ag0;j (�; �0))]

�
�
FAjX=j (�; @abgj (�; �))� FAjX=j (�0; @abgj (�; �0))�

#
d�j

= B31 +B32 +B33:

For each j: we have
hR �

FAjX=j (�; @abgj (�; �))� FAjX=j (�0; @abgj (�; �0))�2 d�ji1=2 = Op (k� � �0k) by

Cauchy Schwarz inequality; from Donsker theorem and CMT,
�R
[�R (�0; @ag0;j (�; �0))]2 d�j

�1=2
=

Op (1). Then it follows that jB31j � op
�
N�1=2 k� � �0k

�
. By a similar argument, using Cauchy

Schwarz inequality, continuity of @ag (�; �) in �, Lemma 5, 6 and 8, jB32j and jB33j are also op
�
N�1=2 k� � �0k

�
,

in particular as we can use the triangle inequality to show k(�; @abgj (�; �))� (�0; @ag0;j (�; �0))k� and
k(�0; @abgj (�; �0))� (�0; @ag0;j (�; �0))k� converge in probability to 0 as k� � �0k ! 0 for all j.

For B4 :

By the same argument above, we can re-express B4

B4 = 2S�1
JX
j=1

Z
�R;j (�0; @ag0;j (�; �0)) (�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0))) d�j

+R�1
JX
j=1

Z
[�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0))]2 d�j

+R�1
JX
j=1

Z "
[�R;j (�0; @abgj (�; �0))� �R (�0; @ag0;j (�; �0))]
� [�R;j (�; @abgj (�; �))� �R;j (�0; @abgj (�; �0))]

#
d�j

= B41 +B42 +B43:

By repeatedly using Cauchy Schwarz inequality, continuity of @ag (�; �) in �, and Lemma 5,6 and 8,
as seen in the analysis of B2 and B3, it follows easily that jB4ij = op (N

�1) for i = 1; 2; 3.

G6 then follows from Lemma 10.�

45



Proof of Theorem 4. From (19) we have

bgb� � bg�0 = bH�I � bL��1 �erb� � er�0�
= bH�I � bL��1��b� � �0

�0
D�er��

where the expansion above follows from MVT and � denotes some intermediate value between b� and
�0. It is easy to see that, for j = 1; : : : ; J


bgj ��;b��� bgj (�; �0)




1
= Op

�


b� � �0




�
= Op

�
N�1=2� ;

since





 bH�I � bL��1



 = Op (1), ker�k = Op (1) and
p
Nh = o

�
N1=2

�
, then

p
Nh

���bgj �a;b��� bgj (a; �0)���
= op (1). It remains to show the asymptotic independence between any pair

�bgj �a;b�� ; bgk �a0;b���
for any k 6= j and a0 6= a. Since

cov
�bgj �a;b�� ; bgk �a0;b���

= cov (bgj (a; �0) ; bgk (a0; �0)) + cov �bgj (a; �0) ; bgk �a0;b��� bgk (a0; �0)�
+cov

�bgk (a0; �0) ; bgj �a;b��� bgj (a; �0)�+ cov �bgj �a;b��� bgj (a; �0) ; bgk �a0;b��� bgk (a0; �0)� ;
by Cauchy-Schwarz inequality, it su¢ ces to show var

�p
Nh

�bgk �a0;b��� bgk (a0; �0)�� = o (1); this

follows since



bgj ��;b��� bgj (�; �0)




1
= Op

�
N�1=2�.�

A.2 Proofs of Lemmas 1-10

These lemmas are used in the proofs of Theorem 1 - 3. In what follows we let: � > 0 be a number

that is arbitrarily close to 0; C0 denotes a positive constant that may take di¤erent values in various

places; VW abbreviates van der Vaart and Wellner (1996).

Proof of Lemma 1. We can write, for any 1 � k; j � J

bpX0jX (kjj)� pX0jX (kjj) =
bpX0;X (k; j)� pX0;X (k; j)

pX (j)
�
bpX0jX (kjj)
pX (j) bpX (j) (bpX (j)� pX (j)) :

Given the simple nature of our DGP, by standard CLT and LLN, we have bpX0;X (k; j)�pX0;X (k; j) =

Op
�
N�1=2� ; bpX (j) � pX (j) = Op

�
N�1=2� and bpX (j)�1 = Op (1), so it follows that bpX0jX (kjj) �

pX0jX (kjj) = Op
�
N�1=2� for any k and j. Since L is a linear map on RJ to RJ , for any vector

m 2 RJ we have
�� bL � L�m�

j
= �

PJ
k=1(bp (kjj)� p (kjj))mi = Op

�
N�1=2� for all j then it follows

from the de�nition of an operator norm that



 bL � L


 = Op

�
N�1=2�.�
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Proof of Lemma 2. For any j = 1; : : : ; J and � 2 �, er� (j) is de�ned in (17) with witN (j) =
1 [xit = j] =bpX (j) and de�ne br� (j) =PN;T

i=1;t=1witN (j)u�(ait; xit; "it). Then we write

er� (j)� r� (j) = (br� (j)� r� (j)) + (er� (j)� br� (j)) ; (36)

the �rst term is the usual term had we observed f"itg, the latter term arises due to the use of

generated residuals. Treating them separately, for the �rst term

br� (j)� r� (j) =
1bpX (j) 1

NT

N;TX
i=1;t=1

1 [xit = j] (u� (ait; xit; "it)� r� (j))

=
1bpX (j) 1

NT

N;TX
i=1;t=1

��;it1 [xit = j] ;

where for each �, ��;it = u� (ait; xit; "it)�r� (xit) is a zero mean random variable, note that 1 [xit = j]�
(r� (xit)�r� (j)) = 0 for all i; j and t. De�ne �N;j (�) as the sample average of i.i.d. random variablesnPT

t=1
1
T
��;it1 [xit = j]

oN
i=1
, given the assumptions on the DGP, in particular on the second moments,

�N;j (�) = Op
�
N�1=2� for any � by standard CLT. We want to obtain the uniform rate of convergence

of �N;j (�) over �. This can be achieved by using the arguments along the line of Masry (1996).

