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The vast amount of biological knowledge accumulated over#ars has
allowed researchers to identify various biochemical exdttéons and define
different families of pathways. There is an increased egem identifying
pathways and pathway elements involved in particular lgickl processes.
Drug discovery efforts, for example, are focused on idgimg biomarkers
as well as pathways related to a disease. We propose a Bayasie! that
addresses this question by incorporating information dhvgays and gene
networks in the analysis of DNA microarray data. Such infation is used
to define pathway summaries, specify prior distributiomsj atructure the
MCMC moves to fit the model. We illustrate the method with aplia-
tion to gene expression data with censored survival outsoimeaddition to
identifying markers that would have been missed otherwigbimproving
prediction accuracy, the integration of existing biol@diknowledge into the
analysis provides a better understanding of underlyingemoér processes.

1. Introduction. DNA microarrays have been used successfully to identify
gene expression signatures characteristic of diseasgpashGolub et al. 1999
or distinct outcomes to therap$liipp et al. 2002 Many statistical methods have
been developed to select genes for disease diagnosis,gsisgand therapeutic
targets. There is an increased consensus, however, thatsgéattion alone may
not be sufficient. In cancer pharmacogenomics, for instaceecer drugs are in-
creasingly designed to target specific pathways to accaurthé complexity of
the oncogenic process and the complex relationships betgerses Downward
2006. Metabolic pathways, for example, are defined as a seriekashical reac-
tions in a living cell that can be activated or inhibited atltiple points. If a gene at
the top of a signaling cascade is selected as a target, it guaoanteed that the re-
action will be successfully inactivated because multiglees downstream can still
be activated or inhibited. Signals are generally relayadmiltiple signaling routes
or networks. Even if a branch of the pathway is completelckdal by inhibition
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or activation of multiple genes, the signal may still be yeld through an alterna-
tive branch or even through a different pathwByiq et al. 2006 Solit et al. 2008.
Downward (2006 pointed out that targeting a single pathway or a few sigugali
pathways might not be sufficient. Thus, the focus is increggion identifying
both relevant genes and pathways. Genes and/or gene aphrarally interact
with one another and they often function together conclrtédthis paper we pro-
pose a Bayesian model that addresses this question by aratiny information of
pathway memberships and gene networks in the analysis of DNFfoarray data.
Such information is used to define pathway summaries, sppadr distributions,
and structure the MCMC moves to fit the model.

Several public and commercial databases have been degidlmgéucture and
store the vast amount of biological knowledge accumulatest the years into
functionally or biochemically related groups. These dasas focus on describing
signaling, metabolic or regulatory pathways. Some exasipldude Gene Ontol-
ogy (GO) (The Gene Ontology Consortium 200&yoto Encyclopedia of Genes
and Genomes (KEGGXK@nehisa & Goto 2000 MetaCyc Krieger et al. 2004
PathDB (www.ncgr.org/pathdb), Reactome KnowledgeBassh(i-Tope et al. 2005
Invitrogen iPath (www.invitrogen.com) and Cell Signalifgchnology (CST) Path-
way (www.cellsignal.com). The need to integrate gene egioa data with the
biological knowledge accumulated in these databases isreaignized. Several
software packages that query pathway information and ayddINA microarray
data on pathways have been developé¢akao et al(1999 implemented a visual-
ization tool that color-codes KEGG pathway diagrams to céftdanges in their
gene expression levels. GenMARPahlquist et al. 200@is another graphical tool
that allows visualization of microarray data in the conteikbiological pathways
or any other functional grouping of gend3oniger et al.(2003 have made use
of GenMAPP to view genes involved in specific GO terms. Anpthiglely used
method that relates pathways to a set of differentially exped genes is the gene
set enrichment analysis (GSEAS{bramanian et al. 20D5Given a list of genes
GSEA computes an enrichment score to reflect the degree thvahpre-defined
pathway is over-represented at the top or bottom of the chihke These proce-
dures are useful starting points to observe gene expreskammges in the context
of known biological processes.

Some recent studies have gone a step further and have foougecbrporating
pathway information or gene-gene network information itie analysis of gene
expression data. For exampRark et al(2007) have attempted to incorporate GO
annotation to predict survival time, by first grouping gebased on their GO mem-
bership, calculating the first principal component to forsuper-gene within each
cluster then applying a Cox model with penalty to identify super-genes, i.e., GO
terms related to the outcom¥élei & Li (2007) have considered a small set of 33
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A BAYESIAN MODEL FOR PATHWAY AND GENE SELECTION 3

pre-selected signaling pathways and used the impliedoe&itips among genes to
infer differentially expressed genes, anei & Li (2008 have extended this work
by including a temporal dimensiohi & Li (2008 andPan et al(2009 have pro-
posed two different procedures that use the gene-gene rietwvbuild penalties in
a regression model framework for gene selection. Bayegaroaches have also
been developed.i & Zhang (2010 have incorporated the dependence structure of
transcription factors in a regression model with gene esgio@ outcomes. In their
approach a network is defined based on the Hamming distameedre candidate
motifs and used to specify a Markov random field prior for thetimselection
indicator. Telesca et al(2008 have proposed a model for the identification of dif-
ferentially expressed genes that takes into account thendiemce structure among
genes from available pathways while allowing for corrattio the gene network
topology.

These methods use the gene-pathway relationships or gemerkénformation
to identify either the important pathways or the genes. @al i to develop a more
comprehensive method that selects both pathways and geingsaumodel that in-
corporates pathway-gene relationships and gene dependoctures. In order to
identify relevant genes and pathways, latent binary veciog introduced and up-
dated using a two-stage Metropolis-Hastings samplingmeh&he gene networks
are used to define a Markov random field prior on the gene satertdicators
and to structure the Markov chain Monte Carlo (MCMC) movesaddition, the
pathway information is used to derive pathway expressioasmes that summa-
rize the group behavior of genes within pathways. In thisspage make use of the
first latent components obtained by applying partial leasases (PLS) regressions
on the selected genes from each pathway. PLS is an efficeigtisial regression
technique that is frequently used for the analysis of gen@nd proteomic data,
seeBoulesteix & StrimmeK2007). We apply the model to simulated and real data
using the pathway structure from the KEGG database.

Our simulation studies show that employing the MRF prioovafl us to achieve
a better separation of the relevant pathways from the niewamit ones. In addition,
in a simulated setting with fairly small regression coeffits the model with the
MRF prior is able to select all the correct genes without aiyef positive while
the model without MRF includes 3 false positives. Other arghhave reported
similar resultsLi & Zhang (2010, in particular, comment on the effect of the MRF
prior on the selection power in their linear regressionirsgtil hey also notice that
adding the MRF prior implies a relatively small increase amputational cost.
Wei & Li (2007, 2008 report that their method is quite effective in identifying
genes and modified subnetworks and that it has higher satysitian commonly
used procedures that do not use the pathway structure, witlaisand, in some
cases, lower false discovery rates. Furthermore, in ounditation of the model we
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use the network information not only for prior specificattmrt also to structure the
MCMC moves. This is helpful for arriving at promising modeéisa faster way by

proposing relevant configurations. In real data applicatithe integration of the
pathway information may allow the identification of reletaredictors that would
have been missed otherwise, aiding the interpretationeafgbults, in particular for
the selected genes that are connected in the MRF, and alsoviimgy the prediction

accuracy of the selected models.

