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The vast amount of biological knowledge accumulated over the years has
allowed researchers to identify various biochemical interactions and define
different families of pathways. There is an increased interest in identifying
pathways and pathway elements involved in particular biological processes.
Drug discovery efforts, for example, are focused on identifying biomarkers
as well as pathways related to a disease. We propose a Bayesian model that
addresses this question by incorporating information on pathways and gene
networks in the analysis of DNA microarray data. Such information is used
to define pathway summaries, specify prior distributions, and structure the
MCMC moves to fit the model. We illustrate the method with an applica-
tion to gene expression data with censored survival outcomes. In addition to
identifying markers that would have been missed otherwise and improving
prediction accuracy, the integration of existing biological knowledge into the
analysis provides a better understanding of underlying molecular processes.

1. Introduction. DNA microarrays have been used successfully to identify
gene expression signatures characteristic of disease subtypes (Golub et al. 1999)
or distinct outcomes to therapy (Shipp et al. 2002). Many statistical methods have
been developed to select genes for disease diagnosis, prognosis, and therapeutic
targets. There is an increased consensus, however, that gene selection alone may
not be sufficient. In cancer pharmacogenomics, for instance, cancer drugs are in-
creasingly designed to target specific pathways to account for the complexity of
the oncogenic process and the complex relationships between genes (Downward
2006). Metabolic pathways, for example, are defined as a series ofchemical reac-
tions in a living cell that can be activated or inhibited at multiple points. If a gene at
the top of a signaling cascade is selected as a target, it is not guaranteed that the re-
action will be successfully inactivated because multiple genes downstream can still
be activated or inhibited. Signals are generally relayed via multiple signaling routes
or networks. Even if a branch of the pathway is completely blocked by inhibition
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2 F.C. STINGO ET AL.

or activation of multiple genes, the signal may still be relayed through an alterna-
tive branch or even through a different pathway (Bild et al. 2006, Solit et al. 2006).
Downward(2006) pointed out that targeting a single pathway or a few signaling
pathways might not be sufficient. Thus, the focus is increasingly on identifying
both relevant genes and pathways. Genes and/or gene products generally interact
with one another and they often function together concertedly. In this paper we pro-
pose a Bayesian model that addresses this question by incorporating information of
pathway memberships and gene networks in the analysis of DNAmicroarray data.
Such information is used to define pathway summaries, specify prior distributions,
and structure the MCMC moves to fit the model.

Several public and commercial databases have been developed to structure and
store the vast amount of biological knowledge accumulated over the years into
functionally or biochemically related groups. These databases focus on describing
signaling, metabolic or regulatory pathways. Some examples include Gene Ontol-
ogy (GO) (The Gene Ontology Consortium 2000), Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa & Goto 2000), MetaCyc (Krieger et al. 2004),
PathDB (www.ncgr.org/pathdb), Reactome KnowledgeBase (Joshi-Tope et al. 2005),
Invitrogen iPath (www.invitrogen.com) and Cell SignalingTechnology (CST) Path-
way (www.cellsignal.com). The need to integrate gene expression data with the
biological knowledge accumulated in these databases is well recognized. Several
software packages that query pathway information and overlay DNA microarray
data on pathways have been developed.Nakao et al.(1999) implemented a visual-
ization tool that color-codes KEGG pathway diagrams to reflect changes in their
gene expression levels. GenMAPP (Dahlquist et al. 2002) is another graphical tool
that allows visualization of microarray data in the contextof biological pathways
or any other functional grouping of genes.Doniger et al.(2003) have made use
of GenMAPP to view genes involved in specific GO terms. Another widely used
method that relates pathways to a set of differentially expressed genes is the gene
set enrichment analysis (GSEA) (Subramanian et al. 2005). Given a list of genes
GSEA computes an enrichment score to reflect the degree to which a pre-defined
pathway is over-represented at the top or bottom of the ranked list. These proce-
dures are useful starting points to observe gene expressionchanges in the context
of known biological processes.

Some recent studies have gone a step further and have focusedon incorporating
pathway information or gene-gene network information intothe analysis of gene
expression data. For example,Park et al.(2007) have attempted to incorporate GO
annotation to predict survival time, by first grouping genesbased on their GO mem-
bership, calculating the first principal component to form asuper-gene within each
cluster then applying a Cox model withL1 penalty to identify super-genes, i.e., GO
terms related to the outcome.Wei & Li (2007) have considered a small set of 33
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pre-selected signaling pathways and used the implied relationships among genes to
infer differentially expressed genes, andWei & Li (2008) have extended this work
by including a temporal dimension.Li & Li (2008) andPan et al.(2009) have pro-
posed two different procedures that use the gene-gene network to build penalties in
a regression model framework for gene selection. Bayesian approaches have also
been developed.Li & Zhang (2010) have incorporated the dependence structure of
transcription factors in a regression model with gene expression outcomes. In their
approach a network is defined based on the Hamming distance between candidate
motifs and used to specify a Markov random field prior for the motif selection
indicator.Telesca et al.(2008) have proposed a model for the identification of dif-
ferentially expressed genes that takes into account the dependence structure among
genes from available pathways while allowing for correction in the gene network
topology.

These methods use the gene-pathway relationships or gene network information
to identify either the important pathways or the genes. Our goal is to develop a more
comprehensive method that selects both pathways and genes using a model that in-
corporates pathway-gene relationships and gene dependence structures. In order to
identify relevant genes and pathways, latent binary vectors are introduced and up-
dated using a two-stage Metropolis-Hastings sampling scheme. The gene networks
are used to define a Markov random field prior on the gene selection indicators
and to structure the Markov chain Monte Carlo (MCMC) moves. In addition, the
pathway information is used to derive pathway expression measures that summa-
rize the group behavior of genes within pathways. In this paper we make use of the
first latent components obtained by applying partial least squares (PLS) regressions
on the selected genes from each pathway. PLS is an efficient statistical regression
technique that is frequently used for the analysis of genomic and proteomic data,
seeBoulesteix & Strimmer(2007). We apply the model to simulated and real data
using the pathway structure from the KEGG database.

Our simulation studies show that employing the MRF prior allows us to achieve
a better separation of the relevant pathways from the non-relevant ones. In addition,
in a simulated setting with fairly small regression coefficients the model with the
MRF prior is able to select all the correct genes without any false positive while
the model without MRF includes 3 false positives. Other authors have reported
similar results.Li & Zhang (2010), in particular, comment on the effect of the MRF
prior on the selection power in their linear regression setting. They also notice that
adding the MRF prior implies a relatively small increase in computational cost.
Wei & Li (2007, 2008) report that their method is quite effective in identifying
genes and modified subnetworks and that it has higher sensitivity than commonly
used procedures that do not use the pathway structure, with similar and, in some
cases, lower false discovery rates. Furthermore, in our formulation of the model we
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use the network information not only for prior specificationbut also to structure the
MCMC moves. This is helpful for arriving at promising modelsin a faster way by
proposing relevant configurations. In real data applications the integration of the
pathway information may allow the identification of relevant predictors that would
have been missed otherwise, aiding the interpretation of the results, in particular for
the selected genes that are connected in the MRF, and also improving the prediction
accuracy of the selected models.

The paper is organized as follows. In Section 2 we discuss themodel formulation
and prior specification. Section 3 describes the MCMC procedure to fit the model
and strategies for posterior inference. In Section 4 we evaluate the performance
of the method using simulated data and illustrate an application of the method to
gene expression data with survival outcomes. We conclude with a brief discussion
in Section 5.

