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Abstract

I study a one-sided offers bargaining game in which a fully rational seller
is making repeated offers to a rationally inattentive buyer (Sims, 1998). The
quality of the good is random and is known to the seller. The buyer needs to
pay attention to both the quality of the good and the seller’s offers. I show
that the buyer attains half of the uncertain portion of the surplus as attention
costs become negligible and offers are frequent. With infrequent offers and
positive attention costs an equilibrium exists both in the finite and the infinite
horizon games. This equilibrium involves the buyer paying more for, but also
obtaining a higher surplus from, higher quality goods. Trade occurs with delay
that is decreasing with the quality of the good and persists even when offers
are frequent. Finally, I show that revealing the quality of the good to the buyer
reduces both the buyer’s surplus and overall efficiency.
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1 Introduction

Consider a seller who is making repeated offers to a buyer in an attempt to sell an
indivisible good. It is well known that if the buyer perfectly observes the good’s
price and quality the unique equilibrium involves immediate agreement with the
seller obtaining all of the gains from trade. This stark outcome stands in contrast
with our day to day experience. In most transactions, the buyer is much more likely
to be satisfied or disappointed with her purchase than indifferent about it. Similarly,
merchants rarely manage to instantly sell their merchandise to every potential buyer
that comes their way. This gap between the full information model and reality has
been the subject of much of the bargaining literature.

My main contribution is to incorporate limited attention into non-cooperative
bargaining. Many studies show that the way people allocate their attention can
have a substantial economic impact. For instance, a study conducted by Chetty et
al. (2009) found that shoppers often overpay for products because they fail to pay
attention to sales tax. In the used cars market, Lacetera et al. (2012) showed that
buyers only pay attention to the left-most digit of the odometer. The goal of my
paper is to evaluate the effects of partial inattention on the outcomes one-on-one
buyer-seller interactions.

I do so by substituting the fully informed buyer with one who is rationally inat-
tentive (Sims, 1998). Such a buyer needs to pay attention to information in order to
take advantage of it. Paying attention to more information results in better decision
making, but also involves more effort, which is costly. Being rational, the buyer
achieves the optimal balance, paying attention only to those pieces of information
that are worth the effort.

The rational inattention model serves as a natural way of extending utility max-
imization to include costly attention. The flexibility of the model, its focus on infor-
mation, and its emphasis on optimality make rational inattention especially suitable
for this purpose. Indeed, rational inattention abstracts from the specific process
behind attention just as utility maximization abstracts away from the agent’s op-
timization procedure. Thus, we use the rational inattention model as a device for
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studying how incentives shape the bargaining outcomes of a partially inattentive
agent.

In my model, the rationally inattentive buyer bargains with a fully rational seller
over a good of random quality. The quality of the good, v, is observable to the seller
and is drawn once and for all at the beginning of game. Each period, the seller makes
an offer. The buyer then chooses which discrete signal structure to use; that is, how
much attention to pay to v, the seller’s past offers and the current proposal. The
signal structure, the buyer’s prior, and the seller’s possibly random offer together
determine the buyer’s attention cost. Once the buyer chooses her signal structure
for the period, nature draws a signal conditional on the seller’s current proposal,
past offers, and the good’s quality. Upon observing the signal, the buyer updates
her prior and chooses whether to accept or reject. If she accepts, trade occurs and
the game ends. Otherwise, the game proceeds to the next period.

I focus my analysis on equilibria that satisfy three conditions. The first condition
is that the buyer is attentive. That is, there are no periods in which the buyer
automatically rejects every offer regardless of the history. The second condition
disciplines the buyer’s response to off-equilibrium offers. Specifically, for each off-
equilibrium offer, I require the buyer’s strategy to be a limit of best responses to some
sequence of perturbations that put positive probability on that offer. This condition
is in the spirit of the perfect equilibrium of Selten (1975), and is needed to avoid
non-credible attention threats. I motivate and explain these conditions in section 3.
Theorem 1 shows that the set of equilibria that satisfies these conditions in the finite
horizon version of the game is non-empty. In the infinite horizon version, I focus on
equilibria to that also arise as limits of finite horizon equilibria. I prove that such a
limit exists, and is indeed an equilibrium of the infinite horizon game in Theorem 2.

My first major result establishes that in an environment with frequent offers,
the buyer obtains a significant portion of the surplus even when attention costs are
negligible. More precisely, let v be the realized quality of the good, and take vl to be
the lowest possible quality the good can attain. When offers are frequent, Theorem
4 in section 6 establishes that as the cost of attention go to zero, trade is efficient
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and the buyer’s expected surplus, E [Ub], becomes

E [Ub] =
1

2
(E [v]− vl)

Theorem 4 is based on intuitive properties of the rational inattention cost func-
tion. For one, the function is convex in the buyer’s signals. As such, the buyer’s
optimal signal structure equates each signal’s marginal cost to its marginal benefit.
A signal’s marginal benefit is the buyer’s expected gains from trade conditional on
observing the signal. A signal’s marginal costs depend on its informativeness. A kind
of signal that is considered extremely informative is one that leads to a belief that
some events have zero probability. Because no amount of Bayesian updating can
make a zero belief positive, such signals have infinite marginal costs. The possibility
of infinite marginal costs allows inattention to remain a factor at the margin even
as total attention costs become negligible. When this happens the buyer’s marginal
benefit from signals, and therefore her expected surplus, stay positive.

My second major result is that with significant attention costs there is delay in
agreement even when offers are frequent (Proposition 3). Delay emerges due to the
seller’s equilibrium optimization problem. In the one-shot game, this problem is sim-
ilar to that of a monopolist facing a logit demand function (see Matějka and McKay,
2012). As such, the seller’s offer will be the one that equates his marginal revenue to
his marginal cost. The seller’s dynamic problem has a similar structure, but with the
seller’s marginal cost being the opportunity cost of forgoing next period’s profits. It
turns out that these future profits in equilibrium do not depend on the seller’s current
offer. Because of this, future profits enter the seller’s current objective function as a
fixed cost. When offers are frequent, future profits loom larger, motivating the seller
to increase his offer. However, in equilibrium, offers cannot be too high, or else the
buyer will not pay attention. Therefore, the seller’s marginal revenue must decrease.
The buyer’s costly attention, though, limits the change in the buyer’s demand with
respect to higher offers. As a result, the only way to lower the seller’s marginal
revenue is by decreasing the level of demand; that is, the probability of agreement.
The result is delay that persists even when offers are made arbitrarily frequently.
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In the addition to the above two results, I show that in equilibrium a rationally
inattentive buyer gets what she pays for (Proposition 2). More precisely, both the
buyer’s surplus and the price of the good are increasing with the good’s quality. These
features are accompanied by the buyer overpaying for the good when the quality is
low, and underpaying when the quality is high. The intuition behind these features
comes from the buyer obtaining imperfect information about the good’s quality. If
the buyer had no information, the seller’s price would have been equal to the good’s
expected value for the buyer. As such, the buyer will overpay for low quality goods,
underpay for high quality goods, the buyer’s surplus would increase with the good’s
quality. With full information, the price of the good always equals to v, making prices
increasing with quality. However, with full information the buyer always obtains a
surplus of zero. The equilibrium with a rationally inattentive buyer lies between the
full and the no information extremes.

I conclude by exploring the effects of uncertain quality on bargaining outcomes.
I show that revealing the quality of the good to the buyer results in a unique equilib-
rium (Proposition 4). This equilibrium preserves the delay that arises in the baseline
model, but leads to effortless attention on the equilibrium path and to the buyer get-
ting zero surplus. The reason the buyer’s attention is effortless is because the seller
uses a deterministic strategy. Since in equilibrium the buyer knows both the seller’s
strategy and v, the buyer’s knowledge includes all there is to know about the seller’s
offers. As such, the buyer’s signals carry no information in equilibrium, resulting in
zero attention costs. However, the fact that attention is effortless on the equilibrium
path does not mean that the buyer perfectly observes the seller’s offers. In particu-
lar, my equilibrium refinement requires the buyer to take into account the marginal
cost of noticing any offer, including zero probability ones. As such, the buyer only
partially adjusts the probability of agreement in reaction to zero probability offers.

Proposition 5 asserts that revealing the quality of the product to the buyer reduces
both overall efficiency and the buyer’s surplus. From the buyer’s perspective, being
ignorant of v results in a variation in the value of the seller’s offers, which generates
positive attention costs. Since attention costs are strictly convex and the buyer
is attentive, she earns a strictly positive surplus. As for overall efficiency, keeping

5



the buyer ignorant of v reduces delay, but creates positive attention costs. Still,
Proposition 5 shows that the reduction in delay more than compensates for the
increase in the cost of attention. Hence, my analysis suggests that more information
can be harmful in the presence of costly attention.

Related Literature

The current paper sits in the intersection of rational inattention and bargaining. The
rational inattention literature finds its origins in Sims (1998). A large portion of this
literature is based on the linear-quadratic framework (e.g. Sims (2003), Mackowiak
and Wiederholt (2009), Van Nieuwerburgh and Veldkamp (2010) and Dessein et al.
(2013)). In these models, the rational inattentive agent optimizes over a continu-
ous variable, has a quadratic objective function and the exogenous uncertainty is
normally distributed. Under these assumptions, it is optimal for the agent to use a
normally distributed signal structure. My model differs from this literature in that
the buyer chooses a discrete action. Moreover, my buyer needs to pay attention to
the seller’s offers which are determined in equilibrium and therefore are not normally
distributed.

A strand of the rational inattention literature that is more relevant to my analy-
sis is one that deals with agents whose action is discrete. One example is Woodford
(2009) who studies a rationally inattentive firm that chooses when to review its cur-
rent pricing strategy. Using a similar framework, Yang (2014) studies coordination
games with rationally inattentive players in a global games setup. Dasgupta and
Mondria (2014) apply the discrete action framework to analyze the decisions of im-
porters. In the context of individual behavior, the studies of Caplin and Dean (2013),
Matějka and McKay (2013), Oliveira et al. (2013) and Woodford (2014) analyze the
observable implications of rational inattention on choice among discrete alternatives.

As explained earlier, my main contribution is to consider a seller who is making
repeated offers to a rationally inattentive buyer. Yang (2013), Matějka and McKay
(2012) and Martin (2012) also consider one or more rational sellers making offers to
one or more rationally inattentive buyers. However, unlike my model, the aforemen-
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tioned papers study models in which the seller is making a single, take-it or leave-it,
offer. Thus, theirs are static models.

A dynamic model is essential for my analysis. Without repeated offers, it would
be impossible to study inefficiencies that arise due to bargaining frictions, such as
delay. Moreover, the possibility of repeated offers is crucial for the buyer to obtain
a positive surplus when attention costs are negligible. To put it differently, one can
show that in the one period version of my model all of the surplus goes to the seller
as the cost of attention goes to zero. Hence, my model suggests that dynamics play
an important role in understanding the effect of rational inattention on bargaining.

In addition to being dynamic, my model differs from the models of Yang (2013),
Matějka and McKay (2012) and Martin (2012) in other respects. While I focus
on bargaining, Matějka and McKay (2012) focus on competition between multiple
sellers. In their model, each seller attempts to sell their good to a rationally inatten-
tive buyer with a unit demand by making simultaneous take-it or leave-it offers. The
quality of each seller’s good is random and known to all sellers. Similar to my model,
the buyer needs to simultaneously pay attention to each good’s price and quality.
The authors calculate an equilibrium and conduct comparative statics. Thus, while
I focus on a single seller who is making repeated offers, Matějka and McKay (2012)
study multiple sellers, each making a single offer. In other words, mine is a model of
dynamic bargaining while theirs is a model of static competition.

Martin (2012) studies a one-shot model in which a seller attempts to sell a single
good of random quality to a rationally inattentive buyer. The quality of the good is
either low or high, and the seller is restricted to one of two possible prices. My model,
therefore, differs from that of Martin (2012) in that I allow for repeated interactions,
a continuous range of offers and a more general distribution of qualities. Another
difference is that in Martin (2012) the buyer gets to observe the seller’s offer perfectly
at zero cost, and only needs to pay attention to the good’s quality. Letting the buyer
observe the good’s price before choosing her attention strategy results in multiple
equilibria due to the buyer’s ability to threaten with beliefs. I avoid some of this
multiplicity thanks to my refinement and my assumption that the buyer also needs
to pay attention to the seller’s offer.
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Yang (2013) considers a slightly different set-up to study security design. In
his model, the seller makes a take it or leave it offer in the form of an asset based
security. Both the seller and the buyer are uninformed about the asset’s future
dividends when the offer is made. The buyer gets to observe the seller’s offer, and
may use her attention to learn about the asset’s future dividends. Yang (2013) shows
that the seller will offer the buyer a debt contract to minimize attention costs. My
model differs from that of Yang (2013) not just by the virtue of being dynamic but
also in that I abstract from the structure of the seller’s offer. In my model, the seller’s
offers are one dimensional. However, this is without loss of generality as long as the
player’s utility is linear in money. Moreover, unlike in Yang (2013), my seller has
private information about the value of the good. Finally, I assume that the buyer
needs to pay attention also to the content of the seller’s offer, while in Yang (2013)
the buyer gets to observe that content for free. Thus, while I wish to study the
outcomes of bargaining, Yang (2013) is concerned with the structure of securities.

In the bargaining literature, the natural starting point are models that use the
one-sided repeated offers bargaining protocol. Most of the papers using this protocol
considered bargaining with one-sided incomplete information in a private values set
up (e.g. Fudenberg et al. (1985), Gul et al. (1986), Ausubel and Deneckere (1989)).
Unlike the model studied in my paper, such models involve an informed buyer and
an uninformed seller. A classic result in this literature is the Coase conjecture. This
result states that there is no delay when offers are frequent and the gains from trade
are positive with probability 1. My model differs from this literature in that I assume
that it is the seller, not the buyer, that has private information. Moreover, my model
exhibits delay even when offers are frequent and gains from trade are known to be
strictly positive.

A model more closely related to mine is the one due to Deneckere and Liang
(2006). They consider an uninformed buyer making repeated offers to an informed
seller. However, the information available to the seller is also relevant for the buyer.
Thus, their model is one of interdependent values. Deneckere and Liang (2006) show
that under certain conditions, the equilibrium involves bursts of trade followed by
periods of delay. In my model, trade occurs continuously rather than in bursts, and
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it is the informed party that makes the offers. Moreover, I assume that the buyer is
rationally inattentive and that values are private.

Several studies looked at one-sided repeated offers bargaining models in which
both parties have private information about the gains from trade (Cramton, 1984;
Cho, 1990). When offers are frequent, such models often result in no trade or a large
multiplicity of equilibria with various predictions (Ausubel and Deneckere, 1992).
A similar multiplicity was first pointed out by Rubinstein (1985) who studied an
alternative offers model in which the discount rate of one of the players was private
information. He showed that one can support a large set of equilibrium outcomes by
constructing belief-based threats off the equilibrium path.

Another model in which the informed party gets to make offers is the one due
to Gul and Sonnenschein (1988). Theirs is an alternating offers bargaining model
between a buyer and a seller who is uncertain about the buyer’s valuation of the
good. They show that taking the time between offers to zero results in immediate
trade in all equilibria satisfying their refinement. As in Gul and Sonnenschein (1988),
my refinement does not identify a unique equilibrium. However, my model generates
delay and a potentially negative ex-post surplus to the buyer, outcomes that cannot
arise in the analysis of Gul and Sonnenschein (1988).

My work also relates to Abreu and Gul (2000). They study a bargaining model
with general two sided offers in which each player is uncertain about the rationality
of the other. In particular, players may be irrational and insist on receiving a fixed
portion of the surplus. Thus, their model is one of two-sided offers, no uncertainty
about gains from trade, and irrationality. In contrast, mine is a model of one-sided
offers in which one side is uncertain about the gains from trade, the seller is fully
rational and buyer is rationally inattentive.

2 The Cost of Attention

I study bargaining between a fully rational seller and a buyer with limited attention.
Each period, the seller makes an offer which the buyer either accepts or rejects; if she
accepts, the game ends, otherwise the period ends and the seller makes a new offer in
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the next period. Unlike in standard bargaining models, in my model the buyer makes
her decision to accept or reject with less than perfect information about the seller’s
offers. How much information the buyer has depends on her attentiveness; that is,
on how much effort she devotes to understanding both the value of the object and
the seller’s offers. The buyer knows that attention is costly and therefore, allocates
her attention rationally, which I interpret to mean optimally. The model of rational
inattention that describes my buyer is due to Sims (1998). My contribution is the
application of the model to non-cooperative bargaining.

2.1 The Extensive Form

The extensive form game is as follows: before the seller makes her first offer, she
observes the quality of the good, v; a random variable that takes on values according
to the distribution µ0 from a finite set V = {vl, . . . , vh}, where vl ≤ v ≤ vh for all
v ∈ V . The seller makes the buyer offers in periods m = 1, . . . . The number of
periods can be finite or infinite. An offer is a number, xm ∈ X = [0, x̄]1, where
x̄ > vh. I interpret x as a reduced form of the seller’s offers. For example, a payment
plan offered by a car dealer to a potential buyer will be represented by its expected
present value. In other words, x serves as a summary of the monetary value that the
offer transfers from the buyer to the seller.

Each period, the buyer decides whether to accept or reject the current offer. If the
buyer accepts an offer at some period m, she gets the good, pays the seller xm and
the game ends. Otherwise, the game continues to the next period. If no agreement
is reached, the game ends with no transaction taking place. The seller’s payoff when
the buyer accepts an offer xm in period m is:

Us := e−r∆(m−1)xm (1)

where r > 0 is the (common) discount rate and ∆ is the time difference between
offers. If no transaction takes place, the seller’s payoff is 0, independent of the

1The upper bound, x̄, plays no role in the equilibrium strategies, and is needed only to ensure
compactness of the seller’s strategy space.
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good’s quality.
Let h ∈ Xm := X×· · ·×X denote an m-period history of offers and for Y ⊂ Rn,

let ∆(Y ) denote the set of all Borel probability measures on Y . Then, a behavioral
strategy, σ, for the seller is a sequence of functions2 σm : Xm−1 × V → ∆(X) for
m = 1, . . . . Thus, σm(h, v) is the random offer that the seller makes after history
h ∈ Xm−1 given that the value of the object is v ∈ V .

The buyer is rationally inattentive and as such, neither observes the seller’s offers
nor the quality of the good. Instead, she chooses a period m signal structure, which
is a likelihood function: lm : S × Xm × V → [0, 1], where S = {0, 1, 2, . . .} is the
discrete set of possible signal realizations. The signal structure lm satisfies:

(1)
∑

s∈S lm (s, h, v) = 1 for every h, v, and

(2) lm (s, ·, ·) is measurable for all s.

The first of these conditions ensures that lm(·, h, v) is a probability distribution
for all h, v; the second is a technical condition necessary for evaluating payoffs.
After the seller chooses xm and the buyer chooses lm, nature draws the signal s with
probability lm (s, xm, v). The buyer observes only the signal s, not the value of object
v nor the seller’s current or past offers. Based on s the buyer decides whether to
accept or reject the seller’s offer. I assume the seller observes neither lm nor s.

The signal structures represent the buyer’s choice to pay more or less attention
to the good’s quality and the seller’s offers. The flexibility of the signal structure
captures the possibility of focusing on some information that is easy to process but is
only a proxy of v and h. For instance, a buyer of a used car may pay attention only
to the left most digit of the odometer (Lacetera et al., 2012). Similarly, shoppers
may compare prices without checking which prices include sales tax and which do
not (Chetty et al., 2009).

The rational inattention modeling approach makes three implicit assumptions
about the way the buyer allocates her attention. First, it assumes the buyer has a
large collection of easily accessible data at her disposal which is related the good’s
quality and the seller’s offer. Second, her attention is selective in that she picks and

2Define X0 := {∅}.
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chooses which parts of the data to pay attention to and which to ignore. Third, the
buyer is aware of the stochastic relationship between the data, the good’s quality
and the seller’s offers, and uses this stochastic relationship to optimallty allocate her
attention.

The buyer’s payoff depends on when she gets the the good, its value and the cost
of attention that she incurs. More precisely, the buyer’s payoff if she accepts an offer
xm in period m, and uses the signal structures lj in each period j ≤ m is:

Ub = e−r∆(m−1) (v − xm)−
m∑
j=1

e−r∆(j−1)κ I (lj, µj) (2)

where κ ∈ (0, vl) is a constant, µm is the buyer’s belief at the start of period m about
the value of the object and the seller’s current and past offers. The term κ I is the
flow cost of attention; as I explain in the next subsection, I is the average decrease
in the entropy of the buyer’s beliefs. I interpret I as a measure of the buyer’s level
of attention and hence, κ is the constant marginal cost of attention.

An outcome of the game is the period in which agreement is reached, m, the
accepted offer, xm, the signal structures that the buyer has chosen in each period,
(l1, . . . , lm), and the buyer’s beliefs at the beginning of each period, (µ1, . . . , µm).
The seller’s payoffs are simply his transaction payoffs, while the buyer’s payoff is her
transaction payoffs minus the discounted sum of attention costs in each period. In
the next subsection, I define I.

2.2 Shannon’s measure of mutual information

Shannon (1948) was the first to suggest the use of entropy to measure information.
The idea is to measure the amount of information there is to learn about a random
variable by the entropy of its distribution. Learning the outcome of the variable,
therefore, corresponds to obtaining information equal to its distribution’s entropy.
Shannon (1948) also suggested a way of measuring how much one can learn about
a variable by observing a random signal. His answer was the expected difference
between the entropy of the variable’s unconditional and conditional distributions
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upon observing the signal. This quantity is now known as Shannon’s measure of
mutual information (Cover and Thomas, 2006).