The paper is organized as follows. In Section 2 we discussiduel formulation
and prior specification. Section 3 describes the MCMC proetb fit the model
and strategies for posterior inference. In Section 4 weuewalthe performance
of the method using simulated data and illustrate an agmiicaf the method to
gene expression data with survival outcomes. We conclutteanbrief discussion
in Section 5.

2. Model specification. In this Section we describe how we incorporate path-
way and gene network information into a Bayesian modeliaghwork for gene
and pathway selection. Figufeprovides a schematic representation of our pro-
posed approach and model.

2.1. Regression on latent measures of pathway activi@ur goal is to build a
model for identifying pathways related to a particular phtgpe while simultane-
ously locating genes from these selected pathways thatewkvéd in the biologi-
cal process of interest. The data we have available for aisatpnsist of:

1. Y, ann x 1 vector of outcomes.

2. X, ann x p matrix of gene expression levels. Without loss of gengraXt
is centered so that its columns sum to 0.

3. S, a K x p matrix indicating membership of genes in pathways, with ele
mentss;; = 1 if gene;j belongs to pathway, ands;; = 0 otherwise.

4. R, ap x p matrix describing relationships between genes, with efgse
ri; = 1 if genesi andj have a direct link in the gene network, and = 0
otherwise.

The matricesS andR are constructed using information retrieved from pathway
databases, see the application in Sedfi@for details.

Since the goal of the analysis is to study the associatiowdmat the response
variable and the pathways, we need to derive a score as a mea#s(pathway
expression” that summarizes the group behavior of inclugleries within path-
ways. We do this by using the latent components from a PLSssgn ofY” on
selected subsets of genes from each pathway. A number aiftretelies have,
in fact, applied dimension reduction techniques to captiieegroup behavior of
multiple genesPittman et al(2004), for instance, first apply:-means clustering
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FiG 1. Schematic representation of our proposed approach. inédion on known pathways and
gene-gene networks is obtained from available databadeS cBmponents restricted to known path-
ways serve as possible regressors to predict a diseasermataccording to modelj. The goal of
the inference is to identify the pathways to be included ertiodel and the genes to be included

within those pathways.
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to identify subsets of potentially related genes, then sgegressors the first prin-
cipal components obtained from applying principal compdranalysis (PCA) to
each clusterBair et al. (2006 start by removing genes that have low univariate
correlation with the outcome variable then apply PCA on #maaining genes to
form clusters or conceptual pathways, which are used asssgrs. In our method,
instead of attempting to infer conceptual pathways, we heeskisting pathway
information. We compute a pathway activity measure by apglPLS regression
of Y on a subset of selected genes from the pathway. PLS has taetage of tak-
ing into account the covariance between regressors ancespemse variabl&’,
whereas PCA focuses solely on the variability in the covaritata. The selection
of a subset of gene expressions to form the PLS componeritailarsin spirit to
the sparse PCA method proposed4nu et al.(2006, which selects variables to
be used to form the principal components.

In order to identify both relevant groups and important game introduce two
binary vector indicators, & x 1 vector@ for the inclusion of the groups angha 1
vector-y for the inclusion of genes, i.e; = 1 if genej is selected for at least one
pathway score, ang;, = 0 otherwise. Let us assume for the moment a continuous
responsey’. The linear regression model that relates the responsablario the
selected pathways and genes can then be written as

Ko
1) Y =1a+ Y TywBey +&  €~N(0,07]),
k=1

where Ky = Zszl 0k is the number of selected pathways and wlgye,) corre-
sponds to the first latent PLS component generated basea @xpinession levels

of selected genes belonging to pathwayhat is using theX;’s corresponding to

spj = 1 andvy; = 1. To be more precise, let pathwéycontainp;, = Zle Skj
genes and lep, = Zle sj; denote the number of selected genes (i.e., genes
included in the model) that belong to pathwayThenT},., corresponds to the
first latent PLS component generated by applying PLS to tipeession data of
thepy., genes, denoted &),

Ti(y) = Xi(y) Ut

whereU, is thepy, x 1 eigenvector corresponding to the largest eigenvalue of
Cwycfy, with Cyyy = cov(Xy(4),Y) (see for exampléindgren et al. 1998 Thus,
Ti(v) is ann x 1 vector and3x () is a scalar. Modell) can therefore be seen as a
PLS regression model with PLS components restricted tdadolaipathways, and
where the goal of the inference is to identify the pathwaybeddncluded in the

model, and the genes to be included within those pathways.

imsart-aoas ver. 2009/02/27 file: Pat hAOASRevi sed.tex date: COctober 9, 2010



A BAYESIAN MODEL FOR PATHWAY AND GENE SELECTION 7

2.2. Models for categorical or censored outcome#n the construction above,
we have assumed a continuous response. However, our moaeil&ion can eas-
ily be extended to handle categorical or censored outcomables.

WhenY is a categorical variable taking one@fpossible valued),...,G — 1,
a probit model can be used, as doneMiyert & Chib (1993, Sha et al(2004) and
Kwon et al.(2007). Briefly, each outcom#; is associated with a vect@p; o, . . . , pi,c—1),
wherep;, = P(Y; = g) is the probability that subjectfalls in the g-th category.
The probabilitieg;, can be related to the linear predictors using a data augmenta
tion approach. LeE; be latent data corresponding to the unobserved propensitie
of subjecti to belong to one of the classes. When the observed outcbjeesre-
spond to nominal values, the relationship betwgeandZ; = (z;1,...,zic-1)
is defined as

@ v—] 0 Fmaagcei{a} <0
i g If maxj<<g-_1{zi;} > 0andz; ; = max;<j<g—1{zi}

A multivariate normal model can then be used to asso@ate the predictors

Ko
@)  Zi=la+)> TiuBiey +ei» & ~N0OX), i=1,...,n
k=1
If the observed outcom@s correspond, instead, to ordinal categories, the latent
variableZ; is defined such that

(4) }/Z:g if59<Zi§69+1a g:O,...,G—l,

where the boundarie, are unknown and-oo = 6y < 6; < ... < dg—1 < dg =
oo. The latent variableZ; is then associated with the predictors through the linear
model

Ky
(5) Zi:a+ZE,k(y)ﬂk(v)+Ei7 EiNN(O,O'Z), 1=1,...,n.

k=1

For censored survival outcomes, an accelerated failure (&fT) model can

be used ei 1992 Sha etal. 2006 In this case, the observed data afe =
min(7;,C;) andd; = I{Y; < C;}, whereT; is the survival time for subject,
C; is the censoring time, anf] is a censoring indicator. A data augmentation ap-
proach can be used and latent varialifegan be introduced such that

(6)
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The AFT model can then be written in terms of the lat&nt

Ky

(7) Zi=a+ Y T k)P + &ir
k=1

where thes;’s are independent and identically distributed randomaldes that
may take one of several parametric forrBfa et al(2006 consider cases where
¢; follows a normal or &-distribution.