We �rst obtain the uniform bound for the variance of �N;j (�), some exponential inequality is then

applied to get the rate of decay on the tail probability for any �. The pointwise rate can then be made

uniform by Lipschitz continuity of ��;it (in �) and compactness of �. More precisely, we �rst show

that sup�2�var(�N;j (�)) = O (N�1). Since var(�N;j (�)) is just a variance of
PT

t=1
1
T
��;it1 [xit = j]

by divided by N , the numerator takes the following form

var

 
1

T

TX
t=1

��;it1 [xit = j]

!
=

1

T

TX
t=1

var (��;it1 [xit = j])

+
2

T

T�1X
s=1

�
1� s

T

�
Cov (��;i01 [xi0 = j] ; ��;is1 [xis = j]) ;

= Y�;1;j + Y�;2;j:

The covariance structure in Y�;2;j follows from the strict stationarity assumption, which also im-

plies we can write Y�;1;j = E
��
�2�;itjxit

�
1 [xit = j]

�
. Since u� (a; x; ") is continuous in � for all a; x

and ", it follows that sup�2� Y�;1;j < 1. For the covariance term, by Cauchy-Schwarz inequality,
Cov (��;i01 [xi0 = j] ; ��;is1 [xis = j]) � E

�
�2�;i01 [xi0 = j]

�2
<1, since sup�2�

���2�;i0;j�� <1, it follows
that sup� Y�;2 < 1 for any �nite T . Since �N;j (�) is an average of N�i.i.d. sequence of random
variables that, for each �, it satis�es the Cramér�conditions (since u is uniformly bounded over all

its arguments), then Bernstein�s inequality, e.g. see Bosq (1998), can be used to obtain the following
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bound

Pr [jN�N;j (�)j > N�N ] � 2 exp
�
� N2�2N
4V ar (N�N;j (�)) + 2CN�N

�
: (37)

Let �N = N (�1+�)=2, simple calculation of the display above yields Pr [j�N;j (�)j > �N ] = O
�
exp

�
�N �

��
.

By compactness of �, let fLNg1N=1 be an increasing sequence of natural number, we can de�ne
a sequence f�iLNg

LN
i=1 to be the centres of open balls, f�iLNg

LN
i=1, of radius f�LNg

LN
i=1 such that

� �
SLN
i=1�iLN and LN � �LN = O (1), then it follows that

Pr

�
sup
�
j�N;j (�)j > �N

�
� Pr

�
max
1�i�LN

j�N;j (�iLN )j > �N

�
+Pr

"
max
1�i�N

sup
�2�iLN

j�N;j (�)��N;j (�iLN )j > �N

#
� C0LN exp

�
�N �

�
+ Pr [�LN > �N ]

= o (1) :

The second inequality from the display above follows from, Bonferroni inequality and (37) for the

�rst term, and by Lipschitz continuity of �N;j for the latter. Then the equality holds if we take �LN =

o (�N) such that LN grows at some power rate. It then follows that that sup� j�N;j (�)j = op
�
N���.

Then w.p.a. 1

sup
�2�

jbr� (j)� r� (j)j �
max1�j�J sup�2� j�N;j (�)j

min1�j�J pX (j)

= op
�
N��� :

The procedure to obtain the uniform rate of convergence is shown above in detail to avoid repe-

tition later since we will require to show many zero mean processes converge uniformly (either over

the compact parameter space or the state space) to zero faster than some rates. The argument

above can also be applied to nonparametric estimates, as well as some other appropriately (weakly)

dependent zero mean process, see Linton and Mammen (2005), and especially Srisuma and Linton

(2009) for such usages in closely related context. We comment here that, our paper along with the

papers mentioned in the previous sentence, unlike Masry (1996), are not interested in sharp rate of

uniform convergence so our proofs are comparatively more straightforward.

For the generated residuals, by de�nition

er� (j)� br� (j) = 1

NT

N;TX
i=1;t=1

witN (j) (u� (ait; xit;b"it)� u� (ait; xit; "it)) ;

where b"it = �
� bFAjX (aitjxit)� with � � Q�1" . Using mean value expansion, u� (ait; xit;b"it) �

u� (ait; xit; "it) =
@
@"
u� (ait; xit; "it)�

0 �FAjX (aitjxit)� � bFAjX (aitjxit)� FAjX (aitjxit)
�
, where "it and

48



FAjX (aitjxit) are some intermediate points between b"it and "it, and, bFAjX (aitjxit) and FAjX (aitjxit),
respectively. Then it follows that

er� (j)� br� (j) =
1

NT

N;TX
i=1;t=1

witN (j) (u� (ait; xit;b"it)� u� (ait; xit; "it))