2. Model specification. In this Section we describe how we incorporate path-
way and gene network information into a Bayesian modeling framework for gene
and pathway selection. Figure1 provides a schematic representation of our pro-
posed approach and model.

2.1. Regression on latent measures of pathway activity.Our goal is to build a
model for identifying pathways related to a particular phenotype while simultane-
ously locating genes from these selected pathways that are involved in the biologi-
cal process of interest. The data we have available for analysis consist of:

1. Y , ann× 1 vector of outcomes.
2. X, ann × p matrix of gene expression levels. Without loss of generality, X

is centered so that its columns sum to 0.
3. S, aK × p matrix indicating membership of genes in pathways, with ele-

mentsskj = 1 if genej belongs to pathwayk, andskj = 0 otherwise.
4. R, a p × p matrix describing relationships between genes, with elements

rij = 1 if genesi andj have a direct link in the gene network, andrij = 0
otherwise.

The matricesS andR are constructed using information retrieved from pathway
databases, see the application in Section4.2 for details.

Since the goal of the analysis is to study the association between the response
variable and the pathways, we need to derive a score as a measure of “pathway
expression” that summarizes the group behavior of includedgenes within path-
ways. We do this by using the latent components from a PLS regression ofY on
selected subsets of genes from each pathway. A number of recent studies have,
in fact, applied dimension reduction techniques to capturethe group behavior of
multiple genes.Pittman et al.(2004), for instance, first applyk-means clustering
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FIG 1. Schematic representation of our proposed approach. Information on known pathways and
gene-gene networks is obtained from available databases. PLS components restricted to known path-
ways serve as possible regressors to predict a disease outcome, according to model (1). The goal of
the inference is to identify the pathways to be included in the model and the genes to be included
within those pathways.
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to identify subsets of potentially related genes, then use as regressors the first prin-
cipal components obtained from applying principal component analysis (PCA) to
each cluster.Bair et al. (2006) start by removing genes that have low univariate
correlation with the outcome variable then apply PCA on the remaining genes to
form clusters or conceptual pathways, which are used as regressors. In our method,
instead of attempting to infer conceptual pathways, we use the existing pathway
information. We compute a pathway activity measure by applying PLS regression
of Y on a subset of selected genes from the pathway. PLS has the advantage of tak-
ing into account the covariance between regressors and the response variableY ,
whereas PCA focuses solely on the variability in the covariate data. The selection
of a subset of gene expressions to form the PLS components is similar in spirit to
the sparse PCA method proposed byZou et al.(2006), which selects variables to
be used to form the principal components.

In order to identify both relevant groups and important genes we introduce two
binary vector indicators, aK×1 vectorθθθ for the inclusion of the groups and ap×1
vectorγγγ for the inclusion of genes, i.e.γj = 1 if genej is selected for at least one
pathway score, andγj = 0 otherwise. Let us assume for the moment a continuous
responseY . The linear regression model that relates the response variable to the
selected pathways and genes can then be written as

(1) Y = 1α+
Kθ∑

k=1

Tk(γ)βk(γ) + εεε, εεε ∼ N (0, σ2
I),

whereKθ =
∑K

k=1 θk is the number of selected pathways and whereTk(γ) corre-
sponds to the first latent PLS component generated based on the expression levels
of selected genes belonging to pathwayk, that is using theXj ’s corresponding to
skj = 1 andγj = 1. To be more precise, let pathwayk containpk =

∑p
j=1 skj

genes and letpkγ =
∑p

j=1 skjγj denote the number of selected genes (i.e., genes
included in the model) that belong to pathwayk. ThenTk(γ) corresponds to the
first latent PLS component generated by applying PLS to the expression data of
thepkγ genes, denoted asXk(γ),

Tk(γ) = Xk(γ)U1,

whereU1 is thepkγ × 1 eigenvector corresponding to the largest eigenvalue of
CxyC

T
xy, with Cxy = cov(Xk(γ), Y ) (see for exampleLindgren et al. 1993). Thus,

Tk(γ) is ann× 1 vector andβk(γ) is a scalar. Model (1) can therefore be seen as a
PLS regression model with PLS components restricted to available pathways, and
where the goal of the inference is to identify the pathways tobe included in the
model, and the genes to be included within those pathways.
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2.2. Models for categorical or censored outcomes.In the construction above,
we have assumed a continuous response. However, our model formulation can eas-
ily be extended to handle categorical or censored outcome variables.

WhenY is a categorical variable taking one ofG possible values,0, . . . , G− 1,
a probit model can be used, as done byAlbert & Chib (1993), Sha et al.(2004) and
Kwon et al.(2007). Briefly, each outcomeYi is associated with a vector(pi,0, . . . , pi,G−1),
wherepig = P (Yi = g) is the probability that subjecti falls in theg-th category.
The probabilitiespig can be related to the linear predictors using a data augmenta-
tion approach. LetZi be latent data corresponding to the unobserved propensities
of subjecti to belong to one of the classes. When the observed outcomesYi corre-
spond to nominal values, the relationship betweenYi andZi = (zi,1, . . . , zi,G−1)
is defined as

(2) Yi =

{
0 if max1≤l≤G−1{zi,l} ≤ 0
g if max1≤l≤G−1{zi,l} > 0 andzi,g = max1≤l≤G−1{zi,l}

.

A multivariate normal model can then be used to associateZi to the predictors

(3) Zi = 1α+
Kθ∑

k=1

Ti,k(γ)βββk(γ) + εεεi, εεεi ∼ N (0,ΣΣΣ), i = 1, . . . , n.

If the observed outcomesYi correspond, instead, to ordinal categories, the latent
variableZi is defined such that

(4) Yi = g if δg < Zi ≤ δg+1, g = 0, . . . , G− 1,

where the boundariesδg are unknown and−∞ = δ0 < δ1 < . . . < δG−1 < δG =
∞. The latent variableZi is then associated with the predictors through the linear
model

(5) Zi = α+
Kθ∑

k=1

Ti,k(γ)βk(γ) + εi, εi ∼ N (0, σ2), i = 1, . . . , n.

For censored survival outcomes, an accelerated failure time (AFT) model can
be used (Wei 1992, Sha et al. 2006). In this case, the observed data areYi =
min(Ti, Ci) and δi = I{Yi ≤ Ci}, whereTi is the survival time for subjecti,
Ci is the censoring time, andδi is a censoring indicator. A data augmentation ap-
proach can be used and latent variablesZi can be introduced such that

(6)

{
Zi = log(Yi) if δi = 1
Zi > log(Yi) if δi = 0

.
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The AFT model can then be written in terms of the latentZi,

(7) Zi = α+
Kθ∑

k=1

Ti,k(γ)βk(γ) + εi,

where theεi’s are independent and identically distributed random variables that
may take one of several parametric forms.Sha et al.(2006) consider cases where
εi follows a normal or at-distribution.