2.3. Prior for regression parameters.The regression coefficiep, in (1) mea-
sures the effect of the PLS latent component summarizingfteet of pathwayk
on the response variable. However, not all pathways areeteta the phenotype
and the goal is to identify the predictive ones. Bayesiarhoud that use mixture
priors for variable selection have been thoroughly ingegéd in the literature,
in particular for linear models, se8eorge & McCulloch(1993 1997 for mul-
tiple regressionBrown et al.(1998 for extensions to multivariate responses and
Sha et al(2004) for probit models. A comprehensive review on special fezdwf
the selection priors and on computational aspects of thbadetan be found in
Chipman et al(2001). Similarly, here, we use the latent vectbto specify a scale
mixture of a normal density and a point mass at zero for ther mm eachs;, in
model ({):

(8)  Bulbi, 0% ~ 0 - N(Bo,ha?®) + (1 —6;) - 60(B), k=1,...,K.

where dy(5x) is a Dirac delta function. The hyperparametein (8) regulates,
together with the hyperparametersgf, y|n) defined in Section 2.4 below, the
amount of shrinkage in the model. We follow the guidelinesvjated bySha et al.
(2004 and specifyh in the range of variability of the data so as to control theorat
of prior to posterior precision.

For the intercept termy, and the variance;?, we take conjugate priors

) alo® ~ N(ag,hoo?)
o2 ~ Inv-Gammdvy/2, vyol/2),
whereay, 5o, ho, h, Vg andag are to be elicited.

2.4. Priors for pathway and gene selection indicatorsgn this section we de-
fine the prior distributions for the pathway selection iradar, &, and gene selection
indicator,y. These priors are first defined marginally then jointly, takinto ac-
count some necessary constraints.
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Each element of the laterif -vector@ is defined as

1 if pathwayk is represented in the model
(10) Or = :
0 otherwise
fork =1,..., K. We assume independent Bernoulli priors for this,
Ly
(11) p(Bler) = [T et (1 — i)',
k=1

whereyy, determines the proportion of pathways expectgutiori in the model. A
mixture prior can be further specified foy, to achieve a better discrimination in
terms of posterior probabilities between significant and-significant pathways

by inflating p(6, = 0) toward 1 for the non-relevant pathways, as first suggested
by Lucas et al(2006),

(12) p(pr) = pdo(er) + (1 — p)B(pk|ao, bo),

where B(¢x|ag, bo) is a Beta density function with parametets an by. Since
inference onyy is not of interest, it can be integrated out to simplify the MC
implementation. This leads to the following marginal pffior 6

B(ag + 0k,bp + 1 — 6)
B(ao,bo) ’

(13) p<0>=H[p-<1—9k>+<1—p>-

k

whereB(-, -) is the Beta function. Priorl@3) corresponds to a product of Bernoulli
distributions with parametep; = %.

For the latenip-vectory we specify a prior distribution that is able to take into
account not only the pathway membership of each gene buttedoiological re-
lationships between genes within and across pathwayshvene captured by the
matrix R. Following Li & Zhang (2010 we model these relations using a Markov
random field (MRF), where genes are represented by nodeskatidns between
genes by edges. A MRF is a graphical model in which the digioh of a set of
random variables follow Markov properties that can be dbedrby an undirected
graph. In particular, a pair of genes that are not conneatec¢@nsidered condi-
tionally independent given all other gen®&eéag 1974 Relations on the MRF are
represented by the following probabilities

__exp(iF())
14 exp(F(75))’
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10 F.C. STINGO ET AL.

whereF'(v;) = (1 + 1 ien, 7)) and N; is the set of direct neighbors of gene
j in the MRF using only pathways represented in the made|,pathways with
0, = 1. The corresponding global distribution on the MRF is givgn b

(15) p(710, 11, m) o< exp(ulyy 4+ ny'Rey)

with 1,, the unit vector of dimensiop andR the matrix introduced in sectich 1
The parameter controls the sparsity of the model, whileregulates the smooth-
ness of the distribution of over the graph by controlling the prior probability
of selecting a gene based on how many of its neighbors aretegldn particular,
higher values of) encourage the selection of genes with neighbors alreadgtsel
into the model. If a gene does not have any neighbor, themias gistribution re-
duces to an independent Bernoulli with parameter exp () /[1+exp(u)], which

is a logistic transformation gf.

Here, unlikeLi & Zhang (2010, who fix both parameters of the MRF prior, we
specify a hyperprior for). We give positive probability to values gfbigger than
0, as negative values of this parameter would favor neighgagenes to have dif-
ferent inclusion status, which is counter-intuitive fronbialogical point of view.
Such restriction on the domain gfalso helps with the “phase transition” problem
that typically occurs with MRF parameterizations of tydd)( where the dimen-
sion of the selected model increases massively for smaiments of;. When the
phase transition occurs the number of selected genes ssxeabstantially and
the sparsity of the model gets compromised. Here, aftenbadetected the phase
transition value)pr, by simulating from {5) over a grid ofn values, we specify a
Beta distributionBeta(cy, dy) onn/npr.

Constraints need to be imposed to ensure both interpriggedoild identifiability
of the model. We essentially want to avoid the following suérs:

1. creation of empty pathwayise., selecting a pathway but none of its member
genes;

2. creation of orphan gends., selecting a gene but none of the pathways that
contain it;

3. selection of identical subsets of genes by differentygayts, a situation that
generates identical valudg .,y and7j,(,) to be included in the model.

These constraints imply that some combination@ ahd-y values are not allowed.
The joint prior probability for(@, ) taking into account these constraints is given

by

p(0,7]n) o [Ty o * (1 — @) =% exp(pl)y + ny'Ry)  for yahd_conflg_uratlo_ns
0 for invalid configurations.
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3. Model fitting. We now describe our MCMC procedure to fit the model and
discuss strategies for posterior inference. Clearly,@iuy huge posterior spaces,
like the one we are dealing with, is a challenging problenthénBayesian literature
on variable selection for standard linear regression nsostelchastic search algo-
rithms have been designed to explore the posterior spadehare been success-
fully employed in genomic applications with prohibitivettsegs, handling models
with thousands of genes. A key to these applications is thenagtion of sparsity
of the model, i.e., the belief that the response is assatiatin a small number of
regressors. A stochastic search then allows one to explengdsterior space in an
effective way, quickly finding the most probable configuras, i.e., those corre-
sponding to the coefficients that have high marginal prdibiaisi while spending
less time in regions with low posterior probability.

We describe below the MCMC algorithm we have designed forpsablem.
In particular, borrowing from the literature on stochastéarches for variable se-
lection, we work with a marginalized model and design a Mmifis-Hastings al-
gorithm that updates the indicator parameters for the siafuof pathways and
genes with a set of moves that add and/or delete a single geha single path-
way. Also, we update the parameteof the MRF from its posterior distribution by
employing the general method proposedbgller et al.(2006). In the Appendix
we discuss how our Bayesian stochastic search variabletiseld&ernel generates
an ergodic Markov chain over the restricted space. In agiphics, we have found
that a good way to asses if the stochastic exploration canmsdered satisfactory
is to check the concordance of the posterior probabilitigsioed from different
chains started from different initial points.

