
Consumer Choice Model For Forecasting Demand
And Designing Incentives For Solar Technology

Ruben Lobel
Operations Research Center, MIT, Cambridge, MA 02139, rlobel@mit.edu

Georgia Perakis
Sloan School of Management, MIT, Cambridge, MA 02139, georgiap@mit.edu

In this paper, we develop a model for the adoption of solar photovoltaic technology by residential consumers.

In particular, we assume consumers purchase these solar panels according to a discrete choice model. The

technology adoption process is reinforced by network externalities such as imitating customer behavior and

cost improvements through learning-by-doing. Using this model, we develop a framework for policy makers

to find optimal subsidies in order to achieve a desired adoption target with minimum cost for the system.

We discuss the structure of the optimal subsidy policy and how the overall system cost changes with the

adoption target. Furthermore, we validate the model through an empirical study of the German solar market,

where we estimate the model parameters, generate adoption forecasts and demonstrate how to solve the

policy design problem. We use this framework to show that the current policies in Germany are not efficient.

In particular, our study suggests that their subsidies should be higher in the near future and the gradual

phase-out of the subsidies should occur faster.

History : First draft - released December 2010, Updated January 2011 *

1. Introduction

Solar Photovoltaic (PV) technology has greatly improved over the last two decades. With today’s

technology, cheap and efficient rooftop solar panels are available to residential consumers with the

help of public subsidy programs. As the market for these solar panels develops worldwide, many

questions remain unanswered about how this technology is adopted by customers and how to design

incentives for its adoption. In this paper we will develop a framework to model and control the

adoption process of solar technology. Furthermore, we will test our framework by developing an

empirical study based on the history of the German solar market.

Forecasting demand can be particularly challenging for new technologies that are not fully mature

yet. More specifically, the cost of a new solar panel installation decreases as more solar panels

are sold, mainly due to improvements in the installation network and manufacturing of the PV

*Preliminary version - Please do not circulate without consent of the authors.
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modules. These cost improvements are mainly induced by demand-driven economies of scale and

competition effects that stimulate cost cuts and research. Additionally, consumer awareness about

the technology will improve with the number of installed systems, which creates a second positive

feedback in the adoption process. In other words, the cost improvements and the information spread

through the consumer market will reinforce the demand process over time. These are commonly

referred to as network externalities. These effects are particularly dominant at the early stages

of technological development. Also because of these network effects, governments interested in

accelerating this adoption process may often want to subsidize early adopters.

In particular, one of the reasons why governments subsidize the installation of solar panels

is to promote the development of the solar technology so that it will become cost competitive

with traditional sources of generation, therefore economically self-sustainable. The point where

electricity generated from a solar installation reaches the electricity grid price is usually called grid-

parity, either at the wholesale market price or at the higher end-consumer retail price. Estimates

for reaching this grid-parity point can be as early as 2013-2014 at the retail level or 2023-2024 at

the wholesale level (see Bhandari and Stadler (2009)). Therefore, the main question that needs to

be addressed by policy makers today is not whether solar technology will eventually takeoff, but

rather when it will takeoff and whether something should be done to accelerate this process.

Most of the incentives devised today for solar technology come from governmental subsidies in

the form of installation rebates, feed-in-tariffs or subsidized loans. Recent reports by IEA (2004),

EEG (2007), BMU (2008) and EPIA (2009) provide great insights about the current status solar

PV technology as well as the history of the subsidy programs behind it.

In this paper, we study the problem from the perspective of the policy maker, where the goal

is to find the optimal subsidy value to offer customers willing to adopt these rooftop solar panels.

More specifically, we assume the government has a particular adoption target, within a given time

frame, and is able to offer a rebate to the customers adopting the technology. These targets are

very common among policy makers, as in the “1,000 rooftops” and “100,000 rooftops” programs in

Germany. Jager-Waldau (2007) summarizes some target levels for renewable energy production and

photovoltaic adoption through Europe, as decided by the European Commission. One particular

example of such policies comes from EUC (1997), a white paper from the European Commission,

which proposed a target adoption level of 500,000 PV solar installations across the European

Union by 2010. This number was surpassed by Germany alone, as the proposed target was very

conservative.
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The main reasons for these adoption targets include stimulating technological progress, as

explained before, but also diversifying the generation portfolio with renewable and carbon-free

energy and reducing the peak load of the electricity grid. Much has been discussed about the

reasons for subsidizing altogether, see for instance Sanden (2005). It is also debatable whether

demand-side subsidies are the most effective way to stimulate the technological progress, as opposed

to using only direct research investments (see Duke and Kammen 1999, Nemet and Baker 2008).

Also, governments are typically in favor of stimulating domestic manufacturing over importing

solar panels when it comes to defining the subsidy policy. Jager-Waldau (2007) displays a snapshot

of the PV solar manufacturing industry worldwide. Also, Taylor and Plambeck (2007) and Islegen

and Plambeck (2010) have recently explored how supply-chain contracts influence manufacturing

capacity investments, including applications to the solar industry. The growth of cheap foreign

manufacturing of solar modules is usually mentioned as one of the causes for the collapse of the

Spanish subsidy program. How manufacturers react to policy makers is certainly an important

effect and it should be considered when a government decides the adoption targets.

In our modeling framework we do not focus on the origin of the adoption targets, but rather

assume they are given. We then discuss the effects of changing these targets on the subsidizing cost

for the government. We also develop a relationship between optimizing the subsidies for reaching

an adoption target versus optimizing subsidies to maximize social welfare, which is a more common

objective in policy design. Given these adoption targets, understanding the purchasing behavior

of potential solar panel customers and how this will affect the overall spread of the technology is

crucial for minimizing the subsidy costs paid by the tax-payers. In particular, we use a discrete

choice approach to model customer behavior as a function of the price incentives offered by the

government (installation rebates).

In this paper, we provide a modeling framework to tackle the policy design problem and also

develop an empirical study of the German solar market to validate our assumptions and demon-

strate how to apply this framework in a realistic practical setting. More specifically, we calibrate

our model using data from the solar market in Germany, which has a history of strong subsidy

policies. We further demonstrate how to forecast the future adoption levels in Germany and how

they can use this model to find optimal subsidy levels as a function of their future adoption targets,

as well as quantify the trade-off between adoption levels and subsidy costs. Finally, we investigate

the efficiency of the current subsidy policy in Germany.

The outline of this paper can be described as: In the remainder of Section 1, we summarize

the main contributions of this paper and discuss some of the relevant literature for this research
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area. In Section 2, we define the demand model and the policy optimization problem. In Section

3, we conduct the empirical study on the German market. In Section 4, we analytically explore

the structure of the policy design problem to develop insights about the optimal rebate policy. In

Section 5, we summarize the results of this paper and outline some possible directions of research

that extend this work.

1.1. Contributions

In summary, the goal of this paper is to propose a framework for designing subsidy policies for the

adoption of new technologies, while considering the impact of consumer behavior and cost evolution

dynamics in the overall adoption process. The first contribution of this paper is the development

of a new practical policy optimization tool that policy-makers can apply to create comprehensive

policy recommendations. Furthermore, we test the applicability of this model with an empirical

study of the German solar market, where we demonstrate how to estimate the model parameters

using real data, solve the policy design problem and discuss insights about the state of the current

policy in Germany.

In the empirical study of the German solar market, we estimate our demand model using market

data from 1991-2007. We then use the fitted model to produce adoption level forecasts until the year

2030 and solve hypothetical policy design questions in order to obtain insights about the structure

of the system cost, the optimal solution and the efficiency of the current policy. We show that the

system cost of subsidizing is a convex function of the adoption target level. In other words, the

cost of subsidizing becomes increasingly more expensive as the adoption target increases. This is

partially due to the fact that the network externality benefits of early subsidies become saturated.

We observe this effect empirically in the German market study. We also prove it for the general

setting during our analytical study of the optimal solution.

Finally, we demonstrate in our empirical analysis that the current subsidy policies in Germany

are not economically efficient. We show this by solving the policy optimization model for any

possible adoption target in the baseline adoption forecast of the current system. In all these cases,

there exists a way to reach the given target and still achieve a lower cost for the system, in

particular by raising earlier subsidies and lowering future subsidies. This means that if the German

government is trying to achieve a certain target adoption level at some point in the future, the

current subsidies are suboptimal. We further prove that because of the decreasing nature of the

optimal rebate policy, if the German government is actually trying to optimize a social welfare

objective, the current policies are still suboptimal. We would like to bring special attention to the

novelty of this adoption target optimization approach for studying welfare efficiency without any
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knowledge about the actual welfare function or solving the optimal welfare problem. In summary,

these results definitely raise a warning about the efficiency of the current policies in Germany.

The current Feed-in-Tariff program in place today in Germany is already in a phasing-out stage

(see Figure 1 or the report EEG (2007) for further details). Our assessment indicates that these

subsidies should be higher now and lower in the future, while the magnitude of this change depends

on the actual objective of the German government. In other words, they should increase current

subsidies and also the rate of decay for future subsidies (faster phase-out).

1.2. Literature Review

Historically, the economics literature has focused on models for policy design with a social welfare

objective, not adoption target levels (see Ireland and Stoneman (1986), Joskow and Rose (1989),

Stoneman and Diederen (1994), Acemoglu et al. (2010) for further references). On the other hand,

the marketing literature has focused primarily on diffusion models for new technologies without

a policy design focus. For further reference in diffusion models, see the seminal work of Rogers

(1962), Bass (1969) or more recent review papers by Mahajan, Muller, and Bass (1990), Geroski

(2000), Rao and Kishore (2010). Finally, the operations management literature has recently devoted

attention to models that deal with customer choice behavior (for example Su and Zhang (2008),

Cachon and Swinney (2009), Cachon and Feldman (2010), Allon et al. (2010b,a), Musalem et al.

(2010)). Some of these are particularly focused on empirical work. In our paper, we combine ideas

from all these fields to develop a policy optimization framework for solar technology using a choice

model of demand that incorporates network externalities. To the best of our knowledge, this is the

first paper to approach the policy-making problem from the target adoption level perspective and

apply it to real market data in an empirical setting.