2.3. Prior for regression parameters.The regression coefficientβk in (1) mea-
sures the effect of the PLS latent component summarizing theeffect of pathwayk
on the response variable. However, not all pathways are related to the phenotype
and the goal is to identify the predictive ones. Bayesian methods that use mixture
priors for variable selection have been thoroughly investigated in the literature,
in particular for linear models, seeGeorge & McCulloch(1993, 1997) for mul-
tiple regression,Brown et al.(1998) for extensions to multivariate responses and
Sha et al.(2004) for probit models. A comprehensive review on special features of
the selection priors and on computational aspects of the method can be found in
Chipman et al.(2001). Similarly, here, we use the latent vectorθθθ to specify a scale
mixture of a normal density and a point mass at zero for the prior on eachβk in
model (1):

(8) βk|θk, σ
2 ∼ θk · N (β0, hσ

2) + (1 − θk) · δ0(βk), k = 1, . . . ,K.

whereδ0(βk) is a Dirac delta function. The hyperparameterh in (8) regulates,
together with the hyperparameters ofp(θθθ, γγγ|η) defined in Section 2.4 below, the
amount of shrinkage in the model. We follow the guidelines provided bySha et al.
(2004) and specifyh in the range of variability of the data so as to control the ratio
of prior to posterior precision.

For the intercept term,α, and the variance,σ2, we take conjugate priors

α|σ2 ∼ N (α0, h0σ
2)(9)

σ2 ∼ Inv-Gamma(ν0/2, ν0σ
2
0/2),

whereα0, β0, h0, h, ν0 andσ2
0 are to be elicited.

2.4. Priors for pathway and gene selection indicators.In this section we de-
fine the prior distributions for the pathway selection indicator,θθθ, and gene selection
indicator,γγγ. These priors are first defined marginally then jointly, taking into ac-
count some necessary constraints.
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Each element of the latentK-vectorθθθ is defined as

(10) θk =

{
1 if pathwayk is represented in the model
0 otherwise

for k = 1, . . . ,K. We assume independent Bernoulli priors for theθk’s,

(11) p(θθθ|ϕk) =
K∏

k=1

ϕθk
k (1− ϕk)

1−θk ,

whereϕk determines the proportion of pathways expecteda priori in the model. A
mixture prior can be further specified forϕk to achieve a better discrimination in
terms of posterior probabilities between significant and non-significant pathways
by inflatingp(θk = 0) toward 1 for the non-relevant pathways, as first suggested
by Lucas et al.(2006),

(12) p(ϕk) = ρδ0(ϕk) + (1− ρ)B(ϕk|a0, b0),

whereB(ϕk|a0, b0) is a Beta density function with parametersa0 an b0. Since
inference onϕk is not of interest, it can be integrated out to simplify the MCMC
implementation. This leads to the following marginal priorfor θθθ

(13) p(θθθ) =
∏

k

[
ρ · (1− θk) + (1− ρ) ·

B(a0 + θk, b0 + 1− θk)

B(a0, b0)

]
,

whereB(·, ·) is the Beta function. Prior (13) corresponds to a product of Bernoulli
distributions with parameterϕ∗

k = a0(1−ρ)
a0+b0

.
For the latentp-vectorγγγ we specify a prior distribution that is able to take into

account not only the pathway membership of each gene but alsothe biological re-
lationships between genes within and across pathways, which are captured by the
matrixR. FollowingLi & Zhang (2010) we model these relations using a Markov
random field (MRF), where genes are represented by nodes and relations between
genes by edges. A MRF is a graphical model in which the distribution of a set of
random variables follow Markov properties that can be described by an undirected
graph. In particular, a pair of genes that are not connected are considered condi-
tionally independent given all other genes (Besag 1974). Relations on the MRF are
represented by the following probabilities

(14) p(γj |η, γi, i ∈ Nj) =
exp(γjF (γj))

1 + exp(F (γj))
,
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whereF (γj) = (µ + η
∑

i∈Nj
γi)) andNj is the set of direct neighbors of gene

j in the MRF using only pathways represented in the model,i.e., pathways with
θk = 1. The corresponding global distribution on the MRF is given by

(15) p(γγγ|θθθ, µ, η) ∝ exp(µ111′pγγγ + ηγγγ′Rγγγ)

with 111p the unit vector of dimensionp andR the matrix introduced in section2.1.
The parameterµ controls the sparsity of the model, whileη regulates the smooth-
ness of the distribution ofγγγ over the graph by controlling the prior probability
of selecting a gene based on how many of its neighbors are selected. In particular,
higher values ofη encourage the selection of genes with neighbors already selected
into the model. If a gene does not have any neighbor, then its prior distribution re-
duces to an independent Bernoulli with parameterp = exp(µ)/[1+exp(µ)], which
is a logistic transformation ofµ.

Here, unlikeLi & Zhang (2010), who fix both parameters of the MRF prior, we
specify a hyperprior forη. We give positive probability to values ofη bigger than
0, as negative values of this parameter would favor neighboring genes to have dif-
ferent inclusion status, which is counter-intuitive from abiological point of view.
Such restriction on the domain ofη also helps with the “phase transition” problem
that typically occurs with MRF parameterizations of type (14), where the dimen-
sion of the selected model increases massively for small increments ofη. When the
phase transition occurs the number of selected genes increases substantially and
the sparsity of the model gets compromised. Here, after having detected the phase
transition valueηPT , by simulating from (15) over a grid ofη values, we specify a
Beta distributionBeta(c0, d0) onη/ηPT .

Constraints need to be imposed to ensure both interpretability and identifiability
of the model. We essentially want to avoid the following scenarios:

1. creation of empty pathways,i.e., selecting a pathway but none of its member
genes;

2. creation of orphan genes,i.e., selecting a gene but none of the pathways that
contain it;

3. selection of identical subsets of genes by different pathways, a situation that
generates identical valuesTk(γ) andTk′(γ) to be included in the model.

These constraints imply that some combinations ofθθθ andγγγ values are not allowed.
The joint prior probability for(θθθ, γγγ) taking into account these constraints is given
by

p(θθθ, γγγ|η) ∝

{ ∏K
k=1 ϕ

∗θk
k (1− ϕ∗

k)
1−θk exp(µ111′pγγγ + ηγγγ ′

Rγγγ) for valid configurations,
0 for invalid configurations.
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3. Model fitting. We now describe our MCMC procedure to fit the model and
discuss strategies for posterior inference. Clearly, exploring huge posterior spaces,
like the one we are dealing with, is a challenging problem. Inthe Bayesian literature
on variable selection for standard linear regression models stochastic search algo-
rithms have been designed to explore the posterior space, and have been success-
fully employed in genomic applications with prohibitive settings, handling models
with thousands of genes. A key to these applications is the assumption of sparsity
of the model, i.e., the belief that the response is associated with a small number of
regressors. A stochastic search then allows one to explore the posterior space in an
effective way, quickly finding the most probable configurations, i.e., those corre-
sponding to the coefficients that have high marginal probabilities, while spending
less time in regions with low posterior probability.

We describe below the MCMC algorithm we have designed for ourproblem.
In particular, borrowing from the literature on stochasticsearches for variable se-
lection, we work with a marginalized model and design a Metropolis-Hastings al-
gorithm that updates the indicator parameters for the inclusion of pathways and
genes with a set of moves that add and/or delete a single gene and a single path-
way. Also, we update the parameterη of the MRF from its posterior distribution by
employing the general method proposed byMøller et al.(2006). In the Appendix
we discuss how our Bayesian stochastic search variable selection kernel generates
an ergodic Markov chain over the restricted space. In applications, we have found
that a good way to asses if the stochastic exploration can be considered satisfactory
is to check the concordance of the posterior probabilities obtained from different
chains started from different initial points.