3.1. Marginal Posterior probabilities. The model parameters consist(of, 8,
o2,7,0,n). The MCMC procedure can be made more efficient by integratirtg
some of the parameters. Here, we integrate out the regngsaiametersy, 8 and
o2. This leads to a multivariatedistribution

(16) f(YI|T,0,7) ~ Top(c0ln + T(0,7)50, 5% (In +holnly, + T Z0T (4 ),

with 1, degrees of freedom arfj, ann-vector of ones, and wheB, = hlg,,
with I,, then x n identity matrix, andl’ 4 - then x Ky matrix derived from the
first PLS latent components for the selected pathways usieagéelected genes.
In the notation 16) the two arguments of thedistribution represent the mean
and the scale parameter of the distribution, respectivédig posterior probability
distribution of the pathway and gene selection indicatetiién given by

(17) f0,7,nT,Y) o< f(Y|T,0,7)-p(0,7n) - p(n).
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12 F.C. STINGO ET AL.

3.2. MCMC sampling. The MCMC steps to fit the model consist of: () sam-
pling the pathway and gene selection indicators fggfh «y|rest; (I1) sampling the
MRF parameter from(n|resb); (1ll) sampling additional parameters that would be
introduced when fitting a probit model for categorical omes or an AFT model
for survival outcomes.

(I) The parametersf, ) are updated using a Metropolis-Hastings algorithm
in a two-stage sampling scheme. The pathway-gene relafare used
to structure the moves and account for the constraints fsg@dan Section
2.4. Details of the MCMC moves for updatin@, ) are provided in the
Appendix. Briefly, they consist of randomly choosing onelwaf following
three move types:

1. change the inclusion status of gene and pathway by raiyddmbsing
between adding a pathway and a gene or removing them both;

2. change the inclusion status of gene but not pathway byralydchoos-
ing between adding a gene or removing a gene;

3. change the inclusion status of pathway but not gene byralydchoos-
ing between adding a pathway or removing a pathway.

(1) Atthis step we want to draw the MRF parametgrom the posterior density
(18) p(nly) o< p(m)p(v|n).-

The prior distribution ony is of the form

(19) p(yIn) = ay(v)/Zy

with unnormalised density, () and a normalizing constari,, which is
not available analytically. When calculating the Metragdtiastings ratio to
determine the acceptance probability of a new vaft@, that is,

new old|,,new 7
20)  H{prew|yeidy = P e (Va0 ") [ Zypew
( ) (T] ’T] ) p(ndd)qnozd (,Y)q(nnew‘nold) Znold

one needs to take into account thigtew /7, ... # 1. FollowingMgller et al.
(2006, we introduce an auxiliary variabte, defined on the same state space
as that ofy, which has conditional densitf(w|n,~y) and consider the pos-
terior

p(n, wly) oc f(wln, v)p(n)ay(v)/Z,
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A BAYESIAN MODEL FOR PATHWAY AND GENE SELECTION 13

which of course still involves the unknowdi,. Obviously, marginalization
overw of p(n, w|y) gives the desired distributigr(n|y). Now, if (¢, w'd)
is the current state of the algorithm, we first propegé“ with density
q(n™* |n°!?) thenw™e® with densityg (w"e® [wd, n*ew n°ld), As usual, the
choice of these proposal densities is arbitrary from thetpafi view of the
equilibrium distribution of the chain of values. The choice of (w|n,y) is
also arbitrary. The key idea of the method proposedigjler et al.(2006
is to take the proposal density for the auxiliary variabléo be of the same
form as (9), but dependent on*** rather tham°?, that is,

(21) q(wnew|wold’ nnew’ nold) _ p(wnewmnew) = Qynew (wnew)/Znnew‘
Then the Metropolis-Hastings ratio becomes

(22)
[ old - oldy _ f(,wnew’nnew7,Y)p(nnew)qnnew(,),)qnold(wold)q(nold’nnew)
(T] W ’T] W )_ old|old old new new | nold
S, y)p(no?) quota (7) qrew (W ) g (1 o)

)

and no longer depends dfynew /Z, 0.a. The new values™* for the auxiliary
variablew is drawn from 1) by perfect simulation using the algorithm
proposed byPropp & Wilson(1996).

() In the case of classification or survival outcomes, thegmented dat&
need to be updated from their full conditionals using Giblsgling, see
Sha et al(2004), Sha et al(2006 andKwon et al.(2007) for details on this
step.

3.3. Posterior Inference. The MCMC procedure results in a list of visited mod-
els with included pathways indexed 8yand selected genes indexedyand their
corresponding relative posterior probabilities. Pathwalection can be based on
the marginal posterior probabilitieg0;|T,Y"). A simple strategy is to compute
Monte-Carlo estimates by counting the number of appeasaateach pathway
across the visited models. Relevant pathways are identieithose with largest
marginal posterior probabilities. Then relevant genesftioese pathways are iden-
tified based on their marginal posterior probabilities dtimdal on the inclusion
of a pathway of interesiy(;|T',Y, I{0s,; = 1}). An alternative inference for
gene selection is to focus on a subset of pathw&ysand consider the marginal
posterior probability conditional on at least one pathwag gene belongs to be-
ing represented in the model(y; | T, Y, I{>",cp Orsk; > 0}). We note that Rao-
Blackwellized estimates have been employed in standaediiregression mod-
els, in place of frequency estimates, by averaging the futiditional posterior
probabilities of the inclusion indicators. These estirmatee computationally quite
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14 F.C. STINGO ET AL.

expensive, though they may have better precision, as not€dulan & Stephens
(2009. Because of our strategy for inference, that selects fativpays and then
genes conditional on selected pathways, Rao-Blackwdlézgtimates of marginal
probabilities may not be straightforward to derive. In atslations and examples
reported in this paper we have obtained satisfactory efyitsimply estimating
the marginal posterior probabilities with the correspogdielative frequencies of
inclusion in the visited models.
Inference for a new set of observatiofX ;,Y) can be done via least squares

prediction,

(23) Vi = 1nd + Tpo)Bo.);

whereT ;g ., is the first principal component based on selected genes et
vant pathways and

A=Y, By =TTon+h Ix) TiyY,

with Y the response variable in the training @fg . the scores obtained from the
training data using selected pathways and genes includer imodel. Note that
for prediction purposes, since we do not know the fulirea PLS regression can-
not be fit. Therefore, we generditg ) by considering the first latent component
obtained by applying PCA to each selected pathway usingitiieded genes.

In the case of categorical or censored survival outcomessémpled latent
variablesZ would be used to estimatg; then the correspondence betwegn
and the observed outcome outlined in Sect®acan be invoked to predict
(Sha et al. 20042006 Kwon et al. 2007.

4. Application. We assess the performance of the model on simulated data
then illustrate an application to a breast cancer data usiag<EGG pathway
database to define the MRF.

