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The present paper deals with sequential designs aimed at bal-
ancing the allocations of two competing treatments in the presence
of prognostic factors. After giving a theoretical framework on the
optimality of different balanced designs that can arise when some
covariates are taken into account, we address the problem of finding
covariate-adaptive procedures which are fully randomized and high
order efficient from an inferential viewpoint. We propose a new family
of covariate-adaptive randomized designs that can be regarded as a
suitable extension of Efron’s biased coin and it represents the higher
order approximation to balance treatments, both globally and also
across covariates. Ergodic Markov chains and martingale methods
are used to establish the optimal properties of the suggested designs,
in terms of loss of precision and predictability. The performances
of this proposal are also illustrated through a simulation study and
compared with those of other procedures suggested in the literature.

1. Introduction. In the biomedical and pharmaceutical research for
treatment comparisons randomized clinical trials are commonly considered
to be the gold standard, since a randomization component in the assignments
tends to mitigate several types of bias, including the accidental bias due to
unknown confounders/disturbances and the selection bias induced by the
investigators. Often, another important requirement is that the trial should
be balanced in order to optimize inference about the treatment effects. This
is particularly true in the contest of phase-III clinical trials, where patients
are sequentially assigned to one of two available treatments, say A and B,
and “nearly balanced” groups are always deemed to be desirable since they
allow to stop the experiment at any time in an excellent inferential setting.

To obtain a valid compromise between these goals, Efron (1971) intro-
duced his Biased Coin Design (BCD), namely a sequential allocation rule
randomized by means of the flipping of a biased coin which at each step
favors the under represented treatment. Let δ1, . . . , δn, . . . denote the allo-
cation sequence, with δn = 1 if the n-th subject is assigned to treatment A,
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ance, Covariate-Adaptive Design.
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and 0 otherwise, Efron defined the BCD(p) by letting

(1.1) Pr(δn+1 = 1 | δ1, . . . , δn) =





p Dn < 0
1
2 Dn = 0 , n ≥ 1,

1− p Dn > 0

where Dn = 2
∑n

i=1 δi − n represents the difference between the two groups
after n steps (with D0 = 0) and p ≥ 1/2 is the bias parameter. The choice
p = 1 corresponds to a permuted block design (PBD) with size 2, i.e. the
allocations are perfectly balanced at each step but 50% of the assignments
are deterministic, while for p = 1/2 the design is completely randomized
(CR). To obtain a valid trade-off between balance and predictability (i.e.
“lack of randomness”), Efron suggested p = 2/3.

Several extensions of Efron’s BCD have been proposed in the literature
(see e.g. Wei (1978a), Atkinson (1982), Soares and Wu (1983), Smith (1984a)
and Chen (1999)). In particular, Wei (1978a) introduced the Adaptive Bi-
ased Coin Design by assigning the (n+ 1)-th patient to A with probability

(1.2) Pr(δn+1 = 1 | δ1, . . . , δn) = f(Dn/n) , n ≥ 1,

where f : [−1; 1] → [0; 1] is a continuous and decreasing function with
f(x) = 1−f(−x). Adopting this class of procedures, which are based on the
probabilistic structure of non-homogeneous Markov chains, the allocations
are asymptotically balanced, namely limn→∞Dn/n = 0 a.s. Also, assuming
that f(·) is continuously differentiable with bounded derivative at 0, Wei
showed that Dn/

√
n is asymptotically normal (see also Smith (1984a)).

Clearly, Efron’s coin cannot be regarded as a special case of the Adap-
tive Biased Coin Design, since the allocation probability function in (1.1)
is discontinuous. A proper generalization of the BCD(p) has been recently
introduced by Baldi Antognini and Giovagnoli (2004), who define the Ad-
justable Biased Coin Design (ABCD) by letting

Pr(δn+1 = 1 | δ1, . . . , δn) = F (Dn) , n ≥ 1 ,

where F : Z → [0; 1] is a decreasing and symmetric function with F (x) =
1−F (−x), so that at every step the tendency towards balance is stronger the
more we move away from it. Ergodic random walks represent the underlined
probabilistic structure of the ABCD, which is asymptotically balanced and
also, unless F (·) is constant (namely the CR), Dn/

√
n → 0 in probability.

Thus the BCD(p), and more in general the ABCD class, represents a high
order approximation to balance and this is one of the main reasons for which
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Efron’s coin is still the topic of several papers. Indeed, as showed recently
by Hu and Rosenberger (2003) and Chen (2006), the inferential precision
- in terms of both power of the test or variance of parameter estimates -
decreases as the variability of the randomized design increases, so that the
ABCD (and in particular Efron’s coin) is asymptotically the best procedure
for balancing the allocations of two treatments, since the balance is targeted
with minimum variance (see Baldi Antognini (2008), Hu et al. (2009) and
Markaryan and Rosenberger (2010)).

One of the major drawbacks of the ABCD is that ignores covariates or
prognostic factors, which are usually taken into account in comparative clin-
ical trials. To overcome this disadvantage, several allocation rules have been
suggested aimed to achieve balance among the set of covariates of interest.
Following Rosenberger and Lachin (2002), these procedures fall into the class
of covariate-adaptive randomization, since the allocation probability at each
step depends on the assignments and the covariates of previous subjects
and on the current patient’s covariate, but does not depend on the observed
responses (see Hu and Rosenberger, 2006). For instance, adopting an ap-
proach based on optimal design theory, Atkinson (1982) and Smith (1984a;
1984b) assume the classical linear model without treatment-covariate in-
teractions and propose allocation rules aimed at balancing the allocations
across the covariates in order to minimize the variance of the estimated dif-
ference between the treatment effects. See also Begg and Iglewicz (1980) for
a simplified version of these proposals.

Although Smith and Atkinson’s procedures can be applied for any type of
prognostic factors, in the large majority of practical situations the covariates
of interest are categorical and, even in the quantitative case, these are often
categorized by adopting suitable thresholds. Thus, such trials are usually
stratified with respect to the chosen set of prognostic factors and in this set-
ting one of the most popular technique is the minimization method proposed
by Pocock and Simon (1975). Originally introduced by Taves (1974) in a de-
terministic version, this procedure is aimed to achieve the so-called marginal
balance, so that the balance between the treatment groups is forced within
each level of every covariate. Since non-randomized allocations are subject
to several types of bias, this proposal has been later modified by introduc-
ing a random mechanism based on a biased coin (Wei, 1978b); moreover,
minimization methods have been recently modified in order to differentiate
the role of the covariates and, consequently, the need for balance between
the levels of the considered factors, motivated by the fact that in practical
situations some factors may have a major/minor impact on the outcome
with respect to others (see Signorini et al. (1993) and Heritier et al. (2005)).
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An alternative approach is represented by stratified randomization meth-
ods, which are aimed to achieve the so called joint balance or balance
within-strata, i.e. within each combination of the levels of the prognostic
factors. Under these procedures a separate randomization sequence is gen-
erated within each stratum, usually based on CR or PBD (Zelen, 1974).
However, as is well-known, CR may induce strong departures from balance,
in particular for small sample trials, whereas permuted block designs are not
fully randomized and tend to be high predictable. Furthermore, these proce-
dures could induce a significant loss of precision as the number of covariates
grows, so that they may be unsuitable for practical situations.

In general, there are only few theoretical results aimed at justifying min-
imization methods and stratified randomization procedures. To our knowl-
edge, until now only Wei (1978b) showed that under the linear model with-
out interactions (both treatment-covariate and among covariates) the bias
term of the MSE of the BLUE of the parameters vanishes if the design is
marginally balanced. Moreover, stratified randomization methods are solely
based on intuition, since the requirement of joint balance does not have a
formal mathematical justification (see Rosenberger and Sverdlov (2008)).
Furthermore, the properties of the entire class of covariate-adaptive proce-
dures as well as the comparisons of different methods have been approached
almost exclusively through simulations.

The aim of this paper is to give a theoretical analysis of sequential random-
ized designs aimed at balancing the allocations of two competing treatments
in the presence of prognostic factors, also addressing the problem of finding
covariate-adaptive procedures which are fully randomized and optimal from
an inferential viewpoint. After giving a theoretical discussion on the opti-
mality of different balanced designs that can arise when some covariates are
taken into account in the planning phase, we introduce and analyze a new
class of stratified randomization methods, called the Covariate-Adaptive Bi-
ased Coin Design (C-ABCD), aimed at achieving the balance of treatments
both marginally and within-strata. The suggested procedure is quite simple
to implement, very flexible and allows to diversify the role of the covari-
ates in order to force in a different way the balance between strata and
between the different levels of the involved factors. Through the martin-
gale limit theory and the properties of ergodic Markov chains we prove that
the C-ABCD is asymptotically high order efficient, since it represents the
higher order approximation of balance (jointly, marginally and also globally)
with respect to the chosen set of covariates. We analyze the loss of preci-
sion induced by the experiment, showing that under the C-ABCD such loss
tends to 0 asymptotically, independently of the number of factors taken into
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consideration. Moreover, we show some properties of Smith and Atkinson’s
procedures, stressing similarities and differences between our proposal and
these methods. Finally, a simulation study is performed in order to compare
the C-ABCD with the minimization method proposed by Pocock and Simon
(1975) and Atkinson’s rules. To avoid cumbersome notation, in this paper we
restrict ourselves to the case of two covariates (without loss of generality).
The extension to several prognostic factors is straightforward.