3.1. Marginal Posterior probabilities. The model parameters consist of(α, βββ,
σ2, γγγ, θθθ, η). The MCMC procedure can be made more efficient by integratingout
some of the parameters. Here, we integrate out the regression parameters,α, βββ and
σ2. This leads to a multivariatet-distribution

(16) f(Y |TTT , θθθ, γγγ) ∼ Tν0(α01n+TTT (θ,γ)β0, σ
2
0(In+h01n1′n+TTT (θ,γ)ΣΣΣ0TTT

′
(θ,γ))),

with ν0 degrees of freedom and1n ann-vector of ones, and whereΣΣΣ0 = hIKθ
,

with In then × n identity matrix, andTTT (θ,γ) then ×Kθ matrix derived from the
first PLS latent components for the selected pathways using the selected genes.
In the notation (16) the two arguments of thet-distribution represent the mean
and the scale parameter of the distribution, respectively.The posterior probability
distribution of the pathway and gene selection indicators is then given by

(17) f(θθθ, γγγ, η|TTT , Y ) ∝ f(Y |TTT , θθθ, γγγ) · p(θθθ, γγγ|η) · p(η).
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3.2. MCMC sampling. The MCMC steps to fit the model consist of: (I) sam-
pling the pathway and gene selection indicators fromp(θθθ, γγγ|rest); (II) sampling the
MRF parameter fromp(η|rest); (III) sampling additional parameters that would be
introduced when fitting a probit model for categorical outcomes or an AFT model
for survival outcomes.

(I) The parameters(θθθ, γγγ) are updated using a Metropolis-Hastings algorithm
in a two-stage sampling scheme. The pathway-gene relationships are used
to structure the moves and account for the constraints specified in Section
2.4. Details of the MCMC moves for updating(θθθ, γγγ) are provided in the
Appendix. Briefly, they consist of randomly choosing one of the following
three move types:

1. change the inclusion status of gene and pathway by randomly choosing
between adding a pathway and a gene or removing them both;

2. change the inclusion status of gene but not pathway by randomly choos-
ing between adding a gene or removing a gene;

3. change the inclusion status of pathway but not gene by randomly choos-
ing between adding a pathway or removing a pathway.

(II) At this step we want to draw the MRF parameterη from the posterior density

(18) p(η|γγγ) ∝ p(η)p(γγγ|η).

The prior distribution onγγγ is of the form

(19) p(γγγ|η) = qη(γγγ)/Zη

with unnormalised densityqη(γγγ) and a normalizing constantZη which is
not available analytically. When calculating the Metropolis-Hastings ratio to
determine the acceptance probability of a new valueηnew, that is,

(20) H(ηnew|ηold) =
p(ηnew)qηnew (γγγ)q(ηold|ηnew)

p(ηold)qηold(γγγ)q(η
new|ηold)

/
Zηnew

Zηold
,

one needs to take into account thatZηnew/Zηold 6= 1. FollowingMøller et al.
(2006), we introduce an auxiliary variablew, defined on the same state space
as that ofγγγ, which has conditional densityf(w|η, γγγ) and consider the pos-
terior

p(η,w|γγγ) ∝ f(w|η, γγγ)p(η)qη(γγγ)/Zη
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which of course still involves the unknownZη. Obviously, marginalization
overw of p(η,w|γγγ) gives the desired distributionp(η|γγγ). Now, if (ηold, wold)
is the current state of the algorithm, we first proposeηnew with density
q(ηnew|ηold) thenwnew with densityq(wnew|wold, ηnew, ηold). As usual, the
choice of these proposal densities is arbitrary from the point of view of the
equilibrium distribution of the chain ofη values. The choice off(w|η, γγγ) is
also arbitrary. The key idea of the method proposed byMøller et al.(2006)
is to take the proposal density for the auxiliary variablew to be of the same
form as (19), but dependent onηnew rather thanηold, that is,

(21) q(wnew|wold, ηnew, ηold) = p(wnew|ηnew) = qηnew(wnew)/Zηnew .

Then the Metropolis-Hastings ratio becomes
(22)

H(ηnew, wnew|ηold, wold) =
f(wnew|ηnew, γγγ)p(ηnew)qηnew (γγγ)qηold(w

old)q(ηold|ηnew)

f(wold|ηold, γγγ)p(ηold)qηold(γγγ)qηnew (wnew)q(ηnew|ηold)
,

and no longer depends onZηnew/Zηold . The new valuewnew for the auxiliary
variablew is drawn from (21) by perfect simulation using the algorithm
proposed byPropp & Wilson(1996).

(III) In the case of classification or survival outcomes, theaugmented dataZ
need to be updated from their full conditionals using Gibbs sampling, see
Sha et al.(2004), Sha et al.(2006) andKwon et al.(2007) for details on this
step.

3.3. Posterior Inference. The MCMC procedure results in a list of visited mod-
els with included pathways indexed byθθθ and selected genes indexed byγγγ, and their
corresponding relative posterior probabilities. Pathwayselection can be based on
the marginal posterior probabilitiesp(θk|TTT , Y ). A simple strategy is to compute
Monte-Carlo estimates by counting the number of appearances of each pathway
across the visited models. Relevant pathways are identifiedas those with largest
marginal posterior probabilities. Then relevant genes from these pathways are iden-
tified based on their marginal posterior probabilities conditional on the inclusion
of a pathway of interest,p(γj |TTT , Y, I{θkskj = 1}). An alternative inference for
gene selection is to focus on a subset of pathways,P, and consider the marginal
posterior probability conditional on at least one pathway the gene belongs to be-
ing represented in the model,p(γj |TTT , Y, I{

∑
k∈P θkskj > 0}). We note that Rao-

Blackwellized estimates have been employed in standard linear regression mod-
els, in place of frequency estimates, by averaging the full conditional posterior
probabilities of the inclusion indicators. These estimates are computationally quite
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14 F.C. STINGO ET AL.

expensive, though they may have better precision, as noted by Guan & Stephens
(2009). Because of our strategy for inference, that selects first pathways and then
genes conditional on selected pathways, Rao-Blackwellized estimates of marginal
probabilities may not be straightforward to derive. In all simulations and examples
reported in this paper we have obtained satisfactory results by simply estimating
the marginal posterior probabilities with the corresponding relative frequencies of
inclusion in the visited models.

Inference for a new set of observations,(XXXf , Yf ) can be done via least squares
prediction,

(23) Ŷf = 111nα̃+ TTT f(θ,γ)β̃ββ(θ,γ),

whereTTT f(θ,γ) is the first principal component based on selected genes fromrele-
vant pathways and

α̃ = Ȳ , β̃ββ(θ,γ) = (TTT ′
(θ,γ)TTT (θ,γ) + h−1IIIKθ

)−1TTT ′
(θ,γ)Y,

with Y the response variable in the training andTTT (θ,γ) the scores obtained from the
training data using selected pathways and genes included inthe model. Note that
for prediction purposes, since we do not know the futureYf , a PLS regression can-
not be fit. Therefore, we generateTf(θ,γ) by considering the first latent component
obtained by applying PCA to each selected pathway using the included genes.

In the case of categorical or censored survival outcomes, the sampled latent
variablesZ would be used to estimatêZf then the correspondence betweenZ
and the observed outcome outlined in Section2.2 can be invoked to predictYf

(Sha et al. 2004, 2006, Kwon et al. 2007).

4. Application. We assess the performance of the model on simulated data
then illustrate an application to a breast cancer data usingthe KEGG pathway
database to define the MRF.