4.1. Simulation studies. We investigated the performance of our model using
simulated data based on the gene-pathway relat®yresd gene networl, of 70
pathways and 1098 genes from the KEGG database. The relgatinays were
defined by selecting 4 pathways at random. For each of theedtsdl pathways,
one gene was picked at random and its direct neighbors thaid the selected
pathways were chosen. This resulted in the selection ofn@ats and 15 genes:
7 out of 30 from the first pathway, 3 out of 35 from the seconduBad 105 from
the third, and 2 out of 47 from the fourth pathway. Gene exgoes forn = 100
samples were simulated for these 15 genes using an apprioaitdr $o Li & Li
(2008. This was accomplished by first creating an ordering ambad.b selected
genes by changing the undirected edges in the gene netwidkdirected edges.
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A BAYESIAN MODEL FOR PATHWAY AND GENE SELECTION 15

The first node on the ordering, which we denoteXby, , was selected from each
pathway and drawn from a standard normal distribution; tiwdéthis node has no
parents. Then all child nodes directly connected onlXig and denoted by r,
were drawn from

XF2 ~ N(XF1pa 1)'

Subsequent child nodes at generatjpiX -, were drawn using all parents from

Xp, ~ N(pXpa(ry) Lpa(ry) 1)

wherepa(F;) indicates the set of parents of nog@nd X, F;) IS @ matrix con-
taining the expressions of all thea(F;)| parents for nodg. The expression levels
of the remaining 1073 genes deemed irrelevant were simufaden a standard
normal density. The response variables for the- 100 samples were generated
from

15
Y=Y XijB+e, e ~N(01), i=1,...,100.
j=1
For the first dataset we sgt= +0.5, using the same sign for genes that belong
to the same pathway. For the second and third data sets wepgused+1 and
B = +1.5, respectively. Note that the generating process is diffefe@m the
model () being fit.

We report the results obtained by choosing, when possilyleerparameters
that lead to weakly informative prior distributions. A vaguprior is assigned to
the intercept parameter by settingh, to a large value tending tso. For o2, the
shape parameter can be settg2 = 3, the smallest integer such that the vari-
ance of the inverse-gamma distribution is defined, and tale garameteryo3 /2
can be chosen to yield a weakly informative prior. For thetmeof regression
coefficients,5x, we set the prior mean t6, = 0 and choosé in the range of vari-
ability of the covariates, as suggested in Secfidh Specifically, we seky = 109,
ap = fo = 0, noo/2 = 0.5, andh = 0.02. For the pathway selection indicators,
01, we setp; = 0.01. As for the prior at the gene level, we get= —3.5, which
corresponds to setting the proportion of genes expexiatbri in the model to, at
least, 3% of the total number of genes. Parametgrand: influence the sparsity
of the model and consequently the magnitude of the margiostiepior probabil-
ities. Some sensitivity to these parameters is, of couosketexpected. However,
in our simulations we have noticed that the ordering of pagsivand genes based
on posterior probability remains roughly the same and fbezeéhe final selections
are unchanged as long as one adjusts the threshold on tlegigoprobabilities.
Also, for the hyperprior om, we setnpr = 0.092, to avoid the phase transition
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16 F.C. STINGO ET AL.

problem, and:y = 5 anddy = 2, to obtain a prior distribution that favors bigger
values ofy in the intervald) < n < npr. In our simulations we did not notice any
sensitivity to the specification ef) andd,.

The MCMC sampler was run for 300,000 iterations with the BG000 used as
burn-in. We computed the marginal posterior probabilif@spathway selection,
p(6x = 1]Y, T), and the conditional posterior probabilities for gene e given
a subset of selected pathway$y; |T', Y, I{>,cp Orsk; > 0}). Figure2 displays
the marginal posterior probabilities of inclusion for all gathways and the condi-
tional posterior probabilities of inclusion for all 1098rggs.

Important pathways and genes can be selected as those glitbshiposterior
probabilities. For example, in all 3 scenarios all four valg pathways were se-
lected with a marginal posterior probability cut-off of OReducing the selection
threshold to a marginal posterior probability of 0.5 puligwo false positive path-
ways, for all the three simulated scenarios considered. diige false positives
is the pathway with index 17 in Figuig which contains more than 100 genes. A
closer investigation of the MCMC output reveals that défersubsets of its mem-
ber genes are selected whenever it is included in the moeljting in a high
marginal posterior of inclusion for the pathway but low maad posterior proba-
bilities for all its member genes. The second false posji@tihway appears to be
selected often because it contains two or three of the nel@enes that were used
to simulate the response variable and were also includeldeimiodel with high
marginal posterior probabilities; all its other member egehave very low proba-
bilities of selection. As expected, the identification of tielevant genes is easier
when the signal-to-noise ratio is higher. Conditional ugizabest 4 selected path-
ways, a marginal posterior probability cut-off of 0.5 on tharginal probability of
gene inclusion leads to the selection of 7, 8 and 8 relevamgdor the three sce-
narios, respectively, and no false positives. With a maigimobability threshold
of 0.1, 14 of the relevant genes are selected with 4 falsdiyesifor the scenario
with g = 40.5, while 13 relevant genes are selected with only two falsdipes
for the simulated data with = +1. In the simulated setting with regression coef-
ficientsg = £1.5 all the 15 relevant genes are selected without any falseiymsi
at a threshold of 0.12.

Generally speaking, the effect of the MRF prior depends erctincordance of
the prior network with the data. For the simulated data, wmébthat the model
with the MRF prior, compared to the same model without the MiiForms better
in terms of pathway selection as it provides a clearer séiparbetween relevant
and non relevant pathways. In particular, the averagerdiffee, over the three sce-
narios, between the relevant pathway with the lowest piestprobability and the
non relevant pathway with the highest posterior probahiéit0.28, while without
the MRF prior it is only 0.18. In addition, we have observett@ased sensitivity of
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18 F.C. STINGO ET AL.

the MRF prior in selecting the true variables. For exampe tlie simulated case
with 84+ 1.5, in order to select all 15 relevant genes the marginal pritbatutoff
must be reduced to 0.088 at the expense of including 3 falsiéiyas. Other au-
thors have reported similar results & Zhang 2010. In the real data application
we describe below, employing information on gene-gene odsvaids the inter-
pretation of the results, in particular for those selectedes that are connected in
the MRF, and improves the prediction accuracy.

4.2. Application to microarray data. We consider thevan't Veer et al(2002
breast cancer microarray dat&ene expression measures were collected on each
patient using DNA microarray with 24,481 probes. Missingression values were
imputed using &-nearest neighbor algorithm with = 10. The procedure con-
sists of identifying the: closest genes to the one with missing expression in array
j using the othem — 1 arrays, then imputing the missing value by the average
expression level of thé neighbors Troyanskaya et al. 2001We focus on the 76
sporadic lymph-node-negative patients, 33 of whom dewslgistant metastasis
within 5 years and the remaining 43 did not; the latter are/gtas censored cases.
We randomly split the patients into a training set of 38 sawpind a test set of the
same size. The goal is to identify a subset of pathways anesgiat can predict
time to distant metastasis for breast cancer patients.

The gene network and pathway information were obtained filoenKEGG
database. This was accomplished by mapping probes to pathyging the links
between pathway node identifiers and LocusLinR.ID

Using the R packag&EGGgraph(Zhang & Wiemann 200Rwe first down-
loaded the gene network for each pathway then merged alléhveorks into a
single one with all the genes. A total of 196 pathways and B&8&responding
probes were included in the analysis. There is a many-toyroamespondence be-
tween pathways and genes, that is each pathway containplegnes and most
genes are associated with several pathways.