The models for innovation with network externalities are quite familiar to economists. Farrell

and Saloner (1985, 1986), Katz and Shapiro (1986, 1992) began exploring the issue of technology

standardization and compatibility, which provide positive network externalities at first, but may

later inhibit innovation. This effect can be particularly important in the adoption of computer

software and telecommunications, but not so much in photovoltaic technology. Chou and Shy (1990)

argue that returns to scale on the production level can also produce the same behavior as observed

in cases of consumers with preferences that are affected by direct network externalities. The cost

reductions that follow the adoption process is commonly known as the learning-by-doing effect. This

effect has been widely studied since the seminal paper by Arrow (1962), and also more specifically

for the case of photovoltaics, see Harmon (2000), IEA (2000), McDonald and Schrattenholze (2001),

Nemet (2006), Sderholm and Sundqvist (2007), Bhandari and Stadler (2009), Yu et al. (2009).
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The way that information spreads through the network of customers is another important effect

that has been given a lot of attention. How consumers become aware of a new product or gather

information about it’s quality may determine the successful take-off of a new technology. Ellison and

Fudenberg (1995) propose a model of word-of-mouth information spread across consumers, where

the structure of the social network may lead to an inefficient herding behavior. Vives (1997) develops

a model for social learning of public information where he shows that the rate of information

gathering is slower than socially optimal, with examples both in a learning-by-doing case and

consumers learning about a new product. In particular, Vives (1997) develops a theoretical model

for social learning. In this model, the precision of public knowledge increases at a rate t1/3, where t

is the number of time periods. He admits that this particular functional form is a direct result of his

modeling choices, but the general idea that information gathering is concave should remain valid

regardless of the model. Ulu and Smith (2009) have recently developed a model for how information

spread affects the adoption behavior of consumers, where they concluded that better information

sources increases the consumers’ value function for adopting the technology but perhaps induces

them to wait longer for information gathering. Aral et al. (2009) argue that traditional methods for

estimating social contagion may be overestimating this network effect, while homophily between

consumers can explain a large portion of the technology spread.

The theoretical models mentioned above can provide intuition for the information spread effect,

but are generally not applicable in practice. When studying this effect in a practical empirical

setting, it is common to assume a functional form for how consumer utility is affected by some

proxy measure of the information spread. For example, Shurmer and Swann (1995) advocate for the

use of either a linear or log relation between the network size and consumer utility in a simulation

based study of the spreadsheet software market, whereas they note that a basic model without this

effect makes very bad market forecasts. Berndt et al. (2003) also considers both a linear and a log

effect of depreciated adoption levels when estimating the diffusion of a pharmaceutical product.

Doganoglu and Grzybowski (2007) used a linear function to model the network externality effect

on consumers’ utility for an empirical study of the German mobile telephony market. Swann (2002)

also studies the functional form of network externalities in consumers’ utility of adoption, proposing

conditions for linear or S-shaped functions, focusing on cases where there is a concrete benefit

of network size after the purchase, like in telecommunication networks. Using a more detailed

model of the network, Tucker (2008) uses individual measures of the agents’ position on the social

network to analyze their impact on the overall adoption of video-conference technology within
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a bank. Her empirical study demonstrates how agents that more “central” and/or “boundary-

spanners” (between disconnected groups) are more influential in the technological adoption process

by creating a larger network externality. Goolsbee and Klenow (2002) develop an empirical study

of the diffusion of home computers in the US, with emphasis on local network externality effects

using geographic information of adoption. In particular, they show that people were more likely to

buy a computer if more people in their local area had already adopted the technology. Jager (2006)

reaches a similar conclusion through a behavioral study among adopters of solar PV technology,

using a survey of residents of a city in the Netherlands. In our paper, we will use the log effect,

as suggested in Shurmer and Swann (1995), Berndt et al. (2003), because it satisfies the concave

behavior that we want to model. We additionally tried other similar functional forms during our

empirical study, but the log effect presented the best fit.

Within the broader marketing literature, Hauser et al. (2006) enumerates the multiple directions

of future research that should to be explored by the marketing community. One such direction is

to improve our understanding of consumer response to innovation. Our paper tries to address this

issue by using a diffusion model based on the logit demand model. Our particular diffusion model

can be placed within the broader class of proportional hazard rate models. Developed by Cox

(1972) for modeling the life time of an agent in a larger population, the hazard rate model has been

widely used in biostatistics and its application in marketing has been well documented in Helsen

and Schmittlein (1993). In our case, the agent’s life-time duration is the moment he/she makes

the purchase decision and adopts the technology. We diverge from the original Cox model in the

particular functional form of the adoption probability, where we use the logit demand derivation for

the probability of purchase. All these models will result in the familiar S-shaped diffusion pattern.

The particular functional form chosen for this paper is derived from the characteristics of consumer

purchasing behavior. Additionally, it was chosen because it provides good estimation results with

the German market data and analytical tractability.

Lately, the operations management community has been developing ground-breaking empirical

work, in particular on the area of customer choice models. For example, Allon et al. (2010a) estimate

how customers value waiting times in fast-food restaurants. Musalem et al. (2010) estimate how

out-of-stocks in the retail market affect customer purchasing decisions, further using this model to

suggest promotion policies to the retailers. The use of structural estimation techniques has enabled

the development of comprehensive decision-making tools and provided useful insights, as we have

done in this paper for the solar subsidy design problem.
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Recent work by Benthem et al. (2008) estimated a demand model with a similar learning-by-

doing effect on a study of the California Solar Initiative and Wand and Leuthold (2010) used

the same model on a study of the German market. These two papers assume there is a known

environmental externality cost that is avoided by PV installations and assume the government tries

to maximize the net social welfare of the system when deciding the subsidy policies. On the other

hand, these environmental costs are mostly deduced from the global impact of climate change.

Until there is a world-wide efficient emissions trading market (cap-and-trade or carbon taxing), no

particular government has an incentive to pay these costs of avoiding climate change. Furthermore,

according to their model, the net social welfare cost of solar incentives is zero as all the money paid

by the government goes back to consumers through their investment subsidies. In our research, we

do not attempt to quantify the social benefits of solar technology, but instead directly use adoption

targets as our policy optimization objective, which we believe is a more realistic setting. To the

best of our knowledge, our paper is the first work to apply a consumer choice modeling approach

to understand the adoption of solar technology with fixed adoption targets. We are also able to use

this framework of adoption targets to evaluate the welfare efficiency of the current German policy

without making assumptions on the environmental benefits of solar installations.

2. Model

We consider a modeling framework that can be divided in two parts: the demand model and

the policy-maker’s problem. In Section 2.1 we develop a solar panel demand model based on the

customers’ purchasing behavior and the network externalities that increase the incentives for future

purchases the more consumers adopt the technology. In Section 2.2, we propose an optimization

model for solving the subsidy policy design question. We have included a notation summary in

Appendix A, which may be a useful reference while reading this modeling section of the paper.

2.1. Demand Model

The first step to understand the adoption process of a certain technology is to understand the

customer behavior. At each time step (for example each year), we consider every household as a

potential customer who is given a choice between purchasing a solar panel or not. Let Mt be the

market size (number of households) and xt be the number of customers at a given time t that

have already adopted the technology, in this case rooftop photovoltaic solar panels. Define rt as

the rebate level offered by the government, which is the policy maker’s decision variable in order

to control the adoption rate of the technology. Let qt(xt, rt) be the demand for solar panels at

time t. The technology adoption in the population is given by the discrete time diffusion process:

xt+1 = xt + qt(xt, rt).
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The demand model we propose in this paper is centered around the average consumer’s utility

profile, namely Vt(xt, rt). In order to maintain tractability and also due to the lack of additional

data for the empirical study, we will make the following assumptions:

Assumption 1.

a) At each time period t, a customer will either buy an average sized solar installation (denoted

AvgSize) or not buy anything;

b) After purchase, this customer is out of the market: no depreciation, resell or additional

purchase options;

c) The solar yield (electricity generation) and installation costs are homogenous across the

entire country;

d) Demand qt for solar panels at time t follows a logit demand model, which is a function of

the utility that consumers have for purchasing a solar panel at time t.

In particular, Assumption 1.d defines the demand qt as a logit demand function, which is equal

to the number of remaining potential customers times the probability that each of these customers

will make the purchase decision at time t. This customer purchase probability is what we also call

adoption or diffusion rate. For a review on diffusion models, see Mahajan, Muller, and Bass (1990).

The motivation behind the logit demand model comes from customers being rational utility

maximizing agents. With this in mind, define Vt(xt, rt) as the nominal utility that the average

consumer has for purchasing a solar panel at time t. It is a function of the current state of the

system xt and the rebate levels rt. Additionally, define ϵt,i as a random utility factor for a given

customer i at t that captures the heterogeneity of consumers’ utility. It represents the utility impact

of all characteristics that different consumers have, for example geographic location, household

sizes, discount rate differences, or environmental conscience. Let Ut,i be customer i’s perceived

utility for purchasing a solar panel at time t. This is given by:

Ut,i = Vt(xt, rt)+ ϵt,i (1)

The logit demand model is one of the most common demand models used in the discrete choice

literature (see for example Ben-Akiva and Lerman (1993), Train (2003) for further references on

discrete choice models). This is mainly due to its analytical tractability. This is also the reason

we use this model in our framework. The logit model assumes consumers are utility maximizing

agents and the heterogenous component ϵt,i comes from an extreme value distribution. Therefore,

at each point in time, customers are given a random draw ϵt,i and will decide to purchase the solar



Lobel and Perakis: Consumer Choice Model For Forecasting Demand And Designing Incentives For Solar Technology
10

panel if the utility of purchase Ut,i is greater than zero (where zero is the utility of no purchase).