4.1. Simulation studies. We investigated the performance of our model using
simulated data based on the gene-pathway relations,S, and gene network,R, of 70
pathways and 1098 genes from the KEGG database. The relevantpathways were
defined by selecting 4 pathways at random. For each of the 4 selected pathways,
one gene was picked at random and its direct neighbors that belong to the selected
pathways were chosen. This resulted in the selection of 4 pathways and 15 genes:
7 out of 30 from the first pathway, 3 out of 35 from the second, 3 out of 105 from
the third, and 2 out of 47 from the fourth pathway. Gene expressions forn = 100
samples were simulated for these 15 genes using an approach similar to Li & Li
(2008). This was accomplished by first creating an ordering among the 15 selected
genes by changing the undirected edges in the gene networks into directed edges.
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The first node on the ordering, which we denote byXF1
, was selected from each

pathway and drawn from a standard normal distribution; notethat this node has no
parents. Then all child nodes directly connected only toXF1

and denoted byXF2

were drawn from

XF2
∼ N (XF1

ρ, 1).

Subsequent child nodes at generationj, XFj
, were drawn using all parents from

XFj
∼ N (ρXpa(Fj)111|pa(Fj)|, 1)

wherepa(Fj) indicates the set of parents of nodej andXpa(Fj) is a matrix con-
taining the expressions of all the|pa(Fj)| parents for nodej. The expression levels
of the remaining 1073 genes deemed irrelevant were simulated from a standard
normal density. The response variables for then = 100 samples were generated
from

Yi =
15∑

j=1

Xijβ + εi, εi ∼ N (0, 1), i = 1, . . . , 100.

For the first dataset we setβ = ±0.5, using the same sign for genes that belong
to the same pathway. For the second and third data sets we usedβ = ±1 and
β = ±1.5, respectively. Note that the generating process is different from the
model (1) being fit.

We report the results obtained by choosing, when possible, hyperparameters
that lead to weakly informative prior distributions. A vague prior is assigned to
the intercept parameterα by settingh0 to a large value tending to∞. Forσ2, the
shape parameter can be set toν0/2 = 3, the smallest integer such that the vari-
ance of the inverse-gamma distribution is defined, and the scale parameterν0σ2

0/2
can be chosen to yield a weakly informative prior. For the vector of regression
coefficients,βk, we set the prior mean toβ0 = 0 and chooseh in the range of vari-
ability of the covariates, as suggested in Section2.3. Specifically, we seth0 = 106,
α0 = β0 = 0, ν0σ0/2 = 0.5, andh = 0.02. For the pathway selection indicators,
θk, we setϕ∗

k = 0.01. As for the prior at the gene level, we setµ = −3.5, which
corresponds to setting the proportion of genes expecteda priori in the model to, at
least, 3% of the total number of genes. Parametersϕ∗

k andµ influence the sparsity
of the model and consequently the magnitude of the marginal posterior probabil-
ities. Some sensitivity to these parameters is, of course, to be expected. However,
in our simulations we have noticed that the ordering of pathways and genes based
on posterior probability remains roughly the same and therefore the final selections
are unchanged as long as one adjusts the threshold on the posterior probabilities.
Also, for the hyperprior onη, we setηPT = 0.092, to avoid the phase transition
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16 F.C. STINGO ET AL.

problem, andc0 = 5 andd0 = 2, to obtain a prior distribution that favors bigger
values ofη in the interval0 ≤ η ≤ ηPT . In our simulations we did not notice any
sensitivity to the specification ofc0 andd0.

The MCMC sampler was run for 300,000 iterations with the first50,000 used as
burn-in. We computed the marginal posterior probabilitiesfor pathway selection,
p(θk = 1|Y, TTT ), and the conditional posterior probabilities for gene selection given
a subset of selected pathways,p(γj|TTT , Y, I{

∑
k∈P θkskj > 0}). Figure2 displays

the marginal posterior probabilities of inclusion for all 70 pathways and the condi-
tional posterior probabilities of inclusion for all 1098 genes.

Important pathways and genes can be selected as those with highest posterior
probabilities. For example, in all 3 scenarios all four relevant pathways were se-
lected with a marginal posterior probability cut-off of 0.8. Reducing the selection
threshold to a marginal posterior probability of 0.5 pulls in two false positive path-
ways, for all the three simulated scenarios considered. Oneof the false positives
is the pathway with index 17 in Figure2, which contains more than 100 genes. A
closer investigation of the MCMC output reveals that different subsets of its mem-
ber genes are selected whenever it is included in the model, resulting in a high
marginal posterior of inclusion for the pathway but low marginal posterior proba-
bilities for all its member genes. The second false positivepathway appears to be
selected often because it contains two or three of the relevant genes that were used
to simulate the response variable and were also included in the model with high
marginal posterior probabilities; all its other member genes have very low proba-
bilities of selection. As expected, the identification of the relevant genes is easier
when the signal-to-noise ratio is higher. Conditional uponthe best 4 selected path-
ways, a marginal posterior probability cut-off of 0.5 on themarginal probability of
gene inclusion leads to the selection of 7, 8 and 8 relevant genes, for the three sce-
narios, respectively, and no false positives. With a marginal probability threshold
of 0.1, 14 of the relevant genes are selected with 4 false positives for the scenario
with β = ±0.5, while 13 relevant genes are selected with only two false positives
for the simulated data withβ = ±1. In the simulated setting with regression coef-
ficientsβ = ±1.5 all the 15 relevant genes are selected without any false positive
at a threshold of 0.12.

Generally speaking, the effect of the MRF prior depends on the concordance of
the prior network with the data. For the simulated data, we found that the model
with the MRF prior, compared to the same model without the MRF, performs better
in terms of pathway selection as it provides a clearer separation between relevant
and non relevant pathways. In particular, the average difference, over the three sce-
narios, between the relevant pathway with the lowest posterior probability and the
non relevant pathway with the highest posterior probability is 0.28, while without
the MRF prior it is only 0.18. In addition, we have observed increased sensitivity of
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FIG 2. Simulated data: Marginal posterior probabilities for pathway selection,p(θk|TTT , Y ), and con-
ditional posterior probabilities for gene selection,p(γj |TTT , Y, I{

∑
k∈P

θkskj > 0}), for the three
simulated data sets. Open circles indicate pathways and genes used to generate the outcome variable.
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the MRF prior in selecting the true variables. For example, for the simulated case
with β±1.5, in order to select all 15 relevant genes the marginal probability cutoff
must be reduced to 0.088 at the expense of including 3 false positives. Other au-
thors have reported similar results (Li & Zhang 2010). In the real data application
we describe below, employing information on gene-gene networks aids the inter-
pretation of the results, in particular for those selected genes that are connected in
the MRF, and improves the prediction accuracy.

4.2. Application to microarray data. We consider thevan’t Veer et al.(2002)
breast cancer microarray data1. Gene expression measures were collected on each
patient using DNA microarray with 24,481 probes. Missing expression values were
imputed using ak-nearest neighbor algorithm withk = 10. The procedure con-
sists of identifying thek closest genes to the one with missing expression in array
j using the othern − 1 arrays, then imputing the missing value by the average
expression level of thek neighbors (Troyanskaya et al. 2001). We focus on the 76
sporadic lymph-node-negative patients, 33 of whom developed distant metastasis
within 5 years and the remaining 43 did not; the latter are viewed as censored cases.
We randomly split the patients into a training set of 38 samples and a test set of the
same size. The goal is to identify a subset of pathways and genes that can predict
time to distant metastasis for breast cancer patients.