Formally, let µ ∈ ∆(Y ) be a prior on Y ; that is, µ is a Borel probability measure
on Y ⊂ Rk. In periodm of my bargaining game, Y is Xm×V . Take l : S×Y → [0, 1]

to be a signal structure where S = {0, 1, . . .}, l is measurable in its second argument
and l(·, y) is a discrete probability. First, assume µ has a finite support {y1, . . . , yn}.
Then, H, the entropy of µ is:

H (µ) = −
n∑
i=1

µ(yi) lnµ(yi)

To ensure continuity, I let 0 ln 0 = 0, b ln b
0

= ∞ if b > 0, and 0 ln 0
0

= 0.3 In
information theory, entropy is interpreted as a measure of the information one can
learn about a random variable. Here, I interpret it as the level of exertion needed to
understand or process the information in question. That is, it is the level of attention
that the buyer needs to fully understand the offer and the value of the good.

Let π be the prior distribution of the signal:

π(s) =

ˆ
Y

l(s, y)dµ

Then, given the signal s ∈ Sµl := {s ∈ S |µ · l(s) > 0}, the posterior on Y is:

µs(E) =

´
E
l(s, y)dµ´

Y
l(s, y)dµ

for any Borel set E ⊂ Y . Then, Shannon’s measure of mutual information, I(l, µ),
is the expected change in entropy between the prior µ and the posterior given µ and
the signal structure l. Hence,

I (l, µ) =
∑
s∈Sµl

[H (µ)−H (µs)] π(s) (3)

3For analytical convenience, I measure entropy in nats; that is, I am using the natural logarithm
in the formula above rather than to more common log2.

13



which is the average change in entropy between the prior and the posterior distribu-
tion that results from seeing the signal structure l.

By assuming that the buyer’s information cost is proportional to Shannon’s mea-
sure of mutual information, I am assuming that the buyer already understands the
prior joint distribution of the offers and the value but can pay further attention to
these variables and understand more. Thus, she incurs attention costs at the margin.

For the general case; that is, if µ is not discrete, one can define Shannon’s measure
of mutual information as:

I(l, µ) =
∑
s∈Slµ

ˆ
l(s, y) ln

(
l (s, y)

π (s)

)
dµ (4)

which becomes the same as equation 3 when µ is discrete.
Note that the cost of attention depends on the buyer’s prior. To illustrate, sup-

pose the buyer only needs to pay attention to the seller’s offers, and that the value
of the good is 2. Let l be the signal structure that sends 0 if the seller’s first of-
fer is strictly above 2, and 1 otherwise. If the buyer’s prior about the seller’s first
offer is uniform over [0, 2], then l will send 1 for sure. In this case, l is completely
uninformative and therefore has a cost of 0. In contrast, l’s cost would have been
positive had the buyer’s prior been a uniform distribution over [1, 3]. Hence, the
informativeness, and therefore the attention cost of every signal structure depends
on the buyer’s prior information.

The fact that prior information influences attention costs captures the idea that
one needs to pay less attention to familiar information. For example, it is easier to
understand papers that use more common methodologies than it is to understand
papers that employ innovative techniques. In the model, familiar information is one
that has already been absorbed into the buyer’s prior. Examining a familiar piece
of information is therefore equivalent to acquiring a signal that results in little to
no updating i.e. barely provides the buyer with any new information. Such signals
have very low attention costs, which expresses the ease with which the buyer can
pay attention to familiar information.
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2.3 Recommendation Strategies

My first goal is to show that an optimal strategy for the buyer can be found within
a class of simple strategies that I call recommendation strategies. A recommendation
strategy is defined by two properties: there are only two signals; call them 0 and 1,
and the buyer does not randomize; she accepts for sure if and only if she observes
1. Recommendation strategies can be described by a sequence of mappings: β =

(βm)m≥1, where βm (xm, v) ∈ [0, 1] is the probability that the buyer receives an
accept recommendation. Thus, for every m, βm is some (measurable) mapping from
Xm × V into [0, 1].

Equation 4 of subsection 2.2 implies that Shannon’s measure of mutual infor-
mation between βm and the prior distribution, µm over Xm × V has the following
convenient form:

I (βm, µm) =

ˆ
βm ln

(
βm´
βmdµm

)
+ (1− βm) ln

(
1− βm´

(1− βm)dµm

)
dµm

The following proposition ensures that I can focus on recommendation strategies.

Proposition 1. For every strategy for the buyer there exists an outcome equivalent
recommendation strategy β with weakly lower attention costs.

Proof. See appendix.

For the one-period version of my game, Proposition 1 is easy to prove. One
can show that I (l, µ) ≥ I (l′, µ) whenever l is more informative than l′ in the sense
of Blackwell (1953) (see Cover and Thomas (2006), for example). Replacing any l
with the resulting distribution over actions induced by the buyer’s strategy creates
a new signal structure that is less informative than l, without changing the terms
or probability of agreement. Since a less informative signal costs less, Proposition 1
follows.

The argument above is not enough for proving Proposition 1 for multi-period
bargaining games. With multiple periods, information gained in period 1 can be
useful in period 2. If, for some reason, the cost of processing information in period
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2 were higher than in period 1, it might make sense to process that information in
period 1 rather than wait until period 2. To prove Proposition 1 for the general
case, I invoke the chain rule for mutual information which states that the expected
sum of information that is gained by observing two signals consecutively is equal to
the amount of information that results from observing both signals simultaneously.
To use this property, I view each signal structure as including two different signals:
an action recommendation and a residual. The chain rule then assures me that
processing this residual simultaneously with any future signal instead of processing
it with today’s recommendation does not increase the total cost of information.
Therefore, one can delay the processing of this residual to the time in which this
residual is used.

I appeal to Proposition 1, and assume henceforth that the buyer only uses rec-
ommendation strategies4.

3 Recommendation Perfect Equilibria

In this section I define, characterize and prove existence of an equilibrium satisfying
a refinement which I call recommendation perfect equilibrium. This refinement’s
purpose is to address some of the unique issues that arise when the buyer is rationally
inattentive. Theorem 1 establishes that recommendation perfect equilibria exist in
the finite horizon game. Moreover, the theorem shows that in equilibrium players
use simple strategies; i.e. strategies that do not depend on the past. In the infinite
horizon game I focus on limits of finite horizon equilibria. Theorem 2 establishes that
such a limit exists, is an equilibrium of the infinite horizon game, and involves simple
strategies. These simple strategies have a useful characterization which I present in
Lemma 1.

4In fact, I will treat the buyer as if she is using a pure recommendation strategy. This is without
loss of generality since the buyer’s objective function is concave and the seller does not observe the
buyer’s signal structure.
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3.1 Attentive Strategies and Credible Best Responses

In this subsection I provide a formal definition of recommendation perfect equilibrium
and state the existence result for my finite horizon game. My refinement is composed
of two parts. First, I assume that the buyer is attentive, meaning that there are no
periods in which the buyer automatically rejects every offer regardless of the history.
Second, I impose a perfection requirement similar to that of Selten (1975). More
precisely, for each off-equilibrium offer, I require the buyer’s strategy to be a limit
of best responses to some sequence of perturbations that put positive probability on
that offer. This condition is needed to avoid non-credible attention threats that may
arise when the buyer is rationally inattentive.

The first issue I address in my refinement is the possibility of the buyer auto-
matically rejecting every offer. To illustrate what I mean by automatic rejections,
take any sequential equilibrium and adjust it in the following way. In period 1 have
the buyer reject every offer, regardless of its content. At the same time, have the
seller’s first offer always be equal to x̄. From period 2 onwards, let the players play
according to the original equilibrium as if period 1 never happened. Clearly, this is a
sequential equilibrium. In fact, I can extend this kind of logic to obtain the following
observation5:

Observation There is a sequential equilibrium without trade after any history.

I wish to avoid periods in which the buyer automatically rejects the seller’s offers
regardless of their content. Formally, I say that the buyer’s strategy β is attentive
if for every period m there exists some price history and some quality of the good,
(xm, v), such that βm (xm, v) > 0. Assumptions of similar flavor are often made in
bargaining models. For example, Rubinstein (1985) assumes that the uninformed
player never makes irrelevant offers. Similarly, Gul and Sonnenschein (1988) assume
away the possibility of periods in which all offers rejected for sure and are only made
to allow one party to send a signal to the other.

5One can actually show that for every set of periods A ⊂ {1, 2, . . .} there exists an equilibrium
where trade occurs in period m if and only if m ∈ A.
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There are reasons to want to avoid trade break downs based on the buyer being
inattentive. First, the model describes two parties that are engaged in active bar-
gaining. It is unreasonable to assume that one party can completely ignore the other
when the two are directly facing each other. Second, one of my goals is to show that
inattention can lead to delay. Clearly delay can be created by interspersing periods of
trade shut downs resulting from automatic rejections. What is more interesting is to
know whether inattention can cause delay even when the buyer is at least somewhat
attentive to the seller’s offers.

A second and more subtle issue that arises in my model is that a rationally
inattentive buyer can make non-credible attention threats. Such threats involve the
buyer committing to pay close attention to off-equilibrium offers. With suitably
chosen off-path beliefs, one can sustain a very large number of sequential equilibria.
These threats are possible because the rational inattention cost function does not
depend on off-path signals.

Non-credible attention threats matter in my model because the buyer is paying
attention to another player’s choice variable. In most of the current rational inatten-
tion literature, agents are paying attention only to exogenous or aggregate variables.
For example, in Yang (2013) agents need to pay attention to the fundamental value
of an asset, while in Mackowiak and Wiederholt (2009) producers need to pay atten-
tion to macroeconomic outcomes. Such variables are outside the control of any other
agent. As such, the variable’s equilibrium distribution is not influenced by possible
attention threats6.

Consider the one-shot version of my model in which the seller makes the buyer
a take-it or leave-it offer. I will show that one can construct an extreme equilibrium
in which the buyer obtains a large surplus. Assume that V = {2, 4}, κ = 1 and
that both qualities can occur with strictly positive probability. Suppose further that
the seller offers 2 for sure regardless of the realized quality of the good. Let µ be
the buyer’s beliefs given the seller’s strategy, σ. One can show that a necessary

6One exception is Matějka and McKay (2012), who focus on an equilibrium with particular
assumptions on the buyer’s behavior towards zero probability prices. Their assumptions preclude
the possibility of non-credible attention threats.
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and sufficient condition for β to be optimal for the buyer in this setting is to have
β (x, v) = 1 µ-almost surely7. Therefore, the strategy defined by β (x, v) = 1 if x
equals to 2 and 0 otherwise is optimal for the buyer. Clearly, it is also optimal for the
seller to offer 2 for sure given β. Thus, (µ, β, σ) is a sequential equilibrium. Turns
out that by using a similar construction one can support the seller offering for sure
any x in [2, 2 + δ], where δ > 0 depends on the probability of v = 2.

In the above equilibrium the rejects for sure any offer that is above 2. In this
strategy the buyers reacts very differently to zero probability offers compared to pos-
itive probability ones. Such an extreme change in behavior towards zero probability
offers is non-credible. In particular, the buyer never chooses to react in this way
towards offers that are made with strictly positive probability. I formalize this idea
in my definition of a credible best response for the buyer.

Let Em [Ub|µm, β, σ] be the buyer’s expected utility conditional on arriving to
period m, the buyer’s beliefs over Xm×V being µm and future play being conducted
according to (β, σ). I’ll say that the beliefs µ and strategies (β, σ) are consistent if
µ is updated according to Bayes rule whenever possible.

The following definition formalizes my requirement that the buyer’s strategy be
credible. In particular, for every (xm, v) I identify a belief perturbation µ∗ that puts
positive probability on (xm, v). I then use µ∗ to create a sequence of perturbations
of µm. To create this sequence one mixes µ∗ into µm by putting a diminishing weight
on µ∗. As written in the definition below, the buyer’s strategy is credible if it is a
limit of best responses to at least on such sequence of perturbations for every (xm, v).

Definition 1. For a consistent (µ, β, σ), β is a credible best response to σ given µ if:

1. β maximizes Em [Ub|µm, β, σ] for all m.

2. For every (xm, v) there is a µ∗ ∈ ∆ (Xm × V ) with µ∗ (xm, v) > 0 and a
{µn, βn, εn}∞n=1 with µn = εnµ∗ + (1− εn)µm, εn ↓ 0 and βn → β, such that βn

maximizes Em [Ub|µn, βn, σ] for all n.
7I solve for the buyer’s general optimal strategy in the dynamic game in appendix C. To obtain

that β (x, v) = 1 µ-almost surely is optimal here one can also use the results of Woodford (2008),
Yang (2014) and Matějka and McKay (2013).
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The first part of Definition 1 is standard. This part requires that the buyer’s
strategy maximizes her expected utility after every history. The second part of
the definition rules out non-credible attention threats. Similar to Selten (1975)’s
perfect equilibrium, I require the buyer’s strategy to be robust to mistakes. In my
formulation, the buyer is aware of possible mistakes in her beliefs. While I do so
for analytical convenience, the difference between mistakes in beliefs and mistakes in
strategies is insubstantial in my setup. This is because by the time the buyer chooses
her period m signal structure, the seller’s m-th offer has already been determined.
Therefore all that matters for the buyer is her beliefs over that offer, i.e. µm. As
such, it does not matter whether we use beliefs that are consistent with perturbed
strategies, or whether we perturb beliefs directly.

To understand how the above definition rules out non-credible attention threats,
consider my previous example. Suppose we perturb the buyer’s belief from the
example by adding a probability of ε that the seller offers 6 whenever the quality
of the good is 4. Let µε denote the buyer’s perturbed beliefs. Assume further for
concreteness that the probability of v = 4 is 1

2
. Calculating the buyer’s expected

utility from using β given µε (see equation 2 from section 2.1) gives8:

E [Ub|β, µε] = 1− ε− 1

2
ln

(
2

2− ε

)
− 1

2

(
(1− ε) ln

(
2− 2ε

2− ε

)
+ ε ln

(
2

ε

))
where 1 − ε is the buyer’s expected transaction payoffs, while the remainder is the
buyer’s attention costs.

Compare β to the following alternative strategy: β ′ (x, v) = 1 for all x and v.
That is, the buyer accepts every x offered by any quality with probability 1. The
buyer’s expected transaction payoff under β ′ is 1−2ε. Moreover, since β ′ is completely
uninformative, it has an attention cost of 0. Therefore the buyer’s expected utility
from β

′ given µε is:
E
[
Ub|β

′
, µε
]

= 1− 2ε

8In the one shot game µ is sufficient for calculating the buyer’s expected utility. This is because
µ is a distribution over both V and the seller’s offer. In the multi-period version I need σ to specify
the seller’s future play.
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Therefore, β ′ is strictly better for the buyer than β if and only if:

1

ε
ln

(
2

2− ε

)
+

1

ε
ln

(
2− 2ε

2− ε

)
− ln

(
2− 2ε

2− ε

)
+ ln

(
2

ε

)
> 2

As ε goes to zero, an application of L’Hopital’s rule reveals that the left hand side
goes to infinity. Therefore, for all small enough ε, the buyer prefers β ′ over β. One
can prove that this kind of logic will extend to all perturbations involving the buyer
offering 6.

I now present the definition of a perfect recommendation equilibrium. This def-
inition is somewhat different than the more familiar notions of perfect equilibrium
due to Selten (1975) and proper equilibrium due to Myerson (1978). In perfect and
proper equilibria one needs to perturb all information sets simultaneously using a
single set of full support trembles. In my definition, I perturb information sets one at
a time and allow different off-path histories to be evaluated using different trembles.
Moreover, in the definitions of Selten (1975) and Myerson (1978) one introduces per-
turbation to both players. In my formulation, I introduce the perturbations only on
buyer’s side, since only she can make attention threats.

Definition 2. A consistent (µ, β, σ) is a perfect recommendation equilibrium if:

1. β is a credible best response to σ given µ.

2. σ is a best response to β after every history.

If, in addition, β is attentive, then I say that (µ, β, σ) is an attentive perfect recom-
mendation equilibrium.

From now on I will reserve the term equilibrium to mean attentive perfect recom-
mendation equilibrium, unless specified otherwise. In the next subsection, I establish
that an equilibrium exists, and that it admits a recursive structure.

I now turn to state Theorem 1, which shows two things. First, there exists an
equilibrium in the finite horizon version of the game. Second, equilibrium strategies
are simple. For the seller, a strategy is simple if it prescribes a single deterministic
offer, zm,v, for every period m and every v. A v type seller makes this offer in period
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m regardless of the seller’s realized offers in periods m′ < m. As for the buyer, her
strategy is simple if for every m, the probability that the buyer accepts an offer xm
made by a v type seller is bm (x, v), regardless of the seller’s offers in previous periods.

Theorem 1. There exists an equilibrium of the finite horizon game, and every such
equilibrium is in simple strategies.

Proof. See appendix.

Given the theorem, I will often identify equilibrium strategies β and σ by their
corresponding simple counterparts, b and z. To put it differently, I will often write
bm (xm, v) instead of βm (x1, . . . , xm, v), and say that the seller uses the strategy z
rather than σ.

The proof of Theorem 1 is partially constructive and partially dependent on a
fixed point argument. The main difficulty is to ensure that b is attentive. The
observation made at the beginning of this section showed that the game admits a
fully inattentive equilibrium. Requiring β to be a credible best response to σ is
insufficient to rule such an equilibrium out. As such, to prove the theorem I derive a
set of necessary and sufficient conditions for (µ, β, σ) to be an attentive equilibrium.
I then use a fixed point argument to show that there is some (µ, β, σ) that satisfies
these conditions. To derive these conditions, I first prove that equilibrium strategies
must admit a specific recursive structure, which I present below.

At this stage the reader may wonder about uniqueness of equilibrium. The fol-
lowing corollary states that in the one-shot game the equilibrium is unique.

Corollary 1. There exists a unique equilibrium in the one-shot game.

Proof. See appendix.

When there are more than two periods, one can obtain multiple equilibria. Intu-
itively, the multiplicity comes from the interdependency of current and future periods.
Future periods are influenced by the buyer’s posterior over the quality of the good at
the end of the current period. However, behavior at the current period, and therefore
the buyer’s posterior, depend on both player’s continuation values, which depend on
the future. Combined these can result in multiple equilibrium paths.
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3.2 Infinite Horizon Bargaining

In the infinite horizon game I focus my analysis on equilibria which arise as a limit
of finite horizon equilibria. Such equilibria exist and are simple, just like finite
horizon equilibria (Theorem 2). These equilibria also satisfy some useful structural
properties, which I present in Lemma 1.

Early papers in the bargaining literature also focused on limits of finite hori-
zon equilibria (e.g. Cramton (1984) and Sobel and Takahashi (1983)). I do so in my
analysis to exclude the players’ strategies from exhibiting complicated history depen-
dence. Other studies often avoid complicated dependencies on the past by focusing
on stationary equilibria (see for example Gul et al. (1986), Gul and Sonnenschein
(1988), Ausubel and Deneckere (1989) and Gul (2001)). Stationarity in its standard
form will not be possible under rational inattention. The fact that a rationally inat-
tentive buyer does not get to perfectly observe past offers creates a rigidity in the
buyer’s strategy that precludes stationary play. Focusing on equilibria that can be
approximated by finite horizon play allows us to recover some of the simplicity lost
by allowing for non-stationary strategies.

The following theorem establishes that finite horizon equilibria satisfy a form
of sequential compactness. Therefore one can attain a sequence of equilibria that
converges as the horizon becomes infinite. The theorem also states that any infinite
horizon limit of finite horizon equilibria is, in fact, an equilibrium of the infinite
horizon game. Finally, the theorem establishes that the strategies in the resulting
infinite horizon equilibrium are simple.

Theorem 2. For any sequence of finite horizon equilibria with the horizon going
to infinity, there exists a convergent sub-sequence. Moreover, every infinite horizon
limit of finite horizon equilibria is simple and is an equilibrium of the infinite horizon
game.

Proof. See appendix.

The proof of Theorem 2 is rather technical. The equilibrium in the finite horizon
game satisfies properties similar to the ones stated in Lemma 1 below. Using these
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properties, one can connect the convergence of bm (x, v) and zm,v to the convergence
of zm+1,v and bm+1 (zm+1,v, v). Since these are members of a countable product of
compact subsets of R, one can assure the existence of a converging subsequence.
Similar to Theorem 1, the tricky part of the proof is to ensure that the buyer’s limit
strategy is attentive. However, this ends up being ensured by the structure of the
finite horizon equilibria. Once attentiveness is established, I prove optimality of the
buyer’s limiting strategy via sufficient conditions derived in appendix C. Optimality
of the seller’s strategy is then attained via standard continuity at infinitey arguments.

The equilibrium in the infinite horizon game satisfies some structural properties,
which are used throughout the analysis. To present these properties, let (µ, b, z) be
an equilibrium of the game with infinite periods. Denote the marginal of µm over V
by µ̄m. Given an equilibrium, (µ, b, z), take bm,v to be the probability that the buyer
accepts the v-seller’s period m offer conditional on arriving to period m. That is, let
bm,v := bm (zm,v, v). Define πm as the prior probability that the buyer accepts the
m-th offer conditional on arriving to period m, i.e.

πm :=
∑
v

µ̄m,vbm,v (5)

and let wm,v be the seller’s expected profits in equilibrium conditional on v and on
arriving to m in period m terms. Note that, since the buyer’s strategy is simple,
wm,v is well-defined and does not depend on the seller’s past offers.