Therefore, the probability of adoption for any given consumer can be obtained by integrating the

distribution of ϵt,i over the region Ut,i > 0. This gives us the well-known logit demand model:

qt(xt, rt) = (Mt −xt)
eVt(xt,rt)

1+ eVt(xt,rt)
(2)

The first term (Mt − xt) represents the number of left-over consumers who have not purchased a

solar panel yet at time t and the remaining term is the probability of adoption for any of these

customers. Additionally, we need to assume the following:

Assumption 2.

a) Consumers do not make a strategic timing decision when purchasing the panel. If their

private signal ϵt,i is strong enough so that Ut,i > 0, then they will make the purchase at that time t.

b) The heterogeneity random components ϵt,i are uncorrelated across time periods.

One may argue that Assumption 2.a is a strong assumption, as consumers might be tempted to

wait for panels to become cheaper. Note that Kapur (1995), Goldenberg et al. (2010) show that the

presence of network externalities might encourage agents to wait and delay overall adoption process.

On the other hand, Choi and Thum (1998) suggest that in the presence of network externalities

consumers do not wait enough to adopt a new technology, settling for what is available instead of

waiting for an improvement. Nevertheless, as we observed in the German market data of Section

3 (see Figure 2), the Feed-in-Tariffs offered by the government are decreasing faster than the

installation costs after 2005. This gives the incentive for consumers to not be strategic about

their timing decisions. Before 2005, this was not the case, which suggests that strategic timing

behavior of consumers might have influenced the demand for panels and a more complex model of

consumer behavior might be necessary. On the other hand, using more complex models may lead

to estimation and tractability problems. Assumption 2.a can be interpreted as consumers being

short-sighted agents that can only maximize their utility within a given time period.

Assumption 2.b considers that each customer is given a draw of it’s private utility shock ϵt,i for

that year, which is independent from the private shocks in previous years (ϵτ,i for τ < t). This can

be a stringent assumption, as people who have not adopted solar panels because they have lower

income or live in a region that has low solar irradiation will tend to not adopt in future periods

as well. These problems can be reduced by introducing demographic data into the demand model,

which would make ϵt,i capture less of these fixed components of heterogeneity. For example, one

way to use demographic data into the demand model would be to introduce random coefficients
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as in the BLP model (introduced in Berry (1994) and Berry, Levinsohn, and Pakes (1995)). This

approach has been quite popular in the industrial organization literature recently. The main idea

behind the random coefficients model is that consumer’s sensitivity to the monetary value of the

solar panel, the NPV of the project, should be heterogenous due to those demographic differences

between consumers. By using the distribution of each of these demographic components within the

entire population, we can use computational methods to find better estimates of the probability of

adoption. Although this would possibly lead to a more precise demand model, we choose to avoid

the BLP approach for the following reasons: we do not have sufficient data points to introduce

more parameters to estimate, given that we are working with yearly data over a span of 17 years;

we wish to maintain the analytical closed-form tractability of the demand function, as it will allow

us to explore insights about the structure of the optimal solution of the policy design problem (see

Section 4).

To fully specify the demand function described in (2), we need to define the nominal utility of

the average consumer, denoted by Vt(xt, rt). Consumers’ perceived utility for adopting a solar panel

should be a function of many parameters, including the monetary value of the investment and the

awareness that customers have of the given technology. The first component of Vt(xt, rt) is the

monetary value of an average solar installation purchased at time t, namely NPVt. This component

is equal to the government installation rebate to consumers rt plus the future discounted cash

flows dt minus the installation cost kt, all this is multiplied by the size of an average household

installation, denoted by AvgSize. That is:

NPVt(xt, rt) = (−kt(xt)+ rt + dt)AvgSize (3)

In particular, we model the installation cost k(xt) as a decreasing function of the number of solar

panels sold xt. This is consistent with the learning-by-doing effect, that is, the more people adopt a

given technology, the cheaper this technology becomes in the future. In other words, the installation

cost can be expressed as a decreasing function of the installed capacity. For further references of

learning-by-doing in photovoltaics, see Harmon (2000), IEA (2000), McDonald and Schrattenholze

(2001), Nemet (2006), Sderholm and Sundqvist (2007), Bhandari and Stadler (2009), Yu et al.

(2009).

In the model we introduce in this paper, we represent the solar installation costs with a single

term kt(xt), expressed in e/Wp of installed capacity (nominal solar installation sizes are measured

in Watt-peak, i.e. Wp, which represents the electricity peak generation capacity in Watts under

standard laboratory conditions). In practice, there are many different parts in an installation of
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a solar panel. These include the solar module, additional electronic components (also known as

Balance-Of-System) and labor costs. Ideally, we would want to model the evolution of each cost

separately, since the module costs evolve according to the global demand for solar panels, while the

other costs decrease with the number of local installations. Nevertheless, given that we only have

information on the total installation costs for our empirical study, we simplify the cost evolution

dynamics by defining a single cost function for the solar installation. This cost function decreases

with the number of installations in the country. In particular, the log-log learning curve is the

standard model in the learning-by-doing literature. Let aI and bI be the installation cost parameters

and νt represent a random technological improvement factor for time t. Then the cost dynamics

can be described as:

log(kt(xt)) = aI + bI log(xt)+ νt (4)

Finally, the discounted cash flow dt denotes the present value of the cash payments the customer

will receive after purchasing the panel at time t. Note that in countries like Germany, where a

Feed-in-Tariff system is implemented, the customer will lock the price of the tariff on the year he

purchases the panel and will keep selling electricity at that price for the duration of the contract. For

example, in Germany this contract lasts 20 years (see the report EEG (2007) for further reference).

Most estimates for the lifetime of solar panels suggest that they would last 30 years or more, but

given that this value is discounted to the present and the Feed-in-Tariff expires in 20 years, possibly

bringing the selling price to retail levels, the residual cash flow after 20 years will be very small

compared to earlier ones. For simplicity, we choose to consider the discounted cash flow of the panel

only for the duration of the Feed-in-Tariff contract. Let FITt (in e/kWp) be the revenue earned

at each year for a panel bought at time t. This is the value of the Feed-in-Tariff contract times the

average annual electricity output of a 1 kWp nominal capacity solar panel. Besides the electricity

selling revenue, the consumer needs to pay yearly operation and maintenance (OMt) costs (this

is about 2% of kt every year). We further assume a discount rate of δc (which is about 3 to 5%).

Then the discounted cash flow is given by:

dt =

Tmod∑
τ=1

1

(1+ δc)τ
[FITt −OMt] (5)

With the discounted cash flow described in (5), the installation costs given in (4) and the

government installation rebate level rt, we obtain the net present value of the installation NPVt

(see definition in (3)). For the remainder of this paper, we consider dt as a given constant, as

defined in (5). In other words, we take the Feed-in-Tariff subsidies as data and the government
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can further subsidize only by introducing upfront rebates rt. Negative rebates can also be used

in our model. This would imply a tax increase on the sale of the panels. Either way, for a fixed

discount rate δc, both forms of subsidies are equivalent from an average consumer’s perspective.

Behaviorally, different forms of subsidies evoke diverse responses among customers and the net

present value might not be the best way to capture how consumers perceive this investment.

Another possible measure of investment quality would be the payback period (time until investment

cost is recovered). For this paper, we will not focus on the discussions about the cognitive limitations

of consumers or possible trade-offs between different forms of subsidy. We use the more common

economic definition of utility that consumers are directly affected by the net present value of their

investment.

As mentioned before, the second component that affects the consumer’s perceived utility toward

the solar panel purchase is the awareness level of the customer about the technology. In particular,

there are two network externalities that we want to emphasize in our model: learning-by-doing and

information spread. Because of these network effects, it might be cheaper for the government to

subsidize the early adopters in order to promote a faster overall adoption of the technology. The

first network externality, learning-by-doing on the installation costs, is modeled in (4).

The second externality is what we call information spread effect, or imitating customer behavior,

and it can be usually observed for most new technology adoption processes. It has been well

documented in the marketing literature (see for example Mahajan, Muller, and Bass (1990)) and

in the behavioral economics literature (see for example Jager (2006)). We provide a more in depth

discussion of the literature on information spread in Section 1.2. In summary, this effect happens

because consumers become increasingly more aware about a new technology as more people buy

the product. In our case, the more rooftop panels are adopted in a neighborhood, other consumers

in the same neighborhood will be more likely to adopt the technology as well (see Goolsbee and

Klenow (2002), Jager (2006)). On the other hand, the marginal impact of this information spread

on the remaining customers should naturally decrease with the number of adoptions (see Vives

(1997)). Therefore, the effect of this externality on consumer purchases should be a concave function

of the number of customers that have already adopted this technology.

As mentioned in Section 1.2, theoretical agent-based models for information spread through a

network provide useful insights about the overall effect, but are generally not practical for empirical

applications. In order to conduct empirical work on this subject, it is often common to assume a

particular functional form for how such network externalities affects consumer utility and aggregate

purchase behavior, as in Shurmer and Swann (1995), Swann (2002), Berndt et al. (2003), Doganoglu
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and Grzybowski (2007). In this part of the model, the effect we want to capture is the development

of consumer awareness and how it affects consumers’ perceived utility of purchase. In particular,

we model this effect as a penalty function on the proportion of adopted customers xt/Mt, which

lies between 0 and 1. We propose the following limiting conditions for this penalty function: If

nobody has adopted the new technology, consumers are generally unaware of the product and their

perceived utility of purchase should go to −∞; If everyone has adopted the technology, xt/Mt = 1,

then this penalty should go to zero. Together with the concavity condition mentioned before, we

propose the use of a logarithmic relation between average consumer’s perceived utility and the

adopted share of the population: Vt ∼ log(xt/Mt). This functional form is consistent with previous

empirical work on technology adoption, in particular Shurmer and Swann (1995), Berndt et al.

(2003), where they also test a logarithmic relation between network externalities and consumer

utility of purchase.