The paper is organized as follows. Starting from the terminology in Section
2, Section 3 deals with the optimality of different types of balanced designs.
Section 4 introduces the C-ABCD, while Section 5 describes properties of
the suggested procedure in terms of both loss and predictability. Section 6
provides a brief discussion about the choice of the randomization functions,
which may be useful for the practitioners and in Section 7 the properties
of the C-ABCD are compared with those of other procedures through a
simulation study. Some of the technical proofs are given in the Appendix.

2. The Linear Model with Covariates. Let A and B be two com-
peting treatments. We suppose that for each subject entering the trial we
observe a vector Z of concomitant variables, which may be quantitative or
categorical (block effects): thus we take each observed covariate to stand
either for a numerical value or a vector of indicators of the levels. We as-
sume the covariates to be random, i.e. they are not under the experimenters’
control, but they can be measured before assigning a treatment. Then, the
treatments are assigned according to a given randomization rule and a re-
sponse Y is observed. Conditionally on the covariates and the treatments,
patients’ responses are assumed to be independent.

Let Yi denote the outcome for the i-th subject, a common model for
the response is the homoscedastic linear model which, conditionally on the
covariates and the treatment, is given by

E(Yi) = δi µA + (1− δi) µB + f(zi)
tβ

V (Yi) = σ2 i = 1, . . . , n,
(2.1)

where δi is a treatment indicator variable, with δi = 1 or 0 if the i-th subject
is assigned to treatment A or B respectively, µA and µB are the treatment
effects, zi is the vector of covariates observed on the i-th individual, f(·) is a
known vector function which may include interactions among the covariates,
and β is a q-dim vector of covariate effects.

At the end of the trial, suppose that n assignments of either treatment A
or B have been made to patients with i.i.d. covariates Z1, . . . ,Zn. Letting
Y = (Y1, . . . , Yn)

t, δ = (δ1, . . . , δn)
t and F =

(
f(zi)

t
)
, model (2.1) can be



6 A. BALDI ANTOGNINI, M. ZAGORAIOU

written as follows

E(Y ) = Xγ = δ µA + (1− δ) µB + Fβ, V (Y ) = σ2In,

where X = (δ;1 − δ;F), γ = (µA, µB ,β)
t denotes the vector of unknown

parameters and In is the n−dim identity matrix. Let γ̂ be the least square
estimator of γ, then if (XtX)−1 exists, given the covariates Z1, . . . ,Zn and
the design δ, the variance-covariance matrix is

(2.2) V (γ̂) = σ2(XtX)−1 =
σ2

n
M−1

with M the average (per observation) Fisher information matrix

M =
1

n




δtδ δt(1− δ) δtF
(1− δ)tδ (1− δ)t(1− δ) (1− δ)tF

Ftδ Ft(1− δ) FtF




=
1

n




nA 0 δtF
0 nB (1− δ)tF

Ftδ Ft(1− δ) FtF


 ,

(2.3)

where nA = δtδ = δt1 and nB = (1 − δ)t(1 − δ) = (1 − δ)t1 = n − nA
denote the number of subjects assigned to A and B, respectively.

For numerical covariates, M−1 exists if no serious collinearity among them
arises. When some of the covariates are categorical M may be singular, but
with some care M−1 may be replaced by the Moore-Penrose inverse M−.

3. Balance and optimality. As is well-known, for any fixed sample
size, balancing the covariates is a desirable property for inference and now
we provide a brief explanation for this. According to Optimal Design Theory
(see, for instance, Pukelsheim (2005)), the problem lies in finding the design
that minimizes the loss of information expressed by a suitably chosen real
function Φ of matrix argument, usually called optimality criterion.

Under model (2.1), i.e. in the absence of treatment-covariate interaction,
the covariates affect the treatment responses in the same way for all patients
with the same covariate profile z. Indeed, the expected difference between
the treatment effects is µA − µB , so that the superiority of treatment A
on B (or vice versa) is uniformly constant over the covariates. In this case
it is customary to regard the vector β as nuisance parameter, so that the
inferential interest typically lies in estimating µA − µB , or µA and µB, as
precisely as possible. Consequently, the design for optimal inference consists
in allocating A and B so as to minimize one of the following criteria:
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C1 trace-optimality: trV (µ̂A; µ̂B)= tr
(
n−1σ2ΛtM−1Λ

)
,

C2 D-optimality: detV (µ̂A; µ̂B) = det
(
n−1σ2ΛtM−1Λ

)
,

where Λt = (I2;02×q), 02×q denotes the (2 × q)−dim matrix of zero’s, and
M−1 replaced by M− if needed.

For given covariates a balanced design, namely an allocation vector δ which
satisfies both the following properties

B1: δtδ = (1− δ)t(1− δ),

B2: δtF = (1− δ)tF =
1

2
1tF,

is optimal for model (2.1) with respect to any convex criterion Φ of the
information matrix M, which is invariant with respect to permutation of
the first two rows and two columns simultaneously, like for instance C1 and
C2. To see this, assume that conditions B1+B2 hold for the information
matrix M∗, so that

(3.1) M∗ =
1

2n




n 0 1tF
0 n 1tF

Ft1 Ft1 2FtF


 .

For any information matrix M of the type (2.3), by the simultaneous per-
mutation of the first two rows and two columns we obtain the information
matrix M̃ corresponding to the design which switches treatments A and B.
Clearly Φ(M̃) = Φ(M) and

1

2
M+

1

2
M̃ =

=
1

2n




nA 0 δtF
0 nB (1− δ)tF

Ftδ Ft(1− δ) FtF


+

1

2n




nB 0 (1− δ)tF
0 nA δtF

Ft(1− δ) Ftδ FtF




=
1

2n




n 0 1tF
0 n 1tF

Ft1 Ft1 2FtF


 = M∗ ,

then by convexity

Φ(M∗) = Φ

(
1

2
M+

1

2
M̃

)
≤ 1

2
Φ(M) +

1

2
Φ(M̃) = Φ(M).

Remark 3.1. An alternative model that accounts for treatment-covariate
interactions is

E(Y ) = δµA + (1− δ)µB +∆FβA + (In −∆)FβB, V (Y ) = σ2In
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where ∆ = diag(δ) and βA, βB are q-dim vectors of possibly different re-
gressor parameters for A and B, respectively. Under this model the relative
performance of the treatments depends on the patient’s covariates, so that
both (µA, µB) and (βA,βB) are of interest. Letting γ = (µA, µB ,βA,βB)

t,
(2.2) still holds with

M =
1

n




nA 0 δtF 0
0 nB 0 (1− δ)tF

Ftδ 0 Ft∆F 0
0 Ft(1− δ) 0 Ft(In −∆)F




and an important issue lies in choosing the design in order to minimize
log detV (γ̂). Furthermore, in addition to C1-C2, other relevant criteria are
now detV (β̂A, β̂B), detV (β̂A−β̂B), trV (β̂A, β̂B) and trV (β̂A−β̂B). These
criteria are convex functions of M, invariant with respect to permutations
of the bottom two block rows and the two right-hand block columns of M.
Thus, if conditions B1 and B2 hold the ensuing information matrix

M∗∗ =
1

2n




n 0 1tF 0
0 n 0 1tF

Ft1 0 2FtF 0
0 Ft1 0 2FtF




is invariant wrt permutations of the bottom two block rows and the two right-
hand block columns, as well as the first two rows and columns. Therefore M∗∗

is optimal wrt the aforementioned criteria by the same argument as above.

3.1. What kind of “balance” is desirable?. To clarify the different types
of balance that can arise in the presence of covariates and their properties it
may be useful to explain the meaning of the definition of balanced allocation
made by B1+B2. Letting Fn = (1 ;F), conditions B1+B2 can be simply
rewritten as follows

(3.2) (2δ − 1)tFn = 0tn,

where bt
n = (2δ−1)tFn is usually called the imbalance vector. Condition B1

guarantees simply that Dn = (2δ−1)t1 = 0, namely the two treatments are
globally equireplicated in the trial. As regards B2, consider two covariates
Z = (T,W ) and let either

• f(z) = (t, w)t, without interactions among covariates,

or
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• f(z) = (t, w, tw)t, which includes the interaction effect.