Lemma 1 does two things. First, it shows that the equilibrium involves inefficiency
due to delay, which This delay is implied by πm being strictly below 1 for all m.
Second, the lemma provides a characterization of the player’s equilibrium strategies
in the infinite horizon game.
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Lemma 1. Let (µ, b, z) be the equilibrium in the infinite horizon game. Then for
every m = 1, . . . and every v:

0 < πm < 1 and wm,v = zm,v − κ (6)

moreover, for every m, x and v:

(
bm (x, v)

1− bm (x, v)

)
=

(
πm

1− πm

)
e

1
κ

(
v−x+κ

∑∞
j=m+1 e

−r∆(j−m) ln

(
1−bj,v
1−πj

))
(7)(

bm,v
1− bm,v

)
=

(
zm,v − κ

κ

)
− e−r∆

(
zm+1,v − κ

κ

)
(8)

The derivation of the buyer’s optimal strategy is somewhat lengthy, and is dele-
gated to appendix C. For a partial intuition, consider the following way of rewriting
equation 7 when x equals zm,v:

v − zm,v − κ ln

(
bm,v
πm

)
= −κ

∞∑
j=m

e−r∆(j−m) ln

(
1− bj,v
1− πj

)
(9)

The above equation comes from the buyer’s first order condition for bm,v. On the left
hand side there is the buyer’s marginal utility from accepting the m-th offer condi-
tional on (zm,v, v). Accepting conditional on (zm,v, v) gives the buyer a transaction
utility of v − zm,v. However, accepting involves seeing an accept signal, which has
a cost. When considering whether to increase or decrease the probability of accept-
ing, what matters is the cost of increasing the signal’s probability at the margin.
Turns out that the marginal attention costs conditional on v depend only on the
change in the probability the buyer assigns to v9. Following an accept signal, these
beliefs change from µ̄m,v to µ̄m,v (bm,v/πm), resulting in a marginal attention cost of
κ ln (bm,v/πm).

9In general, the buyer’s marginal attention costs depend on the change in the probability of the
entire history of offers and good quality, (xm, v). The reason it depends only on v is come from the
seller using a simple strategy.
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On the right hand side of equation 9 is the marginal utility from rejecting the
current and all future offers conditional on (zm,v, v). Note that rejecting forever
gives the buyer a transaction utility of zero. Because of this, only the total present
value of the marginal attention costs from observing an infinite sequence of reject
signals influences the buyer’s marginal utility. As in the case of accept, the marginal
attention costs of rejecting forever conditional on (zm,v, v) depend only on the change
in the probability the buyer assigns to v. This leads to the expression on the right
hand side of equation 9.

Equation 9 therefore says that the buyer’s marginal utility from accepting is equal
to that of rejecting forever. Intuitively, the equality holds because every period the
buyer chooses to observe both an accept and a reject signal with positive probability.
As such, the marginal utility of accepting the m-th offer is equal to the marginal
utility of seeing reject in period m and moving to period m + 1. However, upon
ariving to period m + 1 the buyer is again indifferent at the margin between an
accept signal and a reject signal. Continuing along this sequence of indfferences
leads to equation 9.

The conditions that characterize the seller’s side are easier to derive. Since the
buyer’s strategy is simple, the value of the seller’s period m+ 1 problem conditional
on v does not depend on the seller’s offer in period m. Therefore, the value of the
seller’s problem in period m is:

wm,v = max
x

bm (x, v)x+ (1− bm (x, v)) e−r∆wm+1,v (10)

using equation 7 one can derive this problem’s first order condition:

x− e−r∆wm+1,v =
κ

1− bm (x, v)
(11)

This condition can be rearranged into wm,v = zm,v − κ, where zm,v is the solution to
the seller’s problem. One can then substitute wm+1,v = zm+1,v − κ and rearrange to
obtain equation 8.
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4 Getting what you pay for, Rip-offs and Bargains

In this section I highlight two features shared by all equilibria of the bargaining
game with rational inattention (Proposition 2). The first feature is that the buyer
gets what she pays for. In other words, the buyer both pays more for, and gets a
higher surplus from, higher quality products. The second feature is that the buyer
gets cheated on low quality products and gets good value when buying goods of
high quality. Thus, there are rip-offs at the bottom, and bargains at the top. These
features are captured in the following proposition.

Proposition 2. For every m, prices, acceptance probability, and the surplus remain-
ing for the buyer are all strictly increasing in v. That is, zm,v, bm,v and v − zm,v are
increasing in v. Moreover, the buyer makes a negative surplus on vl and a positive
surplus on vh, i.e.

vl − zm,vl < 0 < vh − zm,vh

Proof. Full proof is in the appendix. Here we take as given that bm,v is increasing in
v for all m. Repeated substitution of equation 8 into itself gives:

zm,v − κ
κ

=
∞∑
j=m

e−r∆(j−m)

(
bj,v

1− bj,v

)

Since bj,v is increasing in v for all j, the above implies that zm,v is increasing in v.
To obtain that v − zm,v is increasing in v, note that one can rewrite equation 7 as:

e
1
κ

(v−zm,v) =

(
bm,v (1− πm)

πm (1− bm,v)

)
e
∑∞
j=m+1 e

−r∆(j−m) ln

(
1−πj

1−bj,v

)

v − zm,v being increasing follows.

Proposition 2 stands in contrast with the classic full information model. When the
buyer is fully informed about the seller’s product and offers, the seller obtains all of
the surplus. Thus, in the full information model, the buyer is always indifferent about
the transaction. In contrast, Proposition 2 says that a rationally inattentive buyer is
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much more likely to be disappointed or satisfied with her purchase than indifferent
about it. Moreover, a rationally inattentive buyer feels ripped off after buying cheap
products, and is satisfied with expensive ones. Thus, prices are representative not
only of a good’s quality but also the buyer’s satisfaction, features that are abscent
from the classic full information bargaining game.

5 Frequent Offers and Delay

This section shows that introducing costly attention into bargaining results in delay
which is independent of the time between offers. Theorem 2 already implies that
delay occurs in equilibrium in an environment with infrequent offers. However, as
pointed out by Gul and Sonnenschein (1988), the delay that arises in an environment
with infrequent offers can be misleading. In particular, restricting the time between
offers to be positive may conflate the time of agreement with the number of offers
needed to reach it. I therefore study what happens in my model as the time between
offers goes to zero. Proposition 3 establishes that the model’s delay persists even
when offers are made infinitely frequently. Moreover, the proposition shows that this
delay is decreasing with the good’s quality. Thus, the more there is to lose from
delay, the smaller it is.

Let B (∆, κ) be the bargaining game with infinite horizon where the time between
offers is ∆ > 0 and the marginal cost of attention is κ. Given ∆ > 0, take T (∆) =

{∆, 2∆, . . .} to be the set of calendar times of the periods of B (∆, κ). Thus, each
period m corresponds to a calendar time of ∆m. A sequence of time between offers,
{∆n}∞n=1, is a refining sequence if ∆n ↓ 0 and T (∆n) ⊂ T (∆n+1) for all n. The
current section is concerned with the distribution of the calendar time of agreement,
defined below.

Definition 3. A function F : R × V → [0, 1] a timing distribution function of
B (∆, κ) if there exists an equilibrium (µ, b, z) of B (∆, κ) such that for every v,
Fv (t) is the probability that trade occurred on or before calendar time t conditional
on the quality being equal to v.
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Theorem 3 establishes that the timing distribution functions of B (∆, κ) converge
as ∆ goes to zero and κ remains constant. I interpret a lower ∆ as an increase in the
rate in which new information accumulates, but not necessarily as an increase in the
rate in which new information is absorbed. By fixing κ I assume that absorbing the
same amount of information at any given moment results in the same cost of atten-
tion, regardless of ∆. This assumption is inline with the chain rule of information,
which states that observing multiple consecutive signals costs the same as observing
all signals simultaneously (see section 2.3). Thus, what matters is the amount of
information the buyer absorbs, not the number of signals she uses to absorb it.

Theorem 3. Let {∆n}∞n=1 be a refining sequence, and take {F n}∞n=1 to be a se-
quence of corresponding timing distribution functions. Then there is a sub-sequence
{∆nk}

∞
k=1 and a cumulative distribution function for every v, Fv, such that F nk

v (t)→
Fv (t) for all t and v.

Proof. See appendix.

Given Theorem 3, I will say that a function F : R × V → [0, 1] is a frequent
offers timing function of B0 (κ) if there exists a refining sequence {∆n}∞n=1 and a
corresponding sequence of timing distribution functions {F n}∞n=1 of B (∆n, κ) such
that F n

v (t)→ Fv (t) for all v and t.
The following proposition establishes that rational inattention leads to delay in

an environment with frequent offers. Moreover, it shows that delay is decreasing with
the quality of the good and that there is always some probability of trade occuring.
The proof of the proposition is rather involved, and is tightly connected to the proof
of Theorem 3. The key step in the proof of Theorem 3 is to approximate each F n by
a distribution Gn that is absolutely continuous over time for every v. In particular,
Gn is chosen in a way that agrees with F n for every t ∈ T (∆n) and every v. To
construct Gn, I use bm,v to create a time-dependent hazard rate for each v, λt,v. These
hazard-rates can be shown to be uniformly bounded by a number that remains finite
as ∆ goes to zero. Utilizing this bound I can embed the hazard rates in an L2 space
with the appropriate measure over R+. I then evoke the sequential version of the
Banach-Alaoglo theorem to generate a weakly convergent sub-sequence of the said

29



hazard rates. This results in an absolutely continuous limit Fv for all v, as stated in
Proposition 3 below.

Proposition 3. Let F be a frequent offers timing function of B0 (κ). Then:

1. Fv is an absolutely continuous for every v and satisfies Fv (0) = 0.

2. F (t, v) is strictly increasing in v and in t for all t > 0.

Proof. See appendix.

One can get an intuition for Proposition 3 by examining the game in which the
buyer knows v. For that, let Bv (∆) be the bargaining game in which the quality
of the good is equal to v with probability 1. Proposition 4 below characterizes and
proves uniqueness of the equilibrium of Bv (∆). The equilibrium in Bv (∆) involves
inefficient delay which persists even when offers are made infinitely frequently, just
like the equilibrium of B (∆, κ). Moreover, the proposition shows that as the time
between offers goes to zero, the distribution of agreement time in Bv (∆) converges
to the distribution of the first arrival from a Poisson process with a rate of r

(
v−κ
κ

)
.

Proposition 4. There exists a unique equilibrium in the game Bv (∆). In this equi-
librium:

1. The seller offers v every period with probability 1 regardless of the history.

2. The buyer accepts v with probability:

π∗∆,v =

(
1− e−r∆

)
(v − κ)

(1− e−r∆) (v − κ) + κ
(12)

3. Let Fv,∆ to be the cdf of the time of agreement in equilibrium. Then as ∆n → 0:

Fv,∆n (t)→ 1− e−r(
v−κ
κ )t

Proof. Note that since the seller’s quality is known to the buyer one has µ̄m,v =

µ̄m+1,v = 1 and bm,v = πm for all m. Equation 7 from lemma 1 then implies that
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zm,v = v for all m. Equation 8 from lemma 1 then establishes that bm,v equals to
π∗∆,v for all ∆. Finally, note that 1 − Fv,∆n (t) equals

(
1− π∗∆n,v

)t/∆n . Part 3 of the
proposition then follows from L’Hoptial’s rule.

Delay arises in Bv in order to ensure that the seller’s offer remains equal to v.
Intuitively, if the seller were to make an offer strictly below v, then the buyer’s best
response is to accept the seller’s offer for sure. As suggested by the example in
section 3.1, the only credible way the buyer can do so is to accept for sure every
offer. But if this were the case, the seller would surely make offers much higher
than v. If the seller’s price was strictly above v, then the buyer’s best response
is to surely reject the seller’s offer. Again, the only way the buyer can do so in a
credible fashion is to reject for sure every offer in periodm. That, however, will mean
that the buyer is inattentive (section 3.1), which cannot happen in my equilibrium
refinement. Therefore, the seller must be charging v. The seller’s first order condition
(see equation 11) then implies that bm,v must be equal to π∗∆,v, thereby leading to
delay.

When the quality of the good is unknown to the buyer, a seller of a v quality
good may set a price different than v. Still, if period m prices are either too high or
too low, the buyer will choose either to automatically reject (i.e. πm = 0) or accept
every offer for sure (i.e. πm = 1). Since we focus on attentive equilibria, neither of
these can occur in equilibrium. Making sure that prices stay within an acceptable
range then generates delay similarly to how ensuring zm,v = v created delay in Bv.

6 Negligible Attention Costs and Surplus Splitting

In many situations, it seems unreasonable that the cost of attention is large compared
to the size of the economic surplus. Such situations may appear especially likely in
an environment with frequent offers, which can be thought of as representing a face-
to-face interaction between the buyer and the seller. In these environments, one may
presume that the outcome would be very similar to that of the game with a fully
rational buyer. Theorem 4 below shows that this is not the case.
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I will say that
(
Ūs, Ūb

)
are frequent offer utilities of B0 (κ) if there exists a refining

sequence {∆n}∞n=1 with a corresponding sequence of equilibria {(µn, bn, zn)}∞n=1 such
that E [Un

i ] converges to Ūi for i ∈ {s, b}. Thus, Ūi is the expected utility of player i
in some frequent offers environment. To establish existence of frequent offer utilities,
I state the following corollary of Theorem 3.

Corollary 2. Let {∆n}∞n=1 be a refining sequence, and take {(µn, bn, zn)}∞n=1 to be a
sequence of corresponding equilibria. Then there exists a sub-sequence {(µnk , bnk , znk)}∞k=1

such that E [Unk
i ] converges for all i ∈ {s, b}.

Theorem 4 states that the buyer and the seller split the uncertain portion of the
surplus when offers are frequent and attention costs are negligible. The seller still
appropriates the sure portion of the surplus, which is vl. However, the rest of the
surplus is split evenly between the two players. In addition, in the zero κ limit there
is no inefficiency. Thus, no surplus is lost neither due to delay nor due to costly
attention.

Theorem 4. Let
{(
Ūn
s , Ū

n
b

)}∞
n=1

be a sequence of frequent offer utilities of B0 (κn)

with κn → 0. Then:

lim
n→∞

Ūn
s =

1

2
(E [v] + vl)

lim
n→∞

Ūn
b =

1

2
(E [v]− vl)

Proof. See appendix.

When κ vanishes, efficiency is restored because the equilibrium becomes similar
to the one in the full information model. Namely, as κ goes to zero, any sequence
of acceptable offers results in immediate agreement. Similarly, an unacceptable se-
quence of offers leads to disagreement until acceptable offers are made. Standard
bargaining arguments then give that trade is immediate with the seller making offers
that are just at the threshold between what is acceptable and what is not.

Which offers sit at the buyer’s margin between accepting and rejecting depend
on the buyer’s marginal cost of attention. More specifically, these offers depend on
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the marginal attention costs of rejecting all of the seller’s future offers (Lemma 1).
When offers are frequent, this marginal cost converges to zero for vl and remains
negative for all other values of v. Because the marginal attention costs are negative
at the limit, the buyer’s marginal utility from rejecting is positive. Thus, the buyer’s
marginal attention costs effectively increase the value she assigns to future periods.

The reason marginal costs remain negative as κ vanishes is that rejecting for-
ever can immediately and completely misinform the buyer. In any equilibrium, as
time goes by the buyer’s belief that the good’s quality is vl goes to 1. The buyer’s
beliefs evolve in this way due the buyer accepting good offers more frequently than
she accepts bad ones. Since the worst offers are made when the seller has the low-
est quality product (Proposition 2), the buyer’s belief that the good’s quality is vl
increases over time. As κ goes to zero, this process accelerates, leading the buyer
to believe that the good’s quality is vl with probability 1 within a blink of an eye.
Thus, if the buyer were to reject the offers of a seller with v 6= vl for even a second,
she would immediately believe that v has a probability of 0. Since no quantity of
Bayesian updating can make a zero belief positive, such signals would be infinitely
misinformative. Therefore, if κ was to remain positive, the marginal cost of rejecting
forever would have converged to negative infinity. This convergence competes with
the convergence of κ to zero, eventually leading to a strictly negative limit.

To get a better sense of how infinite marginal attention costs can lead to a result
like Theorem 4, consider the following one-period version of equation 9 from section
3.2:

v − z1,v − κ ln

(
b1,v

π1

)
= −κ ln

(
1− b1,v

1− π1

)
(13)

For illustrative purposes, suppose that the probability of a reject signal conditional
on v satisfies:

b1,v = 1− (1− π1) e−(v−vl)/2κ

Then as κ goes to zero, b1,v converges to 1 for all v, meaning that π1 converges to 1

as well. In addition, for every level of κ the right hand side of equation 13 is equal
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to (v − vl) /2. Therefore, as κ goes to 0 equation 13 becomes:

v − z1,v =
1

2
(v − vl)

Thus, a v seller’s offer converges to (v + vl) /2, and the buyer’s acceptance probability
converges to 1.

In equilibrium the buyer does not use a lone signal as described above. However,
as κ goes to zero in a frequent offers setting the effect of the buyer’s signal sequence
in the game’s first few moments converges to that of the above single signal. Con-
sequently, trade becomes efficient and the buyer obtains half of uncertain portion of
the surplus.

7 More Information, Lower Surplus

The current section explores the efficiency implications of revealing the good’s quality
to the buyer. To do so, I compare the equilibrium payoffs in the standard game to the
payoffs when the buyer knows v. As shown in Proposition 4 in section 5, revealing
v to the buyer results in a unique equilibrium. Corollary 3 below establishes that
this equilibrium involves the seller appropriating all of the surplus. Moreover, the
corollary shows that revealing v to the buyer results in an inefficiency of size κ. The
corollary follows from Proposition 4 and Lemma 1.

Corollary 3. The expected utilities of the buyer and the seller in the equilibrium of
Bv (∆) are 0 and v − κ, accordingly.

Proof. By Proposition , zm,v = v for all v. Therefore, by equation 5 of Lemma 1, the
seller’s expected utility is equal to v − κ. To get that the buyer’s expected utility is
zero, note that we have both bm,v = πm for all m and zm,v = v for all v. The first
implies that the buyer’s attention costs are zero, while the second means that her
expected transaction utility is also zero. Thus, the buyer’s surplus is zero.

Corollary 7 suggests that in Bv, attention is effortless in equilibrium. The reasion
attention is effortless is because the seller uses a deterministic strategy. Since in
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equilibrium the buyer knows both the seller’s strategy and v, the buyer’s knowledge
includes all there is to know about the seller’s offers, resulting in zero attention costs.

The fact that attention is effortless on the equilibrium path does not mean that
the buyer perfectly observes the seller’s offers. Indeed, perfectly observing the seller’s
offers would constitute a non-credible attention threat. Such threats are ruled out
by my equilibrium refinement. In particular, my refinement requires the buyer to
take into account the potential marginal cost of paying attention to off-equilibrium
offers. These marginal costs induce the buyer to only partially adjust her acceptance
probability in reaction to zero probability offers. The interaction between this par-
tial adjustment and the seller’s incentives that leads to delay in equilibrium, which
remains when the buyer knows the quality of the good.

Proposition 5 wishes to compare the welfare in the original game, B (∆, κ), to
the welfare obtained by revealing the good’s quality to the buyer. For this, consider
a hypothetical game in which both the buyer and the seller get to observe v before
the bargaining stage. By Corollary 3 this hypothetical game will give the seller
an expected utility of E [v] − κ while the buyer’s ex-ante surplus will be equal to
zero. Hence, the total surplus when the quality is revealed to the buyer is given by
the expected value of v minus κ. Proposition 5 below shows that both the buyer’s
surplus and overall efficiency are strictly higher when the quality of the good is not
announced to the buyer. Therefore, revealing information in an environment with
rational inattention could have negative consequences on efficiency and the utility of
the inattentive individuals.

Proposition 5. There exists δ > 0 and τ > 0 such that for every equilibrium the
total expected surplus is larger than E [v] − κ + τ and the buyer’s expected utility is
strictly larger than δ.

Proof. See appendix.

Proposition 5 asserts that revealing the quality of the product to the buyer results
in reduced efficiency and lower surplus for the buyer across all equilibria. From the
buyer’s perspective, being ignorant of v results in a variation in the value of the
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seller’s offers. This variation generates positive attention costs. Since attention costs
are strictly convex and the buyer is attentive, she earns a strictly positive surplus.

As for overall efficiency, keeping the buyer ignorant of v creates positive attention
costs but reduces the overall efficiency due to delay. The size of the overall ineffi-
ciency, however, turns out to be convex in the seller’s expected profits conditional
on v. When the buyer is uncertain about the quality of the good, the distribution of
the seller’s conditional expected profits becomes more concentrated, thereby reduc-
ing the overall inefficiency. Thus, keeping the buyer in the dark with respect to the
quality of the good results in less delay that more than compensated for the buyer’s
positive attention costs. Thus, when attention is costly, improving the information
of the inattentive buyer

8 Concluding Remarks

In this paper I showed that introducing rational inattention into one-sided repeated
offers bargaining gives rise to many features reminiscent of real-world transactions.
A rationally inattentive buyer earns a strictly positive surplus, even when attention
costs are negligible (Theorem 4). When attention costs are positive, trade occurs with
delay that is decreasing with the value of the good (Proposition 3). The resulting
delay is accompanied by the buyer being unhappy with cheap, low quality products,
and pleased with expensive products of higher quality (Proposition 2). Finally, I’ve
shown that in the presence of rational inattention, ignorance is bliss in the sense that
both the buyer’s and the total surplus are higher when the buyer does not know the
good’s quality (Proposition 5).

My starting point was perhaps the simplest of dynamic bargaining models: One-
sided repeated offers with full information. It remains an open question how much of
my insights survive the transition to other, more complex bargaining environments.
Examples of such environments include the buyer having private information, two-
sided offers, existence of an the outside option, etc. In addition, there are some
questions that remain open even with respect to the simple bargaining protocol
studied in my paper. For example, in the infinite horizon model, I focused on an
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equilibrium which was the limit of finite horizon equilibria. This refinement resulted
in equilibria that were completely forward looking and depended very little on past
offers (Theorem 2). It remains to be seen whether it is possible to obtain qualitatively
different results in more complicated equilibria .