Assumption 3. The average customer’s perceived utility for purchasing a solar panel is propor-

tional to the log of the ratio of adopted customers in the population, due to information spread and

consumer awareness of the technology: Vt ∼ log(xt/Mt)

This functional relation in Assumption 3 is by no means the only choice for modeling the infor-

mation spread effect while satisfying the concavity and limiting conditions. It was chosen mainly

due to the good fit demonstrated in our empirical study of the German solar market, compared

to other functional forms we tested (for example Vt ∼ 1− (xt/Mt)
−1). Its simplicity and tractabil-

ity are additional advantages of this modeling choice, which are important both for estimation

purposes in Section 3.1 and for the analytical results of Section 4.

Gathering all the utility components described so far, define the average customer’s perceived

utility for purchasing a solar panel at time t given by:

Vt(xt, rt) = aDNPVt(xt, rt)+ bD log(xt/Mt)+ cD + ξt (6)

The first part aDNPVt(xt, rt) denotes the monetary component of the utility, bD log(xt/Mt)

denotes the impact of the information spread in the consumer’s utility, cD denotes the baseline

utility for making a solar panel purchase, and finally ξt is a random demand shock for year t. Note

that aD, bD and cD are demand parameters that need to be estimated, while ξt is a random utility

component. In particular, ξt represents all unobserved demand shocks for a given year that affect all

consumers and cannot be captured in our data. This could for example represent a demand shock
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due to a strong advertising campaign in that year. The definition of consumer i’s utility function

is then given by adding the nominal average consumer utility with the heterogeneity component:

Ut,i = aDNPVt(xt, rt)+ bD log(xt/Mt)+ cD + ξt + ϵt,i (7)

As defined before in (2), we can now explicitly write the demand model as:

qt(xt, rt) = (Mt −xt)
eaDNPV t(xt,rt)+bD log(xt/Mt)+cD+ξt

1+ eaDNPV t(xt,rt)+bD log(xt/Mt)+cD+ξt
(8)

In order to use the demand model defined in (8) and obtain statistically significant estimation

results, we need to make some assumptions.

Assumption 4.

a) ξt is not correlated with NPV t(xt, rt) or log(xt/Mt);

b) ξt is not autocorrelated with ξτ , for all τ < t;

The correlation described in Assumption 4.a can be a problem for the estimation procedure, but is

usually treated with the use of instrumental variables. Autocorrelation, as described in Assumption

4.b, is a very common problem when estimating time series data. This problem can usually be

solved by fitting an auto-regressive model for these demand shocks together with the demand

model (for example, ξt = αξt−1+ηt). In order to maintain simplicity of the model and minimize the

number of parameters to be estimated, we have assumed correlations are zero. Furthermore, we

have tested this assumption in the empirical study of the German market data and the estimation

output demonstrated no significant correlation.

In summary, the full demand model can be described by the following set of equations, for all

t= 1, ..., T − 1:

Diffusion Process: xt+1 = xt + qt(xt, rt)

Logit Demand: q(xt, rt) = (Mt −xt)
eaDNPV t(xt,rt)+bD log(xt/Mt)+cD+ξt

1+ eaDNPV t(xt,rt)+bD log(xt/Mt)+cD+ξt

Net Present Value: NPV t(xt, rt) = (−kt(xt)+ rt + dt)AvgSize
Learning-by-Doing: k(xt) = eaI+bI log(xt)+νt

(9)

2.2. Policy-Maker’s Problem

The discrete choice model framework described in the previous section can be used to solve a

variety of management and policy problems. In particular, policy makers are traditionally faced

with the problem of setting subsidy levels to stimulate the adoption of a technology up to a

target level within a certain time frame. Jager-Waldau (2007) provides some examples of renewable

energy/photovoltaic target levels for the European Union, although without clear implementation
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guidelines. As an example of these target policies within a country, there was Germany’s pioneer

“1000 Solar Rooftops” program in the early 90’s. The next program, known as “100,000 Solar

Rooftops”, started in 1999 with subsidized loans and expected to install around 300MWp of solar

panels within 6 years. The program ended before schedule in 2003 when the target was reached,

suggesting the subsidy might have been higher than necessary. This seems to suggest that without

further understanding of customer behavior and the dynamics of the adoption process, the policies

can become short-sighted, possibly under/over-subsidizing.

Using our demand model defined in (9), the policy maker should find the optimal rebate levels

rt for t = 1, ..., T − 1 in order to minimize the total present value of the rebate costs, while still

achieving the target adoption level xT at the end of the planning horizon. In this paper, we only

consider a deterministic model and therefore the random components νt and ξt (from equations (4)

and (8)) will be set to zero. This work, to the best of our knowledge, is the first one to deal with

target policy optimization with a choice model approach and network externalities. Introducing

uncertainty into the policy optimization framework adds an extra level of complexity to the model

that would overshadow some of the insights that we are trying to obtain in this paper. Nevertheless,

we believe this is actually a very promising direction to extend this work. For this paper we will focus

only on the deterministic counterpart of the policy problem defined in the following optimization

model:

Cost1(x1, xT ) = min
r1,...,rT−1

T−1∑
t=1

δt−1
g rtqt(xt, rt)

s.t. xt+1 = xt + qt(xt, rt), ∀t= 1, ..., T − 1

q(xt, rt) = (Mt −xt)
eaD(rt−k(xt)+dt)+bD log(xt/Mt)+cD

1+ eaD(rt−k(xt)+dt)+bD log(xt/Mt)+cD
, ∀t= 1, ..., T − 1

k(xt) = eaI+bI log(xt), ∀t= 1, ..., T − 1

(10)

Note that parameters Mt, dt, δg and x1 are given data, denoting respectively the market size at

time t, the discounted future cash flow of solar installations purchased at time t, the government’s

discount rate, and the initial number of household solar installations sold before time t. The set of

parameters (aI , bI) and (aD, bD, cD) allow us to define the cost evolution dynamics and the demand

function, respectively. These parameters need to be estimated using a historical data set, as we

demonstrate in Section 3.1. Note that we replace the NPVt(xt, rt) by (rt − k(xt) + dt), in order

to make the notation more concise. The average installation size originally included in the NPV

definition of (3) can be suppressed because we are estimating aD and this only causes a proportional

shift in the estimate.

The problem described in (10) can be solved numerically using a dynamic programming refor-

mulation, where the state of the system is xt (the number of solar panels sold up to time t). The
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adoption target condition can be enforced with a terminal system cost of zero if the target adoption

level has been achieved and set to infinity otherwise.

CostT (y,xT ) =

{
0, if y≥ xT

∞, o.w.

}
(11)

At each step, the policy maker decides the rebate level rt. The immediate rebate cost observed

at each period is the rebate times the amount of people who adopted at that given time step:

rtqt(xt, rt). The objective of the government at each time step is to minimize the immediate rebate

cost plus discounted future rebate costs. Define for t= 1, ..., T −1 the following cost-to-go functions:

Costt(xt, xT ) =min
rt

rtqt(xt, rt)+ δgCostt+1(xt + qt(xt, rt), xT ) (12)

It is easy to see that the solution of the dynamic program in (12) leads to a solution of the

original problem in (10). This is due to the fact that the state variable xt decouples the problem

across multiple time periods. The second term in the cost-to-go function, xT , is used here as a fixed

parameter, i.e., some policy target that is known beforehand. We use this notation because we will

later explore the implications of changing the target adoption levels in the overall system cost (see

Section 4).

Note that the DP formulation in (12) can be numerically solved by discretizing the state-space.

Given that we only carry one state variable, we can perform a line search over rt at each period t

and efficiently compute the cost-to-go functions by backwards induction.

We can easily add further complexity levels to the model in (12), such as constraints on the

rebate levels and quantity caps on the number of subsidized panels (these are actually commonplace

in many countries). For example, in order to avoid strategic timing behavior of the customers,

we have argued that subsidy levels decrease at a faster rate than the costs improve. In order to

maintain that argument, we might need to introduce a decreasing rebate constraint rt ≤ rt−1. For

that, we need to add another dimension to the state-space of the dynamic program to keep track

of previous rebate levels. Nevertheless, this is not much harder to solve, as 2-state DP is still

numerically tractable. In the remainder of this paper, we focus only on the base model defined

in (10), without these extensions of the problem. We have implemented and tested some of these

constraints. Nevertheless, they do not add additional insight into the policy design problem that

we are dealing with.
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3. Empirical Analysis of the German Solar Market

In this section we perform an empirical study of the German solar market by estimating the demand

model described in Section 2.1 and using this model to produce forecasts for future adoption

levels of the solar technology and validate the model. Furthermore, we use these forecasts and

the DP formulation of the policy-maker’s problem described in Section 2.2 to produce policy

recommendations.

We have gathered the following information on the German PV solar market data:

a) Number of households in Germany from 1991 to 2007

b) Forecasted number of households in Germany from 2008 to 2030

c) Feed-in-Tariff rates (e/kWh) from 1991 to 2007

d) Feed-in-Tariff forecasted rates (e/kWh) from 2008 to 2030

e) Average solar installation cost (e/kWp)from 1991 to 2007

f) Nameplate peak capacity (MWp) of solar panels installed in Germany from 1991 to 2007

g) Distribution of PV solar installation sizes made in 2009

h) Discount rate used by customers and government

i) Average annual PV solar electricity yield (annual kWh/kWp)

Sources for the data collected for this study include IEA (2004), Schaeffer et al. (2004), Wissing

(2006), EEG (2007), PVPS (2008), Frondel et al. (2008), EPIA (2009), Bhandari and Stadler

(2009), as well as the databases of the Eurostat (European Commission Statistical Office) and the

Federal Statistics Office of Germany.

The data for the Feed-in-Tariff rates both past and forecasted can be seen in Figure 1. The

average solar installation cost kt is displayed in Figure 2, together with the discounted cash flow dt

for a solar installation. This discounted cash flow data is displayed in Figure 2 and can be obtained

using the Feed-in-Tariff rates, discount rates and the annual solar yield data. The discount rate

used by customers and government is assumed to be δc = δg = 95% (approximately equivalent to

the 5% interbank interest rate). Finally, we assume that average annual solar yield is 750 kWh

per kWp of installed peak capacity, which is derived by the average total amount of PV electricity

generated divided by the installed capacity in each year.