When both covariates are quantitative the notation is unambiguous and
condition B2 means the equality of the sums of the covariates in the groups
assigned to A and B, respectively. Together with B1, it ensures that for
each covariate the averages in the two treatment groups are the same. With
interactions, condition B2 also implies that the sums of the cross products
in the two groups are equal, so that B1+B2 imply equal covariances.

In the case of categorical covariates the notation and the interpretation
are quite different. For instance, suppose that the covariate T is categorized
into t0, t1, . . . , tJ levels, so that it can be represented by a J-dim vector T

of dummy variables; analogously, let w0, w1, . . . , wL the levels of W , which
can be represented by a L-dim vector W of dummies (where t0 and w0

are the reference categories). In this setting tw corresponds to the vector
T ⊗W (similarly if one of the covariates is quantitative and the other one
categorical). After n assignments, let Dn(tj) denote the imbalance between
the two arms within the level tj of T (j = 0, . . . , J) and, analogously, Dn(wl)
represent the imbalance at the category wl of W (l = 0, . . . , L). Moreover,
Dn(tj, wl) is the imbalance within the row-column intersection (stratum)
identified by the pair of categories (tj , wl) (for j = 0, . . . , J and l = 0, . . . , L).
In the absence of interactions among covariates, condition (3.2) becomes

bt
n = (Dn,Dn(t1), . . . ,Dn(tJ),Dn(w1), . . . ,Dn(wL)) = 0t

n ,

stating that A and B are equally replicated at every level of each blocking
factor, i.e. the so-called marginal balance of the covariates. On the other
hand, if the considered model contains all the interactions, bn includes also
all the imbalance terms Dn(tj , wl) associated with each stratum (excepting
those related to the reference categories t0 and w0), i.e.

bt
n = (Dn,Dn(t1), . . . ,Dn(tJ),Dn(w1), . . . ,Dn(wL),Dn(t1, w1), . . . ,Dn(tJ , wL)) .

Thus, condition (3.2) means that A and B are equally replicated also within
every stratum, the so-called joint balance or balance within strata, which
clearly implies marginal balance. When the model is not full, then bn con-
tains all the imbalance terms corresponding to the included interactions.

3.2. Allocation rules and loss of precision. Under model (2.1), the infer-
ential interest typically lies in estimating the difference µA−µB between the
treatment effects as precisely as possible. Thus it is customary to adopt C1
and, assuming Ft

nFn non-singular, this criterion can be rewritten as follows

(3.3) trV (µ̂A; µ̂B) =
σ2

n

(
1− Ln

n

)−1

,
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where

(3.4) Ln = bt
n

(
Ft
nFn

)−1
bn = bt

n

(
n 1tF

Ft1 FtF

)−1

bn

is the loss associated with an experiment involving n patients.
By assuming the DA-optimality criterion, Atkinson (1982) introduced his

biased coin design which is aimed, under model (2.1), at minimizing (3.3)
sequentially. As showed by Smith (1984b) such procedure, denoted by DA-
BCD, assigns the (n + 1)-st patient to treatment A with probability

(3.5)
[1− (1;f (zn+1)

t)(Ft
nFn)

−1bn]
2

[1− (1;f (zn+1)t)(F
t
nFn)−1bn]2 + [1 + (1;f (zn+1)t)(F

t
nFn)−1bn]2

.

On the other hand, Smith (1984a) by assuming the covariate distribution a-
priori known and, by approximating Ft

nFn ' nQ withQ = limn→∞ n−1Ft
nFn

non-singular, analysed a modified version of the DA-BCD which assigns A
with probability

(3.6) ψ(n−1f(zn+1)
tQ−1bn) ,

where ψ(·) : [−1, 1] → [0, 1] is a non-increasing function, twice continuously
differentiable, with ψ(−x) = 1− ψ(x).

Observe that, analogously to criterion C1 in (3.3), Ln represents a funda-
mental measure of loss of precision even if the inferential goal consists in the
joint estimation of the treatment effects, as the following proposition shows.

Proposition 3.2. Assuming model (2.1), the D-optimality criterion C2

can be rewritten as

detV (µ̂A; µ̂B) =
4σ4

n [n− 1tF(FtF)−1Ft1]

(
1− Ln

n

)−1

.

Proof. See Appendix A.

Thus, adopting either criteria C1 or C2, the inferential precision depends
on the design only through the loss Ln in (3.4), which depends on the allo-
cations and the covariates and it is identically zero if condition (3.2) holds.

As mentioned previously, several designs have been suggested in the lit-
erature aimed to achieve marginal balance between the treatments. In the
case of two prognostic factors, a marginal procedure can be described as fol-
lows: when the (n+1)-th patient with profile (tj , wl) arrives, a weighted sum
D̃n = ω1Dn(tj) + ω2Dn(wl) is computed and treatment A is assigned with
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probability p ≥ 1/2 if D̃n < 0, 1/2 if D̃n = 0 and (1−p) if D̃n > 0 (for several
covariates, D̃n is a weighted sum of all marginal imbalances corresponding
to the patient’s profile). The choice p = 1 corresponds to Taves’s (1974)
minimization method, while Pocock and Simon (1975) analyzed p = 3/4.
However, in the presence of interactions among covariates, marginal balance
can have a critical impact in terms of loss, as the following example shows.

Example 3.3. Assume model (2.1) with Z = (T,W ), where T and W
are binary covariates potentially interacting. If the adopted design is only
marginally balanced (but not jointly), then b

t
n = (0, 0, 0,Dn(t1, w1)) and

straightforward calculations show that the loss in (3.4) becomes

Ln = D2
n(t1, w1)

(
1

Nn(t0, w0)
+

1

Nn(t1, w0)
+

1

Nn(t0, w1)
+

1

Nn(t1, w1)

)
,

where Nn(tj, wl) denotes the number of subjects within this stratum after
n assignments (j, l = 0, 1). Since the design is marginally balanced, then
|Dn(tj , wl)| is constant for j, l = 0, 1. Moreover, letting kn = minjlNn(tj, wl)
note that 1 ≤ |Dn(tj , wl)| ≤ kn and thus

Ln ≤ k2n

(
22/kn

)
= 4kn.

As a numerical example, set for instance n = 100 with D100(t1, w1) = 10.
When N100(t0, w0) = 30, N100(t1, w0) = 20 and N100(t0, w1) = 40 we have
L100/100 ' 0, 208, while if N100(t0, w0) = N100(t0, w1) = N100(t1, w0) = 10
then L100/100 ' 0, 314. It is worth noticing that there are several marginally
unbalanced designs that perform better when compared to marginally balanced
ones. For instance, setting as previously n = 100 and D100(t1, w1) = 10, an
allocation s.t. D100(t0, w0) = D100(t0, w1) = 4 and D100(t1, w0) = 6, with
N100(t0, w0) = N100(t0, w1) = N100(t1, w0) = 10, gives L100/100 ' 0, 082.

Thus, in the absence of balance within-strata, the loss of precision may
have a significant impact even if the design is marginally balanced; further-
more, this loss can be amplified by the random nature of the covariates.

4. The C-ABCD. Since marginal balance does not always promote
efficiency, ensuring balance within every stratum could be a crucial issue.
In this Section we describe the natural modification of the ABCD in the
presence of covariates and from now on we name this procedure Covariate-
Adaptive Biased Coin Design (C-ABCD).

Let again Z = (T,W ) be the covariates of interest, with levels (or codes)
tj (j = 0, . . . , J) and wl (l = 0, . . . , L) respectively, and assume that {Zi, i =
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1, 2, . . .} is a sequence of i.i.d. random vectors, where each Zi is distributed
in the population of interest according to a given (joint) pdf

Pr(Zi = (tj , wl)) = pjl, for j = 0, . . . , J and l = 0, . . . , L,

where pjl > 0 and
∑J

j=0

∑L
l=0 pjl = 1. For any given stratum identified by

the pair (j, l) (j = 0, . . . , J ; l = 0 . . . , L), let Fjl(·) : Z → [0, 1] be a non-
increasing and symmetric function with Fjl(−x) = 1−Fjl(x) ∀x ∈ Z, where
Fjl(·)’s are called generating functions and govern the request of balance
within each covariate profile.

Let =n = σ(Z1, . . . ,Zn; δ1, . . . , δn) be the sigma-field generated by the
sequence of assignments and patients’ covariates; when the (n + 1)-th sub-
ject is ready to be randomized and its covariate profile Zn+1 = (tj , wl) is
recorded, it will be assigned to treatment A with probability

(4.1) Pr (δn+1 = 1|=n,Zn+1 = (tj , wl)) = Fjl(Dn(tj , wl)) for any (j, l).