=
1

NT

N;TX
i=1;t=1

1 [xit = j]

pX (j)
{� (ait; xit; "it)

� bFAjX (aitjxit)� FAjX (aitjxit)
�
+Op

�
N�1� ;

where {� (ait; xit; "it) = @
@"
u� (ait; xit; "it)�

0 �FAjX (aitjxit)�. In addition, the Op (N�1)�term holds

uniformly over � and j, this follows from Markov inequality since @2

@"2
u and �00 are uniformly bounded

over all of their arguments,max1�j�J jbpX (j)�pX (j) j = Op
�
N�1=2�, and,max1�j�J supa2A j bFAjX (ajj)

�FAjX (ajj) j = Op
�
N�1=2� by Lemma 9. By a similar argument, using the leave one out estimator

for bFAjX , the leading term for er� (j)� br� (j) can be simpli�ed further to
1

NT (NT � 1)

N;TX
i=1;t=1

N;TX
j;s;(�it)

{� (ait; xit; "it)
1 [xit = j]

pX (j)

1 [xjs = xit]

p (xit)

�
1 [ajs � ait]� FAjX (aitjxit)

�
;

where
PN;T

j;s;(�it) sums over the indices j = 1; : : : ; N and s = 1; : : : ; T but omits the itth�summand.
Subsequently, the term in the display above can be written as the following second order U-statistic 

NT

2

!�1
1

2

X
C((it);(js))

 
{� (ait; xit; "it) 1[xit=j]pX(j)

1[xjs=xit]

p(xit)

�
1 [ajs � ait]� FAjX (aitjxit)

�
+{� (ajs; xjs; "js) 1[xjs=j]pX(j)

1[xjs=xit]

p(xjs)

�
1 [ait � ajs]� FAjX (ajsjxjs)

� ! ;
where

P
C((it);(js)) sums over all distinct combinations of C ((it) ; (js)). Note that 1 [ait � a] =

FAjX (ajxit) + ! (xit; a) where E [! (xit; a) jxit] = 0, so ! (xit; �) is a random element in L2 (A). Then

it is straightforward to obtain the leading term of the Hoe¤ding decomposition of our U-statistic, see

Lee (1990), and, Powell, Stock and Stoker (1989), in particular we have for all j

er� (j)� br� (j) = 1

NT

N;TX
i=1;t=1

�� (! (xit; �) ; xit; j) + op
�
N�1=2� ;

where �� (! (xit; �) ; xit; j) = 1
pX(j)

R
! (xit; ajs)

hR
{� (ajs; xit; "js)1 [xit = j]

fA;X;E (ajs;xit;"js)
p(xit)

d"js

i
dajs and

fA;X;E denotes the joint continuous-discrete density of (ait; xit; "it). Note that �� is random with re-

spect to !it and xit, and E [! (xit; �) jxit] = 0, so �� has zero mean. Given the boundedness and

smoothness conditions on {�, then 1
NT

PN;T
i=1;t=1 �� (! (xit; �) ; xit; j) can be shown to converge uni-

formly in probability to zero faster than the rate N�� as shown above. In sum, we have shown for
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j = 1; : : : ; J that er� (j) = r� (j) + erR� (j) with
erR� (j) =

1

pX (j)

1

NT

N;TX
i=1;t=1

1 [xit = j] (u� (ait; xit; "it)� r� (j))

+
1

NT

N;TX
i=1;t=1

�� (! (xit; �) ; xit; j) + op
�
N���

= op
�
N��� ;

where the smaller order term holds uniformly over j and �.�
Proof of Lemma 3. Since 0 < kLk < 1 and 0 <




 bL


 < 1, the argument used in Linton and
Mammen (2005) can be used to show



�I � bL��1 � (I � L)�1



 = Op

�
N�1=2� :

We note that, using the contraction property, (I � L)�1 and
�
I � bL��1 are bounded linear opera-

tors since


(I � L)�1

 � (1� kLk)�1 < 1 and similarly





�I � bL��1



 � �1� 


 bL


��1 < 1, this
can be shown from the respective Neumann series representation of the inverses and by the basic

properties of operator norms. We comment that these relations involving the empirical operator

hold in �nite sample since X is �nite, otherwise it will be true w.p.a. 1 by the same reason-

ing as used in Srisuma and Linton (2009). Then for each x 2 X and � 2 �, bm� (j) is de�ned

in (18), we write bm� (j) =
�
I � bL��1 �r� (j) + erR� (j)�, given the results from Lemma 2, it fol-

lows that max1�j�J sup�2�

�����I � bL��1 erR� (j)���� = op
�
N���, since 



�I � bL��1



 = Op (1). For �rst

term, we can write
�
I � bL��1 r� (j) = m� (j) + bmA

� (j) where bmA
� (j) =

�
I � bL��1 � bL � L�m� (j).