In addition to exploring variations on the bargaining environment and solution
concept, it would be of interest to study the implications of more structured models
of attention on bargaining. As mentioned in the introduction, I view rational inat-
tention as extending utility maximization to include costly attention. Thus, just as
people study how deviation from utility maximization influence economic outcomes,
so it would be of interest to study the interaction of bargaining and other ways of
modeling limited attention.
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A Information Theory Preliminaries
Lemma 2 (Log-Sum inequality). Let (ai)

n
i=1 and (bi)

n
i=1 be non-negative numbers. Then:

n∑
i=1

ai ln
ai
bi
≥

(
n∑
i=1

ai

)
ln

∑n
i=1 ai∑n
i=1 bi

with equality if and only if aibi is constant.

Proof. The function f (c) = c ln c is strictly convex since f
′′

(c) = 1
c > 0. Set ci = ai

bi
and set

αi = bi∑n
i=1 bi

. Then by Jensen’s inequality:

n∑
i=1

ai∑
j bj

ln
ai
bi

=
∑
i

αif (ci) > f

(∑
i

αici

)
=

∑n
i=1 ai∑n
j=1 bj

ln

(∑n
i=1 ai∑n
j=1 bj

)

the lemma follows.

Lemma 3 (Chain rule for mutual information). Let (Z,F , p) be some probability space, and let
l : S2 × Z → [0, 1] be such that l (s1, s2; ·) is measurable for all s1, s2 and

∑
(s1,s2) l (s1, s2; z) = 1

for all z. Define pls1 by setting:

pls1 (E) =

´
E

∑
s2
l (s1, s2; z) dp (z)´

Z

∑
s2
l (s1, s2; z) dp (z)

take:
l̄1 (s1; z) =

∑
s2

l (s1, s2; z)

and for every s1 let l|s1 : S × Z → [0, 1] be:

l2|s1 (s2; z) =
l (s1, s2; z)∑
s
′
2
l
(
s1, s

′
2; z
)

then:
I (l; p) = I

(
l̄1; p

)
+
∑
s1

(ˆ
Z

l̄1 (s1; z) dp

)
I
(
l2|s1 ; pls1

)
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Proof. Note that:

I
(
l2|s1 ; pls1

)
=

ˆ
Z

∑
s2

l2|s1 (s2; z) ln

(
l2|s1 (s2; z)´

l2|s1 (s2; z) dpls1

)
dpls1

=

ˆ
Z

∑
s2

l2|s1 (s2; z) ln


(

l(s1,s2;z)∑
s2
l(s1,s2;z)

)
´ ( l (s1, s2; z)´

Z

∑
s2
l (s1, s2; z) dp (z)

)
dp

dpls1

=

ˆ
Z

∑
s2

l2|s1 (s2; z)


ln

(
l (s1, s2; z)´
l (s1, s2; z) dp

)
− ln

(
l̄ (s1; z)´

Z
l̄ (s1; z) dp

)
 dpls1

=

ˆ
Z

∑
s2

l2|s1 (s2; z) ln

(
l (s1, s2; z)´
l (s1, s2; z) dp

)
dpls1

−
ˆ
Z

ln

(
l̄ (s1; z)´

Z
l̄ (s1; z) dp

)
dpls1

and therefore,
∑
s1

(´
Z
l̄1 (s1; z) dp

)
I
(
l2|s1 ; pls1

)
is equal to:

=
∑
s1

(ˆ
Z

l̄1 (s1; z) dp

)ˆ
Z

∑
s2

l2|s1 (s2; z) ln

(
l (s1, s2; z)´
l (s1, s2; z) dp

)
dpls1

−
∑
s1

(ˆ
Z

l̄1 (s1; z) dp

)ˆ
Z

ln

(
l̄ (s1; z)´

Z
l̄ (s1; z) dp

)
dpls1

=

ˆ
Z

∑
s1

∑
s2

l̄ (s1; z) l2|s1 (s2; z) ln

(
l (s1, s2; z)´
l (s1, s2; z) dp

)
dp

−
ˆ
Z

∑
s1

l̄ (s1; z) ln

(
l̄ (s1; z)´

Z
l̄ (s1; z) dp

)
dp

= I (p; l)− I
(
p; l̄1

)
thereby implying the desired equality.
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B Sufficiency of recommendation strategies
This part of the appendix shows that it is sufficient to focus on recommendation strategies. The
section begins by introducing required notation and the definition of general strategies for the buyer.
Then, the section defines what it means for two strategies to be outcome equivalent and when we
call a strategy for the buyer as a recommendation strategy. I then present the proof that recom-
mendation strategies are sufficient by showing that for each strategy we can construct a sequence
of outcome equivalent strategies with lower information costs that converge to a recommendation
strategy.

Let Y is some compact subspace of a finite dimensional Euclidean space. Defining Zm−1 =

Xm×Y , we take σ0 to be a borel probability measure over Z0 = Y , and (σm)
M
m=1 to be a sequence

of probability transition kernels: σm : Zm−1 → ∆ (X) that give the conditional probability over the
m time fundamental Xm given zm−1 =

(
xm−1, y

)
. For n < m and zm ∈ ZM , we will take zm (n)

to denote the projection of zm on Zn. Throughout we will focus on the peirod 0 problem without
loss of generality. For M ∈ N ∪ {∞}, we let σ ∈ ∆

(
Y ×XM

)
denote the probability measure

derived by repeatedly application of (σm)
M
m=0. Similarly, we will write: σ (·|zn) ∈ ∆ (ZM−n) for the

probability distribution over {zn}×XM−n resulting from repeated application of (σm)
M
m=n+1. For

the sake of brevity, we write σ (Em) instead of σ
(
Em ×XM−m) for any Em ∈ B (Zm).

A strategy for the buyer consists of a pair (λ, β), such that λ = (λm)
M
m=0 and β = (βm)

M
m=0,

where λm : Zm × Sm−1 → ∆ (S) and βm : Sm → [0, 1]. Thus, λm
(
sm|zm, sm−1

)
is the probability

of observing signal sm conditional on past signals being sm−1 and the state up to time m being zm,
while βm (sm) is the probability of the buyer stopping at period m conditional on having observed
the signals sm. Given (λ, β), we let µλ,β (·|sm) be the posterior distribution over ZM conditional
on having reached any period n ≥ m and having observed signals sm from λ.

Definition 4. Two strategies (λ, β) and
(
λ
′
, β
′
)
are outcome equivalent if for every σ and every

m, the probability that the buyer stops at period m is the same under both (λ, β) and
(
λ
′
, β
′
)
.

Definition 5. A strategy (λ, β) is a recommendation strategy if for every m:

λm
(
sm|zm, sm−1

)
> 0

implies sm ∈ {0, 1}, and βm (sm) = 0 if sm = 0 and βm (sm) = 1 otherwise.
We will prove here the following proposition:

Proposition 6. For every (λ, β) there exists an outcome equivalent recommendation strategy(
λ
′
, β
′
)
that is weakly better for the buyer than (λ, β).

To prove the proposition fix some (λ, β). We will construct the strategy (λ∗, β∗) in the following
way. Let λ∗0 (0|z0) =

∑
s0
λ0 (s0|z0) (1− β0 (s0)) and λ∗0 (1|z0) =

∑
s0
λ0 (s0|z0)β0 (s0). Set β∗0 (0) =
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0 and β∗0 (1) = 1. Define the period 0 likelihood l0 by:

l0 (s0|z0) =
λ0 (s0|z0) (1− β0 (s0))

λ∗0 (0|z0)

and let λ∗1 (s1, s0|z1, 0) = λ1 (s1|z1, s0) l0 (s0|z0). Note that we can let λ∗1 send signals in S×S since
S is countably infinite and therefore there exists a bijection from S to S × S. For every m ≥ 1, let
β∗m (sm, 0) = βm (sm) and for any m ≥ 2 take λ∗m

(
sm|zm, sm−1, 0

)
= λm

(
sm|zm, sm−1

)
.

Lemma 4. (λ, β) and (λ∗, β∗) are outcome equivalent

Proof. Obviously the probability of stopping in period 0 is the same under both. As for stopping
in period 1, the probability under (λ∗, β∗) given some z1 is:

λ∗0 (0|z0)
∑
s0,s1

λ1 (s1|z1, s0) l0 (s0|z0) (1− β1 (s0, s1)) =

∑
s0,s1

λ1 (s1|z1, s0)λ0 (s0|z0) (1− β0 (s0)) (1− β1 (s0, s1))

which is the same probability of stopping under (λ, β). It therefore follows that the probability at
any period m given any zm is the same under both, hence the two are outcome equivalent.

Lemma 5. The expected present value of the cost of attention is lower under (λ∗, β∗) than under
(λ, β).

Proof. Clearly, µλ∗,β∗ (·|sm, 0) = µλ,β (·|sm) for every m ≥ 1, and therefore

I
(
λm
(
·|sm−1

)
;µλ,β

(
·|sm−1

))
=

I
(
λ∗m
(
·|sm−1, 0

)
;µλ∗,β∗

(
·|sm−1, 0

))
We will now show that:

I (λ∗0;σ)

+e−r∆
ˆ
λ∗0 (0|z0) dσ (14)

×I (λ∗1 (·|0) , µλ∗,β∗ (·|0)) ≤ I (λ0;σ)

+e−r∆
ˆ 

∑
s0

λ0 (s0|z0) (1− β0 (s0))

×I (λ1 (·|s0) , µλ,β (·|s0))

 dσ
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Let:

λ0 (s|z0, λ
∗
0 = 1) =

β0 (s)λ0 (s|z0)∑
s0
β0 (s0)λ0 (s0|z0)

=
β0 (s)λ0 (s|z0)

λ∗0 (1|z0)
≡ l1 (s|z0)

and:

λ0 (s|z0, λ
∗
0 = 0) =

(1− β0 (s))λ0 (s|z0)∑
s0

(1− β0 (s0))λ0 (s0|z0)

=
(1− β0 (s))λ0 (s|z0)

λ∗0 (0|z0)
= l0 (s|z0)

then by the chain rule of mutual information (Lemma 3) and non-negativity of mutual information:

I (λ0;σ) = I (λ∗0;σ) +

ˆ ∑
s∗0=0,1

λ∗0 (s∗0|z0) I
(
ls∗0 ;µλ∗,β∗ (·|s∗0)

)
dσ

≥ I (λ∗0;σ) +

ˆ
λ∗0 (0|z0) I (l0;µλ∗,β∗ (·|0)) dσ

while I (λ∗1 (·|0) , µλ∗,β∗ (·|0)) is equal to:

= I (l0;µλ∗,β∗ (·|0))

+
∑
s0

ˆ (
l0 (s0|z0)×

I (λ1 (·|s0) ;µλ,β (·|s0))

)
dµλ∗,β∗ (z0|0)

= I (l0;µλ∗,β∗ (·|0))

+

ˆ


(
λ∗ (0|z0)´
λ∗ (0|z0) dσ

)
×

∑
s0

(
l0 (s0|z0)

×I (λ1 (·|s0) ;µλ,β (·|s0))

)
 dσ

which is equal to:

= I (l0;µλ∗,β∗ (0))

+

ˆ 
(∑

s0
λ0 (s0|z0) (1− β0 (s0))´

λ∗ (0|z0) dσ

)
×I (λ1 (·|s0) ;µλ,β (·|s0))

 dσ

45



therefore:

I (λ0;σ)

+e−r∆
ˆ 

∑
s0

λ0 (s0|z0) (1− β0 (s0))×

I (λ1 (·|s0) , µλ,β (·|s0))

 dσ ≥ I (λ∗0;σ)

+

ˆ
λ∗0 (0|z0) I (l0;µλ∗,β∗ (0)) dσ

+e−r∆
ˆ 

∑
s0

λ0 (s0|z0) (1− β0 (s0))×

I (λ1 (·|s0) , µλ,β (·|s0))

 dσ

which is weakly larger than:

≥ I (λ∗0;σ)

+e−r∆
ˆ
λ∗0 (0|z0) I (l0;µλ∗,β∗ (0)) dσ

+e−r∆
ˆ 

∑
s0

λ0 (s0|z0) (1− β0 (s0))×

I (λ1 (·|s0) , µλ,β (·|s0))

 dσ

which is equal to:

= I (λ∗0;σ) + e−r∆
ˆ
λ∗0 (0|z0) dσ ×

I (l0;µλ∗,β∗ (·|0)) +

ˆ 
∑
s0

l0 (s0|z0)×

I (λ1 (·|s0) ;µλ,β (·|s0))

 dµλ∗,β∗ (z0|0)


= I (λ∗0;σ)

+e−r∆


ˆ
λ∗0 (0|z0) dσ

×I (λ∗1 (·|0) , µλ∗,β∗ (·|0))


as required.

Note that together, lemmas 4 and 5 imply that (λ∗, β∗) give the buyer a utility at least as high
as (λ, β) while achieving the same distribution over outcomes.

Construct now the following sequence:
(
λ0, β0

)
= (λ∗, β∗). For every n, construct (λn, βn) by

taking
(
λn−1, βn−1

)
and replacing the strategies starting at periods n and n + 1 in a similar way
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that λ∗0, β∗0 , λ∗1 and β∗1 replaced λ0, β0, λ1 and β1. It is easy to verify that (λn, βn) converges to
some limit (λ∞, β∞), and that (λ∞, β∞) is a recommendation strategy. Moreover, by 4 and 5 that
(λ∞, β∞) is both outcome equivalent to, and is better for the buyer than,(λ, β).
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C Optimal stopping with rational inattention
In this section we characterize the optimal recommendation strategy for the buyer under general
settings. The generalization is modest in that we allow for a more general space of outcomes and for
a more general relation between these outcomes and the buyer’s payoffs. Thus, the results provided
here are given for a general stopping problem under rational inattention in which the unknown
evolves according to a sequence of probability transition kernels, and is not limited to the one-sided
bargaining setup studied in the paper. The specialization of the results to the setup in the paper
should be pretty straightforward. This is despite the notation in this section being completely self
contained. To make it as easy as possible to move from this section to the paper, I have attempted
to keep the notation of this section as similar as possible to that of the paper.

C.1 Two formulations of the optimal stopping problem
Let Y is some compact subspace of a finite dimensional Euclidean space. Defining Zm−1 = Xm×Y ,
we take σ0 to be a borel probability measure over Z0 = Y , and (σm)

M
m=1 to be a sequence of

probability transition kernels: σm : Zm−1 → ∆ (X) that give the conditional probability over the
m time fundamental Xm given zm−1 =

(
xm−1, y

)
. For n < m and zm ∈ ZM , we will take zm (n)

to denote the projection of zm on Zn. Throughout we will focus on the peirod 1 problem without
loss of generality. For M ∈ N ∪ {∞}, we let σ ∈ ∆

(
Y ×XM

)
denote the probability measure

derived by repeatedly application of (σm)
M
m=1. Similarly, we will write: σ (·|zn) ∈ ∆ (ZM−n) for the

probability distribution over {zn}×XM−n resulting from repeated application of (σm)
M
m=n+1. For

the sake of brevity, we write σ (Em) instead of σ
(
Em ×XM−m) for any borel set Em ⊂ Zm.

A binary stopping strategy is characterized by a collection of mappings (βm)
M
m=0 where βm :

Zm → [0, 1] is measurable for each m. βm (zm) represents the conditional probability that the
buyer decides to stop at period m given that m has been reached and the fundamental is zm. We
take B to be the set of all such mappings defined up to σ-almost sure equality. For a fixed β,
let βm,n = (βm, βm+1, . . . , βn) for n ≥ m. We will write lβm as short hand for the m likelihood
defined by lβm (0; zm) = 1−βm (zm) and lβm (1; zm) = βm (zm), abuse notation by writing for every
p ∈ ∆ (ZM ): I (βm; p) instead of I (lβm ; p). Understanding that βm is a function of zm ∈ ZM , we
will often use βm (zM ) instead of βm (zM (m)). Moreover, when there is no risk of confusion about
zM , we will sometimes write βm instead of βm (zm).

We now turn to defining the buyer’s objective function. As in the main paper, for any sequence
of constants c∞ ∈ R∞, we will let

∏N
j=n cj = 1 whenever N < n. Let v (zm) be the value of the

buyer from stopping at perod m given fundamental zm. We assume that v is Borel measurable
and takes value in [v, v̄] for −∞ < v < 0 < v̄ < ∞, thereby implying that v is integrable. For
zM ∈ ZM , we will take vm (zM ) = v (zM (m)), and again abuse notation and write vm instead of
vm (zM ) whenever there is no risk of confusion.
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Let µβ,m be the buyer’s posterior over ZM conditional on having used β and reaching the
beginning of period m. For any m ≥ 0, define:

Um (β;σ) =

ˆ
ZM

m−1∏
n=1

(1− βn) (βmvm − κI (βm;µβ,m)) dσ

Taking:

U (β;σ) =

M∑
j=1

e−r∆(j−1)Uj (β;σ)

We can then define the buyer’s time 1 problem as:

max
β∈B
U (β;σ) (15)

To state our theorem, we need to introduce the concept of the buyer’s quasi-value. Letting πm =´
βmdµβ,m For a given zm, let:

U∗m (β|zm) = βmvm − κβm ln (βm/πm)

−κ (1− βm) ln ((1− βm) / (1− πm))

It is not too difficult to see that we can rewrite the buyer’s objective function as:

U (β;σ) =

M∑
m=1

ˆ m−1∏
j=1

(1− βj)

 e−r∆(m−1)U∗m (β|zm) dσ

This way of writing the buyer’s objective function suggests a useful way of thinking of the buyer’s
continuation values. In particular, we will define the quasi-value of the buyer conditional on arriving
to period n ≥ m and knowing zm:

Un (β;σ|zm) =

ˆ  M∑
j=n

e−r∆(j−n)

j−1∏
k=n

(1− βk)U∗j
(
β|xM , v

) dσ
(
zM |zm

)
as the conditional ’value’ of the buyer conditional on zm and arriving to period n. With this
notation in hand, we will turn to prove the following theorem:

Theorem 5. β solves the problem 15 only if:

βm (zm) =
πme

1
κ vm(zm)

πme
1
κvm(zm) + (1− πm) e

1
κ e
−r∆Um+1(β;σ|zm)

(16)
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Moreover, if β satisfies the above conditions with πm ∈ (0, 1) for all m as well as:

lim
m→∞

ˆ (
e−r∆(m−n) ln

(
1− βm
1− πm

))
dσ
(
zM |zn

)
= 0 (17)

σ-almost surely, then βm is optimal.

To solve this program, we will solve an equivalent program in which the buyer chooses the
ex-ante probability that she will stop in period m conditional on zm. More specifically, take H

to be the set of all measurable mappings h : ZM → [0, 1]
M defined up to σ-almost sure equality

that satisfy: (1)
∑M
m=0 hm (zM ) ≤ 1 and (2) zM (m) = z

′

M (m) implies hm (zM ) = hm

(
z
′

M

)
. Then

we are interested in maximizing a functional equivalent to the one in 15 defined over H instead
of B. It is easy to see that H is convex. We think of hm (zM ) as the probability that the buyer
stops at period m conditional on the fundamental up to and including period m being equal to
zM (m) =

(
xm+1, y

)
. When the choice of zM ∈ ZM is clear, we will sometime drop zM and simply

write hj instead of hj (zM ).
Fixing some h ∈ H and somem, we can define the corresponding conditional stopping strategies:

βhm (zM ) =
hm

1−
∑m−1
n=0 hn

1− βhm (zM ) =
1−

∑m
n=0 hn

1−
∑m−1
n=0 hn

whenever
∑m−1
n=0 hn < 1 and have βhm (zM ) = 0 otherwise. Note that βh ∈ B, which allows us to

write: µh,m = µβh,m and I (hm;µh,m) = I
(
βhm;µβh,m

)
. Take:

Ũm (h;σ) =

ˆ
ZM

(
hm (zm) v (zm)− κ

(
1−

m−1∑
n=0

hn (zm)

)
I (hm;µh,m)

)
dσ

and define the functional:

Ũ (h;σ) =
M∑
m=0

e−r∆mŨm (h;σ)

then we will consider the following ex-ante program:

max
h∈H
Ũ (h;σ) (18)

To establish the equivalence of these two programs, for every β ∈ B take hβ to be defined by:

hβ (zM ) =

m−1∏
n=0

(1− βn (zM ))βm (zM )
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The the following facts are easy to verify and we therefore ommit their proof.

Fact 1. For every h ∈ H and β ∈ B: (1)hβ
h

= h; (2) For every zM for which
∏m−1
n=0 (1− βn (zM )) >

0: βh
β

n (zM ) = βn (zM ). (3) U (β;σ) = Ũ
(
hβ ;σ

)
; (4) Ũ (h;σ) = U

(
βh;σ

)
.

Given the above equivalence, we will focus on finding a solution to the program 18 from which
we will back out the solution to 15. The main advantage of focusing on maximizing Ũ rather than
U will be that Ũ is concave. We now turn to proving this fact.

C.2 Ũ is concave
Lemma 6. Let ϕ : ZM → [0, 1] be some measurable function. Then the function: fzM (ϕ) =

ϕ (zM ) ln
(
ϕ(zM )´
ϕdσ

)
is convex in ϕ for all zM .