We ran two MCMC chains with different starting numbers ofirted variables,

50 and 80, respectively. We used 600,000 iterations withra-isuof 100,000 it-
erations. We incorporated the first latent vector of the PuSehch pathway into
the analysis as described in Sectibfiand set the number of pathways expeaed
priori in the model tol0% of the total number. For the gene selection, we set the
hyperparameter of the Markov random fieldite= —3.5, indicating thag priori at
least 3% of genes are expected to be selected. Ag e set)pr = 0.09, to avoid

the phase transition problem, angd= 1 anddy = 1 to obtain a non informative

Lavailable atvww.rii.com/publications/2002/vantveer.htm
2provided at ftp://ftp.genome.ad.jp/pub/kegg/pathways/hsa/hsa.gene_map.tab  and
ftp://ftp.genome.ad.jp/pub/kegg/pathways/map_title.tab

imsart-aoas ver. 2009/02/27 file: Pat hAOASRevi sed.tex date: Cctober 9, 2010



A BAYESIAN MODEL FOR PATHWAY AND GENE SELECTION 19

prior distribution. Sensitivity analysis with differenbaices of these hyperparam-
eters showed that the posterior inference is not affectedifigrent values ot
andd,. For the prior of the regression parameters, wenget 3y = 0, hg = 106
andh = 0.1. A vague prior was specified far?> by choosingvy/2 = 3 and
vpod/2 = 0.5.

The trace plots for the number of included pathways and thneten of selected
genes showed good mixing (Figures not shown). The MCMC sarmphostly vis-
ited models with 20-45 pathways and 50-90 genes. To assesgthement of the
results between the two chains, we looked at the correl&@igween the marginal
posterior probabilities for pathway selectigrif,|T,Y"), and found good concor-
dance between the two MCMC chains with a correlation coefficof 0.9933.
Concordance among the marginal posterior probabilitiesagafirmed by looking
at a scatter plot of(0|T",Y") across the two MCMC chains (Figure not shown).

The model also showed good predictive performaisia et al(2006 already
analyzed these data using an AFT model with 3,839 probesealicprrs and ob-
tained a predictive MSE of 1.9317 using the 11 probe sets ghest marginal
probabilities. Our model incorporating pathway informatiachieved a predictive
MSE of 1.4497 on the validation set, using 12 selected patbwad 41 probe sets
with highest posterior probabilities. The selected patfswand genes are clearly
indicated in the marginal posterior probability plots diggged in Figure8 and4. If
we increase the marginal probability thresholds for sadacind consider a model
with 7 selected pathways and 14 genes, to make the companiganfair with the
results ofSha et al(2006), we obtain a MSE of 1.7614.

From a practical point of view, researchers can use the postgrobabilities
produced by our selection algorithm as a way to prioritize tblevant pathways
and genes for further experimental work. For example, timegeorresponding to
the best 41 selected probe sets, conditional upon the besid@ed pathways, are
listed in Tablel divided by islands, which correspond to sets of connectegge
in the Markov random field. The islands help with the bioladjiimterpretation by
locating relevant branches of pathways. A subset of thetsslgpathways along
with islands and singletons are displayed in FigGreSeveral of the identified
pathways are known to be involved in tumor formation and pmssgjion. For in-
stance, the mitogen-activated protein kinase (MAPK) digggathway, which is
involved in various cellular functions, including cell fiferation, differentiation
and migration, has been implicated in breast cancer metadtae et al. 2007
Keyse 2008 The KEGG pathway in cancers was also selected with higtegos
probability. Other interesting pathways are the insulgnaling pathway, which
has been linked to the development, progression and outobbreast cancer, and
purine metabolism, which is involved in nucleotide bio$\gdis and affects cell
cycle activity of tumor cells.
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FiG 5. Microarray data: Graphical representation of a subset efested pathways with islands and
singletons. The genes in the islands are listed in Table
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Singleton genes (no direct neighbor selected)

ACACB (10), C4A (8,12), CALM1 (10), CCNB2 (5), CD4 (7), CDCB){ CLDN11 (7), FZD9
(11), GYS2 (10), HIST1H2BN (12), IFNA7 (3), NFASC (7), NRCAKT), PCK1 (10), PFKP
(10), PPARGC1A (10), PXN (9)

Island 1

ACTB (9), ACTG1 (9), ITGAL (9), ITGA7 (9), ITGB3 (9), ITGB4 (91TGB6 (9), ITGB8 (7,10),
MYLS5 (9), MYL9 (9), PDPK1 (10), PIK3CD (9,10,11), PLA2G4A Y2PLCG1 (11), PRKCA
(2,11), PRKY (2,10), PRKY (2,10), PTGS2 (11), SOCS3 (10)

Island 2

ACVR1B (2,3,11), ACVR1B (2,3,11), TGFB3 (2,3,5,11)

Island 3

ENTPD3 (1), GMPS (1)

TABLE 1
The 41 selected genes divided by islands and with assogatéday indices (in parenthesis). The
pathway indices correspond to: 1-Purine metabolism, 2-MARynaling pathway,
3-Cytokine-cytokine receptor interaction, 4-Neuroaetiigand-receptor interaction, 5-Cell cycle,
6-Axon guidance, 7-Cell adhesion molecules (CAMs), 8-Cammgnt and coagulation cascades,
9-Regulation of actin cytoskeleton, 10-Insulin signalgaghway, 11-Pathways in cancer,
12-Systemic lupus erythematosus.

In addition, several genes with known association to breaster were also
selected. One of these is Protein kinase C alpha (PKCA),whéongs to the
MAPK pathway and the KEGG pathways in cancer. PKCA has begorted to
play roles in many different cellular processes, includied functions associated
with breast cancer progression. It has been shown to be>gressed in some
antiestrogen resistant breast cancer cell lines and tovioéved in the growth of
tamoxifen resistant human breast cancer céltartkel et al. 200)/ Patients with
PKCA-positive tumors have also been shown to have worsivairthan patients
with PKCA-negative tumors, independently of other factfirsnne et al. 201
Prostaglandin-endoperoxide synthase-2 (PTGS2, alsorkaswyclooxygenase-2
or COX2) has also been related to breast caridenkert et al.(2004) observed
COX2 overexpression in breast cancer and strong assactiaith indicators of
poor prognosis, such as lymph node metastasis, poor diffatien and large tu-
mor size. This was further confirmed Bupta et al(2007), who showed that the
expression of COX2 in human breast cancer cells facilithitesassembly of new
tumor blood vessels, the release of tumor cells into theulation, and the breach-
ing of lung capillaries by circulating tumor cells to seedrpanary metastasis.
This is an important finding, as the majority of breast cardmaths result from
metastases rather than from direct effects of the primamptutself. Another gene
previously shown to be predictive of breast cancer lung statss that was also
selected by our analysis is integrin, beta-8 (ITGB&r{demaine et al. 2008We
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also identified integrin, beta-4 (ITGB4) which regulatey kignaling pathways
related to carcinoma progression, and has been linked t@sgjge tumor behav-
ior and poor prognosis in certain breast cancer subtypes €t al. 2006Lu et al.
2008.