The nameplate peak capacity (MWp) of solar panels installed from 1991-2007, together with the

distribution of installations in 2009, will be used to estimate the number of residential installations

done between 1991-2007. The resulting estimated number of solar household installations together

with the number of households in Germany is displayed in Figure 3. The details of these calculations

will be discussed next.
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The data obtained for the amount of historical solar installations was in the total cumulative

installed capacity of PV solar panels in Germany, including both rooftop and open-space instal-

lations. In general, these two types of installations are very different both in terms of size and

incentive tariffs. Modeling the adoption of both types of installations with the same demand model

can be inaccurate, but we could not obtain differentiated data about the size of installations from

1991-2007. According to Reichmuth et al. (2010), such information was not even collected for

rooftop systems for this data range. Starting in 2009, Germany’s Federal Network Agency (Bun-

desnetzagentur) requires all new PV installations to register their installed capacity. Using this new

database, we obtain the size of all new solar installations performed in 2009. In Figure 4, we display

a histogram with the installations in 2009 for each size ranging from 1kWp to 50kWp. In fact the

full data for 2009 includes very large installations, including some solar farms of approximately

50MWp and 20MWp. Residential rooftop installations are usually considered to be under 30kWp.

This is also the criterion used in the Renewable Energy Sources Act (EEG) to define the feed-in-

tariffs for small scale installations. In fact, we observe in Figure 4 a sharp increase in installation

numbers exactly at 30kWp, as customers have a strong incentive not to go over this limit in order

to obtain the higher feed-in rates.

In order to differentiate residential installations from open-space installations, we will use the

proportion of installations sizes in 2009 to infer the number of residential installations from the

total aggregate installed capacity from 1991 to 2007. We understand this is a strong assumption,

but it the best we can do with the information that is available. In fact, the sum of all PV systems
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installed in 2009 is 3,429kWp, while 42.84% of these were from installations under 30kWp. The

total number of installations under 30kWp was 122,863 (out of a total of 141,278 new PV systems)

and the average size of these residential systems was 11.95kWp. To put things in perspective, these

new rooftop installations in 2009 broke yet another record for the number of installations in the

country and yet covered approximately only 0.32% of the households in Germany.

Using the historical series of total installed nameplate capacity of solar panels in Germany

(both residential and not) together with the ratio of residential installations of 42.84% and the

average system size of 11.95kWp, we extrapolate the historical xt adoption level, i.e. the number of

residential customers that had purchased a solar panel before each year between 1991-2007. The

result is displayed in Figure 3.

3.1. Fitting the Installation Cost and Demand Model

There are basically two estimations to be made from the data that was gathered: the cost function

and the consumer utility model. In particular, we need to estimate those five coefficients (aI , bI)

and (aD, bD, cD). Note that the cost function appears inside the consumer utility model through

the NPV of the solar installation. If we try to estimate both relations together, the estimation will

have problems with the endogeneity of the system cost evolution in the adoption process. Therefore,

we can first estimate the dynamics for the cost of solar installations and then estimate the utility

model afterwards. The cost improvement function was estimated with a simple regression on the

log-log relationship between kt and xt, as defined in (4). Table 1 displays the estimation results.

Estimate Std. Error
aI 3.05 0.0635
bI -0.127 0.0065

R2 0.907
Table 1 Estimation Results for the Installation Cost (Learning-by-Doing effect)

The results of the cost dynamics fitted above in Table 1 can be translated into a perhaps more

common terminology of Learning Rate (LR) and Progress Ratio (PR). In particular, PR= 2bI =

92% and LR= 1−PR= 8%.

The demand model defined in (8) can be expressed as a linear function of the utility parameters

that we want to estimate. Let λt =
xt+1−xt
Mt−xt

= eaDNPV t+bD log(xt/Mt)+cD+ξt

1+eaDNPV t+bD log(xt/Mt)+cD+ξt
. Then 1−λt =

Mt−xt+1

Mt−xt
=

1

1+eaDNPV t+bD log(xt/Mt)+cD+ξt
. Therefore:

log

(
xt+1 −xt

Mt −xt+1

)
= log

(
λt

1−λt

)
= aDNPV t + bD log(xt/Mt)+ cD + ξt (13)
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Figure 5 Baseline forecast of adoption (rt = 0) in Germany as a proportion of the households

We consider the unobserved demand shock ξt as the error measure and use a generalized method

of moments approach to estimate the relation in (13). Note that a necessary condition for (13) to

hold isMt >xt+1 >xt. This condition is generally true for the adoption of any new technology, since

demand is always positive and the market size is still far from the number of adopted customers

(see Figure 3). Table 2 displays the estimation results.

Estimate Std. Error
aD 1.636× 10−4 1.120× 10−4

bD 0.657 0.240
cD -2.891 1.592

R2 0.957
Table 2 Estimation Results for the Demand Model

The estimation results from Tables 1 and 2 seem to present a good fit to the historical data

for the cost and demand curves. We can now use our calibrated model to forecast future adoption

levels and solve the policy-making problem to obtain insights about the situation of the German

market.

3.2. Forecasting and Policy Optimization

Using the model estimated in Section 3.1, in Figure 5 we forecast the future baseline adoption

levels, xB
t , using forecasts of the number of households and future feed-in rates. Define this baseline

adoption path as the natural adoption process if we do not intervene on the subsidy levels (rt = 0).
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Figure 6 Comparing our baseline forecast with EPIA benchmark

Using the installation distribution in 2009, we can infer the total (both residential and non-

residential) PV installed capacity for the following few years, 2008-2013. In Figure 6, we compare

our results with a well recognized forecast benchmark from the European Photovoltaic Industry

Association (EPIA). Our baseline predictions for the total installed solar generation capacity in

Germany by 2013 are 11.5% above the EPIA conservative (status-quo) forecast and 10.4% below

the EPIA aggressive (stronger policy) forecast. This comparison serves as a sanity check for us to

trust the forecasting ability of our model.

Using the estimated model, we also demonstrate how to use the policy design tool developed in

Section 2.2 with a hypothetical adoption target. Starting from 2008, consider the target adoption

level for 2030 to be at our baseline adoption forecast at xB
T = 12.3%. In this case, we observe that

by readjusting the current subsidy policy, we can obtain net present value savings of 32.5 billion

Euros, over the next 22 years. In Figure 7, we display the optimal rebate strategy. This strategy

is computed by numerically solving the dynamic program in (12) and it displays positive rebates

in the early stages and negative rebates after 2015. In other words, this rebate structure could

translate into an increase in subsidies in the first few years and the removal of some of the current

subsidies later on (possibly smaller Feed-in-Tariffs or higher sales taxes). The jerkiness of this plot

is due to the rough discretization used to solve the dynamic program. Note also that the rebate

structure is decreasing over time. This is consistent with the assumption that consumers should

have no incentives to be strategic about their purchase timing decision.
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Figure 7 Optimal Rebate Policy: Target 12.3% by 2030

By looking at the structure of the optimal rebate path in Figure 7, we can see that there are three

forces defining this optimal policy: The first one increases the subsidies at the beginning of the

planning horizon, in order to kick-start the effects of the positive network externalities. The second

contradicting force comes from the discounted nature of the problem, favoring later subsidies. The

third force is a free-riding effect, where subsidizing is cheaper at later periods because network

externalities have already taken effect. The combination of these three effects will make the optimal

rebate path distribute rebates in a non-trivial manner. In other words, it is not optimal to waste

all our subsidizing efforts at the first stage, but instead there is an efficient way to distribute the

rebates along the time horizon with minimal cost to the system.

Figure 8 displays the adoption forecast using this optimal rebate policy and compare it to the

baseline adoption path. Additionally, Figure 9 displays the forecasted evolution of installation costs

under the baseline path and with optimized policies.

In order to understand the trade-off between the adoption target level established for the year

2030 and the cost it will incur for the government, we ran the policy optimization for multiple

target levels, ranging from 1% to 25%. In Figure 10, we observe that below a 16.3% adoption

level, the government can actually save money by optimally managing the subsidy policy. This is

consistent with Figures 7-8, where we display the optimal rebate and adoption path for a particular

adoption target of 12.3%.

In Section 4, we explore further the analytical structure of the optimal policy and target cost

function. More specifically, in Theorem 1 we prove that the government’s cost function is convex as
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Figure 8 Adoption Forecast: Target 12.3% by 2030
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Figure 9 Installation Costs: Target 12.3% by 2030

a function of the adoption target, as we observed in Figure 10. This convexity result requires some

mild assumptions on the installation cost and demand model parameters which are clearly satisfied

for our empirical study. We also further analyze in Section 4.1 the behavior of the optimal solution

as we change the target adoption level for a two-stage problem, where we conclude that one of the

reasons why increasing the adoption targets becomes increasingly more expensive is because of the

saturation of the network externality benefits.
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Figure 11 Cost saving by optimizing subsidies when assuming target adoption xT to be given by baseline xB
T

For our last experiment, we varied the target adoption deadline T from 2009 to 2030 and assumed

that the target adoption rate was our baseline estimate for the adoption level at that given year, xB
T ,

as seen in Figure 5. We then optimized the subsidy policy for that given target xB
T and observed the

government cost for achieving that same target level by time T . The motivation of this experiment

is to reverse engineer what could potentially be the government’s current subsidy policy motivation

or determine if the current policy is suboptimal. If the government was in fact optimally designing
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the current subsidies to reach an adoption target at any of these years, in theory, our baseline

should forecast the optimal adoption path to that target. In other words, the optimal rebate from

the optimization model should be rt = 0, for all t ≤ T , and the potential cost improvement of

changing the subsidy policy should also be zero.

In fact, we observe that for any target deadline T between 2009 and 2030, there is a cheaper

way to achieve the same adoption level as the baseline forecast predicts, xB
T . Figure 11 displays the

result of this experiment. We note that the potential cost savings is always positive for any target

adoption level in the baseline forecasted adoption path. This indicates that the current design of

the subsidies are not optimally designed for any potential adoption target.