Proof. Fix ϕ and ϕ
′
. Then by the log-sums inequality (2):

αϕ (zM ) ln

(
ϕ (zM )´
ϕdσ

)
+ (1− α)ϕ

′
(zM ) ln

(
ϕ
′
(zM )´
ϕ′dσ

)

≥
(
αϕ (zM ) + (1− α)ϕ

′
(zM )

)
ln

(
αϕ (zM ) + (1− α)ϕ

′
(zM )´

αϕ+ (1− α)ϕ′dσ

)

as required.

Lemma 7. Ũ is concave in h.

Proof. Note that we can write:

Ũm (h;σ) = hmvm − κ

hm ln

(
βhm´

βhmdµh,m

)
+

1−
m∑
j=0

hj

 ln

(
1− βhm´

(1− βhm) dµh,m

)

= hmvm − κ


hm ln

(
hm´
hmdσ

)
+

1−
m∑
j=0

hj

 ln

 1−
∑m
j=0 hj´ (

1−
∑m
j=0 hj

)
dσ


−

1−
m−1∑
j=0

hj

 ln

 1−
∑m−1
j=0 hj´ (

1−
∑m−1
j=0 hj

)
dσ




Thus, letting:

Ũ∗m (h; zM ) = hmvm − κhm ln

(
hm´
hmdσ

)

−κ
(
1− e−r∆1[m<M ]

)1−
m∑
j=0

hj

 ln

 1−
∑m
j=0 hj´ (

1−
∑m
j=0 hj

)
dσ


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we can rewrite:

Ũ (h;σ) =

ˆ
ZM

M∑
m=0

e−r∆mŨ∗m (h; zM ) dσ (19)

Concavity then follows from equation 19 and lemma 19.

C.3 Necessary Conditions
Note that throughout this subsection we fix σ. Therefore, we will simply write Ũ (h) instead of
Ũ (h;σ).

Lemma 8. Let f : [0, 1]→ R be concave. Then for all 0 ≤ γ ≤ λ < 1:

f (1)− f (λ)

1− λ
≤ f (1)− f (γ)

1− γ

Proof. Set α = 1−λ
1−γ . By concavity: f (λ) ≥ αf (γ) + (1− α) f (1). Therefore: f (λ) ≥ f (1) −

α (f (1)− f (γ)), or: α (f (1)− f (γ)) ≥ f (1)−f (λ). Dividing both sides by 1−λ gives the desired
inequality.

Lemma 9. Suppose h maximizes Ũ (h). Then both:

ln

(
1−

∑m
k=0 hj´

(1−
∑m
k=0 hj) dσ

)
and

M∑
j=m

e−r∆j ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


are σ-integrable for all m.

Proof. We will begin by showing that
∑M
j=m e

−r∆j ln

(
1−
∑j
k=0 hk´

(1−
∑j
k=0 hk)dσ

)
is integrable for m =

0. Since
∑M
j=0 e

−r∆j
(

1−
∑j
k=0 hk

)
ln

(
1−
∑j
k=0 hk´

(1−
∑j
k=0 hk)dσ

)
≥ 0 is integrable, this implies that∑M

j=0 e
−r∆j

(∑j
k=0 hk

)
ln

(
1−
∑j
k=0 hk´

(1−
∑j
k=0 hk)dσ

)
is not.

Take h0 to be such that h0
j = 0 for all j. Then by optimality of h and lemma 8 we have that

for all 0 ≤ γ ≤ λ < 1:

0 ≤
Ũ (h)− Ũ

(
λh+ (1− λ)h0

)
1− λ

≤
Ũ (h)− Ũ

(
γh+ (1− γ)h0

)
1− γ

≤ Ũ (h)− Ũ
(
h0
)
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where the last inequality comes from setting γ = 0. Note that:

Ũ (h)− Ũ
(
λh+ (1− λ)h0

)
1− λ

=

ˆ
ZM

M∑
j=0

e−r∆j



hjvj − κhj ln

(
hj´
hjdσ

)
− κ

(
1− 1[j<M ]e

−r∆

1− λ

)
×

×



(
1−

j∑
k=0

hj

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


−

(
1− λ

j∑
k=0

hk

)
ln


(

1− λ
∑j
k=0 hk

)
´ (

1− λ
∑j
k=0 hk

)
dσ






dσ

using the fact that for every α ∈ [0, 1]:

0 ≤ − (α lnα+ (1− α) ln (1− α)) ≤ ln 2

and that lnα is concave, we obtain:

0 ≤ −
ˆ
hj ln

(
hj´
hjdσ

)
dσ = −

(ˆ
hj lnhjdσ −

(ˆ
hjdσ

)
ln

(ˆ
hjdσ

))
= −

ˆ (
hj lnhj −

(ˆ
hjdσ

)
ln

(ˆ
hjdσ

))
dσ

≤ ln 2

Thus, since vj is bounded, we can rewrite:

Ũ (h)− Ũ
(
λh+ (1− λ)h

′
)

1− λ
=

ˆ
ZM

M∑
j=0

e−r∆j
(
hjvj − κhj ln

(
hj´
hjdσ

))
dσ

−κ
ˆ
ZM

M∑
j=0

(
1− e−r∆1[j<M ]

)
e−r∆j



(
1−

∑j
k=0 hj

1− λ

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


−

(
1− λ

∑j
k=0 hk

1− λ

)
ln


(

1− λ
∑j
k=0 hk

)
´ (

1− λ
∑j
k=0 hk

)
dσ




dσ
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Letting:

ζj (zM ;λ) =



(
1−

∑j
k=0 hj

1− λ

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


−

(
1− λ

∑j
k=0 hk

1− λ

)
ln


(

1− λ
∑j
k=0 hk

)
´ (

1− λ
∑j
k=0 hk

)
dσ




we obtain that the following inequality:

1

κ

ˆ
ZM

M∑
j=0

e−r∆j
(
hjvj − κhj ln

(
hj´
hjdσ

))
dσ

≥
ˆ
ZM

M∑
j=0

(
1− e−r∆1[j<M ]

)
e−r∆jζj (zM ;λ) dσ

≥ 1

κ

ˆ
ZM

M∑
j=0

e−r∆j
(
hjvj − κhj ln

(
hj´
hjdσ

))
dσ −

(
U (h)− U

(
h
′
))

holds for all λ < 1. This inequality implies that there exists a sequence λl with λl → 1 and that´
ZM

∑M
j=0

(
1− e−r∆1[j<M ]

)
e−r∆jζj (zM ;λ) dσ converges to some limit L∞ <∞. By the log sums

inequality: (
1−

j∑
k=0

hj

)
ln

(
1−

∑j
k=0 hj

1−
´ ∑j

k=0 hkdσ

)

+ (1− λ)

(
j∑

k=0

hj

)
ln

(
(1− λ)

∑j
k=0 hj

(1− λ)
´ ∑j

k=0 hkdσ

)
≥ (1− λα) ln

(
1− λ

∑j
k=0 hj

1− λ
´ ∑j

k=0 hkdσ

)

which implies:

ζj (zM ;λ) ≥

(
1−

j∑
k=0

hj

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ

 (20)

for every zM and all λ, and therefore:

M∑
j=0

e−r∆jζj (zM ;λ) ≥
M∑
j=0

e−r∆j

(
1−

j∑
k=0

hj

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


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Which is integrable. Hence by Fatou’s lemma:

lim
l→∞

ˆ
ZM

M∑
j=0

e−r∆jζj (zM ;λl) dσ = lim inf
l→∞

ˆ
ZM

M∑
j=0

e−r∆jζj (zM ;λl) dσ

≥
ˆ
ZM

lim inf
l→∞

M∑
j=0

e−r∆jζj (zM ;λl) dσ

However:

lim
l→∞

ζj (zM ;λl) =
d

dλ

(
1− λ

j∑
k=0

hk

)
ln


(

1− λ
∑j
k=0 hk

)
´ (

1− λ
∑j
k=0 hk

)
dσ

∣∣∣∣∣∣
λ=1

= −

(
j∑

k=0

hk

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ

 (21)

+

 ´ (∑j
k=0 hk

)
dσ

´ (
1−

∑j
k=0 hk

)
dσ
−

∑j
k=0 hk

1−
∑j
k=0 hk

(1−
j∑

k=0

hk

)

Since equation 20 holds for all λ, it must also hold in the limit, i.e.

M∑
j=0

e−r∆j lim
l→∞

ζj (zM ;λl) ≥
M∑
j=0

e−r∆j

(
1−

j∑
k=0

hj

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


But: ˆ  ´ (∑j

k=0 hk

)
dσ

´ (
1−

∑j
k=0 hk

)
dσ
−

∑j
k=0 hk

1−
∑j
k=0 hk

(1−
j∑

k=0

hk

)
dσ = 0

for all j then suggests that:

ˆ M∑
j=0

e−r∆j

(
j∑

k=0

hk

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ

 dσ

is bounded, a contradiction. Therefore
∑M
j=0 e

−r∆j ln

(
(1−

∑j
k=0 hk)´

(1−
∑j
k=0 hk)dσ

)
dσ is integrable.

We will now prove that ln

(
(1−

∑m
k=0 hk)´

(1−
∑m
k=0 hk)dσ

)
dσ and

∑M
j=m+1 e

−r∆j ln

(
(1−

∑j
k=0 hk)´

(1−
∑j
k=0 hk)dσ

)
dσ

are both integrable for all m. Suppose both are for all j ≤ m− 1, but that one of them is not for
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j = m. Then both must not be integrable since:

M∑
j=0

e−r∆j ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ

 =

m−1∑
j=0

e−r∆j ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


+

M∑
j=m+1

e−r∆j ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


+e−r∆m ln

(
(1−

∑m
k=0 hk)´

(1−
∑m
k=0 hk) dσ

)
is integrable. Using equations 20 and 21 for every j we obtain that:

−

(
j∑

k=0

hk

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


+

 ´ (∑j
k=0 hk

)
dσ

´ (
1−

∑j
k=0 hk

)
dσ
−

∑j
k=0 hk

1−
∑j
k=0 hk

(1−
j∑

k=0

hk

)

≥

(
1−

j∑
k=0

hk

)
ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ


which, since

ˆ  ´ (∑j
k=0 hk

)
dσ

´ (
1−

∑j
k=0 hk

)
dσ
−

∑j
k=0 hk

1−
∑j
k=0 hk

(1−
j∑

k=0

hk

)
dσ = 0

means that both: ˆ M∑
j=m+1

e−r∆j ln


(

1−
∑j
k=0 hk

)
´ (

1−
∑j
k=0 hk

)
dσ

 dσ =∞

and: ˆ
ln

(
(1−

∑m
k=0 hk)´

(1−
∑m
k=0 hk) dσ

)
dσ =∞

a contradiction.

The above lemma immediately leads to the following result:

Corollary 4. Assume h maximizes Ũ (h). Then σ
{∑m

j=0 hj = 1
}
> 0 implies σ

{∑m
j=0 hj = 1

}
=

1.

Lemma 10. Suppose h maximizes Ũ . Then the function ln
(

hm´
hmdσ

)
is integrable for all m.
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Proof. Suppose, by contradiction, thatm is such that ln
(

hm´
hmdσ

)
is not integrable. Since ln

(
hm´
hmdσ

)
<

− ln
(´
hmdσ

)
, we must have

´
ln
(

hm´
hmdσ

)
dσ = −∞. Let h+ be such that hj = 0 for all j 6= m

and hm = 1 for all zM . Then by concavity of Ũ and optimality of h, we have for all 0 ≤ λ < 1:

0 ≤ Ũ (h)− Ũ (λh+ (1− λ)h+)

1− λ
≤ Ũ (h)− Ũ

(
h+
)

= Ũ (h)− e−r∆m
ˆ
vmdσ

letting:

ζj (zM ;λ) =
1

1− λ



(
1−

j∑
k=0

hk

)
ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


−

(
1− λ

j∑
k=0

hk

)
ln

 1− λ
∑j
k=0 hk´ (

1− λ
∑j
k=0 hk

)
dσ




and:

ξm (zM ;λ) =
1

1− λ


hm ln

(
hm´
hm

)
− (λhm + (1− λ))×

ln

(
λhm + (1− λ)´

(λhm + (1− λ)) dσ

)


we have that:

Ũ (h)− Ũ (λh+ (1− λ)h+)

1− λ
=

ˆ M∑
j=0

e−r∆jhjvjdσ − κ
ˆ ∑

j 6=m

e−r∆jhj ln

(
hj´
hjdσ

)
dσ

−κ
ˆ M∑

j=m

(
1− e−r∆1[j<M ]

)(
1−

j∑
k=0

hk

)
ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ

 dσ

−κe−r∆m
ˆ
ξm (zM ;λ) dσ − κ

(
1− e−r∆

) ˆ m−1∑
j=0

e−r∆jζj (zM ;λ) dσ

and therefore we obtain that there are L and L̄ such that:

L ≤ e−r∆m
ˆ
ξm (zM ;λ) dσ +

(
1− e−r∆

) ˆ m−1∑
j=0

ζj (zM ;λ) dσ ≤ L̄
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for all λ. Thus, there exists a sequence λl → 1 such that:

ˆ
e−r∆mξm (zM ;λl) +

(
1− e−r∆

)m−1∑
j=0

e−r∆jζj (zM ;λl) dσ → L∞

where L∞ ∈
[
L, L̄

]
. Using the log-sum inequality (Lemma 2) we obtain:

(
1−

j∑
k=0

hk

)
ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


+ (1− λ)

(
j∑

k=0

hk

)
ln

 (1− λ)
(∑j

k=0 hk

)
(1− λ)

´ (∑j
k=0 hk

)
dσ


≥

(
1− λ

j∑
k=0

hk

)
ln

 1− λ
∑j
k=0 hk´ (

1− λ
∑j
k=0 hk

)
dσ


implying that for all λ:

m−1∑
j=0

e−r∆jζj (zM ;λ) ≥
m−1∑
j=0

e−r∆j

(
j∑

k=0

hk

)
ln

( ∑j
k=0 hk´ ∑j
k=0 hkdσ

)

while using the log-sum inequality (2):

hm ln

(
hm´
hmdσ

)
+ (1− λ) (1− hm) ln

(
(1− λ) (1− hm)

(1− λ)
´

(1− hm) dσ

)
≥ (λhm + (1− λ)) ln

(
λhm + (1− λ)´

(λhm + (1− λ)) dσ

)
gives:

ξm (zM ;λ) ≥ (1− hm) ln

(
(1− hm)´
(1− hm) dσ

)
(22)

we can therefore use Fatou’s lemma to obtain:

L∞ ≥
ˆ

lim inf
l→∞

e−r∆mξm (zM ;λ) +
(
1− e−r∆

)m−1∑
j=0

e−r∆jζj (zM ;λ)

 dσ

≥
ˆ
e−r∆m (1− hm) ln

(
(1− hm)´
(1− hm) dσ

)
dσ

+
(
1− e−r∆

)m−1∑
j=0

e−r∆j
ˆ ( j∑

k=0

hk

)
ln

( ∑j
k=0 hk´ ∑j
k=0 hkdσ

)
dσ > −∞
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However, for every zM :

lim
l→∞

ξm (zM ;λl) =
d

dλ

[
(λhm + (1− λ)) ln

(
λhm + (1− λ)´

(λhm + (1− λ)) dσ

)]∣∣∣∣
λ=1

= (hm − 1) ln
hm´
hmdσ

+ hm

(
hm − 1

hm
−
´
hmdσ − 1´
hmdσ

)
and:

lim
l→∞

ζj (zM ;λl) =
d

dλ

(1− λ
j∑

k=0

hk

)
ln

 1− λ
∑j
k=0 hk´ (

1− λ
∑j
k=0 hk

)
dσ

∣∣∣∣∣∣
λ=1

= −
j∑

k=0

hk ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


+

(
1−

j∑
k=0

hk

) ´ ∑j
k=0 hkdσ´ (

1−
∑j
k=0 hk

)
dσ
−

∑j
k=0 hk

1−
∑j
k=0 hk


By lemma 9,

j∑
k=0

hk ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


is integrable for every j. In addition, hm ln

(
hm´
hmdσ

)
is integrable,

ˆ
hm

(
hm − 1

hm
−
´
hmdσ − 1´
hmdσ

)
dσ = 0

and: ˆ (
1−

j∑
k=0

hk

) −∑j
k=0 hk

1−
∑j
k=0 hk

+

´ ∑j
k=0 hkdσ´ (

1−
∑j
k=0 hk

)
dσ

 dσ = 0

giving

∞ > L∞ +
(
1− e−r∆

)m−1∑
j=0

e−r∆j
ˆ j∑

k=0

hk ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ

 dσ

−
ˆ
hm ln

hm´
hmdσ

dσ

≥ −
ˆ

ln

(
hm´
hmdσ

)
dσ > −∞
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as required.

Lemma 10 immediately implies the corollary:

Corollary 5. Suppose that h maximizes Ũ (h;σ). Then σ {hm = 0} > 0 implies σ {hm = 0} = 1.

Definition 6. For any h ∈ H, we say that the measurable function η : ZM → R is an h-feasible
direction if there exists ε̄ > 0 such that for all 0 < ε < ε̄: h+εη ∈ H. We denote the set of h-feasible
directions by Hh.

Definition 7. We say that Ũ is Gateaux diffrentiable at h ∈ H if there exists a bounded linear
functionaldŨh : Hh → R such that for every η ∈ Hh:

lim
ε→0

∣∣∣∣1ε (Ũ (h+ εη)− Ũ (h)− dŨh (η)
)∣∣∣∣ = 0

Lemma 11. Suppose h maximizes Ũ . Let:

Λh,m (zM ) = e−r∆mvm − κe−r∆m ln

(
hm´
hmdσ

)

+κ

M∑
j=m

e−r∆j
(
1− e−r∆1[j<M ]

)
ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


and define dŨh (η) =

´
ZM

∑M
m=0 Λh,mηmdσ. Then for every h-feasible η, dŨh (η) is bounded and

satisfies:

lim
ε→0

∣∣∣∣1ε (Ũ (h+ εη)− Ũ (h)− dŨh (η)
)∣∣∣∣ = 0 (23)

Proof. Fix some h-feasible direction η. Assume without loss of generality that h+ η ∈ H, and let
λε = 1− ε, while defining hλ = h+ (1− λ) η. Then:

0 ≥ 1

ε

(
Ũ (h+ εη)− Ũ (h)

)
=

1

1− λε

(
Ũ
(
hλε
)
− Ũ (h)

)
=

ˆ
ZM

M∑
m=0

e−r∆m

(
U∗m

(
hλε ; zM

)
− U∗m (h; zM )

1− λε

)
dσ

since U∗m is concave (6), we have by 8:(
U∗m

(
hλ; zM

)
− U∗m (h; zM )

1− λ

)
= −

(
U∗m (h; zM )− U∗m

(
hλ; zM

)
1− λ

)
≥ −

(
U∗m (h; zM )− U∗m

(
h1; zM

))
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and therefore: (
U∗m

(
hλ; zM

)
− U∗m (h; zM )

1− λ

)
+
(
U∗m (h; zM )− U∗m

(
h1; zM

))
≥ 0

for all zM . Moreover, lemma 8 implies that (1− λ)
−1 (

U∗m
(
hλ; zM

)
− U∗m (h; zM )

)
is increasing

with λ. Therefore, by the monotone convergence theorem:

lim
λ→1

ˆ
ZM

M∑
m=0

e−r∆m

(
U∗m

(
hλ; zM

)
− U∗m (h; zM )

1− λ

)
dσ

=

ˆ
ZM

M∑
m=0

e−r∆m lim
λ→1

(
U∗m

(
hλ; zM

)
− U∗m (h; zM )

1− λ

)
dσ

note that:
(
hλmvm−hmvm

1−λ

)
= vmηm. In addition:

lim
λ→1

(1− λ)
−1

(
hm ln

(
hm´
hmdσ

)
− hλm ln

(
hλm´
hλmdσ

))
=

d

dλ

[
hλm ln

(
hλm´
hλmdσ

)]∣∣∣∣
λ=1

= −ηm ln

(
hm´
hmdσ

)
+

(
hm
´
ηmdσ´

hmdσ

)
− ηm

and:

lim
λ→1

(1− λ)
−1



1−
m∑
j=0

hj

 ln


(

1−
∑m
j=0 hj

)
´ (

1−
∑m
j=0 hj

)
dσ

−
1−

m∑
j=0

hλj

 ln

 1−
∑m
j=0 h

λ
j´ (

1−
∑m
j=0 h

λ
j

)
dσ




=

d

dλ

1−
m∑
j=0

hλj

 ln

 1−
∑m
j=0 h

λ
j´ (

1−
∑m
j=0 h

λ
j

)
dσ

∣∣∣∣∣∣
λ=1

=

 m∑
j=0

ηj

 ln

 1−
∑m
j=0 hj´ (

1−
∑m
j=0 hj

)
dσ


+

m∑
j=0

ηj −

(
1−

∑m
j=0 hj

) ´ ∑m
j=0 ηjdσ´ (

1−
∑m
j=0 hj

)
dσ
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thus, since: ˆ (
hm
´
ηmdσ´

hmdσ

)
− ηmdσ = 0

and: ˆ m∑
j=0

ηj −

(
1−

∑m
j=0 hj

) ´ ∑m
j=0 ηjdσ´ (

1−
∑m
j=0 hj

)
dσ

dσ = 0

we obtain that equation 23 holds. Boundedness of dŨh (η) for all feasible η follows from concavity
of Ũ and lemma 8 which imply:

0 ≥ lim
λ→1

1

1− λ

(
Ũ
(
hλ
)
− Ũ (h)

)
≥ Ũ

(
h1
)
− Ũ (h) ≥ v −

(
ln 2

1− e−r∆

)
− v̄

thereby concluding the proof.