5. Discussion. We have proposed a model that incorporates biological knowl
edge from pathway databases into the analysis of DNA miagarto identify
pathways and genes related to a phenotype. Information thavag membership
and gene networks are used to define pathway summariesfyspeaor distri-
butions that account for the dependence structure betweeasgand define the
MCMC moves to fit the model. The gene network prior and thetmsis of the
pathway information through PLS bring in additional infation that is especially
useful in microarray data, where there is low sample sizelam@d measurement
error. The performance of the method was evaluated usinglaied data and a
breast cancer gene expression study with survival outcevasaused to illustrate
its application.

Our simulation studies show the effect of the MRF prior on plsterior in-
ference. In general, as expected, the effect of the prioemids on the data and,
in particular, on the concordance of the prior network with tlata. In our simu-
lations, employing the MRF prior allows us to achieve a beteparation of the
relevant pathways from those not relevant (in particulag, have found a larger
average difference, over three scenarios, between theantlpathway with the
lowest posterior probability and the non relevant pathwaty he highest poste-
rior probability). In addition, in the simulated settingttvifairly small regression
coefficients the model with the MRF prior was able to selelcthed correct genes
without any false positive while the model without MRF indés 3 false positives.
Other authors have reported improvements on selectionpameesensitivity with
respect to commonly used procedures that do not use the gattwicture, with
similar, and in some cases, lower false discovery rateddditian, in our formula-
tion of the model we have used biological information notydok prior specifica-
tion but also to structure the MCMC moves. This is helpfulrirvéng at promising
models avoiding without visiting invalid configurationsnglly, in real data appli-
cations, we have found that employing information on gemeegnetworks can
lead to the selection of significant genes that would have beissed otherwise,
aiding the interpretation of the results, and achievingdbgtrediction results com-
pared to models that do not treat genes as connected eletinainigork in groups
or pathways.

Several MRF priors for gene selection indicators have beepgsed in the lit-
erature. It is interesting to compare the parametrizatiothe MRF used in this
paper and irLi & Zhang (2010 to the parametrization used iWei & Li (2007,
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2008, where the prior ory is defined as

(24) P(q|") x exp(d n1 — g ng1),

wheren; is the number of selected genes ang is the number of edges linking
genes with different values of;, i.e., edges linking included and non-included

genes among all pathways,
p p
Z Tij — .
i=1 | j=1

While d plays the same role asin (15), the parametrization usinghas a different
effect fromn on the probability of selection of a gene. This is evidentrfrthe
conditional probability

p

N |

p p
n=y v, no= rig(L =) = > i
=1 1 =1

Jj=

: exp(7; F'(75))
(25) Pl i € Nj) = T I s
whereF(v;) = d + gZieNj(nyZ— — 1). Higher values ofy encourage neighbor-
ing genes to take on the samgvalue, and consequently genes with non selected
neighbors have lower prior probability of being selecteahtiyenes with no neigh-
bors. We felt that parametrizatiott5) was a better choice for our purposes. First,
in a context of sparsity, where only few nodes are suppostaké&value 1, a prior
that assigns larger probability of inclusion to genes wilested neighbors than
to isolated genes seems more appropriate. Second, thesaxadation algorithm
of Propp & Wilson(1996 cannot be used to simulate fro4j. While any other
method of drawing fromZ44) would be acceptable, as pointed outNygller et al.
(2000, if Markov chain methods are used to sample from a MRF it &nthec-
essary to check, at each step, that the chain has adequatelsrged to the equi-
librium distribution, to avoid introducing additional uesirable stochasticity. On
the other hand, one advantage of the parametrizafidnig that there is no phase
transition problem associated to the distribution.

Pathway databases are incomplete and the gene networknatfon is often
unavailable for many genes. Thus, there may be situatiorsenhe dependence
structure and the MRF prior specification on the gene seleatidicator,y, cannot
be used for all genes. When the only information availabliéspathway mem-
bership of genes, the prior encould be elicited so as to capture other interesting
characteristics. For example, we may want a gene to hgwéori higher proba-
bility of being selected when several pathways that coritaane included in the
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model. We may also want to avoid favoring the selection ofrgelaathway just
because of its size. In such cases, conditionaf oindependent Bernoulli priors
can be specified foy; by relating the probability of selection to the proportidn o
included pathways that contain gepand adjusting for the pathway sizes, that
is,

K .
(26) ;16 ~ Bernoulli (c. M) ’
k=1 5kj/ Pk

where the scalat is a hyperparameter to be elicited.

In our approach we have made use of PLS components as summasuras
of the expression of genes belonging to known pathways asmddbplied a fully
Bayesian approach for the selection of the pathways to beded in the model,
and the genes to be included within those pathways. Pedaleshniques, in-
cluding lasso Tisbhirani 1999, elastic net Zou & Hastie 200% and group lasso
(Yuan & Lin 2006 have been studied extensively in the literature and haee be
successfully applied to gene expression data. The groap,lasparticular, defines
sets of variables then selects either all the variablesargtbup or none of them.
Recently, a modification of the method was proposed-ligdman et al(2010
using a more general penalty that yields sparsity at bothgtbap and individ-
ual feature levels to select groups and predictors withahegoup. Our under-
standing of group lasso is that the method works best intgitugawhere variables
belonging to the same group are highly correlated while Gates in different
groupings do not exhibit high correlation. However, genel®iging to the same
pathway often do not exhibit high correlation in their exgmien levels. Also, in
our case there are genes belonging to different pathwayhakia high correlation,
as well as genes that belong to more than one pathway. ltassagh mentioning
that attention has been recently devoted to Bayesian fationk of LASSO tech-
niques and to a comparison of their performances. Initiastigations suggest
that, in terms of prediction mean squared error, Bayesissolanethods perform
similarly to and, in some cases, better than the frequelatisb (see for example
Kyung et al. 201D Particularly relevant to the approach presented in opepa
is the work of Guan & Stephen$2009, who apply Bayesian variable selection
(BVS) and stochastic search methods in a regression madgéfmme-wide data.
In simulations they find that, in spite of the apparent corapomal challenges, the
BVS method produces better power and predictive performammenpared with
standard lasso techniques.
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APPENDIX A: MCMC SCHEME FOR SAMPLING®, vy)

We now describe the MCMC steps f(#, ) in more detail. As previously de-
scribed, no empty pathways or orphan genes are proposetgdaimpling and,
for identifiability, selecting the same set of genes foratiint pathways is not al-
lowed. At each iteration, only one pathway and/or a gene iamegsed to be added
or removed.

(1) Change inclusion status of both gene and pathway — ralydcimoose be-
tween addition (move 1.i) or removal (move 1.ii):
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(1.i) Add a pathway and a gene:
First select a pathway that is not included in the model argdrizae
of its member genes in the modép(’ = 0 andpg'? = 0). Randomly
choose one gene from the pathway{ = 0) and propose including
both the pathway and the gene, i.e. €t" = 1, 77 = 1. The move
is accepted with probability

(27)
iy f(0n6w7,ynew‘T7y) ' Die - Z - I{QOld — O pold — 0}
T (691 y0ld| T Y) K I{opew = 1,ppew = 1, condl, condId1}

wherecondlandcondldlare explained in move type (1.ii) below.