Another hypothesis is that the government is actually maximizing some measure of social welfare,

as opposed to trying to achieve some given target, and could potentially be optimal under that

objective. We discuss the welfare problem in more detail in Section 4.2. From Theorem 2, we show

that because the optimal rebate structure found by our dynamic program is decreasing in time,

i.e., rt ≥ rt+1 (see for example, Figure 7), then our optimized adoption path is always above the

baseline adoption path x∗
t ≥ xB

t (see Figure 8). Therefore the cumulative welfare benefits from

solar panel adoption will always be higher in our optimized solution. Our new solution will not

be necessarily the optimal welfare solution, but it will certainly provide higher social welfare than

the current baseline path. This shows that the government is still acting suboptimally, even from

a social welfare perspective.

The result that the current subsidy policy is suboptimal, both from a target adoption and from

a welfare perspective, needs to be evaluated carefully. Throughout our modeling process we have

made many assumptions about consumer behavior and the demand structure that need further

exploration. Also, a few simplifying assumptions were made simply because of the lack of detailed

data on the solar market. That being said, we believe this empirical study developed a first step

in analyzing this issue and raises a clear warning sign about the economic efficiency of the current

policy. We believe these experiments can be further improved by updating the data set and possibly

using a more detailed demand model.

4. Analysis of the Policy-Maker’s Problem

In this section, we explore some of the theoretical insights that can be obtained by analyzing the

structure of the optimization model we developed in Section 2.2 for the policy design problem.

Consider the problem faced by the policy maker in (10), where x1 is the initial number of solar

panels sold and xT is the given adoption target. As before, we control the adoption levels by
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adjusting the rebate rates rt. For a full notation summary, see Appendix A. We will make a few

technical assumptions about the parameters of the model that are necessary for the analysis:

Assumption 5.

a) Mt >xt+1 >xt, for all t= 1, ..., T − 1.

b) bI < 0.

c) aD > 0, bD > 0, and aD + bD ≤ 1.

Assumption 5.a means that we are only concerned with the problems where the market is still

under development and the potential market size is greater than the number of panels sold at any

point of our decision horizon. Assumption 5.b is true by the nature of the learning-by-doing effect,

which decreases installation cost with the number of installed panels. Assumption 5.c is a techni-

cal assumption that we use to obtain convexity of the government’s cost function. Assumptions

aD > 0 and bD > 0 hold due to the nature of the demand model, but the last part aD + bD ≤ 1

is not as obvious. The top-level intuition behind it is that the benefits of network externalities

such as learning-by-doing and information spread may have a concave impact on the system cost.

Without these network effects, the nature of the logit model alone could guarantee convexity for

the cost function. This assumption, aD + bD ≤ 1, guarantees that the concave network effects do

not overshadow the convexity of the demand model. In fact, this condition is easily satisfied in the

empirical study of Section 3.1.

We will now show that the total present system cost Cost1(x1, xT ) is convex in the future target

adoption level. As the demand function q(xt, rt) is monotonically increasing in rt, we can easily

invert the relation and express the rebate as a function of the desired demand, qt.

rt(xt, qt) = k(xt)− dt −
bD log(xt/Mt)+ cD + ξt − log(−qt/(qt −Mt +xt))

aD

Note also, that demand is determined for a given a adoption path qt = xt+1 −xt

rt(xt, xt+1) = k(xt)− dt −
bD log(xt/Mt)+ cD + ξt − log

(
xt+1 −xt

Mt −xt+1

)
aD

(14)

For simplicity, consider the following 3-period model (T=3), where x1 is the initial state and x3 is

the final target state. The only decision to be made is where the middle state x2 should be placed.

Once x2 is decided, the rebates for both periods will be determined by r1(x1, x2) and r2(x2, x3)

according to equation (14). By controlling directly the adoption path and not the rebates, we can
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deal with a single variable unconstrained problem, instead of a two-variable problem with balance

constraints. Define the inside cost function:

J1(x2, x3) = r1(x1, x2)(x2 −x1)+ δr2(x2, x3)(x3 −x2)

Then the policy maker’s problem can be reformulated as:

Cost1(x1, x3) =min
x2

J1(x2, x3) (15)

The following lemma will be used to show the convexity of the total system cost function.

Lemma 1. J1(x2, x3) is jointly convex in x2 and x3.

The proof of Lemma 1 is very heavy in algebraic manipulations. To improve the reading of

the paper, we placed this proof in Appendix B. Given the convexity of J1(x2, x3) in x2, we know

that the optimal solution x∗
2(x3) comes from the solution of the first order optimality condition,

dJ
dx2

(x∗
2(x3), x3) = 0. From the joint convexity of J1, we can also obtain the following results.

Corollary 1. Let x∗
2(x3) be the optimal adoption path for a given target x3. Then

Cost1(x1, x3) = J1(x
∗
2(x3), x3) is a convex function of x3.

The proof of this Corollary 1 is a well known result from convex analysis and it comes directly

from the joint convexity of the inner function J1(x2, x3) (for further reference see Boyd and Vanden-

bergh (2004)). We will use Corollary 1 in the proof of convexity for the T-period case in Theorem

1.

Another interesting outcome of Lemma 1 is stated below in Corollary 2. This corollary is derived

from the Implicit Function Theorem (see Bertsekas (1995))

Corollary 2. Let x∗
2(x3) be the optimal adoption path for given target x3. Then the first order

optimality condition on x3 implies:
dx∗2
dx3

(x3) =− d2J
dx2dx3

(x∗
2(x3), x3)

(
d2J
dx22

(x∗
2(x3), x3)

)−1

.

The above result, Corollary 2, will be later used to develop insights about the structure of the

optimal solution. For now, we will focus on the convexity result. In the original T-period problem,

we obtain the following result.

Theorem 1. Cost1(x1, xT ) is convex in xT .

The intuition behind the proof of Theorem 1 is to show convexity for an additional period T = 4

and Cost1(x1, x4) =minx3 Cost1(x1, x3)+ δ2r3(x3, x4)(x4−x3). By induction, we can show that the

cost for any time horizon T is a convex function of the target. Once again, the derivation of this

proof is relegated to Appendix C.
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This result may be useful in order to extend this model into many future research directions,

including solving the problem with uncertainty (with randomness in demand and/or technological

progress) or introducing multiple products (for example, different installation sizes). In these cases,

one possible approach would be to use approximate dynamic programming, which may require

some convexity structure of the value function.

4.1. Insights on the optimal solution

By examining at the 3-period problem defined in (15), we can obtain some insights on the structure

of the optimal solution and optimal system cost. Consider the first order condition: dJ
dx2

(x∗
2(x3), x3) =

0. By rearranging the terms of this equation, we obtain:

M1 −x1

aD(M1 −x∗
2(x3))

+ r1(x1, x
∗
2(x3))+ δ

[
k′(x∗

2(x3))−
bD

aDx∗
2(x3)

− 1

aD

− r2(x
∗
2(x3), x3)

]
= 0

This can be used to find the optimal mid-point adoption level x∗
2(x3), located where the marginal

cost of increasing the level in the first period is the same as the marginal benefit from the second

period. In the first period, for each marginal unit of x2 that we increase over the optimal, we

incur a marginal cost of the rebate price r1(x1, x
∗
2(x3)), plus a rebate adjustment of M1−x1

aD(M1−x∗2(x3))

needed to meet the higher demand in this first period. In the second period, the marginal unit

increase in x2 will lower the overall system cost (with discounting δ) by the rebate r2(x
∗
2(x3), x3)

adjusted for the network externalities gain k′(x∗
2(x3))− bD

aDx∗2(x3)
and also for the fact that we need

to serve a lower demand, which also affects the rebate level by 1
aD

. Strict convexity of J(x2, x3) in

x2 guarantees that this equation has a monotonically increasing left hand side, which means that

there is a unique optimal solution and it can be easily computed numerically.

It is only natural to ask how the optimal mid-point adoption level changes with the adoption

target level. From Corollary 2, we have that
dx∗2
dx3

(x3) =− d2J
dx2dx3

(x∗
2(x3), x3)

(
d2J
dx22

(x∗
2(x3), x3)

)−1

. We

can then show the following properties of the optimal solution:

Proposition 1. Let x∗
2(x3) be the optimal mid-point level. Then

dx∗2
dx3

(x3)> 0, which implies that

the optimal x2 is strictly increasing in the target x3. If we also have that x2 − x1 ≤M2 − x3, then

we can also show
dx∗2
dx3

(x3)< 1.

See Appendix D for a proof of Proposition 1. We use this result to get intuition about how the

system cost changes as a function of the adoption target.