Define:

πh (m) =

ˆ
βhmdµh,m

=

´
hmdσ´ (

1−
∑m−1
j=0 hj

)
dσ

For the next proof, it is useful to note that one can rewrite:

Λh,m (zM ) = e−r∆mvm − κe−r∆m ln

(
hm´
hmdσ

)

+κ

M∑
j=m

e−r∆j
(
1− e−r∆1[j<M ]

)
ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ


= e−r∆mvm − κe−r∆m ln

(
hm´
hmdσ

)
+ κe−r∆m ln

 1−
∑m
j=0 hj´ (

1−
∑m
j=0 hj

)
dσ


+κ

M∑
j=m+1

e−r∆j

ln

 1−
∑j
k=0 hk´ (

1−
∑j
k=0 hk

)
dσ

− ln

 1−
∑j−1
k=0 hk´ (

1−
∑j−1
k=0 hk

)
dσ


= e−r∆mvm − κe−r∆m ln

(
βhm

πh (m)

)
+ κ

M∑
j=m

e−r∆j ln

(
1− βhj

1− πh (j)

)
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Lemma 12. Suppose h maximizes Ũ . Then:

βhm (zm) =
πh (m) exp 1

κvm (zm)

πh (m) exp 1
κvm (zm) + (1− πh (m)) exp 1

κe
−r∆Ũm+1 (h|zm)

for all m.

Proof. First note that by corollaries 4 and 5 the theorem holds whenever σ {hm = 0} > 0 or
σ {hm = 1} > 0. Suppose then that σ {0 < hm < 1} = 1. Fix any zm in the support of σ, and define
hzm as following: hzm = hj if j < m or j = m and zM (m) 6= zm, hzmm (zm) = 1 −

∑m−1
j=0 hj (zm),

hzmj (zM ) = 0 if zM (m) = zm and j > m. Let hλ = λh+(1− λ)hzm . Then obviously the following:

ηλ = hλ − h = (1− λ) (hzm − h)

is a feasible direction for all λ ∈ [0, 1]. Note that η = η1 satisfies ηj = 0 if j < m or zM (m) 6= zm,
ηm (zm) = 1 −

∑m
j=0 hj (zm), while ηj (zM ) = −hj (zM ) whenever both j > m and zM (m) = zm.

Since η is feasible and h is optimal, we must have that dŨh (η) ≤ 0. Note that the pertubation
−η is also feasible, and therefore 0 ≥ dŨh (−η) = −dŨh (η). Hence, we must have dŨh (η) = 0.
Therefore: ˆ

Λh,m (zm)

1−
m∑
j=0

hj (zm)

− M∑
j=m+1

Λh,jhjdσ (zM |zm) = 0

which can be rewritten as:

1−
m∑
j=0

hj (zm)

(e−r∆mvm − κe−r∆m ln

(
βhm

πh (m)

))

+κe−r∆m

1−
m∑
j=0

hj (zm)

 ln

(
1− βhm

1− πh (m)

)
 =



−κ

1−
m∑
j=0

hj (zm)

 ˆ M∑
j=m+1

e−r∆j ln

(
1− βhj

1− πh (j)

)
dσ (zM |zm)

+κ

ˆ M∑
j=m+1

M∑
k=j

hje
−r∆k ln

(
1− βhk

1− πh (k)

)
dσ (zM |zm)

+

ˆ M∑
j=m+1

hj

(
e−r∆jvj − κe−r∆j ln

(
βhj

πh (m)

))
dσ (zM |zm)


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But:

ˆ M∑
j=m+1

M∑
k=j

hje
−r∆k ln

(
1− βhk

1− πh (k)

)
dσ (zM |zm) =

ˆ M∑
k=m+1

 k∑
j=m+1

hj

 e−r∆k ln

(
1− βhk

1− πh (k)

)
dσ (zM |zm)

and therefore we obtain:

1−
m∑
j=0

hj (zm)

(e−r∆mvm − κe−r∆m ln

(
βhm

πh (m)

))

+κe−r∆m

1−
m∑
j=0

hj (zm)

 ln

(
1− βhm

1− πh (m)

)
 =


−κ
ˆ M∑

j=m

(
1−

j∑
k=0

hk

)
e−r∆j ln

(
1− βhj

1− πh (j)

)
dσ (zM |zm)

+

ˆ M∑
j=m+1

hj

(
e−r∆jvj − κe−r∆j ln

(
βhj

πh (m)

))
dσ (zM |zm)

 =

ˆ M∑
j=m+1

(
1−

j−1∑
k=0

hk

)
e−r∆jv∗j (zM ;h) dσ

dividing both sides by e−r∆m
(

1−
∑m
j=0 hj (zm)

)
gives:

vm − κ ln

(
βhm

πh (m)

)
+ κ ln

(
1− βhm

1− πh (m)

)
= e−r∆Ũn (h|zm)

dividing both sides by κ, exponentiating and solving for βhm gives the desired result.
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C.4 Sufficient Conditions
Suppose β satisfies: βm ∈ (0, 1) for all m and equations 16 and 17. We will show that β must be
optimal. Note that:

κ ln

(
1− βm
1− πm,

)
= κ ln

 exp

(
e−r∆Ũm+1(hβ |zm)

κ

)
(1− πm) exp

(
e−r∆

κ Ũm+1 (hβ |zm)
)

+ πm exp
(
vm
κ

)


= e−r∆Ũm+1

(
hβ |zm

)
− κ ln

(
(1− πm) exp

(
e−r∆

κ
Ũm+1

(
hβ |zm

))
+ πm exp

vm
κ

)
= e−r∆Ũm+1

(
hβ |zm

)
− vm + κ ln

(
exp

(vm
κ

))
−κ ln

(
(1− πm) exp

(
e−r∆

κ
Ũm+1

(
hβ |zm

))
+ πm exp

vm
κ

)
= e−r∆Ũm+1

(
hβ |zm

)
−
(
vm − κ ln

(
βm
πm

))
(24)

and therefore:

U∗m
(
zM ;hβ

)
= βmvm − κβm ln

(
βm
πm

)
− κ (1− βm) ln

(
1− βm
1− πm,

)
= βm

(
e−r∆Ũm+1

(
hβ |zm

)
− κ ln

(
1− βm
1− πm,

))
− κ (1− βm) ln

(
1− βm
1− πm,

)
= −κ ln

(
1− βm
1− πm,

)
+ βme

−r∆Ũm+1

(
hβ |zm

)
which implies that:

Ũm
(
hβ |zn

)
=

ˆ (
e−r∆Ũm+1

(
hβ |zm

)
− κ ln

(
1− βm
1− πm,

))
dσ (zM |zn)

Using the fact that equation 17 holds we can use iterative substitution to obtain:

Ũm
(
hβ |zn

)
= −κ

ˆ  M∑
j=m

e−r∆(j−m) ln

(
1− βj
1− πj

) dσ (zM |zn) (25)
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σ-almost surely. Rewriting

Λhβ ,m (zM ) = e−r∆mvm − κe−r∆m ln

(
hβm

1−
∑m
k=0 h

β
k

)

+κe−r∆m ln

 ´
hβmdσ´ (

1−
∑m
k=0 h

β
k

)
dσ



+κ

M∑
j=m+1

e−r∆j


ln

(
1−

∑j
k=0 h

β
k

1−
∑j−1
k=0 h

β
k

)

− ln

´
(

1−
∑j
k=0 h

β
k

)
dσ

´ (
1−

∑j−1
k=0 h

β
k

)
dσ




= e−r∆mvm − κe−r∆m ln

(
βm
πm

)
+ κe−r∆m ln

(
1− βm
1− πm

)
+κ

M∑
j=m+1

e−r∆j ln

(
1− βj
1− πj

)

Using equations 24 and 25 we can obtain that the following holds for σ-almost every zm:

ˆ
Λhβ ,m (zM ) dσ (zM |zm) = e−r∆m

(
vm − κ ln

(
βm
πm

)
+ κ ln

(
1− βm
1− πm

))
−κ
ˆ M∑

j=m+1

e−r∆j ln

(
1− βj
1− πj

)
dσ (zM |zm)

= e−r∆(m+1)Ũm+1

(
hβ |zm

)
−e−r∆(m+1)Ũm+1

(
hβ |zm

)
= 0

Since Ũ is concave this concludes the proof.

C.5 Quasi-Value Equivalence Lemma
In this section we prove the following lemma:

Lemma 13. Suppose β is optimal for the buyer given σ, ans satisfies πm ∈ (0, 1) for all m and
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equations , as well as equations 16 and 17. Then:

Ũm
(
hβ |zn

)
=

ˆ (
vm − κ ln

(
βm
πm

))
dσ (zM |zn)

=

ˆ (
e−r∆Ũm+1

(
hβ |zm

)
− κ ln

(
1− βm
1− πm,

))
dσ (zM |zn)

= −κ
ˆ  M∑

j=m

e−r∆(j−m) ln

(
1− βj
1− πj

) dσ (zM |zm)

=

ˆ
κ ln

(
(1− πm) exp

(
e−r∆

κ
Ũm+1

(
hβ |zm

))
+ πm exp

(vm
κ

))
dσ (zM |zn)

Proof. Note that:

vm − κ ln

(
βm
πm

)
= κ ln

(
(1− πm) exp

(
e−r∆

κ
Ũm+1

(
hβ |zm

))
+ πm exp

(vm
κ

))
= e−r∆Ũm+1

(
hβ |zm

)
− κ ln

(
1− βm
1− πm,

)
which, using equation 25 implies:

vm − κ ln

(
βm
πm

)
= −κ ln

(
1− βm
1− πm,

)
− κe−r∆

ˆ  M∑
j=m+1

e−r∆(j−(m+1)) ln

(
1− βj
1− πj

) dσ (zM |zm)

= −κ
ˆ  M∑

j=m

e−r∆(j−m) ln

(
1− βj
1− πj

) dσ (zM |zm) = Ũm
(
hβ |zm

)
where the last equality follows from equation 24. The conclusion then follows from Ũm

(
hβ |zn

)
=´

Ũm
(
hβ |zm

)
dσ (zM |zn) for all n ≤ m.
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D Equilibrium in finite horizon model
The goal of this section is to prove a characterization theorem for all equilibria of the finite horizon
game. It will eventually turn out that an equilibrium exists if and only if an object, which we call
an equilibrium average-ratio path exists. Moreover, the equilibrium will turn out to be completely
characterized by that object. The first subsection, defines, establishes the existence, and proves some
properties of this object. We then move to proving that equilibrium strategies are simple. In the
next subsection we prove lemma 1, which shows that the equilibria in the finite horizon model admits
a recursive structure. In the following subsection we connect the recursive representation back to
equilibrium average-ratio paths, which establishes the existence of a finite horizon equilibrium.
Finally, we prove some useful properties of a finite horizon equilibrium which are used later in the
analysis of equilibria in the infinite horizon.

D.1 Equilibrium Average Ratio Paths
We take W : R+ → R+ to be Lambert’s W function, defined by: W (zez) = z, or, equivalently, as:
W (z) eW (z).

Let cv = e(
v−κ
κ ) and define the functions:

z∗ (d, v, q) =
d

1− d
cv

1−e−r∆qe
−r∆

R (d, v, q) =
W (z∗ (v, d, q))

d (1 +W (z∗ (v, d, q)))

and:
Rc (d, v, q) = (1− d)

−1
(1 +W (z∗ (v, d, q)))

−1

It will eventually turn out that an equilibrium exists if and only if the following object, called
equilibrium average-ratio path exists. We now define this object:

Definition 8. A collection of numbers am ∈ (0, 1), m = 1, . . . ,M , pm,v ∈ R+, m = 1, . . . ,M + 1,
v ∈ V , and distributions, ϑm ∈ ∆ (V ), m = 1, . . . ,M are an equilibrium average-ratio path in
BM (µ0) if:

1. pM+1,v = exp
(
v−κ
κ

)
2. For every m = 1, . . . ,M and v: pm,v = R (am, v, pm+1,v)

3. ϑ1 (v) = µ0 (v) and for every m = 2, . . . ,M and v:

ϑm (v) =
ϑm−1 (v) (1− am−1pm−1,v)∑
v′ ϑm−1 (v′)

(
1− am−1pm−1,v′

)
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4. For every m = 1, . . . ,M :
∑
v ϑm (v) pm,v = 1.

D.1.1 Preliminary facts about Lambert’s W function

In this section we prove a few facts about the positive part of Lambert’s W function, i.e. the
function: W : R+ → R+ defined by: W (zez) = z, or, equivalently, as: W (z) eW (z).

Lemma 14. dW (z) /dz =
(
eW (z) (1 +W (z))

)−1
= W (z) (z (1 +W (z)))

−1

Proof. By definition: W (z) eW (z)−z = 0. The first equality is then implied by the implicit function
theorem. Substituting W (z) = z/eW (z) into

(
eW (z) (1 +W (z))

)−1
gives the second equality.

Lemma 15. W is concave.

Proof. Calculating the second derivative of W gives:

d2W

dz2
=

(
dW
dz

)
z (1 +W (z))−W (z)

(
1 +W (z) + z

(
dW
dz

))
z2 (1 +W (z))

2

= −
W (z)

(
W (z) + z

(
dW
dz

))
z2 (1 +W (z))

2 < 0

as required.

D.1.2 Existence of M-Equilibrium Average-Ratio Path

Here we prove the following theorem:

Theorem 6. For every µ0 and every M there exists an equilibrium average-ratio path of BM (µ0).

Lemma 16. For every v and q, the function f (d) = R (d; v, q) is strictly convex.

Proof. Rewrite R (d; v, q):

R (d; v, q) =

W

(
dc1−e

−r∆
v qe

−r∆

1−d

)
d

(
1 +W

(
dc1−e

−r∆
v qe−r∆

1−d

))

=

 d

W

(
β̄c1−e

−r∆
v qe−r∆

1−d

) + d


−1
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so a sufficient condition for R to be convex is for:

φ (d) =
d

W

(
dc1−e

−r∆
v qe−r∆

1−d

)
to be concave. Note that the second derivative of φ is:

d2φ

dd2
=

(1− d)
2

(
1 + 2W

(
dc1−e

−r∆
v qe

−r∆

1−d

))
−
(

1 +W

(
dc1−e

−r∆
v qe

−r∆

1−d

))2

d (1− d)
2
W

(
dc1−e

−r∆
v qe−r∆

1−d

)(
1 +W

(
dc1−e

−r∆
v qe−r∆

1−d

))3

so a necessary and sufficient condition for φ to being concave is for:

(1− d)
2

(
1 + 2W

(
da1−e−r∆
v qe

−r∆

1− d

))
−

(
1 +W

(
da1−e−r∆
v qe

−r∆

1− d

))2

< 0

for all d in the range. However:

(1− d)
2

(
1 + 2W

(
da1−e−r∆
v qe

−r∆

1− d

))

−

(
1 +W

(
da1−e−r∆
v qe

−r∆

1− d

))2

= d (d− 2)

(
1 + 2W

(
da1−e−r∆
v qe

−r∆

1− d

))

−

(
W

(
da1−e−r∆
v qe

−r∆

1− d

))2

which is strictly negative for all d ∈ (0, 1). Therefore φ is strictly concave, implying the desired
result.

Lemma 17. For a fixed v and q, then the unique solution to the equation:R (d; v, q) = 1 in [0, 1)

is:

d∗ (v, q) =
ln
(

exp
(
v−κ
κ

)1−e−r∆
qe
−r∆
)

1 + ln
(

exp
(
v−κ
κ

)1−e−r∆
qe−r∆

)
moreover, R (d; v, q) < 1 if and only if d ∈ (d∗ (v, q) , 1).
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Proof. Set k = ln
(
c1−e

−r∆

v qe
−r∆
)
, one obtains that:

R (d∗ (v, q) ; v, q) =
W
(
kek
)

d∗ (v, γ) (1 +W (kek))

=

(
k

1 + k

)
(d∗ (v, q))

−1
= 1

Note that: R (1; v, q) = 1 since R is continuous and:

R (1; v, q) = lim
d→1

W
(

d
1−de

(1−e−r∆)( v−κκ )qe
−r∆
)

d
(

1 +W
(

d
1−de

(1−e−r∆)( v−κκ )qe−r∆
)) = 1

Suppose then there exist d < d
′
< 1 such that R (d; v, q) = R

(
d
′
; v, q

)
= 1. Let α be such that

d
′

= αd+ (1− α). Then by strict convexity of R:

R
(
d
′
; v, q

)
= R (αd+ (1− α) ; v, q) < αR (d; v, q) + (1− α)R (1; v, q) = 1

a contradiction. This also proves that R (d; v, q) < 1 if and only if d ∈ (d∗ (v, q) , 1).

Lemma 18. For every d, v and q: R (d, v, q) ≤ max
{
qe
−r∆

c1−e
−r∆

v , 1
}

Proof. Note that R (1; v, q) = 1 for all v, q and that R (0; v, q) = qe
−r∆

c1−e
−r∆

v . The lemma then
follows from convexity of R in d.

Lemma 19. For every q and v such that c1−e
−r∆

v qe
−r∆ ≥ 1/2 we have: R (d, v, q) ≥ 1/2. If

c1−e
−r∆

v qe
−r∆

< 1/2, then R (0, v, r) < R (d, v, q) for all d > 0.

Proof. Note that R (0, v, q) = c1−e
−r∆

v qe
−r∆ ≥ 1/2, while R (1, v, q) = 1. Suppose the minimizer of

R is in the interior. Since d 7→ R (d, v, q) is convex, a necessary and sufficient condition for d to be
a minimizer of R is ∂R

∂d = 0. Taking derivative of R:

∂R

∂d
= − 1

d2

W

1 +W
+

1

d

∂z∗

∂d

(
W

z∗ (1 +W )
2 −

W 2

z∗ (1 +W )
3

)

= −R
d

+
z∗

d2 (1− d)

W

z∗ (1 +W )
3

= −R
d

+
R

d

Rc

(1 +W )

since:
∂z∗

∂d
=

1

(1− d)
2 c

1−e−r∆
v re

−r∆
=

z∗

d (1− d)
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Hence:

−R
d

+
R

d

Rc

(1 +W )
= 0

⇐⇒ R

d

(
Rc

(1 +W )
− 1

)
= 0

or: Rc/ (1 +W ) = 1. Hence Rc = (1 +W ), or W = (1− d)
−1/2 − 1 this means that, at the

minimum:

R =
(1− d)

−1/2 − 1

d (1− d)
−1/2

=
1− (1− d)

1/2

d

let f (d) =
(

1− (1− d)
1/2
)
/d. Then:

df

dd
=

1
2 (1− d)

−1/2
d− 1 + (1− d)

1/2

d2

=
1− (1− d)

1/2

2d2 (1− d)
1/2

which is never 0 in [0, 1]. Then the minimum of f is either f (0) or f (1). f (1) = 1 while:

f (0) = lim
d→0

(
1− (1− d)

1/2
)

d

= lim
d→0

1
2 (1− d)

−1/2

1
=

1

2

thus, min f = 1/2. Hence, if R (0, v, q) ≥ 1/2, we must have R (d, v, q) ≥ 1/2 for all d. Moreover,
if R (0, v, q) = c1−e

−r∆

v qe
−r∆

< 1/2, then R (0, v, q) < R (1, v, q) and R (0, v, q) < R (d, v, q) for all
d > 0, as required.

Lemma 20. Suppose that there exists a non-decreasing function g : V →
[

1
2 , cvh

]
such that for

every v: g (v) ≤ cv. Then for every d ∈ [0, 1) the function f (v) = R (d; v, g (v)) is strictly increasing
and also satisfies f (v) ≤ cv for all v.

Proof. For every v1 > v2 note that c1−e
−r∆

v1
g (v1)

e−r∆
> c1−e

−r∆

v2
g (v2)

e−r∆ and therefore f (v1) >

f (v2). f (v) ≤ cv follows from lemma 18.

Let G de the set of all γ ∈
[

1
2 , cvh

]V that are weakly increasing in v and satisfy γv ≤ cv for all v.
For any θ ∈ ∆ (V ) and γ ∈ G define the correspondance: Φ : G ×∆ (V ) ⇒ [0, 1] dy taking Φ (γ, θ)
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to be the set of all d ∈ [0, 1] that solve:∑
v

θ (v)R (d; v, γv) = 1

Lemma 21. For all γ and θ:1 ∈ Φ (γ, θ).

Proof. By definition:

R (1; v, γv) = lim
d→1

W
(

d
1−da

1−e−r∆
v re

−r∆

v

)
d
(

1 +W
(

d
1−da

1−e−r∆
v re−r∆v

)) = 1

therefore
∑
v θ (v)R (1; v, rv) =

∑
v θ (v) = 1.

Lemma 22. Suppose Φ (γ, θ) ∩ [0, 1) 6= ∅. Then there exists a unique d in Φ (γ, θ) ∩ [0, 1).

Proof. Assume wlog that there exists d < d
′
< 1 such that

{
d, d

′
}
⊂ Φ (γ, θ) ∩ [0, 1). By lemma

21 we have
∑
v θ (v)R (1; v, γv) = 1. Let α de s.t. d

′
= αd+ (1− α) 1. Then:

1 = α
∑
v

θ (v)R (d; v, γv) + (1− α)
∑
v

θ (v)R (1; v, γv)

=
∑
v

θ (v) (αR (d; v, γv) + (1− α)R (1; v, γv))

>
∑
v

θ (v)R (αd+ (1− α) 1; v, γv)

=
∑
v

θ (v)R
(
d
′
; v, γv

)
where the inequality follows from lemma 16 and Jensen’s inequality. Thus, d

′
/∈ Φ (γ, θ), a contra-

diction.

Lemma 23. Φ (γ, θ)∩[0, 1) 6= ∅ if and only if
∑
v θ (v) c1−e

−r∆

v γe
−r∆

v ≥ 1, with Φ (γ, θ)∩[0, 1) 6= {0}
whenever the inequality is strict.