Clearly, different choices of the generating functions for each covariate pat-
tern meet the need for more or less balance at different population strata,
as it will be further explained in the following sections.

4.1. Probabilistic structure. Within each stratum (j, l), for any choice
of the generating function Fjl(·) the sequence {Dn(tj , wl)}n∈N is a time-
homogeneous Markov chain on the integers Z with D0(tj, wl) = 0 and tran-
sition probabilities

Pr (Dn+1(tj, wl) = k | Dn(tj, wl) = x) =





pjlFjl(x) k = x+ 1

1− pjl k = x

pjlFjl(−x) k = x− 1

.

Unless the degenerate case Fjl(x) = 1/2 for any x (namely the complete
randomization), the chain is ergodic, time-reversible and aperiodic with sta-
tionary distribution ξjl given by the equilibrium equations

ξjl(x) = ξjl(x− 1)λjl(x) ∀x ∈ Z

ξjl(0) =

[
1 +

∞∑

s=1

s∏

x=1

λjl(x) +
∞∑

s=1

s∏

x=1

(λjl(1− x))−1

]−1

,
(4.2)

where for any integer x

(4.3) λjl(x) =
pjlFjl(x− 1)

pjlFjl(−x)
=
Fjl(x− 1)

Fjl(−x)
.
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Since

(4.4) λjl(x) = (λjl(1− x))−1 ∀ x ≥ 1,

the stationary distribution ξjl in (4.2) is symmetric with ξjl(x) = ξjl(−x) for
any x ∈ Z, and also unimodal, due to the fact that the sequence {λjl(x)}x∈Z
is non-increasing. Thus, 0 represents both the expectation and the mode of
ξjl, where from (4.4)

(4.5) ξjl(0) =

[
1 + 2

∞∑

s=1

s∏

x=1

λjl(x)

]−1

.

Observe that {Dn(t0, w0), . . . ,Dn(tj , wl)}n∈N is a multidimensional process
in ZJ×L where each component is an ergodic random walk and at each step
only one of them is activated on the basis of the random entry of a given
patient with a specific covariate profile.

Remark 4.1. From (4.3), within each stratum (j, l) the stationary law
ξjl does not depend on the probability distribution of the covariates. Thus,
the asymptotic behavior of the stratum imbalance, as well as its asymptotic
variability, depends only on the chosen generating function Fjl(·). Neverthe-
less, the covariate distribution plays a central role in terms of convergence
towards stationarity, since the more a given stratum is over-represented, the
more the corresponding chain evolves rapidly.

After n assignments, for any given level tj of the covariate T the marginal
imbalance is given by Dn(tj) =

∑L
l=0Dn(tj , wl). Therefore, {Dn(tj)}n∈N is

a time-homogeneous Markov chain on the integers Z with D0(tj) = 0 and

Pr (Dn+1(tj) = k | Dn(tj) = x) =





∑L
l=0 pjlFjl(x) k = x+ 1

1−∑L
l=0 pjl k = x

∑L
l=0 pjlFjl(−x) k = x− 1

,

which is also ergodic, aperiodic and time-reversible, with stationary dis-
tribution ξj that can be easily derived from the equilibrium equations.
Analogously, the marginal imbalance for any level wl of W is Dn(wl) =∑J

j=0Dn(tj , wl) and its probabilistic structure can be derived as previously.

Also, let Dn =
∑J

j=0

∑L
l=0Dn(tj, wl) be the global imbalance between the

two treatments after n steps, then {Dn}n∈N is time-homogeneous Markov
chain on Z with D0 = 0 and transition probabilities

Pr (Dn+1 = k | Dn = x) =

{∑J
j=0

∑L
l=0 pjlFjl(x) k = x+ 1

∑J
j=0

∑L
l=0 pjlFjl(−x) k = x− 1

.
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This chain is ergodic and time-reversible so that the stationary distribution
ξ exists and can be easily derived as previously. However, since the chain is
periodic, with period 2, it does not converge in law to ξ.

Contrary to the asymptotic behavior of the stratum imbalance, where
ξjl depends only on the chosen generating function Fjl(·), the stationary
distributions ξj and ξ of the marginal imbalance {Dn(tj)}n∈N and the global
one {Dn}n∈N depend also on the probability distribution of the covariates.

Remark 4.2. Choosing the same generating function for every stratum
by letting Fjl(·) = F (·) for any j = 0 . . . , J and l = 0, . . . , L, (4.1) becomes

Pr (δn+1 = 1|=n,Zn+1 = (tj , wl)) = F (Dn(tj , wl)) ∀(j, l),
so that the C-ABCD does not coincide with the ABCD (Baldi Antognini and
Giovagnoli, 2004). Under this choice the asymptotic behavior of the strata
imbalance will be the same for every stratum, coinciding also with that of
the marginal and global imbalance. Indeed, for any j = 0 . . . , J ; l = 0, . . . , L
{Dn(tj , wl)}n∈N, {Dn(tj)}n∈N, {Dn(wl)}n∈N and {Dn}n∈N are chains hav-
ing the same stationary distribution ξ given by

ξ(0) =

[
1 + 2

∞∑

s=1

s∏

x=1

λ(x)

]
and ξ(x) = ξ(x− 1)λ(x) ∀x ∈ Z,

where λ(x) = F (x− 1)/F (−x) for any integer x.

4.2. Balance. Starting from the probabilistic structure of ergodic ran-
dom walks it is possible to prove that the optimal balancing properties of
the ABCD still hold even in the presence of covariates, showing that the
C-ABCD is asymptotically balanced within each stratum, within each level
of the covariates and also globally.

Theorem 4.3. For any choice of the generating functions, as n tends
to infinity the C-ABCD is jointly balanced

Dn(tj , wl)

Nn(tj , wl)
→ 0 a.s. ∀j = 0, . . . , J ; l = 0, . . . , L.

Furthermore, for each covariate the C-ABCD is asymptotically balanced
within each level

Dn(tj)

Nn(tj)
→ 0 a.s. ∀j = 0, . . . , J and

Dn(wl)

Nn(wl)
→ 0 a.s. ∀l = 0, . . . , L

and also globally
Dn

n
→ 0 a.s.
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Proof. See Appendix B.

In the absence of covariates, as showed by Baldi Antognini and Giovagnoli
(2004) and recently recalled by Hu et al. (2009) and Markaryan and Rosen-
berger (2010) for the special case of Efron’s coin, the ABCD is high order
efficient since it converges to balance faster than other coin designs. This
can also be extended to the present setting, as the following corollary shows:

Corollary 4.4. Within each stratum (j, l), for any choice of the gen-
erating function Fjl(·) of the C-ABCD

(4.6) lim
n→∞

n−1/2Dn(tj , wl) = 0 in prob. ∀j = 0, . . . , J ; l = 0, . . . , L.

Thus the same order convergence to balance still hold marginally, i.e.

lim
n→∞

n−1/2Dn(tj) = 0 in prob. ∀j = 0, . . . , J

and also globally:
lim
n→∞

n−1/2Dn = 0 in prob.

Proof. It is sufficient to prove (4.6) since the other statements can be
easily derived from it. Observe that for any j = 0, . . . , J and l = 0, . . . , L

Dn(tj , wl)√
n

=
Dn(tj , wl)

Nn(tj , wl)
· Nn(tj , wl)√

n
,

where from Theorem 4.3

lim
n→∞

Dn(tj, wl)

Nn(tj, wl)
= 0 a.s.

Thus, statement (4.6) follows directly from the asymptotic normality of
Nn(tj , wl)/

√
n due to the CLT for iid r.v.’s.

From Corollary 4.4 it is obvious that, adopting the C-ABCD

Dn(tj , wl)√
Nn(tj , wl)

→ 0 in prob. ∀j = 0, . . . , J ; l = 0, . . . , L,

since
Dn(tj , wl)√
Nn(tj, wl)

=
Dn(tj, wl)√

n
·

√
n√

Nn(tj , wl)
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and

lim
n→∞

(
Nn(tj, wl)

n

)− 1

2

= (pjl)
− 1

2 a.s. ∀j = 0, . . . , J ; l = 0, . . . , L.

Analogously, for any j = 0, . . . , J and l = 0, . . . , L

Dn(tj)√
Nn(tj)

→ 0 and
Dn(wl)√
Nn(wl)

→ 0 in prob.