Consider the variation in the optimal rebate levels. We can express them as:

dr1
dx3

(x1, x
∗
2(x3)) =

[
1

aD(x∗2(x3)−x1)
+ 1

aD(M1−x∗2(x3))

]
dx∗2
dx3

(x3)

dr2
dx3

(x∗
2(x3), x3) =

1
aD(x3−x∗2(x3))

+ 1
aD(M2−x3)

+
[
k′(x∗

2(x3))− bD
aDx∗2(x3)

− 1
aD(x3−x∗2(x3))

]
dx∗2
dx3

(x3)
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The derivative of the system cost can also be expressed as:

dCost1
dx3

(x1, x3) =
dr1
dx3

(x1, x
∗
2(x3))(x

∗
2(x3)−x1)+ r1(x1, x

∗
2(x3))

dx∗2
dx3

(x3)

+δ dr2
dx3

(x∗
2(x3), x3)(x3 −x∗

2(x3))+ δr2(x
∗
2(x3), x3)

(
1− dx∗2

dx3
(x3)

)
In order to develop intuition about the optimal cost variation, assume we are working under the

regime where Mt −xt+1 >>xt+1 −xt, for both t= 1,2. This is the case in any solar market today

and for the foreseeable future. For example, in the German case studied in the previous section the

amount of solar capacity installed is not even 1% of the potential market size. For this reason we

reformulate the optimal rebate derivatives with an approximation, where the terms 1
aD(M1−x∗2(x3))

and 1
aD(M2−x3)

go to zero. The cost derivative can be approximated by:

dCost1
dx3

(x1, x3)∼=
[

1
aD

+ r1(x1, x
∗
2(x3))

]
dx∗2
dx3

(x3)

+δ
[

1
aD

+ r2(x
∗
2(x3), x3)

](
1− dx∗2

dx3
(x3)

)
+ δ(x3 −x∗

2(x3))
[
k′(x∗

2(x3))− bD
aDx∗2(x3)

]
dx∗2
dx3

(x3)
(16)

Each new marginal unit of target adoption level x3 will need to be distributed into the first

and second period of sales determined by
dx∗2
dx3

(x3) and (1− dx∗2
dx3

(x3)) respectively. Note from the

first term in the above equation that a marginal increase in the target level will increase the mid-

point level by
dx∗2
dx3

(x3) and each additional unit of mid-point adoption level will cost an additional

1
aD

+ r1(x1, x
∗
2(x3)) to the system, where 1

aD
is the rebate adjustment due to increased demand in

the first period. The cost of the additional target level units allocated to the second period will be[
1

aD
+ r2(x

∗
2(x3), x3)

](
1− dx∗2

dx3
(x3)

)
, where 1

aD
is the adjustment in the second rebate price due to

higher demand. On the other hand, each unit of mid-point level increase will save the system some

money on the second period because of network externalities, which is represented by the last term

on the equation. The externality benefits affect all sales made in the second period (x3 − x∗
2(x3)),

not just the new additional units required for the marginal target increase.

With the relation in (16), the policy maker can obtain the trade-offs of raising the target adoption

level, without having to resolve the entire system cost. If x3 is already very high, it is likely that the

cost benefits due to the network externalities are saturated, as k′(x∗
2(x3))− bD

aDx∗2(x3)
will increase

and approach zero as we increase x3 (note that k′(x)< 0 and k′′(x)> 0). Then raising the target

levels become increasingly more expensive, which is one reason why the cost function Cost1(x1, x3)

is convex, as we concluded in Theorem 1.

4.2. Welfare Maximization

Perhaps more common in the economics literature, the objective of a policy optimization problem

can be expressed as a social welfare maximization problem. In this particular case, it is debatable

how one should quantify the benefits of developing the solar industry for a particular government.
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There is obviously a global benefit for clean electricity generation, but the local benefits from

avoiding carbon emissions cannot be rewarded to a single state or country unless we develop an

efficient global carbon market. Other pollutants have more local impact, but in general pollution

avoidance cannot solely justify solar technology, as there are other technologies that are much more

cost efficient (from wind generation to building retro-fitting). On the other hand, there are less

tangible benefits of stimulating the solar technology by a particular government. These include

generation portfolio diversification, peak-load reduction, development of a local solar manufacturing

and installation industry.

For the reasons above, we have so far waived the welfare discussion and assumed that policy-

makers have a given strategic adoption target. We further demonstrated how the cost behaves for

different target levels, which could potentially aid policy-makers when setting such targets. If we

could quantify all the benefits of solar adoption, then we could use welfare maximization to find

these targets with a slight modification of our optimization model.

Suppose we are given a benefit function Benefitt(xt) which depends on the realized adoption

at each stage. This would be the case if there was a given price for CO2t at time t and every

solar panel installed saves the country that amount of money for avoiding carbon emissions. See

for example Benthem et al. (2008) for an example of policy optimization with carbon externality

costs. Naturally, this function Benefitt(xt) should be increasing on the adoption level at xt. Define

the social welfare problem as:

Welfare(x1, ..., xT ) =
T−1∑
t=1

[
Benefitt(xt)− δt−1rt(xt, xt+1)(xt+1 −xt)

]
The optimal welfare problem can be solved by maximizing the expression above, which can be

done numerically by solving a dynamic program. Next, we define a useful result connecting the

optimization for adoption targets with social welfare efficiency.

Theorem 2. Let xB
t be the baseline adoption path, where rt = 0, for all t= 1, ..., T −1. Consider

xB
T as the adoption target in the optimization model (10) and let x∗

t be the optimal adoption path for

this model. If the overall system cost is negative, Cost1(x1, x
B
T )< 0, and the optimal rebate path is

non-increasing, rt(x
∗
t , x

∗
t+1)≥ rt+1(x

∗
t+1, x

∗
t+2), then the welfare of the new optimized path is greater

than the welfare under the baseline path, i.e.,

Welfare(x1, x
∗
2, ..., x

∗
T−1, x

B
T )>Welfare(x1, x

B
2 ..., x

B
T−1, x

B
T )

Note that Theorem 2 connects with our findings in the empirical study at the end of Section 3.2.

In that part of the study, we argue that the current subsidy policy for the German solar market
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is suboptimal, even from a welfare maximization perspective. To avoid cluttering the paper, we

display the proof of Theorem 2 in Appendix E.

5. Conclusions

In summary, we model the adoption of solar photovoltaic technology as a diffusion process where

customers are assumed to be rational agents following a discrete choice model. We show how

this framework can be used by a policy maker to design optimal incentives in order to achieve a

desired adoption target with minimum cost for the system. In particular, this policy design model

takes into consideration network externalities such as information spread and cost improvements

through learning-by-doing. To demonstrate the applicability of this framework, we develop an

empirical study of the German photovoltaic market and show how this model can be fitted to actual

market data and how it can be used for forecasting and subsidy policy design. Finally, we analyze

the structure of the optimal solution of the subsidy design problem to obtain insights about the

government’s subsidizing cost and to understand how this adoption target optimization problem

can be related to the welfare maximization problem.

We show in our numerical experiments that in the early stages of the adoption process, it is

optimal for the government to provide strong subsidies, which take advantage of network exter-

nalities to reach the target adoption level at a lower cost. As the adoption level increases, these

network externalities become saturated and the price paid for raising the adoption target becomes

increasingly more expensive. In particular, we are able to prove analytically that the system cost

is a convex function of the adoption target. This convex trade-off between adoption targets and

subsidy cost was also evident in our empirical study. We believe that this framework for quantifying

the cost of adoption targets could be a very useful tool for the policy-makers that design these

targets.

We also observe in this empirical study that the current subsidy policy in Germany is not

being efficiently managed. We can argue the suboptimality of the current policy because for every

possible adoption target chosen along the baseline adoption path, there is a better way to reach

the same target at a lower cost for the system. More specifically, we can achieve that by raising

early subsidies and lowering future subsidies. Finally, we proved that even if the government is

maximizing social welfare instead of minimizing cost of achieving a target, the current subsidy

policy is still suboptimal. We believe that this model should be further developed with more levels

of detail in the demand model and data collection given the potential real-world impact of these

policy recommendations.
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5.1. Future Research

We are currently exploring multiple directions to improve this model. For instance, solar module

manufacturers need to decide investment levels for their factories, which in turn determines the

production output of solar modules. This affects prices and the overall adoption of the technology.

Modeling the interaction between the policy-makers, consumers and solar panel manufacturers

would provide a very interesting extension of our model. The field of industrial organization is also

rich in models of industry dynamics (see for examples Ericson and Pakes (1995), Bajari et al. (2007),

Weintraub et al. (2008)). Nevertheless, these models do not have a policy-making perspective using

adoption targets.

On another note, it would be interesting to improve the way we optimize for policies by taking

into account uncertainty in demand and in technological development. For instance, one of the

key assumptions in our model, the learning curve of the installation costs, is known to have a

large margin of error, as noted in van Sark et al. (2008). Policies that take into account the uncer-

tainty in technological development and learning-by-doing effects have not been widely explored

or implemented in the real-world.

Furthermore, it would be good to explore alternative ways to model consumer behavior and

the information spread effect. We made an assumption about customers being short-sighted. This

assumption can be waived given the state of policies in the system today, but is probably not

accurate for the early stages of the technological development. Finally, investigating the impact of

information spread on the consumers’ purchasing behavior is another very promising direction to

extend this work.
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Appendix A: Notation

The following notation summary will be useful for reference throughout the paper.

Mt : Market size at year t, equal to number of households
xt : Number of household solar panels installed up to year t
xT : Target adoption level
T : Length of the policy time horizon, also known as target adoption deadline
qt : Demand for household solar panels installed at year t (kWp)
rt : Government installation rebate (e/kWp)
kt : Solar installation cost at year t, including labor, module and hardware (e/Wp)

δc, δg : Discount rate of the customers and government, respectively
dt : Discounted future cash flows of a solar installation (e/kWp)

FITt : Feed-in-Tariff value at year t times the average annual electricity output (e/kWp)
OMt : Operation and Maintenance cost (e/kWp)

AvgSize : Average household installation size (kWp)
Tmod : Lifetime of the module

NPVt : Net Present Value of an average sized solar installation purchased at t (e)
aI , bI : Installation cost parameters, from learning-by-doing effect

aD, bD, cD : Demand model parameters or consumer utility function parameters
ξt : Unobserved demand shocks at time t
ϵt,i : Random utility component for customer i at time t
Ut,i : Utility of purchasing a solar panel for customer i at time t
Vt : Nominal utility that the average consumer has for purchasing a solar panel

Costt(xt, xT ) : Subsidy cost at time t, starting from adoption level xt and finishing at adoption target xT

Appendix B: Proof of Lemma 1

The definition of J1(x2, x3) is given by:

J1(x2, x3) = r1(x1, x2)(x2 −x1)+ δr2(x2, x3)(x3 −x2) = f1(x2)+ δf2(x2, x3)

We can prove the joint convexity by parts. The first part: f1(x2) = r1(x1, x2)(x2 − x1) needs only to be

proved convex in x2. By taking the second derivative of this term in x2 we obtain:

d2f1
dx2

2

= (M1 −x1)
2/(aD(M1 −x2)

2(x2 −x1))> 0

To prove joint convexity of J1(x2, x3) it remains to show that the principal components of the Hessian of

f2(x2, x3) are also positive. In particular we will split up the function f2 in two parts. Choose α1, α2 > 0 such

that α1 +α2 = 1.

g1(x2, x3) =

(
k(x2)+

α1

aD

log

(
x3 −x2

M2 −x3

))
(x3 −x2)

g2(x2, x3) =

(
−bD log(x2)

aD

+
α2

aD

log

(
x3 −x2

M2 −x3

))
(x3 −x2)

We can rewrite f2(x2, x3) as:

f2(x2, x3) = g1(x2, x3)+ g2(x2, x3)−
(
d2 +

cD
aD

− bD log(M2)

aD

)
(x3 −x2)

At this point, we just need to prove joint convexity of g1 and g2. In particular, we will show that the

principal components of the Hessian of g1 and g2 are positive. For the first term, the first second derivative

is given by:
d2g1
dx2

2

= k′′(x2)− 2k′(xt)+
α1

aD(x3 −x2)
> 0
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This is positive simply by verifying each term. Note here that k′′(x2) > 0 and k′(x2) < 0 because of the

decreasing and convex nature of the learning function given by bI < 0.