Proof. Note that:

R

(
exp (cvh)

1 + exp (cvh)
; vh, cvh

)
=

1 + exp (cvh)

exp (cvh)

W (cvh exp (cvh))

(1 +W (cvh exp (cvh)))

=

(
cvh

1 + cvh

)
/

(
exp (cvh)

1 + exp (cvh)

)
< 1

since ex > x for all x > 0. Since R (d; v, q) is increasing in v and in q this implies:

R

(
exp (cvh)

1 + exp (cvh)
; v, γv

)
< 1 (26)
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for all v and rv. Moreover, if
∑
v θ (v) c1−e

−r∆

v γe
−r∆

v ≥ 1 then:

∑
v

θ (v)R (0; v, r) =

∑
v θ (v) c1−e

−r∆

v γe
−r∆

v

exp (W (0)) (1 +W (0))
=
∑
v

θ (v) c1−e
−r∆

v γe
−r∆

v ≥ 1

implies dy the intermediate value theorem that Φ (γ, θ)∩ [0, 1) 6= ∅, and that Φ (γ, θ)∩ [0, 1) 6= {0}
whenever

∑
v θ (v) c1−e

−r∆

v γe
−r∆

v > 1. Suppose now that Φ (γ, θ) ∩ [0, 1) 6= ∅. Take d ∈ Φ (γ, θ) ∩
[0, 1). Then dy d 7→ R (d; v, γv) being strictly convex and equation 26 we have that

d <
exp (avh)

1 + exp (avh)

and therefore
∑
v θ (v) ∂R∂d (d; v, γv) < 0 dy convexity of d 7→

∑
v θ (v)R (d; v, γv) and

∑
v θ (v)R (1; v, γv) =

1. But convexity of d 7→
∑
v θ (v)R (d; v, γv) will then imply that

∑
v θ (v)R (d; v, γv) is decreasing

in the range [0, d], meaning that:

1 ≤
∑
v

θ (v)R (0; v, γv) =
∑
v

θ (v) a1−e−r∆
v γe

−r∆

v

as required.

Let G be the set of all (γ, θ) pairs that satisfy,
∑
v θ (v) c1−e

−r∆

v γe
−r∆

v ≥ 1, and let φ (γ, θ)

be the unique element in Φ (γ, θ) ∩ [0, 1) for all (γ, θ) ∈ G. Note that G is closed, and that φ is

continuous since it is a fixed point of a continuous function10. For every dM ∈
[
0, vh−κvh

]M
, define

γ∗M
(
dM
)

= R (dM ; v, cv), and γ∗m = R
(
dm; v, γ∗m+1,v

(
dM
))

for all m < M . Note that γ∗m ∈ G dy
lemma 20. Then for every m, let θ∗m

(
dM
)
:

θ∗m
(
v; dM

)
=

µ0 (v)
∏m−1
j=0

(
1− djγ∗j

(
dM
))∑

v′ µ0 (v)
∏m−1
j=0

(
1− djγ∗j (dM )

)
Finally, define the function Ψ :

[
0, vh−κvh

]M
→
[
0, vh−κvh

]M
dy setting: ΨM

(
dM
)

= φ
(
c, θ∗M

(
dM
))

and letting Ψm

(
dM
)

= φ
(
γ∗M
(
dM
)
, θ∗m

(
dM
))
.

Lemma 24. Ψ is well defined and ΨdM (m) > 0 for all m.

10An easy argument is to set φ = arg min (d−
∑
v θ (v)R (0; v, γv))

2 sudject to d ≤
exp (cvh) / (1 + exp (cvh)) and use Berge’s theorem of the maximum.
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Proof. The first stage is clearly well defined. The second stage is well defined since:

dmγ
∗
m,v

(
dM
)

= dmR
(
dm; v, γ∗m+1,v

(
dM
))

=
W
(

dm
1−dm a

1−e−r∆
v γ∗m+1,v

(
dM
)e−r∆)

1 +W
(

dm
1−dm a

1−e−r∆
v γ∗m+1,v (dM )

e−r∆
) < 1

for all m and therefore θ∗m
(
dM
)
is well defined. It remains to de shown that

(
θ∗m
(
dM
)
, γ∗m

(
dM
))
∈

G and φ
(
θ∗m
(
dM
)
, γ∗m

(
dM
))
∈
[
0, vh−κvh

]
.
(
θ∗M
(
dM
)
, γ∗M

(
dM
))
∈ G follows from cv > 1 for all v.

Ψ (M) ≤ vh−κ
vh

follows from:

R

(
vh − κ
vh

; vh, cvh

)
=

W
(
vh−κ
κ exp

(
vh−κ
κ

))(
vh−κ
vh

) (
1 +W

(
vh−κ
κ exp

(
vh−κ
κ

))) = 1

and R
(
vh−κ
vh

; v, cv

)
being strictly increasing in v (which implies that

∑
θ∗M (v)R

(
vh−κ
vh

; v, cv

)
< 1

since θ∗M (v) < θ (0; vh) < 1 from monotonicity of γ∗m,v in v). Note further that γ∗M,v (M) < cv for
every v since cv = R (0; v, cv), Ψ (M) > 0 (since

∑
v θvcv =

∑
v θvR (0; v, cv) > 1 for all θ ∈ ∆ (V ))

and R (d; v, cv) is strictly decreasing for all d < v−κ
v . Suppose now γ∗m+1,v < cv for all v, and Ψ (j)

is well defined and satisfies Ψ (j) > 0 for all j ≥ m+ 1. We will show that Ψ (m) is well defined, is
in
[
0, vh−κvh

]
, and γ∗v,m < cv for all v. Note that:

∑
v

θ∗m
(
v; dM

)
a1−e−r∆
v

(
γ∗m+1,v

)e−r∆
=

∑
v

θ∗m
(
v; dM

)
av

(
γ∗m+1,v

av

)e−r∆
>

∑
v

θ∗m
(
v; dM

)
av

(
γ∗m+1,v

av

)
=

∑
v

θ∗m
(
v; dM

)
γ∗m+1,v

where the inequality follows from γ∗m+1,v < cv and xe
−r∆

> x for all ∆ > 0 and x ∈ (0, 1).
But since γ∗j,v was monotone for all j, θ∗m first order stochastically dominates θ∗m+1, meaning
that

∑
v θ
∗
m

(
v; dM

)
γ∗m+1,v ≥

∑
v θ
∗
m+1

(
v; dM

)
γ∗m+1,v which is equal to 1. This proves that(

θ∗m
(
dM
)
, γ∗m

(
dM
))
∈ G . Moreover, since the inequality

∑
v θ
∗
m

(
v; dM

)
c1−e

−r∆

v

(
γ∗m+1,v

)e−r∆
>∑

v θ
∗
m

(
v; dM

)
cv

(
γ∗m+1,v

cv

)
≥ 1, we obtain that φ

(
θ∗m
(
dM
)
, γ∗m

(
dM
))

> 0. Finally γ∗m,v < cv

follows from γ∗m+1,v < cv and Ψd (m) > 0.

Lemma 25. Ψ is continuous, and therefore has a fixed point a∗ ∈
[
0, vh−κκ

]M that satisfies: a∗m > 0

for all m.

Proof. Continuity of Ψ follows from Ψ being a composition of continuous functions. We can there-
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fore use Brouwer’s fixed point theorem to odtain a fixed point, and α∗m > 0 follows from lemma
24.

Lemma 26. There exists an M -equilibrium average-ratio path.

Proof. By lemma 25, there exists a fixed point a∗ ∈
[
0, vh−κκ

]M of Ψ which satisfies a∗m > 0 for
all m. Set pMm,v = γm,v (a∗) for all m ≤ M and pMM+1,v = exp

(
v−κ
κ

)
. Letting aM = a∗ and

ϑMm = θ∗m
(
aM
)
for all m then gives a triplet

(
aM , pM , ϑM

)
which is anM -equilibrium average-ratio

path.

D.1.3 Additional Properties of M-equilibrium average-ratio paths

Lemma 27. Suppose γ ∈ G, θ ∈ ∆ (V ) and d ∈ (0, 1] are such that θ (vh) < 1, θ (vl) > 0 and∑
v θ (v)R (d; v, γv) = 1. Then: (1) dR (d; v, γv) ≤ (vh − κ) /vh for all v; (2) R (d; vh, γvh) > 1; (3)

R (d; vl, γvl) < 1.

Proof. (1): R ((vh − κ) /vh; vh, cvh) = 1. Since R (d; v, γv) is strictly increasing in γv and v and γv ≤
cv for all v this implies that R ((vh − κ) /vh; v, γv) ≤ R ((vh − κ) /vh; vh, cvh) = 1. By lemma 16,
one must have

∑
v θ (v)R

(
d
′
; v, γv

)
< 1 for all d

′ ∈ ((vh − κ) /vh, 1). Therefore, d ≤ (vh − κ) /vh.

But the function f
(
d
′
)

= d
′
R
(
d
′
; v, γv

)
is strictly increasing in d. Therefore:

dR (d; v, γv) ≤
(
vh − κ
vh

)
R

((
vh − κ
vh

)
; v, γv

)
≤
(
vh − κ
vh

)
as required. (2) and (3) follow from lemma 20 and θ (vh) < 1 and θ (vl) > 0.

Lemma 28. Let (a, p, ϑ) be an equilibrium average-ratio path of BM (µ0). Then pm,v is strictly
increasing in v for every m and satisfies: pm,vl < 1 < pm,vh .

Proof. The first part follows from lemma 20 while the second from lemma 27.

D.2 History Independence in Finite Periods
Here we will prove the following lemma, which implies that equilibrium strategies are simple.

Lemma 29. Let (µ, β, σ) be an equilibrium of the finite horizon game. Then for every m there
exists two functions: zm : V → X and bm : X × V → (0, 1) such that:

1. For every m and v: σm
(
zm,v|xm−1, v

)
= 1 for all xm−1.

2. For every m, v and x ∈ X, βm
(
x, xm−1, v

)
= bm (x, v) for all xm−1.
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We will prove Lemma 29 in steps, many of which will be useful later.

Lemma 30. For a ∈ (0, 1), c ∈ R, d ∈ R+, and consider the function:

H (x|a, c, d, v) =

(
ae

v−c−x
κ

1− a+ ae
v−c−x
κ

)
x+

(
1− a

1− a+ ae
v−c−x
κ

)
d

then H − d is strictly log-concave over x ∈ R+. Therefore, the problem: maxx∈X H (x|a, c, d, v) has
a unique solution for every a, c and d.

Proof. Note that:

ln (H − d) = ln (x− d) + ln a+
1

κ
(v − c− x)− ln

(
1− a+ ae

v−x−c
κ

)
the second derivative of which with respect to x is:

− (x− d)
−2 −

 a (1− a) e
v+x+c
κ

κ2
(
ae

v
κ + (1− a) e

x+c
κ

)2

 < 0

for all x ∈ R+, concluding the proof.

Lemma 31. Consider the maximization problem: maxx∈R+
H (x|a, c, d, v). This problem has a

unique solution. This solution satisfies x∗ = d+

(
1−a+ae

v−x−c
κ

1−a

)
κ, which is equivalent to:

x∗ = κ+ d+ κW

(
a

1− a
exp

(
v − c− κ− d

κ

))
(27)

and satisfies the following two equations:(
ae

v−c−x∗
κ

1− a+ ae
v−c−x∗

κ

)
x∗ +

(
1− a

1− a+ ae
v−c−x∗

κ

)
d = x∗ − κ (28)

and:
ae

v−c−x∗
κ

1− a+ ae
v−c−x∗

κ

=

(
x∗ − d− κ
x∗ − d

)
(29)

Proof. By lemma 30, H − d is log-concave. Clearly, any solution of maxH is also a solution to
max ln (H − d). Since ln (H − d) is strictly concave, the following first order condition is both
necessary and sufficient for a solution:

1

x− d
− (1− a)

κ
(

1− a+ ae
v−x−c
κ

) = 0
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which can be rearranged to obtain equation 28 and 29. This can also be rearranged as:

a

1− a
e
v−x−c
κ =

(
x− d− κ

κ

)
which can be rearranged to be:

d

1− d
e
v−c−κ−d

κ =

(
x− d− κ

κ

)
e(

x−d−κ
κ )

or: (
x− d− κ

κ

)
= W

(
a

1− a
e
v−c−κ−d

κ

)
which can be easily rearranged to give the desired equality.

Definition 9. Suppose (β, σ, µ) are consistent. We say that a sequence {µn, βn, εn}∞n=1 is a (xm, v)

perturbation sequence for some (xm, v) if there exists a µ∗ ∈ ∆ (Xm × V ) with µ∗ (xm, v) > 0 such
that:

1. µn = εnµ∗ + (1− εn)µm

2. εn > 0, εn → 0 and βn → β

3. βn maximizes Em [U2|µn, βn, σ] for all n.

Given some (xm, v)-pertubation sequence, {µn, βn, εn}∞n=1, let π
n
m =

´
βnmdµn.

Lemma 32. For all
(
xM , v

)
:

βM
(
xM , v

)
=

πMe
1
κ (v−xM )

1− πM + πMe
1
κ (v−xM )

Proof. Let {µn, βn, εn}∞n=1 be a
(
xM , v

)
-pertubation sequence. By Lebesgue’s dominated conver-

gence theorem:
´
βnMdµM →

´
βMdµM , which implies

´
βnMdµn →

´
βMdµM . Using theorem

5:

βM
(
xM , v

)
= lim

n→∞
βnM

(
xM , v

)
= lim

n→∞

πnMe
1
κ (v−xM )

1− πnM + πnMe
1
κ (v−xM )

=
πMe

1
κ (v−xM )

1− πM + πMe
1
κ (v−xM )

as required.
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Lemma 33.
´
βMdµM ∈ (0, 1).

Proof. By lemma 32, if
´
βMdµM = 0 then βM

(
xM , v

)
= 0 for all

(
xM , v

)
contradicting βM being

attentive, while
´
βMdµM = 1 implies βM

(
xM , v

)
= 1 for all

(
xM , v

)
which cannot possibly be in

equilibrium since then the seller must be charging x̄ for sure in period M , contradicting β being a
best reseponse to σ in period M .

Note that we can now write the seller’s expected value conditional on arriving to period M ,
the history being

(
xM−1, v

)
and offering xM :

U1,M

(
xM |xM−1, v

)
=

(
πMe

1
κ (v−xM )

1− πM + πMe
1
κ (v−xM )

)
xM

which by lemma 31 has a unique maximizer in X for every v. Let zM,v be that maximizer.

Lemma 34. σ
(
zM,v;x

M−1, v
)

= 1 for all
(
xM−1, v

)
. Moreover, U1,M

(
xM |xM−1, v

)
is independent

of xM−1.

Proof. Follows directly from lemma 32 and lemma 31.

In what follows, let:

ρm (xm, v) =
βm (xm, v)´
βmdµm

for all (xm, v).

Lemma 35. The following conditions must hold in equilibrium for all m:

1. There exists a function bm : X × V → (0, 1) such that for every (xm, v), βm (xm, v) =

bm (xm, v). Moreover, bm satisfies:

bm (xm, v) =
πme

1
κ (v−xm)

πme
1
κ (v−xm) + (1− πm) e

e−r∆
κ (v−zm+1,v−κ ln ρm+1(zm+1,v,xm,v))

2. πm ∈ (0, 1) for all m.

3. For every m and v there exists a unique zm,v ∈ X such that σm
(
zm,v|xm−1, v

)
= 1 for all

xm−1.

4. For every m and v, U1,m

(
xm|xm−1, v

)
is independent of xm−1.

Proof. Note that we’ve shown that the lemma holds for period M . Suppose it holds for all periods
m+ 1, . . . ,M . We will show that it holds for m. Let ρm+1,v = ρm+1 (zm+1,v, x

m, v), which is well
defined and independent of xm by part (1) of the lemma. For some (xm, v), let {µn, βn, εn}∞n=1 be
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a (xm, v)-pertubation sequence. Since βnj
(
xj , v

)
→ βj

(
xj , v

)
for all

(
xj , v

)
, we have by Lebesgue’s

dominated convergence theorem that: πnm+j → πm+j for all relevant j ≥ 0. Moreover,

lim
n→∞

ρnm+1 (zm+1,v, x
m, v) = lim

n→∞

βnm+1 (zm+1,v, x
m, v)´

βnm+1dµn
= ρm+1,v

since πm+1 > 0. By theorem 5:

βm (xm, v) = lim
n→∞

βnm (xm, v)

= lim
n→∞

πnme
1
κ (v−xm)

πnme
1
κ (v−xm) + (1− πnm) e

e−r∆
κ (v−zm+1,v−κ ln ρnm+1(zm+1,v,xm,v))

=
πme

1
κ (v−xm)

πme
1
κ (v−xm) + (1− πm) e

e−r∆
κ (v−zm+1,v−κ ln ρm+1,v)

thereby proving (1). To prove (2), note that πm = 0 contradicts β being attentive, and πm = 1 will
imply σm

(
x̄, xm−1, v

)
= 1 for all v which contradicts β being optimal for the buyer. Part (3) then

follows from part (4) holding for m+ 1 and lemma 31, which then also imply part (4).

Note that Lemma 1 follows from Lemma 35.

D.3 Recursive Representation in Finite Horizon

D.3.1 Statement of Proposition

Given Lemma 29, it is clear that the only relevant belief for the buyer at period m is the marginal
of µm over V . Denote the marginal of µm over V by µ̄m. Let BM (µ̄1) be the bargaining game
with a horizon of M periods with a prior distribution of µ̄1 = µ0 over V . We will use Lemma 1
to represent equilibria of BM (µ̄1) as a strategy for period 1 and an equilibrium of BM−1 (µ̄2). For
that, we introduce the following definition of an equilibrium representation:

Definition 10. For every m, let θm ∈ ∆ (V ), bm : X × V → (0, 1) and zm : V → X. We say
that (θ, b, z) = {(θm, bm, zm)}Mm=1 is an equilibrium representation of BM (µ0) if there exists an
equilibrium (µ, β, σ) of BM (µ0) such that for all m, v, x ∈ X and xm−1 ∈ Xm−1: θm = µ̄m,
σm
(
zm,v|xm−1, v

)
= 1 and βm

(
x, xm−1, v

)
= bm (x, v).

Given an equilibrium representation (θ, b, x) of BM (µ0), let bm,v := bm (zm,v, v), and take πm
to be the prior probability that the buyer accepts the m-th offer conditional on arriving to period
m, i.e.

πm :=
∑
v

θm (v) bm,v (30)
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and take:

zM+1,v := κ

πM+1 := 1

bM+1,v := e(v−κ)/κ

for all v. These quantities will be useful in the following Proposition, which establishes that the
equilibrium can be represented in a recursive manner.

Proposition 7. (θ, b, z) is an equilibrium representation of BM (µ0) if and only if:

1. {(θm, bm, zm)}Mm=2 is an equilibrium representation of BM−1 (θ2).

2. For every v and m, zm,v solves:

zm,v − e−r∆zm+1,v = κ

(
1− e−r∆ +

(
bm,v

1− bm,v

))
(31)

3. For every v, m and x ∈ X, bm (x, v) solves:

v − x− e−r∆ (v − zm+1,v) = κ ln

(
bm (x, v) (1− πm)

πm (1− bm (x, v))

)
− κ ln

(
bm+1,v

πm+1

)e−r∆
(32)

The subject matter of the rest of this section is to prove the above proposition. Note that one
can combine equation 31 and equation 32 for x = zm,v to obtain the condition:

(
bm,v

1− bm,v

)
e

(
bm,v

1−bm,v

)
=

(
πm

1− πm

)(
bm+1,v

πm+1

)e−r∆ (
e
v−κ
κ

)1−e−r∆

(33)

D.3.2 Preliminary facts

We will begin by proving the following preliminary fact, which will help us establish that the seller’s
strategy is an interior solution.

Lemma 36. Suppose (θ, b, z) satisfies equations 8 and 7 of Proposition 7. Then for every m:

1. zm,v is strictly increasing in v.

2. bm,v := bm (zm,v, v) is strictly increasing in v.

3. vl < vl − κ ln
(
bm,vl
πm

)
< zm,vl < zm,vh < vh − κ ln

(
bm,vh
πm

)
< vh.
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Proof. We will prove by induction. Suppose (θ, b, z) satisfy equations 8 and 7 of Proposition 7.
Then they must satisfy equation 33, which implies:

bM,v

1− bM,v
= W

((
πM

1− πM

)
e
v−κ
κ

)
which, since πM ∈ (0, 1), implies that bM,v is strictly increasing in v. Since:

zM,v = κ+ κ

(
bM,v

1− bM,v

)
we obtain that zM,v is strictly increasing in v. Finally, note that that equation 32 implies:

zM,v = v + κ ln

(
1− bM,v

1− πM

)
− κ ln

(
bM,v

πM

)
which implies part (3) since bM,vh > πM > bM,vl . Suppose now (1)-(3) hold for m+ 1, . . . ,M . We
will show they hold for m. First note that by equation 33, b is strictly increasing in v since bm+1

is strictly increasing in v. To obtain that zm,v is strictly increasing in v, note that:

zm,v = κ

(
1− e−r∆ +

(
bm,v

1− bm,v

))
+ e−r∆zm+1,v

which is strictly increasing in v. Using equation 7 we obtain that for every m and v:

zm,v + κ ln

(
bm,v
πm

)
=
(
1− e−r∆

)
v + κ ln

(
1− bm,v
1− πm

)
+ e−r∆

(
zm+1,v + κ ln

(
bm+1,v

πm+1

))
and therefore, through repeated substitution:

zm,v + κ ln

(
bm,v
πm

)
= v + κ

M∑
j=m

e−r∆(j−m) ln

(
1− bj,v
1− πj

)

Therefore:

zm,vh = vh − κ ln

(
bm,vh
πm

)
+ κ

M∑
j=m

e−r∆(j−m) ln

(
1− bj,vh
1− πj

)
< vh − κ ln

(
bm,vh
πm

)
< vh

where the inequality follows from bm,v being strictly increasing for m,m+ 1, . . . ,M .
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D.3.3 Proof of Proposition 7

We will prove by induction. Suppose first that θM ∈ ∆ (V ), bM : X × V → (0, 1) and zM : V → X

satisfy the conditions of Proposition 7. Then note that:

bM (x, v) =
πMe

v−x
κ

1− πM + πMe
v−x
κ

for all x. Therefore, by Lemma 31, zM,v is a best response to bM . Take µ1 to be the distribution
over X × V defined by v being distributed v an σ (zM,v|v) = 1 for all v. By Theorem 5, βM = bM

is a best response for the buyer conditional on the seller offering zM . To show that bM is a credible
best response, fix any (x, v). Suppose wlog that x < zM,v. By lemma 36 we have zM,v < vh for all
v. Pick x̃ such that x̃ = vh and take α to be such that:

αbM (x̃, v) + (1− α) bM (x, v) = bM,v

then define µS to be such that for every v
′ 6= v: µS

(
zM,v′ , v

′
)

= µ0

(
zM,v′ , v

′
)
. For v, set

µS (x, v) = (1− α)µm (zM,v, v) and µS (x̃, v) = αµ0 (zM,v, v). Then clearly bM satisfies the con-
ditions of Theorem 5 for every µε = εµS + (1− ε)µ0. This establishes that bM is a credible best
response. Thus, (θM , bM , zM ) is an equilibrium representation of B1 (µ0).