The gene network and pathway information were obtained fromthe KEGG
database. This was accomplished by mapping probes to pathways using the links
between pathway node identifiers and LocusLink ID2.

Using the R packageKEGGgraph(Zhang & Wiemann 2009) we first down-
loaded the gene network for each pathway then merged all the networks into a
single one with all the genes. A total of 196 pathways and 3,592 corresponding
probes were included in the analysis. There is a many-to-many correspondence be-
tween pathways and genes, that is each pathway contains multiple genes and most
genes are associated with several pathways.

We ran two MCMC chains with different starting numbers of included variables,
50 and 80, respectively. We used 600,000 iterations with a burn-in of 100,000 it-
erations. We incorporated the first latent vector of the PLS for each pathway into
the analysis as described in Section2.1and set the number of pathways expecteda
priori in the model to10% of the total number. For the gene selection, we set the
hyperparameter of the Markov random field toµ = −3.5, indicating thata priori at
least 3% of genes are expected to be selected. As forη, we setηPT = 0.09, to avoid
the phase transition problem, andc0 = 1 andd0 = 1 to obtain a non informative

1available atwww.rii.com/publications/2002/vantveer.htm
2provided at ftp://ftp.genome.ad.jp/pub/kegg/pathways/hsa/hsa gene map.tab and

ftp://ftp.genome.ad.jp/pub/kegg/pathways/map title.tab
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prior distribution. Sensitivity analysis with different choices of these hyperparam-
eters showed that the posterior inference is not affected bydifferent values ofc0
andd0. For the prior of the regression parameters, we setα0 = β0 = 0, h0 = 106

and h = 0.1. A vague prior was specified forσ2 by choosingν0/2 = 3 and
ν0σ

2
0/2 = 0.5.

The trace plots for the number of included pathways and the number of selected
genes showed good mixing (Figures not shown). The MCMC samplers mostly vis-
ited models with 20-45 pathways and 50-90 genes. To assess the agreement of the
results between the two chains, we looked at the correlationbetween the marginal
posterior probabilities for pathway selection,p(θk|TTT , Y ), and found good concor-
dance between the two MCMC chains with a correlation coefficient of 0.9933.
Concordance among the marginal posterior probabilities was confirmed by looking
at a scatter plot ofp(θk|TTT , Y ) across the two MCMC chains (Figure not shown).

The model also showed good predictive performance.Sha et al.(2006) already
analyzed these data using an AFT model with 3,839 probes as predictors and ob-
tained a predictive MSE of 1.9317 using the 11 probe sets withhighest marginal
probabilities. Our model incorporating pathway information achieved a predictive
MSE of 1.4497 on the validation set, using 12 selected pathways and 41 probe sets
with highest posterior probabilities. The selected pathways and genes are clearly
indicated in the marginal posterior probability plots displayed in Figures3 and4. If
we increase the marginal probability thresholds for selection and consider a model
with 7 selected pathways and 14 genes, to make the comparisonmore fair with the
results ofSha et al.(2006), we obtain a MSE of 1.7614.

From a practical point of view, researchers can use the posterior probabilities
produced by our selection algorithm as a way to prioritize the relevant pathways
and genes for further experimental work. For example, the genes corresponding to
the best 41 selected probe sets, conditional upon the best 12selected pathways, are
listed in Table1 divided by islands, which correspond to sets of connected genes
in the Markov random field. The islands help with the biological interpretation by
locating relevant branches of pathways. A subset of the selected pathways along
with islands and singletons are displayed in Figure5. Several of the identified
pathways are known to be involved in tumor formation and progression. For in-
stance, the mitogen-activated protein kinase (MAPK) signaling pathway, which is
involved in various cellular functions, including cell proliferation, differentiation
and migration, has been implicated in breast cancer metastasis (Lee et al. 2007,
Keyse 2008). The KEGG pathway in cancers was also selected with high posterior
probability. Other interesting pathways are the insulin signaling pathway, which
has been linked to the development, progression and outcomeof breast cancer, and
purine metabolism, which is involved in nucleotide biosynthesis and affects cell
cycle activity of tumor cells.
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FIG 3. Microarray data: Marginal posterior probabilities for pathway selection,p(θk|TTT , Y ). The 12
pathways with largest probabilities are marked with symbols.
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FIG 4. Microarray data: Conditional posterior probabilities for gene selection,
p(γj |TTT , Y, I{

∑
k∈P

θkskj > 0}). The 41 probes with largest probability that belong to the
12 selected pathways in Figure3 are marked with∆.
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FIG 5. Microarray data: Graphical representation of a subset of selected pathways with islands and
singletons. The genes in the islands are listed in Table1.
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Singleton genes (no direct neighbor selected)
ACACB (10), C4A (8,12), CALM1 (10), CCNB2 (5), CD4 (7), CDC2 (5), CLDN11 (7), FZD9
(11), GYS2 (10), HIST1H2BN (12), IFNA7 (3), NFASC (7), NRCAM(7), PCK1 (10), PFKP
(10), PPARGC1A (10), PXN (9)

Island 1
ACTB (9), ACTG1 (9), ITGA1 (9), ITGA7 (9), ITGB3 (9), ITGB4 (9), ITGB6 (9), ITGB8 (7,10),
MYL5 (9), MYL9 (9), PDPK1 (10), PIK3CD (9,10,11), PLA2G4A (2), PLCG1 (11), PRKCA
(2,11), PRKY (2,10), PRKY (2,10), PTGS2 (11), SOCS3 (10)

Island 2
ACVR1B (2,3,11), ACVR1B (2,3,11), TGFB3 (2,3,5,11)

Island 3
ENTPD3 (1), GMPS (1)

TABLE 1
The 41 selected genes divided by islands and with associatedpathway indices (in parenthesis). The

pathway indices correspond to: 1-Purine metabolism, 2-MAPK signaling pathway,
3-Cytokine-cytokine receptor interaction, 4-Neuroactive ligand-receptor interaction, 5-Cell cycle,
6-Axon guidance, 7-Cell adhesion molecules (CAMs), 8-Complement and coagulation cascades,

9-Regulation of actin cytoskeleton, 10-Insulin signalingpathway, 11-Pathways in cancer,
12-Systemic lupus erythematosus.

In addition, several genes with known association to breastcancer were also
selected. One of these is Protein kinase C alpha (PKCA), which belongs to the
MAPK pathway and the KEGG pathways in cancer. PKCA has been reported to
play roles in many different cellular processes, includingcell functions associated
with breast cancer progression. It has been shown to be overexpressed in some
antiestrogen resistant breast cancer cell lines and to be involved in the growth of
tamoxifen resistant human breast cancer cells (Frankel et al. 2007). Patients with
PKCA-positive tumors have also been shown to have worst survival than patients
with PKCA-negative tumors, independently of other factors(Lonne et al. 2010).
Prostaglandin-endoperoxide synthase-2 (PTGS2, also known as cyclooxygenase-2
or COX2) has also been related to breast cancer.Denkert et al.(2004) observed
COX2 overexpression in breast cancer and strong association with indicators of
poor prognosis, such as lymph node metastasis, poor differentiation and large tu-
mor size. This was further confirmed byGupta et al.(2007), who showed that the
expression of COX2 in human breast cancer cells facilitatesthe assembly of new
tumor blood vessels, the release of tumor cells into the circulation, and the breach-
ing of lung capillaries by circulating tumor cells to seed pulmonary metastasis.
This is an important finding, as the majority of breast cancerdeaths result from
metastases rather than from direct effects of the primary tumor itself. Another gene
previously shown to be predictive of breast cancer lung metastasis that was also
selected by our analysis is integrin, beta-8 (ITGB8) (Landemaine et al. 2008). We
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also identified integrin, beta-4 (ITGB4) which regulates key signaling pathways
related to carcinoma progression, and has been linked to aggressive tumor behav-
ior and poor prognosis in certain breast cancer subtypes (Guo et al. 2006, Lu et al.
2008).