It remains to show that the determinant of the Hessian of g1 is positive:

d2g1
dx2

2

d2g1
dx2

3

−
(

d2g1
dx2dx3

)2

≥ 0

With some algebraic manipulations, we can show that the expression above reduces to:

k′′(x2)
α1

aD

(
M2 −x2

M2 −x3

)2

− 2k′(x2)
α1

aD

M2 −x2

(M2 −x3)2
− (k′(x2))

2 ≥ 0

In particular, k′′(x2) =
bI(bI−1)

x2
2

k(x2) and k′(x2) =
bI
x2
k(x2) =

x2

bI−1
k′′(x2). Also k′(x2)

2 = bI
bI−1

k′′(x2) Then

the expression above becomes:

k′′(x2)
α1

aD

(
M2 −x2

M2 −x3

)2

− 2
x2

bI − 1
k′′(x2)

α1

aD

M2 −x2

(M2 −x3)2
− bI

bI − 1
k′′(x2)≥ 0

This can be reduced to:
α1

aD

M2 −x2

(M2 −x3)2

(
M2 −x2 −

2x2

bI − 1

)
≥ bI

bI − 1

In particular − 2x2

bI−1
> 0, then M2−x2

(M2−x3)2

(
M2 −x2 − 2x2

bI−1

)
>
(

M2−x2

M2−x3

)2
> 1 where the last inequality comes

from M2 > x3 > x2 of Assumption 5.a. Also from Assumption 5.b, we have that 1 > bI
bI−1

. Therefore the

equation we want to prove can be implied if α1

aD
≥ 1, since:

α1

aD

M2 −x2

(M2 −x3)2

(
M2 −x2 −

2x2

bI − 1

)
>

α1

aD

≥ 1>
bI

bI − 1

Let α1 = aD and we have proven the joint convexity of g1. For the joint convexity of g2 we need to do a

similar algebraic manipulation. Note that the first term in g2 is −bD log(x2)/aD is the equivalent of k(x2) in

the proof of g1. The first component of the Hessian matrix will be:

d2g2
dx2

2

= bD/(aDx
2
2)+ 2bD/(aDx2)+

α2

aD(x3 −x2)
> 0

This is also positive. The determinant of the Hessian of g2(x2, x3) can be expressed as:

(aD/bD)(−bD/(aDx2))
2 α2

aD

(
M2 −x2

M2 −x3

)2

− 2(−bD/(aDx2))
α2

aD

M2 −x2

(M2 −x3)2
− (−bD/(aDx2))

2 ≥ 0

This is equivalent to:

(aD/bD)(−bD/(aDx2))
α2

aD

(
M2 −x2

M2 −x3

)2

− 2
α2

aD

M2 −x2

(M2 −x3)2
− (−bD/(aDx2))≤ 0

(−bD/(aDx2))

(
(aD/bD)α2

aD

(
M2 −x2

M2 −x3

)2

− 1

)
− 2

α2

aD

M2 −x2

(M2 −x3)2
≤ 0

The expressions above will be true if

(
(aD/bD)α2

aD

(
M2−x2

M2−x3

)2
− 1

)
≥ 0, which can be reformulated into:

α2

bD
≥
(
M2 −x3

M2 −x2

)2
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Since M2 >x3 >x2, we need to show only that α2 ≥ bD, then:

α2

bD
≥ 1>

(
M2 −x3

M2 −x2

)2

In particular we had chosen α2 = 1−α1 = 1−aD. From Assumption 5.c, we have that aD + bD ≤ 1, which

implies that α2 ≥ bD, which concludes our proof that g2(x2, x3) is jointly convex in (x2, x3). Together with

the earlier proofs that g1 and f1 are jointly convex as well, we have that J1(x2, x3) is jointly convex.

Appendix C: Proof of Theorem 1

Consider the 4-period problem (T = 4):

Cost1(x1, x4) = min
x2,x3

r1(x1, x2)(x2 −x1)+ δr2(x2, x3)(x3 −x2)+ δ2r3(x3, x4)(x4 −x3)

min
x3

Cost1(x1, x3)+ δ2r3(x3, x4)(x4 −x3)

We need to show that Cost1(x1, x3)+ δ2r3(x3, x4)(x4 −x3) is jointly convex in (x3, x4). We already know

that Cost1(x1, x3) is convex in x3 from Corollary 1. Joint convexity of r3(x3, x4)(x4 − x3) can be proven

in the say way as we did for f2(x2, x3) (see Appendix B). The combination of these results implies that

Cost1(x1, x4) is convex in x4. Define Cost1(x1, xT ):

Cost1(x1, xT ) = min
xT−1

Cost1(x1, xT−1)+ δT−2rT−1(xT−1, xT )(xT −xT−1)

By induction we can easily show that Cost1(x1, xT ) is convex in xT .

Appendix D: Proof of Proposition 1

From Corollary 2, we have that
dx∗

2

dx3
(x3) =− d2J

dx2dx3
(x∗

2(x3), x3)
(

d2J
dx2

2
(x∗

2(x3), x3)
)−1

. In particular:

d2J

dx2dx3

(x∗
2(x3), x3) = δ

(
k′(x2)−

bD
aDx2

− 1

aD(M2 −x3)
− 1

aD(x3 −x2)

)
< 0

Furthermore,

d2J

dx2
2

(x∗
2(x3), x3) = δ

(
k′′(x2)− 2k′(x2)+

bD
aDx2

2

+2
bD

aDx2

− 1

aD(x3 −x2)

)
+

(M1 −x1)
2

aD(x2 −x1)(M1 −x2)2
> 0

These equations will directly imply
dx∗

2

dx3
(x3) > 0. In order to obtain

dx∗
2

dx3
(x3) < 1, we need to show

d2J
dx2

2
(x∗

2(x3), x3)>− d2J
dx2dx3

(x∗
2(x3), x3), which can be seen by analyzing each term separately:

k′′(x2)− 2k′(x2)>−k′(x2)

bD
aDx2

2

+2
bD

aDx2

>
bD

aDx2

(M1 −x1)
2

aD(x2 −x1)(M1 −x2)2
≥ δ

aD(M2 −x3)

The first two expressions are easy to verify. The third one is generally true from the dimensions of the

problem we are dealing with, but we introduce one more assumption to be rigorous: x2 −x1 ≤M2 −x3. We

know that (M1−x1)
2

(M1−x2)2
> 1> δ, therefore with the additional assumption x2 − x1 ≤M2 − x3, we conclude that

dx∗
2

dx3
(x3)< 1.
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Appendix E: Proof of Theorem 2

Let xB
t be the baseline adoption path, where rt = 0 for all t ≥ 1. Pick some arbitrary time T ≥ 3 and set

the adoption target for the optimization model (10) at xB
T and let x∗

t be the new optimal adoption path,

with negative system cost Cost1(x1, x
B
T ) < 0, and the optimal rebate path is non-increasing rt(x

∗
t , x

∗
t+1) ≥

rt+1(x
∗
t+1, x

∗
t+2).

If the system cost is negative, there must be a negative rebate along the rebate path. If all rebates are

negative, then the new adoption path x∗
t is strictly below the baseline path xB

t , which doesn’t reach the

target adoption at xB
T , therefore is a contradiction. Then there must be a rebate that is positive as well.

From monotonicity of rebates, we can infer that the first rebate must be positive and the last rebate

negative and that there is a cross point in time 1 ≤ t̄ ≤ T such that all rebates rt > 0 for all t ≤ t̄ and all

rebates are non-positive rt ≤ 0 for t > t̄. We can further infer that if the adoption level at the cross point is

lower than the baseline level, x∗
t̄ < xB

t̄ , then from the non-positive rebates after the cross point we cannot

reach the target adoption xB
T , which is a contradiction. For the same reason, we can infer that x∗

t ≥ xB
t for

t≥ t̄. Since all the rebates are positive before the cross point, we can further infer that x∗
t ≥ xB

t for t≤ t̄ as

well. This implies that the new the adoption path dominates the baseline path at every time step: x∗
t ≥ xB

t .

From the definition of the welfare function, we have that:

Welfare(x1, ..., xT ) =
T−1∑
t=1

[
Benefitt(xt)− δt−1rt(xt, xt+1)(xt+1 −xt)

]
We know that:

Cost1(x1, x
B
T ) =

T−1∑
t=1

[
δt−1rt(x

∗
t , x

∗
t+1)(x

∗
t+1 −x∗

t )
]
< 0 =

T−1∑
t=1

[
δt−1rt(x

B
t , x

B
t+1)(x

B
t+1 −xB

t )
]

Furthermore, we know that x∗
t ≥ xB

t and the welfare benefit functions are increasing, therefore:

Benefitt(x
∗
t )≥Benefitt(x

B
t )

By adding all the welfare benefit terms and the cost, we obtain the original expression and conclude the

proof:

Welfare(x1, x
∗
2, ..., x

∗
T−1, x

B
T )>Welfare(x1, x

B
2 ..., x

B
T−1, x

B
T )
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