Since we know





�I � bL��1



 = Op (1) from earlier, from Lemma 1



 bL � L


 = Op

�
N�1=2�, and,

max1�j�J sup�2� jm� (j)j = O (1) as m� (j) is a continuous function on a compact set � any j, this

completes the proof with bmR
� = bmA

� +
�
I � bL��1 erR� .�

Proof of Lemma 4. The empirical analogue of (7) is

bg� = bHbm�;

where bH is a linear operator that uses local constant approximation to estimate the conditional

expectation operator H. Then we proceed, similarly to the proof of Lemma 3, by writing bgj (a; �) =
gj (a; �) + bgAj (a; �) + bHbmR

� (j; a) where bgAj (a; �) = � bH�H�m� (j; a) for any j. The approach taken

here is similar to that found in Srisuma and Linton (2009), we decompose bgAj (a; �) into variance+bias
terms, note that the presence of discrete regressor only leads to a straightforward sample splitting
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in the local regression for each x. Since A is a compact set, the bias term near the boundary for

Nadaraya-Watson estimator has a slower rate of convergent there than in the interior, for this reason

we will need to trim out values near the boundary of A. For the ease of notation we proceed by

assuming that the support of ait is AN , where fAngNn=1 is a sequence of increasing sets such thatS1
n=1An = int (A), here the boundary of the set A has zero measure w.r.t. any relevant measure

to our problem so we can ignore the di¤erence between A and int (A). In our case A = [a; a] then

AN = [a+ 
N ; a� 
N ] such that 
N = o (1) and h = o (
N). So we only need the trimming factor

to converge to zero (at any rate) slower than the bandwidth, the reason behind this is fact that, for

large N , the boundary only e¤ect exists within a neighborhood of a single bandwidth. Then for any

m = (m1 : : :mJ)
0 2 RJ ; a and j

� bH�H�m (j; a) =
JX
k=1

mk

�bpX0;X;A (k; j; a)bpX;A (j; a) � pX0;X;A (k; j; a)

p;X;A (j; a)

�
(38)

=
JX
k=1

mk

�bpX0;X;A (k; j; a)� pX0;X;A (k; j; a)

pX;A (j; a)

�

�
JX
k=1

mk

� bpX0;X;A (k; j; a)bpX;A (j; a) pX;A (j; a) (bpX;A (j; a)� pX;A (j; a))

�
;

where

bpX0;X;A (k; j; a) =
1

NT

N;TX
i=1;t=1

1 [xit+1 = k; xit = j]Kh (ait � a) ;

bpX;A (j; a) =
1

NT

N;TX
i=1;t=1

1 [xit = j]Kh (ait � a) :

For any j; k, then

bpX0;X;A (k; j; a)� pX0;X;A (k; j; a)

= (bpX0;X;A (k; j; a)� E [bpX0;X;A (k; j; a)]) + (E [bpX0;X;A (k; j; a)]� pX0;X;A (k; j; a))

= I11 (k; j; a) + I12 (k; j; a) ;

where I11 (k; j; a) has zero mean and I12 (k; j; a) is nonstochastic for any a 2 AN . Under stationarity,
by the standard change of variable and di¤erentiability of pX0;X;A (k; j; a) (w.r.t. a)

I12 (k; j; a) =
1

2
h4�2 (K)

@2

@a2
pX0;X;A (k; j; a) + o

�
h2
�
:

It then follows that max1�j;k�J supa2AN jI12 (k; j; a)j = O (h4) since @4

@a4
pX0;X;A (k; j; a) is a continuous

function on a for any j and k. It is also straightforward to show by using the same arguments as in
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Lemma 2 that max1�j;k�J supa2AN jI11 (k; j; a)j = op

�
N�
p
Nh

�
. In particular, this follows since

var
�p

NThI11 (k; j; a)
�
= pX0;X;A (k; j; a)�2 (K) + o (1) ;

where the display above for any j and k uniformly over AN . Combining terms we have

max
1�j;k�J

sup
a2AN

�����
JX
k=1

mk

�bpX0;X;A (k; j; a)� pX0;X;A (k; j; a)

pX;A (j; a)

������
� J

max1�j�J jmjj
min1�j�J infa2AN jpX;A (j; a)j

� max
1�j;k�J

sup
a2AN

jbpX0;X;A (k; j; a)� pX0;X;A (k; j; a)j

= Op

�
h4 +

N �

p
Nh

�
;

where the inequality holds w.p.a. 1 since we know (to be shown next) bpX;A converges to pX;A uniformly
over X � AN . By the same type of argument as above, write for each j

bpX;A (j; a)� pX;A (j; a)

= (bpX;A (j; a)� E [bpX;A (j; a)]) + (E [bpX;A (j; a)]� pX;A (j; a))

= I21 (j; a) + I22 (j; a) ;

then it is straightforward to show the followings hold uniformly over its arguments

I22 (j; a) =
1

2
h4�4 (K)

@4

@a2
pX;A (j; a) + o

�
h2
�
;

var
�p

NThI21 (k; j; a)
�
= pX;A (j; a)�2 (K) + o (1) ;

then we have

max
1�j;k�J

sup
a2AN

�����
JX
k=1

mk

� bpX0;X;A (k; j; a)bpX;A (j; a) pX;A (j; a) (bpX;A (j; a)� pX;A (j; a))

������
� J

max1�j�J jmjj
min1�j�J infa2AN jpX;A (j; a)j

2 � max
1�j�J

sup
a2AN

jbpX;A (j; a)� pX;A (j; a)j

= Op

�
h4 +

N �

p
Nh

�
:

So we can write for each j� bH�H�m (j; a) =

JX
k=1

mk

�bpX0;X;A (k; j; a)� pX0;X;A (k; j; a)

pX;A (j; a)

�

�
JX
k=1

mk

 
pX0;X;A (k; j; a)

p2X;A (j; a)
(bpX;A (j; a)� pX;A (j; a))

!
+WN;j (a;m)

= BN;j (a;m) + VN;j (a;m) +WN;j (a;m) ;
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where

BN;j (a;m) =
1

2
h4�4 (K)

JX
k=1

mk

 
@4

@a4
pX0;X;A (k; j; a)

pX;A (j; a)
+
pX0;X;A (k; j; a)

@4

@a4
pX;A (j; a)

p2X;A (j; a)

!
; (39)

VN;j (a;m) =

JX
k=1

mk

0BBBB@
1

pX;A(j;a)
1
NT

PN;T
i=1;t=1

 
1 [xit+1 = k; xit = j]Kh (ait � a)

�E [1 [xit+1 = k; xit = j]Kh (ait � a)]

!