Clearly, from (4.1) it is possible to extend in a natural way other restricted
randomization procedures into a stratified randomization, such as the Adap-
tive Biased Coin Design proposed by Wei (1978a) in (1.2) by letting

(4.7) P (δn+1 = 1|=n,Zn+1 = (tj, wl)) = fjl

(
Dn(tj, wl)

Nn(tj, wl)

)
∀ (j, l),

where fjl(·) : [−1, 1] → [0, 1] is non-increasing, twice continuously differen-
tiable function, with fjl(−x) = 1− fjl(x). However, the fact that the imbal-
ance terms may satisfy a CLT property (see for instance Smith (1984b) and
the following Section 5) ensures that these procedures represent an order of
convergence towards balance which is worst wrt the C-ABCD.

A stronger result about the optimal balancing properties of the C-ABCD
is provided by the next Theorem.

Theorem 4.5. Adopting the C-ABCD, within each stratum (j, l) and
for any choice of the generating function Fjl(·)

Dn(tj , wl) = o(nν) in L1 for any ν > 0.

Proof. See Appendix C.

A straightforward consequence of Theorem 4.5 is that, for any ν > 0

(i) Dn(tj) = o(nν) in L1 ∀ j = 0, . . . , J
(ii) Dn(wl) = o(nν) in L1 ∀ l = 0, . . . , L
(iii) Dn = o(nν) in L1.
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5. Properties of the C-ABCD.

5.1. Loss function. As is well-known, a good design should achieve high
levels of balance, both globally and among the prognostic factors, in order to
optimize the inferential precision, guaranteeing at the same time a suitable
degree of randomness in the allocations. Within this framework the loss
Ln in (3.4) is commonly considered the fundamental tool for comparing
different design strategies and, since it is a random variable, several authors
have investigated its behaviour mainly through simulation studies (see e.g.
Begg and Iglewicz, 1980; Atkinson 1982, 1999, 2002; Heritier et al. 2005).
In particular, Atkinson shows that under the DA-BCD the expected loss
converges to (q + 1)/5, to (q + 1) for the complete randomization and to 0
for the Efron’s BCD. However, there are only few theoretical results about
the distribution of the loss, mainly due to Smith (1984a, 1984b), who shows
that adopting (3.6) the imbalance vector bn is asymptotically normal, so
that the expected loss converges to (q + 1)/(1 − 4ψ′(0)). Thus, excluding
Efron’s coin, the asymptotic precision decreases as the number of prognostic
factors, as well as the levels of the covariates and interaction effects, grows.

Theorem 5.1. Under model (2.1) with categorical covariates, adopting
the Covariate-Adaptive Biased Coin Design

lim
n→∞

Ln = 0 in prob.

Proof. Observe that from (3.4), the loss Ln can be rewritten as follows:

Ln = n−1/2bt
n

(
n−1Ft

nFn

)−1
n−1/2bn .

Since the categorical covariates are i.i.d. with pjl > 0 for any j = 0, . . . , J
and l = 0, . . . , L, then there exists a symmetric and nonsingular matrix Q =
limn→∞ n−1Ft

nFn. Thus, the result follows from the continuous mapping
theorem and Corollary 4.4, since adopting the C-ABCD n−1/2bn → 0 in
probability.

Observe that Theorem 5.1 does not depend on the presence or absence
of interactions among covariates. However, in the former case it is possible
to derive a simple expression for the loss, showing also that the DA-BCD
proposed by Atkinson and Smith’s class are stratified randomization rules.
Indeed, let Z = (T,W ) categorical and assume model (2.1) containing all
the interaction effects, the loss in (3.4) becomes (see Appendix D):

(5.1) Ln =
J∑

j=0

L∑

l=0

D2
n(tj , wl)

Nn(tj , wl)
.
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Furthermore, Atkinson’s DA-BCD in (3.5) is a special case of (4.7) with

fjl(x) =
(1− x)2

(1− x)2 + (1 + x)2
∀j = 0, . . . J ; l = 0, . . . , L,

(see Appendix E) and Smith’s procedure (3.6) is also a restricted random-
ization, similar to (4.7), where fjl(·) = ψ(·) ∀ (j, l) and each Nn(tj , wl) is
approximated by npjl.

5.2. Predictability. Selection bias of sequential designs refers to a partic-
ular type of bias that can be introduced by the experimenter in the compo-
sition of the treatment groups due to the possibility to predict the sequence
of assignments on the basis of the available information. For a biased coin
design, in the absence of covariates the allocations at each step depend on
the actual degree of imbalance between the treatment groups, which sum-
marizes the useful information for guessing the next assignment. In this
setting, Blackwell and Hodges (1957) suggest to measure the selection bias
(i.e. predictability or lack of randomness) by the expected percentage of
correct guesses when the best strategy is used, namely to pick the under-
represented treatment without preference in case of a tie. Let Gi = 1 if the
i-th assignment is guessed correctly, and 0 otherwise, then Ḡn = n−1∑n

i=1Gi

represents the proportion of correct guesses after n steps, so that the selec-
tion bias indicator is

(5.2) SBn = E[Ḡn] =
1

n

n∑

i=1

Pr(Gi = 1).

Adapting this approach in the presence of covariates, by (4.1) the allocation
of the next subject depends on its covariate profile, which identifies the
stratum of interest, and the actual degree of imbalance within this stratum.
Thus, when the i-th patient is ready to be randomized, the probability of
correctly guessing his/her treatment allocation given the optimal strategy is

Pr(Gi = 1 | Zi = (tj , wl),=i−1) = Fjl(−|Di−1(tj, wl)|).

Then

Pr(Gi = 1) =
J∑

j=0

L∑

l=0

i−1∑

x=0

Fjl(−x) Pr(|Di−1(tj , wl)| = x)pjl ,

since for any stratum (j, l)

Pr(|Di−1(tj , wl)| ≤ i− 1) = 1 ∀i ≥ 1 ,
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so that

SBn =
1

n

n∑

i=1

J∑

j=0

L∑

l=0

i−1∑

x=0

Fjl(−x) Pr(|Di−1(tj, wl)| = x)pjl .

Theorem 5.2. Adopting the C-ABCD,

Ḡn =
1

n

n∑

i=1

J∑

j=0

L∑

l=0

Fjl(−|Di−1(tj, wl)|)pjl + o(n) a.s.

and thus

lim
n→∞

Ḡn =
1

2




J∑

j=0

L∑

l=0

ξjl(0)pjl + 1


 a.s.

Proof. See Appendix F.

A straightforward consequence of Theorem (5.2) is that

lim
n→∞

SBn =
1

2




J∑

j=0

L∑

l=0

ξjl(0)pjl + 1


 ,

namely the asymptotic excess of selection bias is simply given by

1

2

J∑

j=0

L∑

l=0

ξjl(0)pjl ,

which depends only on an overall measure (over the strata) of the asymptotic
balance induced by the design.

6. Choice of the generating functions. The flexibility of the C-
ABCD lies in the fact that allows the experimenter to choose the generating
function Fjl(·) in every stratum on the basis of the different need for balance
within each combination of the levels of the prognostic factors. As showed in
Remark 4.2, if we assume the same randomization function for each stratum
by letting Fjl(·) = F (·) for any j = 0 . . . , J, l = 0, . . . , L, then the closeness
to balance will be forced in the same way for each covariate pattern. In this
setting, a suitable class of generating functions is given by

(6.1) F a(x) =

{
1/2, if 0 ≤ x ≤ 1,
(xa + 1)−1, if x > 1,
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where the parameter a > 0 governs the degree of randomness: if a tends to 0
at each step the assignment tends to be completely randomized, whereas as
a grows the allocation becomes more deterministic. This class of functions
ensures a good trade-off between balance and predictability even for small
samples, since the allocations are completely randomized when the treat-
ment imbalance is 0 or 1 (i.e. in the case of perfect balance under an even or
an odd number of steps) and the balance is forced in all the other situations
(see Baldi Antognini and Giovagnoli, 2004).

Otherwise, different generating functions Fjl(·) can be chosen according
to the major/minor importance of some patterns, e.g. the diffusion of the
disease taken into consideration in certain high risk groups/patterns.