5. Discussion. We have proposed a model that incorporates biological knowl-
edge from pathway databases into the analysis of DNA microarrays to identify
pathways and genes related to a phenotype. Information on pathway membership
and gene networks are used to define pathway summaries, specify prior distri-
butions that account for the dependence structure between genes, and define the
MCMC moves to fit the model. The gene network prior and the synthesis of the
pathway information through PLS bring in additional information that is especially
useful in microarray data, where there is low sample size andlarge measurement
error. The performance of the method was evaluated using simulated data and a
breast cancer gene expression study with survival outcomeswas used to illustrate
its application.

Our simulation studies show the effect of the MRF prior on theposterior in-
ference. In general, as expected, the effect of the prior depends on the data and,
in particular, on the concordance of the prior network with the data. In our simu-
lations, employing the MRF prior allows us to achieve a better separation of the
relevant pathways from those not relevant (in particular, we have found a larger
average difference, over three scenarios, between the relevant pathway with the
lowest posterior probability and the non relevant pathway with the highest poste-
rior probability). In addition, in the simulated setting with fairly small regression
coefficients the model with the MRF prior was able to select all the correct genes
without any false positive while the model without MRF includes 3 false positives.
Other authors have reported improvements on selection power and sensitivity with
respect to commonly used procedures that do not use the pathway structure, with
similar, and in some cases, lower false discovery rates. In addition, in our formula-
tion of the model we have used biological information not only for prior specifica-
tion but also to structure the MCMC moves. This is helpful in arriving at promising
models avoiding without visiting invalid configurations. Finally, in real data appli-
cations, we have found that employing information on gene-gene networks can
lead to the selection of significant genes that would have been missed otherwise,
aiding the interpretation of the results, and achieving better prediction results com-
pared to models that do not treat genes as connected elementsthat work in groups
or pathways.

Several MRF priors for gene selection indicators have been proposed in the lit-
erature. It is interesting to compare the parametrization of the MRF used in this
paper and inLi & Zhang (2010) to the parametrization used inWei & Li (2007,
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2008), where the prior onγγγ is defined as

(24) P (γγγ|·) ∝ exp(d n1 − g n01),

wheren1 is the number of selected genes andn01 is the number of edges linking
genes with different values ofγj, i.e., edges linking included and non-included
genes among all pathways,

n1 =
p∑

j=1

γj , n01 =
1

2

p∑

i=1




p∑

j=1

rij −

∣∣∣∣∣∣

p∑

j=1

rij(1− γi)−
p∑

j=1

rijγj

∣∣∣∣∣∣


 .

While d plays the same role asµ in (15), the parametrization usingg has a different
effect fromη on the probability of selection of a gene. This is evident from the
conditional probability

(25) P (γj |·, γi, i ∈ Nj) =
exp(γjF (γj))

1 + exp(F (γj))
,

whereF (γj) = d + g
∑

i∈Nj
(2γi − 1). Higher values ofg encourage neighbor-

ing genes to take on the sameγj value, and consequently genes with non selected
neighbors have lower prior probability of being selected than genes with no neigh-
bors. We felt that parametrization (15) was a better choice for our purposes. First,
in a context of sparsity, where only few nodes are supposed totake value 1, a prior
that assigns larger probability of inclusion to genes with selected neighbors than
to isolated genes seems more appropriate. Second, the exactsimulation algorithm
of Propp & Wilson(1996) cannot be used to simulate from (24). While any other
method of drawing from (24) would be acceptable, as pointed out byMøller et al.
(2006), if Markov chain methods are used to sample from a MRF it is then nec-
essary to check, at each step, that the chain has adequately converged to the equi-
librium distribution, to avoid introducing additional undesirable stochasticity. On
the other hand, one advantage of the parametrization (24) is that there is no phase
transition problem associated to the distribution.

Pathway databases are incomplete and the gene network information is often
unavailable for many genes. Thus, there may be situations where the dependence
structure and the MRF prior specification on the gene selection indicator,γγγ, cannot
be used for all genes. When the only information available isthe pathway mem-
bership of genes, the prior onγγγ could be elicited so as to capture other interesting
characteristics. For example, we may want a gene to havea priori higher proba-
bility of being selected when several pathways that containit are included in the
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model. We may also want to avoid favoring the selection of a large pathway just
because of its size. In such cases, conditional onθθθ, independent Bernoulli priors
can be specified forγj by relating the probability of selection to the proportion of
included pathways that contain genej and adjusting for the pathway sizes,pk, that
is,

γj|θθθ ∼ Bernoulli

(
c ·

∑K
k=1 θkskj/pk∑K
k=1 skj/pk

)
,(26)

where the scalarc is a hyperparameter to be elicited.
In our approach we have made use of PLS components as summary measures

of the expression of genes belonging to known pathways and then applied a fully
Bayesian approach for the selection of the pathways to be included in the model,
and the genes to be included within those pathways. Penalized techniques, in-
cluding lasso (Tisbhirani 1996), elastic net (Zou & Hastie 2005) and group lasso
(Yuan & Lin 2006) have been studied extensively in the literature and have been
successfully applied to gene expression data. The group lasso, in particular, defines
sets of variables then selects either all the variables in the group or none of them.
Recently, a modification of the method was proposed byFriedman et al.(2010)
using a more general penalty that yields sparsity at both thegroup and individ-
ual feature levels to select groups and predictors within each group. Our under-
standing of group lasso is that the method works best in situations where variables
belonging to the same group are highly correlated while covariates in different
groupings do not exhibit high correlation. However, genes belonging to the same
pathway often do not exhibit high correlation in their expression levels. Also, in
our case there are genes belonging to different pathways that have high correlation,
as well as genes that belong to more than one pathway. It is also worth mentioning
that attention has been recently devoted to Bayesian formulations of LASSO tech-
niques and to a comparison of their performances. Initial investigations suggest
that, in terms of prediction mean squared error, Bayesian lasso methods perform
similarly to and, in some cases, better than the frequentistlasso (see for example
Kyung et al. 2010). Particularly relevant to the approach presented in our paper
is the work ofGuan & Stephens(2009), who apply Bayesian variable selection
(BVS) and stochastic search methods in a regression model for genome-wide data.
In simulations they find that, in spite of the apparent computational challenges, the
BVS method produces better power and predictive performance compared with
standard lasso techniques.
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APPENDIX A: MCMC SCHEME FOR SAMPLING(θθθ, γγγ)

We now describe the MCMC steps for(θθθ, γγγ) in more detail. As previously de-
scribed, no empty pathways or orphan genes are proposed during sampling and,
for identifiability, selecting the same set of genes for different pathways is not al-
lowed. At each iteration, only one pathway and/or a gene are proposed to be added
or removed.