�pX0;X;A(k;j;a)

p2X;A(j;a)
1
NT

PN;T
i=1;t=1

 
1 [xit = j]Kh (ait � a)

�E [1 [xit = j]Kh (ait � a)]

!
1CCCCA ;(40)

WN;j (a;m) =
JX
k=1

mk

0@ 1
pX;A(j;a)

� bpX0;X;A(k;j;a)bpX;A(j;a) � pX0;X;A(k;j;a)

pX;A(j;a)

�
� (bpX;A (j; a)� pX;A (j; a))

1A : (41)

Note that BN;j is a deterministic term, VN;j is the zero mean process that will deliver CLT whilst, us-

ing the same arguments as above, it is straightforward to show that max1�j�J supa2AN WN;j (a;m) =

op (BN;j (a;m) + VN;j (a;m)) for any m 2 RJ . Then we can conclude



 bH�H


 = Op

�
h4 + N�

p
Nh

�
.

Using the decomposition of bH�H above we have

bgAj (a; �) = bgBj (a; �) + bgSj (a; �) +WN;j (a;m�) ;

where, from (39) - (40), bgBj (a; �) = BN;j (a;m�) and bgSj (a; �) = VN;j (a;m�). It also follows that

these terms have the desired rate of convergence that holds uniformly over � as well since H is

independent of � and m� is a vector of J�real value functions that are continuous on �. Finally, we
de�ne bgRj (a; �) to be WN;j (a;m�) + bHbmR

� (j; a). By the previous reasoning WN;j (a;m�) already has

the desired stochastic order so the proof of Lemma 4 will be complete if we can show, generally, that

max1�j�J sup�;a2��AN

��� bHbmR
� (j; a)

��� = op

�
h4 + N�

p
Nh

�
. This is indeed true, since we have already

shown that



 bH�H


 = op

�
h4 + N�

p
Nh

�
and given that H is a conditional expectation

operator, this implies that kHk � 1, it follows from triangle inequality and the de�nition of operator
norm that max1�j�J sup�;a2��AN

��� bHbmR
� (j; a)

��� = op
�
N���.�

Proof of Lemma 5. When l = 0, this follows from Lemma 4 with h = O
�
N�1=7�. Other

values of l can also be shown very similarly, only more tedious. Since dim (A) = 1 then @jlja = @l

@al
,
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when l = 1, taking a derivative w.r.t. a on (38) we obtain

@

@a

� bH�H�m (j; a) =

JX
k=1

mk
@

@a

�bpX0;X;A (k; j; a)� pX0;X;A (k; j; a)

pX;A (j; a)

�

�
JX
k=1

mk
@

@a

� bpX0;X;A (k; j; a)bpX;A (j; a) pX;A (j; a) (bpX;A (j; a)� pX;A (j; a))

�

=
JX
k=1

mk

0@ 1
pX;A(j;a)

@
@a
(bpX0;X;A (k; j; a)� pX0;X;A (k; j; a))

�
@
@a
pX;A(j;a)

p2X;A(j;a)
(bpX0;X;A (k; j; a)� pX0;X;A (k; j; a))

1A
�

JX
k=1

mk

0@ bpX0;X;A(k;j;a)bpX;A(j;a)pX;A(j;a) @@a (bpX;A (j; a)� pX;A (j; a))

+
�
@
@a

bpX0;X;A(k;j;a)bpX;A(j;a)pX;A(j;a)
�
(bpX;A (j; a)� pX;A (j; a))

1A :

As seen in the proof of Lemma 4, it will be su¢ cient to show thatmax1�j;k�J supa2AN j
@
@a
bpX0;X;A (k; j; a)

� @
@a
pX0;X;A (k; j; a) j = op (1), and, max1�j;k�J supa2AN j

@
@a
bpX;A (j; a)� @

@a
pX;A (j; a) j = op (1) since we

assume that @
@a
pX0;X;A (k; j; a) and @

@a
pX;A (j; a) are continuous functions on a compact set A for any

j; k. Proceeding as in the proof of Lemma 4, �rst note that for any j; k

E

�
@

@a
bpX0;X;A (k; j; a)

�
= �1

h

Z
pX0;X;A (k; j; a+ wh) dK (w)

=

Z
@

@a
pX0;X;A (k; j; a+ wh)K (w) dw

=
@

@a
pX0;X;A (k; j; a) +O

�
h4
�
:

The �rst line in the display follows from a standard change of variable argument, then using integra-

tion by parts and Taylor�s expansion, the last equality above holds uniformly over A. It is easy to

verify that uniformly over A

var

�p
NTh3

@

@a
bpX0;X;A (k; j; a)