However, the evolution of the imbalance within each stratum (and thus its
convergence properties) depends on the number of subjects belonging to this
pattern and therefore it is strictly related to the distribution of the covariates
in the population of interest. Furthermore, as mentioned previously, the loss
is a r.v. depending on the random nature of both the covariates and the
design and to stress the impact on Ln due to the allocations, instead of
(5.1) it may be useful to take into account the following expression

L̃n =
J∑

j=0

L∑

l=0

D2
n(tj , wl)

npjl
,

obtained by approximating Nn(tj, wl) ' npjl (this corresponds to consider
EZ(M) instead of M in (2.3) or, equivalently, nQ instead of Ft

nFn in (3.4)).
Thus, strongly departures from balance may not have a great impact on
the loss if observed at populous covariate profiles, while they could induce a
significant loss of precision if observed at under-represented strata. Indeed

E
(
L̃n

)
=

J∑

j=0

L∑

l=0

V (Dn(tj , wl))

npjl
,

since at each step n the distribution of Dn(tj , wl) is symmetric around 0
(for any j = 0 . . . , J and l = 0, . . . , L). Thus, when the covariate distri-
bution is known a-priori the generating functions Fjl(·) can be chosen in
order to force the convergence towards balance on the basis of the different
representativeness of the population patterns. For instance, we can adopt

(6.2) F g
jl(x) =

{
1/2, if 0 ≤ x ≤ 1

(xg(pjl) + 1)−1, if x > 1
, ∀ (j, l)

where g(·) is a decreasing function with limx→0+ g(t) = ∞.
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7. Finite sample properties. In this Section we compare the per-
formances of the C-ABCD, Atkinson’s DA-BCD and Pocock and Simon’s
minimization method (with constant weights), in terms of loss and selection
bias in the case of binary covariates. We take into account several situations:
model (2.1) with two and four factors and in the presence or absence of inter-
actions; moreover, in the case of two covariates two different scenarios are
investigated: a uniform distribution, where each stratum is equally repre-
sented in the population, and a non-uniform one. Concerning our allocation
rule, in what follows we consider:

• the C-ABCD(F g
jl) with different randomization functions F g

jl(·) defined
in (6.2), where we set g(pjl) = p−1

jl − 1;
• the C-ABCD(F a), i.e. assuming the same generating function F a(·) in

(6.1) for each stratum, where a = t−1 − 1 and t is the reciprocal of
the number of strata (clearly, if the covariate distribution is uniform
C-ABCD(F a) coincides with C-ABCD(F g

jl)).

The results come from 1000 simulations with sample sizes n = 150, 500
and 1000. In the case of two prognostic factors, Tables 1-4 show the be-
haviour of the loss Ln in (3.4) and the selection bias indicator SBn in (5.2)
for model (2.1) in the full version (Tables 1 and 2) and in the absence of
interactions (Tables 3 and 4), under two different covariate distributions.
Moreover, Tables 5-6 are related to the case of four binary covariates with
uniform distribution (i.e. every stratum is equally represented in the pop-
ulation with probability 2−4), under (2.1) in the full version (Table 5) and
without interactions (Table 6).

Table 1

Expectation and variance (within brackets) of Ln and SBn, for n = 150, 500 and 1000,
under model (2.1) in the full version with p00 = 0.2, p01 = 0.4, p10 = 0.3, p11 = 0.1.

L150 SB150 L500 SB500 L1000 SB1000

Pocock & Simon 1.09 0.70 1.02 0.71 0.99 0.71
(1.7392) (0.0011) (1.8610) (0.0003) (1.8694) (0.0002)

Atkinson’s DA-BCD 0.82 0.55 0.81 0.53 0.81 0.52
(0.3458) (0.0010) (0.3308) (0.0003) (0.3003) (0.0001)

C-ABCD(F g

jl
) 0.24 0.61 0.07 0.61 0.04 0.61

(0.0213) (0.0013) (0.0018) (0.0004) (0.0005) (0.0002)
C-ABCD(F a) 0.26 0.61 0.08 0.61 0.04 0.61

(0.0296) (0.0014) (0.0026) (0.0004) (0.0006) (0.0002)
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Table 2

Expectation and variance (within brackets) of Ln and SBn, for n = 150, 500 and 1000,
under model (2.1) in the full version with p00 = p01 = p10 = p11 = 0.25.

L150 SB150 L500 SB500 L1000 SB1000

Pocock & Simon 1.10 0.70 1.09 0.71 1.03 0.71
(1.7304) (0.0010) (2.1684) (0.0003) (1.8483) (0.0002)

Atkinson’s DA-BCD 0.81 0.54 0.80 0.53 0.81 0.52
(0.3242) (0.0009) (0.3314) (0.0003) (0.3380) (0.0001)

C-ABCD(F g

jl
= F a) 0.20 0.61 0.06 0.62 0.03 0.62

(0.0127) (0.0013) (0.0011) (0.0004) (0.0002) (0.0002)

Table 3

Expectation and variance (within brackets) of Ln and SBn, for n = 150, 500 and 1000,
under model (2.1) without interactions with p00 = 0.2, p01 = 0.4, p10 = 0.3, p11 = 0.1.

L150 SB150 L500 SB500 L1000 SB1000

Pocock & Simon 0.13 0.70 0.04 0.71 0.02 0.71
(0.0237) (0.0009) (0.0029) (0.0003) (0.0006) (0.0002)

Atkinson’s DA-BCD 0.62 0.55 0.61 0.53 0.61 0.52
(0.2459) (0.0009) (0.2802) (0.0003) (0.2685) (0.0001)

C-ABCD(F g

jl) 0.17 0.61 0.05 0.61 0.02 0.61

(0.0167) (0.0012) (0.0013) (0.0004) (0.0004) (0.0002)
C-ABCD(F a) 0.18 0.61 0.05 0.62 0.02 0.62

(0.0175) (0.0014) (0.0015) (0.0004) (0.0003) (0.0002)

Table 4

Expectation and variance (within brackets) of Ln and SBn, for n = 150, 500 and 1000,
under model (2.1) without interactions with p00 = p01 = p10 = p11 = 0.25.

L150 SB150 L500 SB500 L1000 SB1000

Pocock & Simon 0.13 0.70 0.04 0.71 0.02 0.71
(0.0243) (0.0011) (0.0017) (0.0003) (0.0004) (0.0002)

Atkinson’s DA-BCD 0.62 0.54 0.60 0.53 0.59 0.52
(0.2394) (0.0009) (0.2471) (0.0003) (0.2382) (0.0001)

C-ABCD(F g

jl = F a) 0.14 0.61 0.04 0.61 0.02 0.62

(0.0103) (0.0014) (0.0009) (0.0004) (0.0002) (0.0002)
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Table 5

Expectation and variance (within brackets) of Ln and SBn, for n = 150, 500 and 1000,
for model (2.1) in the full version with four covariates, under the uniform distribution.

L150 SB150 L500 SB500 L1000 SB1000

Pocock & Simon 11.98 0.70 11.46 0.72 11.22 0.73
(22.9593) (0.0010) (22.7962) (0.0003) (22.3261) (0.0002)

Atkinson’s DA-BCD 3.40 0.54 3.28 0.52 3.28 0.52
(1.4823) (0.0009) (1.4093) (0.0003) (1.3761) (0.0001)

C-ABCD(F g

jl = F a) 2.86 0.60 0.80 0.61 0.39 0.62

(0.5685) (0.0014) (0.0398) (0.0004) (0.0095) (0.0002)

Table 6

Expectation and variance (within brackets) of Ln and SBn, for n = 150, 500 and 1000,
for model (2.1) with four covariates without interactions, under the uniform distribution.

L150 SB150 L500 SB500 L1000 SB1000

Pocock & Simon 0.39 0.70 0.11 0.72 0.06 0.73
(0.0984) (0.0009) (0.0094) (0.0003) (0.0021) (0.0002)

Atkinson’s DA-BCD 1.04 0.54 1.04 0.53 1.00 0.52
(0.4446) (0.0009) (0.3994) (0.0003) (0.3672) (0.0001)

C-ABCD(F g

jl = F a) 0.82 0.61 0.23 0.61 0.12 0.62

(0.2385) (0.0013) (0.0199) (0.0004) (0.0045) (0.0002)

When the model is full, the C-ABCD yields a significant improvement in
terms of loss than Pocock and Simon’s procedure and Atkinson’s DA-BCD,
due to the fact that it ensures balance within every stratum, whereas it has
slightly higher predictability with respect to the latter rule. Moreover, the
C-ABCD is still efficient even in the absence of interactions, since Ln tends
to 0 asymptotically (see Theorem (5.1)). Observe that the C-ABCD(F g

jl)
has slightly better performances than the C-ABCD(F a) and this gain in-
creases the more we move away from the uniform distribution (as further
simulations, omitted here for brevity, have shown).