(1) Change inclusion status of both gene and pathway – randomly choose be-
tween addition (move 1.i) or removal (move 1.ii):
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(1.i) Add a pathway and a gene:
First select a pathway that is not included in the model and has none
of its member genes in the model (θoldk = 0 andpoldkγ = 0). Randomly

choose one gene from the pathway (γoldj = 0) and propose including
both the pathway and the gene, i.e., setθnewk = 1, γnewj = 1. The move
is accepted with probability

(27)

min

{
1,

f(θθθnew, γγγnew|TTT , Y )

f(θθθold, γγγold|TTT , Y )
·

pk ·
∑K

r=1 I{θ
old
r = 0, poldrγ = 0}

∑K
r=1 I{θ

new
r = 1, pnewrγ = 1, cond1, condId1}

}
,

wherecond1andcondId1are explained in move type (1.ii) below.

(1.ii) Remove a pathway and a gene:
This move is the reverse of (1.i) described above. We first select a path-
way that is included in the model and has only one of its membergenes
in the model (θoldk = 1 andpoldkγ = 1). In addition, this included gene
(γoldj = 1) may not be the sole representative for other included path-
ways, to ensure that no empty pathway is created. Furthermore, iden-
tical sets of genes from different selected pathways cannotbe created.
These constraints correspond, respectively, tocond1andcondId1in the
proposal ratios (27) and (28). We attempt to remove both the pathway
and the gene, i.e., setθnewk = 0, γnewj = 0 and accept the move with
probability

(28)

min

{
1,

f(θθθnew, γγγnew|TTT , Y )

f(θθθold, γγγold|TTT , Y )
·

∑K
r=1 I{θ

old
r = 1, poldrγ = 1, cond1, condId1}

pk ·
∑K

r=1 I{θ
new
r = 0, pnewrγ = 0}

}
,

(2) Change the inclusion status of gene but not pathway – randomly choose be-
tween addition (2.i) or removal (2.ii):

(2.i) Add a gene in an already included pathway:
First select a pathway already included in the model and thathas some
member genes that could potentially be added (θoldk = 1 and pk >
poldkγ ). LetG be the set of pathways that satisfy these conditions. Choose
one of the non-included genes from this pathway (γoldj = 0) and at-
tempt to add it, i.e, setθnewk = θoldk = 1, γnew = 1. The proposal is
accepted with probability
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(29)

min



1,

f(θθθnew, γγγnew|TTT , Y )

f(θθθold, γγγold|TTT , Y )
·

∑K

r=1
I{θoldr = 1, pr > poldrγ } ·

∑
r∈G

1

p
new(cond2γ,condId2γ)
rγ∑K

r=1
I{θnewr = 1, pnewrγ > 1, cond2θ, condId2θ} ·

∑
r∈G

1

pr−pold
rγ



 ,

where ’cond2θ ’, ’ cond2γ ’, ’ condId2θ ’ and ’condId2γ ’ are explained
in move type (2.ii) below.

(2.ii) Remove a gene from an already included pathway:
This move is the reverse of (2.i) described above. We first select a path-
way already included in the model and that has more than one ofits
member genes included in the model (θoldk = 1, poldkγ > 1). In addition,
at least one of the included genes from this pathway may not bethe
sole representative for other included pathways and its removal would
not create an identifiability problem – this corresponds to constraints
’cond2θ ’ and ’condId2θ ’in the proposal ratios of (29) and (30). Once
the pathway is selected, choose a gene among the eligible candidates,
that is, an included member gene (γoldj = 1) which is not the sole repre-
sentative for other included pathways and whose removal does not cre-
ate an identifiability problem – this corresponds to constraints ’cond2γ ’
and ’condId2γ ’. Constraints ’cond2θ ’ for pathways, and ’cond2γ ’ for
genes, will ensure that no empty pathways are created after the pro-
posed move. Leave the pathway status unchanged and attempt to re-
move the selected gene, i.e., setθnewk = θoldk = 1, γnewj = 0. The
proposed move is accepted with probability

(30)

min



1,

f(θθθnew, γγγnew|TTT , Y )

f(θθθold, γγγold|TTT , Y )
·

∑K

r=1
I{θoldr = 1, poldrγ > 1, cond2θ, condId2θ} ·

∑
r∈G

1

pr−pnew
rγ∑K

r=1
I{θnewr = 1, pr > pnewrγ } ·

∑
r∈G

1

p
old(cond2γ,condId2γ)
rγ



 .

(3) Change inclusion status of pathway but not gene – randomly choose between
addition (3.i) or removal (3.ii):

(3.i) Add a pathway but leave genes’ status unchanged:
First select a pathway that is not included in the model but has some
of its member genes included in the model through other pathways
(θoldk = 0 andpoldkγ ≥ 1). Attempt to add the pathway but leave the
status of its member genes unchanged, i.e., setθnewk = 1. The proposed
move is accepted with probability
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(31)

min

{
1,

f(θθθnew, γγγnew|TTT , Y )

f(θθθold, γγγold|TTT , Y )
·

∑K
r=1 I{θ

old
r = 0, poldrγ ≥ 1, condId3}

∑K
r=1 I{θ

new
r = 1, pnewrγ ≥ 1, cond3}

}
,

wherecondId3means that it is not possible to select a pathway whose
selected genes form the entire set of selected genes for another selected
pathway, andcond3is explained in move type (3.ii) below.

(3.ii) Remove a pathway but leave genes’ status unchanged:
This move is the reverse of (3.i) described above. First select a pathway
included in the model that has all of itspoldkγ included member genes as-

sociated with other included pathways (θoldk = 1 and ’cond3’). This
will ensure that no orphan gene is created. Attempt to removethe path-
way but leave the status of the genes unchanged, i.e., setθnewk = 0 and
accept the move with probability

(32)

min

{
1,

f(θθθnew, γγγnew|TTT , Y )

f(θθθold, γγγold|TTT , Y )
·

∑K
r=1 I{θ

old
r = 1, poldrγ ≥ 1, cond3}

∑K
r=1 I{θ

new
r = 0, pnewrγ ≥ 1, condId3}

}
.

It is easy to see that our Bayesian stochastic search variable selection kernel
generates an ergodic Markov chain over the restricted space. First note that the
chain produced by our MCMC has the following properties:

• It is aperiodic and has an invariant probability distribution (by definition of
the M-H kernel);

• It is irreducible (noting that every move is equipped with its reverse, that it is
possible to reach any valid configuration in the parameter space starting from
the configuration where no pathways and no genes are selected, and that the
probability of moving will never be zero, i.e., the probability of moving from
one point to another inn steps is bigger then zero);

• Properties above imply that the chain is recurrent and therefore ergodic.

Let supp q(·|x) indicate the support of our proposal distribution, i.e., the set of pos-
sible configurations that can be generated from the previously visited configuration
x. We say that the supports for two differentx’s are connected if they share at least
one configuration. We need to check that the union of all connected supports is
equal to the entire support of the posterior distribution, i.e,

⋃

x∈supp f

supp q(·|x) ⊃ supp f
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wheref is the target density andq(·|x) the proposal distribution (Robert & Casella
2004). It is easy to verify that our MCMC satisfies this condition because, start-
ing from the configuration where no pathways or genes are selected, it is possible
to reach every admissible configuration, and because the union of these points is
exactly equal to the support of the target distribution.
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