�
= O (1) :

As seen in Lemma 2, it then follows that max1�j;k�J supa2AN
�� @
@a
bpX0;X;A (k; j; a)� @

@a
pX0;X;A (k; j; a))

��
= Op(h

4 + N�
p
Nh3
). Similarly one can show max1�j;k�J supa2AN

�� @
@a
bpX;A (j; a)� @

@a
pX;A (j; a)

�� = Op(h
4

+ N�
p
Nh3
). It is easy to see that choosing h = O

�
N�1=7� will imply max1�j�J sup�;a2��AN j @@abg� (j; a)

� @
@a
g� (j; a) j = op (1).�
Proof of Lemma 6. Since R0 and M0 are J�dimensional subspace of twice continuously

di¤erentiable functions, DCT is applicable throughout. When p = 0 the result follows from Lemma

5. Consider the case when p = 1 and l = 0; for all 1 � j � J; 1 � k � L and � < 1=2, the

exact same arguments used in proo�ng Lemma 2 can then be used to show @
@�k
er� (j) = @

@�k
r� (j) +

@
@�k
erR� (j) with max1�j�J sup�;a2��AN ��� @@�kerR� (j)��� = op

�
N���, and since L is independent of �, the
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same arguments found in Lemma 3 can be used to show @
@�k
bm� (j) =

@
@�k
m� (j) +

@
@�k
bmR
� (j) with

max1�j�J sup�;a2��AN

��� @@�k bmR
� (j)

��� = op
�
N���. Apart from replacing (r�;m�) everywhere by

�
@
@�k
r�;

@
@�k
m�

�
,

we note that it is here that we need @2

@"@�k
u� (a; j; ") to be continuous on all a; j and �. Since H is

independent of �, the arguments used in Lemma 4 can be directly applied to show

@

@�k
bgj (a; �) = @

@�k
gj (a; �) +

@

@�k
bgBj (a; �) + @

@�k
bgSj (a; �) + @

@�k
bgRj (a; �) ;

such that

max
1�j�J

sup
�;a2��AN

���� @@�kbgBj (a; �)
���� = Op

�
h2
�
;

max
1�j�J

sup
�;a2��AN

���� @@�kbgSj (a; �)
���� = op

�
N �

p
Nh

�
;

max
1�j�J

sup
�;a2��AN

���� @@�kbgRj (a; �)
���� = op

�
h2 +

N �

p
Nh

�
;

where @
@�k
bgBj (a; �) = BN;j

�
a; @

@�k
m�

�
, @
@�k
bgSj (a; �) = VN;j

�
a; @

@�k
m�

�
and @

@�k
bgRj (a; �) =WN;j

�
a; @

@�k
m�

�
+ bH @

@�k
bmR
� (j; a) and these terms are de�ned in (39) - (41). For l = 2 and 1 � k; d � L, we simply

replace @
@�k

by @2

@�k@�d
and the exact same reasoning used when p = 1 can be applied directly. All

other cases of 0 � l; p � 2 can be shown similarly.�
Proof of Lemma 7. We�rst show that 1

�
� � �j (a; �; @agj)

�
is locally uniformly L2 (Q)�continuous

for all j with respect to a; �; @agj. More precisely, we need to show for a positive sequence �N = o (1)

and any (a; �; @agj) 2 A��� G(1)j that

lim
N!1

0@E
24 sup
k(a0�a;�0��;@ag0j�@agj)k<�N

��1 �"i � �j
�
a0; �0; @ag

0
j

��
� 1

�
"i � �j (a; �; @agj)

���2351A1=2

= 0:

(42)

To do this, take any


�a0 � a; �0 � �; @ag

0
j � @agj

�

 < �N , then we have for all j���j �a0; �0; @ag0j�� �j (a; �; @agj)
�� � C0

n
k(a0 � a; �0 � �)k+



@ag0j � @agj



G

o
+o
�
k(a0 � a; �0 � �)k2 +



@ag0j � @agj


2
G

�
� C0�N + o (�N) ;

this follows from Taylor�s theorem in Banach Space since �j is twice Fréchet di¤erentiable, see Chapter

4 of Zeidler (1986). Ignoring the smaller order term, this implies

�j (a; �; @agj)� C0�N � �j
�
a0; �0; @ag

0
j

�
� �j (a; �; @agj) + C0�N ;

�j (a; �; @agj)� C0�N � �j (a; �; @agj) � �j (a; �; @agj) + C0�N :
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Combining the inequalities above, it follows that supk(a0�a;�0��;@ag0j�@agj)k<�N j1
�
"i � �j

�
a0; �0; @ag

0
j

��
�1
�
"i � �j (a; �; @agj)

�
j is bounded above by 1

�
�j (a; �; @agj)� C0�N < "i � �j (a; �; @agj) + C0�N

�
.