In the absence of interactions among covariates (Tables 3 and 4), the
above comparisons between our proposal and the DA-BCD are essentially
similar, while Pocock and Simon’s procedure yields a big improvement in
terms of loss (since in this case Ln depends only on the marginal imbalances).
However, the C-ABCD still ensures good performances wrt both Ln and
SBn, whereas Pocock and Simon’s minimization method is high predictable
(SBn is always greater than 0.7). Furthermore, as Tables 5 and 6 show, the
previous comments are still valid even in the case of several covariates.
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Appendix A: Proof of Proposition 3.2. For simplicity of notation
in this Appendix we omit the subscript n, neglecting the dependence on the
number of assignments. From the properties on the inverse of partitioned
matrices, the loss L in (3.4) can be written as:

L = bt

(
0 0

0 Ω−1

)
b+

1

n− xtΩ−1x
bt

(
1

−Ω−1x

)(
1 −xtΩ−1

)
b ,

where xt = 1tF and Ω = FtF. Also, letting b̃t = (2δ − 1)tF the imbalance
vector can be rewritten as bt = (D; b̃t) and consequently

(7.1) L = b̃tΩ−1b̃+

[
D − b̃tΩ−1x

]2

n− xtΩ−1x
.

Letting M̃ = nM, criterionC2 can be rewritten as σ4 det
(
ΛtM̃−1Λ

)
, where

M̃ =

(
Υ Ut

U Ω

)

with Υ = diag (nA, nB) =
1
2 diag (n+D,n−D) and

Ut =

(
δtF

(1− δ)tF

)
=

1

2

(
xt + b̃t

xt − b̃t

)
.

Consequently, det
(
ΛtM̃−1Λ

)
=
[
det(Υ−UtΩ−1U)

]−1
, where

UtΩ−1U =
1

4

(
(xt + b̃t)Ω−1(x+ b̃) (xt + b̃t)Ω−1(x− b̃)

(xt − b̃t)Ω−1(x+ b̃) (xt − b̃t)Ω−1(x− b̃)

)
.

Thus,

det(Υ−UtΩ−1U) =

[(
n

2
− xtΩ−1x+ b̃tΩ−1b̃

4

)
+

(
Dn − b̃tΩ−1x

2

)]
×

[(
n

2
− xtΩ−1x+ b̃tΩ−1b̃

4

)
−
(
Dn − b̃tΩ−1x

2

)]
−
(
b̃tΩ−1b̃− xtΩ−1x

4

)2

,

so that from (7.1), after simple algebra

det(Υ−UtΩ−1U) = (n− xtΩ−1x) (n− L) /4 .
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Appendix B: Proof of Theorem 4.3. Let 1{·} denote the indicator
function, for any given stratum (tj , wl)

Dn(tj, wl)

n
= 2

(
1

n

n∑

i=1

δi1{Zi=(tj ,wl)}

)
−Nn(tj , wl)

n
, j = 0, . . . , J ; l = 0, . . . L,

where

1

n

n∑

i=1

δi1{Zi=(tj ,wl)} =
1

n

n∑

i=1

(
δi1{Zi=(tj ,wl)} − E[δi1{Zi=(tj ,wl)} | =i−1]

)
+

+
1

n

n∑

i=1

Fjl(Di−1(tj , wl)) Pr(Zi = (tj, wl)) =
1

n

n∑

i=1

Qi + pjl

[
1

n

n∑

i=1

Fjl(Di−1(tj , wl))

]

and =0 represents the trivial σ-field. Thus, Qn =
∑n

i=1Qi is a centered
martingale with

|Qi| ≤ 1 a.s. and
∞∑

i=1

i−2E
[
Q2

i | =i−1

]
<∞ ,

and hence from Theorem 2.18 in Hall and Heyde (1980)

lim
n→∞

Qn

n
= 0 a.s.

From the Strong Law of Large Numbers for ergodic Markov chains

1

n

n∑

i=1

Fjl(Di−1(tj, wl)) → Eξjl
[Fjl] =

∞∑

x=−∞

Fjl(x)ξjl(x) =
1

2
a.s.

since the stationary law ξjl is symmetric around 0. Furthermore, from the
SLLN for independent random variables

lim
n→∞

Nn(tj , wl)

n
= pjl a.s.

so that

lim
n→∞

Dn(tj , wl)

n
= 2

(
0 +

pjl
2

)
− pjl = 0 a.s.

and therefore the results follow easily from the continuous mapping theorem.
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Appendix C: Proof of Theorem 4.5. The sequence {|Dn(tj , wl)|}n∈N
is an homogeneous Markov chain on N starting at |D0(tj, wl)| = 0 with

Pr (|Dn+1(tj , wl)| = k | |Dn(tj , wl)| = x) =





pjlFjl(x) k = x+ 1

1− pjl k = x ∀x ≥ 1

pjlFjl(−x) k = x− 1

and boundary conditions

Pr (|Dn+1(tj , wl)| = k | |Dn(tj , wl)| = 0) =

{
pjl k = 1

1− pjl k = 0
.

Since the process {|Dn(tj , wl)|}n∈N is ergodic (see e.g. Karlin and McGregor
(1959)), it is sufficient to show that

lim
n→∞

E [|Dn(tj , wl)|] =
∞∑

x=0

xξ+jl(x) <∞

where ξ+jl denotes the stationary distribution of {|Dn(tj , wl)|}n∈N. Clearly,
ξ+jl can be easily derived from the symmetric property of ξjl in (4.2) since

(7.2) ξ+jl(0) = ξjl(0) and ξ+jl(x) = 2ξjl(x) for any x ≥ 1,

and therefore

∞∑

x=0

xξ+jl(x) = 2ξjl(0)
∞∑

x=1

x

(
x∏

s=1

λjl(s)

)
.

Let γ = min{n ∈ N s.t. Fjl(−γ) > 1/2}, then 1 ≤ γ < ∞ from the
definition of Fjl(·); also, note that λjl(1) = . . . = λjl(γ − 1) = 1, while
1 > λjl(γ) ≥ λjl(γ + 1) ≥ . . ., since {λjl(x)} is non-increasing. Thus,

∞∑

x=1

x

(
x∏

s=1

λjl(s)

)
=

γ−1∑

x=1

x

(
x∏

s=1

λjl(s)

)
+

∞∑

x=γ

x

(
x∏

s=1

λjl(s)

)

=
γ(γ − 1))

2
+

∞∑

x=γ

x

(
x∏

s=γ

λjl(s)

)
<
γ(γ − 1))

2
+

∞∑

x=γ

xλjl(γ)
x−γ+1 <∞ .

Appendix D: proof of equation (5.1). For the sake of simplicity in
this Appendix all the quantities without subscripts are intended evaluated
after n steps. Let f(z)t = (Tt,Wt,Tt⊗Wt) be the (J+L+J×L)-dim vector
including all interactions, where T and W are the J-dim vector and L-dim
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vector of dummies associated with T and W , respectively. From (7.1) it is
sufficient to simplify the quantities b̃tΩ−1b̃, xtΩ−1x and b̃tΩ−1x, where

xt = 1tF = (Nt
T,N

t
W,N

t
T⊗W) and b̃t = (2δ−1)tF = (Dt

T,D
t
W,D

t
T⊗W),

with Nt
T⊗W

= (N(t1, w1), . . . , N(t1, wL), . . . , N(tJ , w1), . . . , N(tJ , wL)) ,
Nt

T
= (N(t1), . . . , N(tJ)), Nt

W
= (N(w1), . . . , N(wL)) and, analogously,

Dt
T⊗W

= (D(t1, w1), . . . ,D(t1, wL), . . . ,D(tJ , w1), . . . ,D(tJ , wL)), Dt
T

=
(D(t1), . . . ,D(tJ)) and Dt

W
= (D(w1), . . . ,D(wL)). Also, letting Nt

tj⊗W
=

(N(tj, w1), . . . , N(tj , wL)), the matrixΩ = FtF can be partitioned as follows

Ω =

(
A B

Bt C

)
,

where

A = diag (NT,NW) +




Nt
t1⊗W

0J×J
...

Nt
tJ⊗W

Nt1⊗W . . . NtJ⊗W 0L×L



,

B =




Nt
t1⊗W

0 0 . . . 0

0 Nt
t2⊗W

0 . . . 0
...