(1.i)) Remove a pathway and a gene:
This move is the reverse of (1.i) described above. We firstsel path-
way that is included in the model and has only one of its mergbees
in the model ¢/ = 1 andpg'Y = 1). In addition, this included gene

(fyOld = 1) may not be the sole representative for other included path-
ways, to ensure that no empty pathway is created. Furthernaen-
tical sets of genes from different selected pathways caoeatreated.
These constraints correspond, respectivelgptodlandcondldlin the
proposal ratios47) and £8). We attempt to remove both the pathway
and the gene, i.e., séf“” = 0, v*” = 0 and accept the move with

probability
(28)
) {1 F(Ome 4 T, Y) K 1{6old =1 p"ld =1, condl, cond[dl}}
min< 1, - . )
f(a ld?’YOld‘T7Y) Pk - Zr:l I{Qﬁew - new = 0}

(2) Change the inclusion status of gene but not pathway -oratydchoose be-
tween addition (2.i) or removal (2.ii):

(2.i) Add a gene in an already included pathway:
First select a pathway already included in the model andhhisisome
member genes that could potentially be add%ﬂd(: 1 andp; >
pzlj). LetG be the set of pathways that satisfy these conditions. Choose
one of the non-included genes from this pathwa}’/% = 0) and at-
tempt to add it, i.e, setpe® = 994 = 1, 4y"** = 1. The proposal is
accepted with probability
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K (o} (0]

f(onew ’YnewlT Y) Zr:l I{Grld - 17pr > prlyd} : ZTEG pn:w(cond;:y,condld}y)

min { 1, ’ . . - ,
FO yeld| T Y) S [{gnew = 1, prev > 1, cond2g, condld2¢} - Y

1
Y r€G pr—pphd
where cond2y’, ' cond2,’, " condId2y’ and 'condld2.’ are explained

in move type (2.ii) below.

(2.i)) Remove a gene from an already included pathway:
This move is the reverse of (2.i) described above. We firstsel path-
way already included in the model and that has more than oiits of
member genes included in the modé'{ = 1, p?¢ > 1). In addition,
at least one of the included genes from this pathway may nahdoe
sole representative for other included pathways and it®vahwould
not create an identifiability problem — this correspondsdpstraints
"cond2q’ and 'condld2y’in the proposal ratios ofA9) and G0). Once
the pathway is selected, choose a gene among the eligibikdedes,
that is, an included member geng'(’ = 1) which is not the sole repre-
sentative for other included pathways and whose removal dotcre-
ate an identifiability problem —this corresponds to comstsdcond2.,’
and ‘condId2,’. Constraints tond2y’ for pathways, andcéond2,,’ for
genes, will ensure that no empty pathways are created &ftepro-
posed move. Leave the pathway status unchanged and attemgt t
move the selected gene, i.e., 8gtY = 0214 = 1, ypew = 0. The
proposed move is accepted with probability

min 4 1 old _ old . § :K new new § : 1
f(o 7’7 |T? Y) r=1 1{07‘ = 17p7’ > pr'y } ' reG pold(condey,condIdZy)
ry

F(7Y ymew T, Y) Zfil I{pold = l,p‘r’lvd > 1, cond2q, condld2} - ), . W }

(3) Change inclusion status of pathway but not gene — rangdohdose between
addition (3.i) or removal (3.ii):

(3.i) Add a pathway but leave genes’ status unchanged:
First select a pathway that is not included in the model bstdmne
of its member genes included in the model through other patew
(05" = 0 andpp’ > 1). Attempt to add the pathway but leave the
status of its member genes unchanged, i.ed;$&t = 1. The proposed
move is accepted with probability
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(31)
min {1 [0, 4" T, Y) o {00 = 07p?£yd > 1, condld3} }

F(694 ol T Y'Y K I{gnev = 1, prew > 1, cond3}

wherecondld3means that it is not possible to select a pathway whose

selected genes form the entire set of selected genes fdrearsaiected
pathway, anadtond3is explained in move type (3.ii) below.

(3.i)) Remove a pathway but leave genes’ status unchanged:
This move is the reverse of (3.i) described above. Firstsalpathway
included in the model that has all of jt§' included member genes as-
sociated with other included pathway¥'¢ = 1 and 'cond3’). This
will ensure that no orphan gene is created. Attempt to rerttev@ath-
way but leave the status of the genes unchanged, i.€;$ét= 0 and
accept the move with probability

(32)
min {1 [0 A" M|T, Y) 27{(:1 I{H?ld = lapv(flyd > 1,cond3} }

F(0° yoldT Yy S E [{grew = 0, prew > 1, condId3}

Yy

It is easy to see that our Bayesian stochastic search varggection kernel
generates an ergodic Markov chain over the restricted spacst note that the
chain produced by our MCMC has the following properties:

e It is aperiodic and has an invariant probability distributi(by definition of
the M-H kernel);

e ltisirreducible (noting that every move is equipped wighritverse, that it is
possible to reach any valid configuration in the parametacesgtarting from
the configuration where no pathways and no genes are selacigthat the
probability of moving will never be zero, i.e., the probdtyibf moving from
one point to another in steps is bigger then zero);

e Properties above imply that the chain is recurrent and thexergodic.

Letsupp ¢(-|x) indicate the support of our proposal distribution, i.ee, $et of pos-
sible configurations that can be generated from the prelyieisted configuration

x. We say that the supports for two differeris are connected if they share at least
one configuration. We need to check that the union of all col@aesupports is
equal to the entire support of the posterior distributios, i

U suppq(|z) D supp f
resupp f
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wheref is the target density ang-|z) the proposal distributiorRobert & Casella
20049). It is easy to verify that our MCMC satisfies this conditioechuse, start-
ing from the configuration where no pathways or genes areteeleit is possible
to reach every admissible configuration, and because tlon wiithese points is
exactly equal to the support of the target distribution.

MOFFITT CANCER CENTER DEPARTMENT OF STATISTICS
TAMPA, FL 33612, USA. RICE UNIVERSITY
E-mAIL : Ann.Chen@moffitt.org HousToN, TX 77005, USA.

E-MAIL : marina@rice.edu

DEPARTMENT OFMATHEMATICS & STATISTICS
GEORGETOWNUNIVERSITY

WASHINGTON, DC 20057, USA.

E-MAIL : mgt26@georgetown.edu

imsart-aoas ver. 2009/02/27 file: Pat hAOASRevi sed.tex date: COctober 9, 2010


mailto:Ann.Chen@moffitt.org
mailto:marina@rice.edu
mailto:mgt26@georgetown.edu

	Introduction
	Model specification
	Regression on latent measures of pathway activity
	Models for categorical or censored outcomes
	Prior for regression parameters
	Priors for pathway and gene selection indicators

	Model fitting
	Marginal Posterior probabilities
	MCMC sampling
	Posterior Inference

	Application
	Simulation studies
	Application to microarray data

	Discussion
	References
	MCMC scheme for sampling (toto,toto)
	Author's addresses