This majorant takes value 1 with probability Q"
�
�j (a; �; @agj) + C0�N

�
�Q"

�
�j (a; �; @agj)� C0�N

�
and zero otherwise, then by Lipschitz continuity of Q", (42) holds as required. Since A � �

is a compact Euclidean set it has a known covering number. For G(1)j , since Gj � C2 (A) we

have G(1)j � C1 (A); given that dim (A) = 1 we can apply Corollary 2.7.3 of VW to show thatR1
0

r
logN

�
";G(1)j ; k�kG

�
d" <1, together with L2 (Q)�continuity of 1

�
� � �j (a; �; @agj)

�
, as shown

in the proof of Theorem 3 (part (ii)) in Chen et al. (2003), Fj is Q�Donsker for each j.�
Proof of Lemma 8. For all j, Fj is Q�Donsker and is locally uniformly L2 (Q)�continuous

with respect to a; �; @agj, as described in (42), Lemma 1 of Chen et al. (2003) implies that the

stochastic equicontinuity also holds with respect to the parameters that index the functions in Fj.�
Proof of Lemma 9. For any a and j write

p
N
� bFAjX (ajj)� FAjX (ajj)

�
= F1;N (a; j) + F2;N (a; j) ;

where

F1;N (a; j) =
1

T bpX (j) � 1p
N

N;TX
i=1;t=1

(1 [ait � a; xit = j]� FA;X (a; j)) ;

F2;N (a; j) = �
p
TFAjX (ajj)bpX (j) �

p
N (bpX (j)� pX (j)) :

De�ne Ca = fya 2 R : ya � ag, then C =
S
a2A Ca a classical VC-class of sets, for the de�nition VC-

class of sets see Pollard (1990). Since X is �nite, it is also necessarily a VC-class of sets. Then

for each x, 1p
NT

PN;T
i=1;t=1 (1 [ait � �; xit = j]� FA;X (�; x)) converges weakly to some tight Gaussian

process in l1 (A) since C �X is VC in A�X, by Lemma 2.6.17 in VW, and VC-classes of functions
is a Donsker class, see also Type I classes of Andrews (1994b). With an abuse of notation, for each x

let 1bpX(j) ( 1
pX(j)

) also denote a random element that takes value in l1 (A) such that the sample path of
1bpX(j) ( 1

pX(j)
) is constant over A. By standard LLN 1bpX(j) p! 1

pX(j)
and it follows by Slutsky�s theorem

that F1;N (�; x) converges weakly to a random element in l1 (A). In particular, the limit of F1;N (�; j)
is also a tight Gaussian process. From the �nite dimensional (�di) weak convergence, Gaussianity

is clearly preserved if we replace 1bpX(j) by 1
pX(j)

, but since bpX (j) � pX (j) = op (1) the remainder

term from the expansion 1bpX(j) � 1
pX(j)

can be used to construct a random element that converges

to zero in probability on A, so by an application of Slutsky�s theorem Gaussianity is preserved.

Tightness trivially follow since the multiplication of 1bpX(j) does not a¤ect the asymptotic tightness of
f 1p

NT

PN;T
i=1;t=1 (1 [ait � �; xit = j]� FA;X (�; j))g. Since the only random component of F2;N (�; j) is

from
p
NT (bpX (j)� pX (j)), which is a �nite dimensional random variable, then a similar argument
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to the one used previously can trivially show that F2;N (�; j) must also converge to a Gaussian process
which is tight l1 (A), where tightness follows from the (equi-)continuity of FAjX (ajj) on A. Thereforep
N
� bFAjX=j � FAjX=j

�
must converge to a tight Gaussian process in l1 (A) for all j since asymptotic

tightness is closed under �nite addition and, in this case, it is easy to see that Gaussianity is also

closed under the sum.�
Proof of Lemma 10. By MVT, for all a and j

FAjX (ajj; �0; @abg (�; �0))� FAjX (ajj; �0; @ag0;j (�; �0))

= q
�
�j (a; �0; @ag0;j (�; �0))

� �
�j (a; �0; @abgj (�; �0))� �j (a; �0; @ag0;j (�; �0))

�
;

where �j (a; �0; @ag0;j (�; �0)) is some intermediate value between �j (a; �0; @abgj (�; �0)) and �j (a; �0; @ag0;j (�; �0)).
Since �j (a; �0; @agj) is twice Fréchet continuously di¤erentiable on A at @ag0;j (�; �0), using the lin-
earization assumption, the argument analogous to Lemma 9 with Slutsky theorem can be used to

complete the proof.�
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Figure 1: QQ Plot of sample (standardized) b�1 versus standard normal, NT = 100.
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Figure 2: QQ Plot of sample (standardized) b�1 versus standard normal, NT = 500.
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Figure 3: QQ Plot of sample (standardized) b�1 versus standard normal, NT = 1000.
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Figure 4: QQ Plot of sample (standardized) b�1 versus standard normal, NT = 2500.
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Figure 5: QQ Plot of sample (standardized) b�2 versus standard normal, NT = 100.
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Figure 6: QQ Plot of sample (standardized) b�2 versus standard normal, NT = 500.
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Figure 7: QQ Plot of sample (standardized) b�2 versus standard normal, NT = 1000.
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Figure 8: QQ Plot of sample (standardized) b�2 versus standard normal, NT = 2500.
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b�1 b�trim1