. . . 0
0 0 . . . Nt

tJ⊗W

diag(Nt1⊗W) diag(Nt2⊗W) . . . diag(NtJ⊗W)




and C = diag(NT⊗W). Thus,

(7.3) Ω−1 =

(
0 0

0 C−1

)
+

(
IJ+L

−C−1Bt

)
Γ−1

(
IJ+L , −BC−1

)
,

where Γ = A − BC−1Bt = diag (NT⊗w0
, Nt0⊗W). Note that Ω is nonsin-

gular if and only if C and Γ are nonsingular, i.e. there is at least one patient
for each stratum. Hence, from (7.3) it follows that

b̃tΩ−1b̃ = b̃t

(
0 0

0 C−1

)
b̃+ b̃t

(
IJ+L

−C−1Bt

)
Γ−1

(
IJ+L , −BC−1

)
b̃

where

b̃t

(
0 0

0 C−1

)
b̃ =

J∑

j=1

L∑

l=1

D2(tj , wl)

N(tj , wl)
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and

b̃t

(
IJ+L

−C−1Bt

)
Γ−1

(
IJ+L , −BC−1

)
b̃ =

=
[(
Dt

T , D
t
W

)
−Dt

T⊗WC−1Bt
]
Γ−1

[(
DT

DW

)
−BC−1DT⊗W

]

=
J∑

j=1

D2(tj, w0)

N(tj , w0)
+

L∑

l=1

D2(t0, wl)

N(t0, wl)
,

since (Dt
T
,Dt

W
)−Dt

T⊗W
C−1Bt = (Dt

T⊗w0
, Dt

t0⊗W
). Therefore,

b̃tΩ−1b̃ =
J∑

j=1

L∑

l=1

D2(tj, wl)

N(tj, wl)
+

J∑

j=1

D2(tj , w0)

N(tj , w0)
+

L∑

l=1

D2(t0, wl)

N(t0, wl)
.

Similarly,

b̃tΩ−1x = b̃t

(
0 0

0 C−1

)
x+ b̃t

(
IJ+L

−C−1Bt

)
Γ−1

(
IJ+L , −BC−1

)
x ,

where

b̃t

(
0 0

0 C−1

)
x =

J∑

j=1

L∑

l=1

D(tj , wl)

and

b̃t

(
IJ+L

−C−1Bt

)
Γ−1

(
IJ+L , −BC−1

)
x =

=
[(
Dt

T , D
t
W

)
−Dt

T⊗WC−1Bt
]
Γ−1

[(
NT

NW

)
−BC−1NT⊗W

]

=
J∑

j=1

D(tj, w0) +
L∑

l=1

D(t0, wl).

Thus,
(7.4)

b̃tΩ−1x =
J∑

j=1

L∑

l=1

D(tj, wl) +
J∑

j=1

D(tj, w0) +
L∑

l=1

D(t0, wl) = D −D(t0, w0).

Analogously, by (7.3)

xtΩ−1x = Nt
T⊗WC−1NT⊗W +

(
Nt

T⊗w0
, Nt

t0⊗W

)
Γ−1

(
NT⊗w0

Nt0⊗W

)

=
J∑

j=1

L∑

l=1

N(tj , wl) +
J∑

j=1

N(tj , w0) +
L∑

l=1

N(t0, wl) = n−N(t0, w0)

(7.5)
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and hence the loss in (5.1) follows from (7.1) after simple algebra.

Appendix E: simplification of Atkinson’s procedures. As in Ap-
pendix D we let f(z)t = (Tt,Wt,Tt ⊗Wt) and the aim is to simplify the
allocation rule (3.5) of Atkinson’s DA-BCD, where for the sake of simplicity
all the quantities without subscripts are intended evaluated after n steps.
By (7.4) and (7.5), observe that

(
1,f(zn+1)

t
) (

FtF
)−1

b =
(
1 , f(zn+1)

t
)( n xt

x Ω

)−1

b

=f(zn+1)
tΩ−1b̃+

[
1− f(zn+1)

tΩ−1x
] [
D − xtΩ−1b̃

]

n− xtΩ−1x

=f(zn+1)
tΩ−1b̃+

D(t0, w0)

N(t0, w0)

[
1− f(zn+1)

tΩ−1x
]
.

(7.6)

From (7.3), it follows that

f(zn+1)
tΩ−1b̃ = (Tt

n+1 ⊗Wt
n+1)C

−1DT⊗W+

+ (Tt
n+1,W

t
n+1,T

t
n+1 ⊗Wt

n+1)

(
IJ+L

−C−1Bt

)
Γ−1

(
IJ+L , −BC−1

)
b̃

=
J∑

j=1

L∑

l=1

1{Zn+1=(tj ,wl)}
D(tj , wl)

N(tj, wl)
+
[
(Tt

n+1,W
t
n+1)− (Tt

n+1 ⊗Wt
n+1)C

−1Bt
]
×

×
(
D(t1, w0)

N(t1, w0)
, . . . ,

D(tJ , w0)

N(tJ , w0)
,
D(t0, w1)

N(t0, w1)
, . . . ,

D(t0, wL)

N(t0, wL)

)t

=
J∑

j=1

L∑

l=1

1{Zn+1=(tj ,wl)}
D(tj , wl)

N(tj, wl)
+

J∑

j=1

1{Zn+1=(tj ,w0)}
D(tj, w0)

N(tj , w0)
+

+
L∑

l=1

1{Zn+1=(t0,wl)}
D(t0, wl)

N(t0, wl)
.

Similarly,

f(zn+1)
tΩ−1x = (Tt

n+1 ⊗Wt
n+1)C

−1NT⊗W+

+ (Tt
n+1,W

t
n+1,T

t
n+1 ⊗Wt

n+1)

(
IJ+L

−C−1Bt

)
Γ−1

(
IJ+L , −BC−1

)
x

= (Tt
n+1 ⊗Wt

n+1)1J×L +
[(
Tt

n+1,W
t
n+1

)
− (Tt

n+1 ⊗Wt
n+1)C

−1Bt
]
1J+L

=
J∑

j=1

L∑

l=1

1{Zn+1=(tj ,wl)} +
J∑

j=1

1{Zn+1=(tj ,w0)} +
L∑

l=1

1{Zn+1=(t0,wl)} ,
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and hence (7.6) becomes

(
1,f (zn+1)

t
) (

FtF
)−1

b =
J∑

j=0

L∑

l=0

1{Zn+1=(tj ,wl)}
D(tj, wl)

N(tj , wl)
.

Thus, when the (n + 1)-th subject with covariate Zn+1 = (tj, wl) is ready
to be randomized, it will be assigned to treatment A with probability

P (δn+1 = 1|=n,Zn+1 = (tj, wl)) =

(
1− Dn(tj ,wl)

Nn(tj ,wl)

)2

(
1− Dn(tj ,wl)

Nn(tj ,wl)

)2
+
(
1 +

Dn(tj ,wl)
Nn(tj ,wl)

)2 .

Appendix F: Proof of Theorem 5.2. Notice that

Ḡn =
1

n

n∑

i=1

(Gi − E[Gi | =i−1]) +
1

n

n∑

i=1

E[Gi | =i−1]

=
1

n

n∑

i=1

Ai +
J∑

j=1

L∑

l=1

[
1

n

n∑

i=1

Fjl(−|Di−1(tj, wl)|)
]
pjl ,

where the centered martingale An =
∑n

i=1Ai = o(n) a.s., since

|Ai| ≤ 1 a.s. for any i ≥ 1 and
∞∑

i=1

i−2E
[
A2

i | =i−1

]
<∞.

Thus, from the ergodic theorem for Markov chains,

1

n

n∑

i=1

Fjl(−|Di−1(tj , wl)|) →
∞∑

x=0

Fjl(−x)ξ+jl(x) a.s. ∀(j, l)

where ξ+jl is the stationary distribution of {|Dn(tj , wl)|}n∈N defined in (7.2),
and hence from the dominated convergence theorem

lim
n→∞

Ḡn =
J∑

j=0

L∑

l=0

∞∑

x=0

Fjl(−x)ξ+jl(x) .

Notice that, from (4.2),

∞∑

x=0

Fjl(−x)ξ+jl(x) =
1

2
ξjl(0) + 2

∞∑

x=1

Fjl(−x)ξjl(x)

=ξjl(0)

{
1

2
+ 2

∞∑

x=1

Fjl(−x)
x∏

s=1

λjl(s)

}
,
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where, by (4.3),

∞∑

x=1

Fjl(−x)
x∏

s=1

λjl(s) = Fjl(−1)λjl(1) +
∞∑

x=2

Fjl(−x)
x∏

s=1

λjl(s)

=
1

2
+

∞∑

x=2

Fjl(x− 1)
x−1∏

s=1

λjl(s) =
1

2
+

∞∑

x=1

Fjl(x)
x∏

s=1

λjl(s) .

Thus,

1

2
=

∞∑

x=1

[Fjl(−x)− Fjl(x)]
x∏

s=1

λjl(s) =
∞∑

x=1

[1− 2Fjl(x)]
x∏

s=1

λjl(s)

and, from (4.5), 2
∑∞

x=1

∏x
s=1 λjl(s) = ξjl(0)

−1 − 1. Therefore,

∞∑

x=1

Fjl(x)
x∏

s=1

λjl(s) =
1

2

(
1

2ξjl(0)
− 1

)
,

namely
∑∞

x=1 Fjl(−x)ξjl(x) = 1/4, and thus

∞∑

x=0

Fjl(−x)ξ+jl(x) = [ξjl(0) + 1]/2.
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