NT & bias mbias std iqr bias mbias std iqr

100 1=5 0.0084 0.0309 0.1558 0.1350 -0.0310 0.0004 0.1934 0.1683

1=6 0.0278 0.0442 0.1359 0.1205 -0.0150 0.0098 0.1741 0.1518

1=7 0.0419 0.0541 0.1161 0.1035 -0.0002 0.0214 0.1568 0.1357

1=8 0.0536 0.0638 0.1092 0.0947 0.0109 0.0315 0.1375 0.1211

1=9 0.0647 0.0743 0.0996 0.0874 0.0153 0.0373 0.1328 0.1143

static 0.2620 0.2614 0.0187 0.0247 0.2620 0.2614 0.0187 0.0247

500 1=5 0.0193 0.0163 0.0618 0.0546 -0.0038 -0.0070 0.0739 0.0709

1=6 0.0320 0.0291 0.0546 0.0476 0.0014 0.0031 0.0689 0.0609

1=7 0.0422 0.0419 0.0497 0.0445 0.0063 0.0059 0.0635 0.0582

1=8 0.0508 0.0512 0.0456 0.0396 0.0128 0.0145 0.0600 0.0564

1=9 0.0597 0.0604 0.0414 0.0376 0.0195 0.0213 0.0573 0.0542

static 0.2607 0.2606 0.0076 0.0108 0.2607 0.2606 0.0076 0.0108

1000 1=5 0.0150 0.0141 0.0428 0.0388 -0.0045 -0.0067 0.0506 0.0463

1=6 0.0277 0.0264 0.0372 0.0343 0.0009 0.0006 0.0464 0.0429

1=7 0.0375 0.0374 0.0344 0.0316 0.0041 0.0038 0.0437 0.0425

1=8 0.0457 0.0468 0.0315 0.0294 0.0090 0.0085 0.0413 0.0413

1=9 0.0536 0.0543 0.0291 0.0294 0.0143 0.0143 0.0398 0.0402

static 0.2610 0.2608 0.0054 0.0073 0.2610 0.2608 0.0054 0.0073

2500 1=5 0.0119 0.0118 0.0258 0.0246 -0.0023 -0.0036 0.0305 0.0291

1=6 0.0229 0.0235 0.0225 0.0221 0.0012 0.0017 0.0279 0.0269

1=7 0.0320 0.0332 0.0206 0.0198 0.0032 0.0033 0.0270 0.0280

1=8 0.0405 0.0411 0.0200 0.0198 0.0055 0.0062 0.0267 0.0266

1=9 0.0482 0.0486 0.0193 0.0190 0.0089 0.0087 0.0263 0.0259

static 0.2610 0.2609 0.0034 0.0045 0.2610 0.2609 0.0034 0.0045

Table 1: h& = 1:06s(NT )�& is the bandwidth, for various choices of &, used in the nonparametric

estimation, s = denotes the standard deviation of faitgN;T+1i=1;t=1; the statistics from estimating the

static model are reported under static.
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b�2 b�trim2

NT & bias mbias std iqr bias mbias std iqr

100 1=5 0.0657 0.0299 0.2026 0.1532 0.1121 0.0477 0.2856 0.1810

1=6 0.0632 0.0290 0.1843 0.1520 0.1014 0.0446 0.2529 0.1836

1=7 0.0567 0.0299 0.1670 0.1388 0.0948 0.0371 0.2458 0.1805

1=8 0.0513 0.0259 0.1535 0.1324 0.0871 0.0404 0.2201 0.1801

1=9 0.0464 0.0225 0.1442 0.1275 0.0858 0.0347 0.2168 0.1664

static 0.1303 0.1316 0.0326 0.0432 0.1303 0.1316 0.0326 0.0432

500 1=5 0.0383 0.0364 0.0820 0.0769 0.0513 0.0454 0.0996 0.0926

1=6 0.0329 0.0304 0.0772 0.0728 0.0473 0.0398 0.0990 0.0920

1=7 0.0330 0.0315 0.0742 0.0715 0.0472 0.0385 0.0964 0.0891

1=8 0.0335 0.0321 0.0711 0.0705 0.0442 0.0330 0.0922 0.0849

1=9 0.0346 0.0331 0.0660 0.0655 0.0430 0.0313 0.0891 0.0830

static 0.1310 0.1314 0.0141 0.0195 0.1310 0.1314 0.0141 0.0195

1000 1=5 0.0267 0.0262 0.0590 0.0565 0.0346 0.0337 0.0669 0.0662

1=6 0.0212 0.0212 0.0550 0.0529 0.0281 0.0261 0.0646 0.0619

1=7 0.0214 0.0213 0.0519 0.0499 0.0277 0.0247 0.0616 0.0559

1=8 0.0247 0.0247 0.0491 0.0461 0.0288 0.0250 0.0588 0.0562

1=9 0.0263 0.0266 0.0458 0.0431 0.0296 0.0245 0.0560 0.0531

static 0.1300 0.1302 0.0095 0.0137 0.1300 0.1302 0.0095 0.0137

2500 1=5 0.0202 0.0219 0.0369 0.0368 0.0259 0.0273 0.0401 0.0397

1=6 0.0156 0.0160 0.0346 0.0345 0.0206 0.0210 0.0384 0.0386

1=7 0.0154 0.0161 0.0335 0.0340 0.0186 0.0190 0.0381 0.0366

1=8 0.0191 0.0206 0.0331 0.0337 0.0203 0.0213 0.0372 0.0366

1=9 0.0237 0.0249 0.0322 0.0324 0.0231 0.0232 0.0365 0.0356

static 0.1306 0.1305 0.0060 0.0079 0.1306 0.1305 0.0060 0.0079

Table 2: h& = 1:06s(NT )�& is the bandwidth, for various choices of &, used in the nonparametric

estimation, s = denotes the standard deviation of faitgN;T+1i=1;t=1; the statistics from estimating the

static model are reported under static.

68