Suppose now that (µ, β, z) is an equilibrium of B1 (µ0). By Lemma 29 the equilibrium can be
represented by some (θM , bM , zM ). By Lemma 35:

bM (x, v) =
πMe

v−x
κ

1− πM + πMe
v−x
κ

Then conditional on v the seller solves maxx∈X H (x|πM , 0, 0, v). By Lemma 31 this has a unique
solution in R+. Let xM,v be that solution. By Lemma 31, xM,v ≥ κ for all M . Suppose xM,v ≥ x̄

for some v. Note that, from Lemma 31, xM,v is strictly increasing in v. Therefore, xM,vh ≥ x̄.
However, xM,vh satisfies:

xM,vh = κ+ κW

(
πM

1− πM
e
vh−κ
κ

)
≥ x̄ > vh

but for xM,vh > vh one must have:

W

(
πM

1− πM
e
vh−κ
κ

)
>
vh − κ
κ

⇐⇒ πM >
vh − κ
vh

which will, in turn, imply that xM,v > v for all v. But this means that zM,v > v for all v. But
then the best response for the buyer must satisfy πM = 0, which will contradict β being attentive.
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Therefore, xM,v < x̄ for all v, which implies that zM,v = xM,v. Proposition 7 then follows from
Lemma 31.

Suppose now the proposition holds for BM−1 (µ0) for all µ0. We will show that it also holds for
BM (µ0). Suppose first {(θm, bm, zm)}Mm=1 satisfies the equations 31 and 32 of Proposition 7. We
will show that {(θm, bm, zm)}Mm=1 is an equilibrium representation of BM (µ0). Note that equation
32 implies:

bm (xm, v) =
πme

1
κ (v−e−r∆(v−zm+1,v−κ ln(bm+1,v/πm+1))−xm)

1− πm + πme
1
κ (v−e−r∆(v−zm+1,v−κ ln(bm+1,v/πm+1))−xm)

Define σ by σm
(
zm,v|xm−1, v

)
= 1 for all

(
xm−1, v

)
, take βm (xm, v) = bm (xm, v) for all v, and

let µ be the beliefs implied by the seller using σ, the buyer using β and µ being updated using
Bayesian updating (which is always possible since bm (xm, v) ∈ (0, 1) for all (xm, v)).

Step 1: σ is a best response to β after every history.

Proof. In period M , conditional on v, the seller solves maxx∈X H (x|πM , 0, 0, v). By Lemma 31
zM,v is the unique solution to this problem. Moreover, the expected value for the seller conditional
on arriving to period M and having good of quality v is zM,v − κ. Suppose now that the seller’s
value conditional on arriving to period m + 1 and on v is zm+1,v − κ regardless of xm. Then the
seller will choose xm to maximize:

max
xm∈X

bm (xm, v)xm + (1− bm (xm, v)) e−r∆ (zm+1,v − κ)

which is equivalent to maximizing:

H
(
x|πm, e−r∆ (v − zm+1,v − κ ln (bm+1,v/πm+1)) , e−r∆ (zm+1,v − κ) , v

)
the unique solution in R+ by Lemma 31, equation 29 is equal to:

xm,v = κ+ e−r∆ (zm+1,v − κ) + κ

(
bm (xm,v, v)

1− bm (xm,v, v)

)
Which, by Lemma 36 implies that xm,v ∈ [vl, vh] ⊂ X. Thus, zm,v = xm,v, meaning that zm,v
solves the v type seller’s period m problem, as required.

Step 2: β is a credible best response to σ after every history given µ.

Proof. Note that β is a best response by Theorem 5. Fix any (xm, v). Suppose wlog that xm < zm,v.
By lemma 36: zm,v < vh for all v. Pick x̃m such that x̃m = vh and take α to be such that:

αβm (x̃m, v) + (1− α)βm (xm, v) = βm (zm,v, v)
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then define µS to be such that for every v
′ 6= v: µS

(
z1,v′ , . . . , zm,v′ , v

′
)

= µm

(
z1,v′ , . . . , zm,v′ , v

′
)
.

For v, set µS (xm, v) = (1− α)µm (z1,v, . . . , zm,v, v) and µS (x̃m, v) = αµm (z1,v, . . . , zm,v, v). Note
that by construction the buyer’s posterior over V after using βm and reaching period m+ 1 is the
same under µm and µS . The same holds for every µε = εµS + (1− ε)µm for ε ∈ (0, 1). Hence,
it is straightforward to show that (βm, . . . , βM ) satisfies the conditions of theorem 5 when the
distribution over Xm × V is µε = εµS + (1− ε)µm for ε ∈ (0, 1) and future offers are drawn from
σ. The fact that β is a credible best response follows.

We have therefore established that {(θm, bm, zm)}Mm=1 is an equilibrium representation of BM (µ0).
Suppose now that {(θm, bm, zm)}Mm=1 is an equilibrium representation of BM (µ0). By Lemma

35, bM satisfies:

bM (x, v) =
πMe

v−x
κ

1− πM + πMe
v−x
κ

therefore, the seller’s problem conditional on arriving to period M and having a good of quality
v is maxx∈X H (x|πM , 0, 0, v). By Lemma 31 this has a unique solution in R+. Let xM,v be that
solution. By Lemma 31, xM,v ≥ κ for all M . Suppose xM,v ≥ x̄ for some v. Note that, from
Lemma 31, xM,v is strictly increasing in v. Therefore, xM,vh ≥ x̄. However, xM,vh satisfies:

xM,vh = κ+ κW

(
πM

1− πM
e
vh−κ
κ

)
≥ x̄ > vh

but for xM,vh > vh one must have:

W

(
πM

1− πM
e
vh−κ
κ

)
>
vh − κ
κ

⇐⇒ πM >
vh − κ
vh

which will, in turn, imply that xM,v > v for all v. But this means that zM,v > v for all v. However,
this means that the best response for the buyer must satisfy πM = 0, which will contradict β being
attentive. Therefore, xM,v < x̄ for all v, which implies that zM,v = xM,v. Note that this implies
that zM,v satisfies equation 31. Moreover, the seller’s expected utility conditional on ariving to
period M and having a good of quality v is zM,v − κ (Lemma 31, equation 28). Suppose now that
the seller’s value conditional on arriving to period m + 1 and on v is zm+1,v − κ regardless of xm.
Then the seller will choose xm to maximize:

max
xm∈X

bm (xm, v)xm + (1− bm (xm, v)) e−r∆ (zm+1,v − κ)

Note that by Lemma 35 bm must satisfy:

bm (xm, v) =
πme

1
κ (v−e−r∆(v−zm+1,v−κ ln(bm+1,v/πm+1))−xm)

1− πm + πme
1
κ (v−e−r∆(v−zm+1,v−κ ln(bm+1,v/πm+1))−xm)
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and therefore the seller’s problem is equivalent to to maximizing:

H
(
x|πm, e−r∆ (v − zm+1,v − κ ln (bm+1,v/πm+1)) , e−r∆ (zm+1,v − κ) , v

)
the unique solution in R+ by Lemma 31, equation 29 is equal to:

xm,v = κ+ e−r∆ (zm+1,v − κ) + κ

(
bm (xm,v, v)

1− bm (xm,v, v)

)
which, by Lemma 36 implies that xm,v ∈ [vl, vh] ⊂ X. Thus, zm,v = xm,v, meaning that zm,v
solves the v type seller’s period m problem. Therefore we obtain that z satisfies equation 31.
Simple algebra reveals that Lemma 31 implies that bm must satisfy equation 32. To obtain that
{(θm, bm, zm)}Mm=2 is an equilibrium representation of BM−1 (µ̄2), note that the strategies induced
by {(bm, zm)}Mm=2 in the game BM−1 (µ̄2) satisfy equations 31 and 32. Then {(θm, bm, zm)}Mm=2

being an equilibrium representation of BM−1 (µ̄2) follows from the induction assumption.

D.4 Proof of Theorem 1
Lemma 37. (θ, b, z) is an equilibrium representation of BM (µ0) if and only if there exists an
equilibrium average-ratio path of BM (µ0), (a, p, ϑ), such that:

1. For all m: θm = ϑm and am = πm.

2. For every m and v:pm,v = bm,v/πm.

3. For all m and v:

zm,v − e−r∆zm+1,v =
(
1− e−r∆

)
κ+ κW

(
am

1− am

(
e
v−κ
κ

)1−e−r∆

pe
−r∆

m+1,v

)
(34)

4. For all m, v and x ∈ X, bm (x, v) solves equation:

v − x− e−r∆ (v − zm+1,v) = κ ln

(
bm (x, v) (1− am)

am (1− bm (x, v))

)
− κ ln (pm+1,v)

e−r∆ (35)

Proof. Suppose first that (θ, b, z) is an equilibrium representation of BM (µ0) . Define ϑ = θ,
am = πm and pm,v = bm,v/πm. Part (4) holds due to Proposition 7. By equation: 33:

bm,v =

W

(
πm

1−πm

(
e
v−κ
κ

)1−e−r∆ (
bm+1,v

πm+1

)e−r∆)
1 +W

(
πm

1−πm

(
e
v−κ
κ

)1−e−r∆ (
bm+1,v

πm+1

)e−r∆)
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The fact that (a, p, ϑ) is an equilibrium average-ratio path follows. Suppose (a, p, ϑ) is an equilibrium
average ratio path. Define zm,v by equation 34 and take bm (x, v) to be the solution to the equation
35 for every x. Note that for every m:

bm (zm,v, v) =

(
am

1−am

)(
e
v−κ
κ

)1−e−r∆

pe
−r∆

m+1,ve
1
κ ((1−e−r∆)κ−(zm,v−e−r∆zm+1,v))

1 +
(

am
1−am

)(
e
v−κ
κ

)1−e−r∆
pe
−r∆
m+1,ve

1
κ ((1−e−r∆)κ−(zm,v−e−r∆zm+1,v))

substituting in equation 34 for
(
1− e−r∆

)
κ −

(
zm,v − e−r∆zm+1,v

)
and noting that

(
y/eW (y)

)
=

W (y) gives:

bm (zm,v, v) =

W

((
am

1−am

)(
e
v−κ
κ

)1−e−r∆

pe
−r∆

m+1,v

)
1 +W

((
am

1−am

)(
e
v−κ
κ

)1−e−r∆
pe
−r∆
m+1,v

) = ampm

Therefore, π1 =
∑
v µ0b1,v = a1. Clearly, θm = ϑm describes the evolution of the buyer’s beliefs

over V given the strategy b. Moreover, for everym: πm =
∑
v θm (v) bm,v = am, and bm,v/πm = pm.

It is straightforward now to show that zm,v solves equation 31 and bm (x, v) solves equation 32. The
Lemma follows.

Given the above Lemma, Theorem 1 is implied by Theorem 6.

D.5 Properties of equilibrium in finite horizon

D.5.1 Boundedness of bm,v and πm

In the following subsection, assume that (θ, b, z) is an equilibrium representation in BM (µ0) and
let (a, p, ϑ) be the equilibrium average ratio path of BM (µ0) from lemma 37

Claim 1. Then 1
2πm ≤ bm,v ≤ e

v−κ
κ πm

Proof. By Lemma 20, pm,v ∈ [1/2, cv] for all m and v. The claim follows from bm,v/πm = pm,v for
all m and v.

Lemma 38. For every m,

zm,v − e−r∆ (zm+1,v − κ) ≤
(
1− e−r∆

)
v + e−r∆κ
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if and only if:

pe
−r∆

m+1,v ≤ R (am, v, pm+1,v)

Rc (am, v, pm+1,v)

=
1− am
am

W (z∗ (am; v, pm+1,v))

Proof. Note that the inequality is equivalent to:

am
1− am

(pm+1,v)
e−r∆ ≤W (z∗ (am; v, pm+1,v))

which is equivalent to:
am

1− am
(pm+1,v)

e−r∆ ≤
(
1− e−r∆

)
ln av

or:
z (am; v, pm+1,v) ≤ c1−e

−r∆

v ln c1−e
−r∆

v

which is true if and only if W (z∗ (am; v, pm+1,v)) ≤
(
1− e−r∆

)
ln cv =

(
1− e−r∆

) (
v−κ
κ

)
. The

conclusion then follows from:

zm,v − e−r∆ (zm+1,v − κ) = κ+ κW (z∗ (am; v, pm+1,v))

Claim 2. For every m and v: bm,v ≤ vh−κ
vh

.

Proof. Follows from Lemma 27 and Lemma 37.

Lemma 39. For every m, there exists a v such that

zm,v − e−r∆ (zm+1,v − κ) ≤
(
1− e−r∆

)
v + e−r∆κ

Proof. Suppose otherwise. Then by the previous lemma:

pe
−r∆

m+1,v >
R (am; v, pm+1,v)

Rc (am; v, pm+1,v)

for all v. Therefore:
pe
−r∆

m+1,vR
c (am; v, pm+1,v) > R (am; v, pm+1,v)

As such: ∑
v

ϑm (v)Rc (am; v, pm+1,v) p
e−r∆

m+1,v > 1
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however: ∑
v

ϑm (v)Rc (am; v, pm+1,v) p
e−r∆

m+1,v =
∑
v

ϑm (v)
1− ampm,v

1− am
pe
−r∆

m+1,v

<

(∑
v

ϑm (v)
1− ampm,v

1− am
pm,v

)e−r∆

=

(∑
v

ϑm+1 (v) ampm,v

)e−r∆
= 1

a contradiction.

Claim 3. For every m, there exists a v such that:

bm,v ≤
(
1− e−r∆

)
(v − κ)

(1− e−r∆) (v − κ) + κ

Proof. By Lemma 39 for every m there is a v such that:

zm,v − e−r∆ (zm+1,v − κ) ≤
(
1− e−r∆

)
v + e−r∆κ

but by Proposition 7, part 2:

bm,v =

(
zm,v − e−r∆ (zm+1,v − κ)

)
− κ

(zm,v − e−r∆ (zm+1,v − κ))

≤
(
1− e−r∆

)
(v − κ)

(1− e−r∆) (v − κ) + κ

as required.

E Infinite Horizon Equilibrium
In this section we provide an analysis of the infinite horizon equilibria of our game. We begin by
proving that an equilibrium exists via Theorem 2. The fact that the equilibrium satisfies equations
7 and 8 from Lemma 1 will follow directly from Lemma 29 and Proposition 7. We then move
to establishing some properties shared by all equilibria of the finite horizon game. With these
properties at hand, we turn to proving Propositions 2 and 5.
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E.1 Proof of Theorem 2

E.1.1 Preliminary Lemma

Let (am, bm)
∞
m=1 and (anm, b

n
m)
∞
n,m=1 be such that bnm, bm ∈ (0, 1), cnm, cm ≥ 0 and (bnm, c

n
m) →

(bm, cm) for every m. Define J : X∞ → R+ by:

J (x∞) =

∞∑
j=1

e−r∆(j−1)

 bje
1
κ (v−xj−cj)

(∏j−1
k=1 (1− bk)

)
∏j
k=1

(
1− bk + bke

1
κ (v−xk−ck)

)
xj

J∗ = max J ,

Jn (x∞) =

n∑
j=1

e−r∆(j−1)

 bnj e
1
κ (v−xj−cnj )

(∏j−1
k=1 (1− bnk )

)
∏j
k=1

(
1− bnk + bnke

1
κ (v−xk−cnk)

)
xj

and J∗n = max Jn.

Lemma 40. J∗n → J∗. Moreover, if x∞(n) ∈ arg maxJn for every n is such that x∞(n) → x∞ for
some x∞ ∈ X∞, then x∞ ∈ arg maxJ .

Proof. Since (bnm, c
n
m)→ (bm, cm) for every m, for every N and ε > 0, there is an Nε > N such that

n > Nε implies: ∣∣∣∣∣∣∣∣∣∣∣∣∣
N∑
j=1

e−r∆(j−1)



 bnj e
1
κ (v−xj−cnj )

(∏j−1
k=1 (1− bnk )

)
∏j
k=1

(
1− bnk + bnke

1
κ (v−xk−cnk)

)


−

 bje
1
κ (v−xj−cj)

(∏j−1
k=1 (1− bk)

)
∏j
k=1

(
1− bk + bke

1
κ (v−xk−ck)

)



xj

∣∣∣∣∣∣∣∣∣∣∣∣∣
< ε

Since x ∈ X∞, this implies that for every n > N and every x∞: |J (x∞)− Jn (x∞)| < ε+ e−r∆N

1−e−r∆ x̄.
This is also true for any x∞ ∈ arg maxJ , implying that: |J∗ − J∗n| < ε + e−r∆N

1−e−r∆ x̄. Since this is
true for all N , we have that J∗n → J∗. If x∞(n) ∈ arg maxJn for every n is such that x∞(n) → x∞

for some x∞ ∈ X∞. Fix an N and ε > 0. Then since (bnm, c
n
m)→ (bm, cm) and xnm → xm for all m,

there exists an Nε > N such that for all n > Nε:∣∣∣∣∣∣∣∣∣∣∣∣∣
N∑
j=1

e−r∆(j−1)



 bje
1
κ (v−xj−cj)

(∏j−1
k=1 (1− bk)

)
∏j
k=1

(
1− bk + bke

1
κ (v−xk−ck)

)
xj

−

 bnj e
1
κ (v−xnj −c

n
j )
(∏j−1

k=1 (1− bnk )
)

∏j
k=1

(
1− bnk + bnke

1
κ (v−xnk−cnk)

)
xnj



∣∣∣∣∣∣∣∣∣∣∣∣∣
< ε
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since x∞ ∈ X∞, this implies that for every n > N :
∣∣J (x∞)− Jn

(
x∞(n)

)∣∣ < ε+ e−r∆N

1−e−r∆ x̄, thereby
implyng that J∗n = Jn

(
x∞(n)

)
→ J (x∞). Therefore:

|J (x∞)− J∗| ≤
∣∣∣J (x∞)− Jn

(
x∞(n)

)∣∣∣+
∣∣∣Jn (x∞(n)

)
− J∗

∣∣∣
=

∣∣∣J (x∞)− Jn
(
x∞(n)

)∣∣∣+ |J∗n − J∗| → 0

as required.

E.1.2 Proof of Theorem 2

By Proposition 7, we can represent every sequence of equilibria {(µn, βn, σn)}∞n=1 of BMn
(µ0) by

their equilibrium representations, {(θn, bn, zn)}∞n=1. Note that for everym
{(
θnm (v) , bnm,v, z

n
m,v

)}
v∈V

is an element of a compact subset of R3V
+ . Therefore, by Cantor’s diagonal method there exists a sub-

sequence {(θnk , bnk , znk)}∞k=1 such that
{(
θnm (v) , bnm,v, z

n
m,v

)}
v∈V converges to {(θm (v) , bm,v, zm,v)}v∈V

for all m. As a consequence, the prior probability that the buyer accepts conditional on arriving to
period m, πnm, converges to πm :=

∑
v θm (v) bm,v. By Proposition 7 we have for every x ∈ X:

bnm (x, v) =

(
πnm

1−πnm

) (
e
v
κ

)1−e−r∆ (
e
znm+1,v

κ

(
bnm+1,v

πnm+1

))e−r∆
e−

x
κ

1 +
(

πnm
1−πnm

) (
e
v
κ

)1−e−r∆ (
e
zn
m+1,v
κ

(
bnm+1,v

πnm+1

))e−r∆
e−

x
κ

which implies that bnm (x, v)→ bm (x, v) where:

bm (x, v) =

(
πm

1−πm

) (
e
v
κ

)1−e−r∆ (
e
zm+1,v

κ

(
bm+1,v

πm+1

))e−r∆
e−

x
κ

1 +
(

πm
1−πm

) (
e
v
κ

)1−e−r∆ (
e
zm+1,v

κ

(
bm+1,v

πm+1

))e−r∆
e−

x
κ

=
πme

1
κ

(
v−x−e−r∆

(
v−κ ln

(
bm+1,v
πm+1

)
−zm+1,v

))

1− πm + πme
1
κ

(
v−x−e−r∆

(
v−κ ln

(
bm+1,v
πm+1

)
−zm+1,v

))

and therefore, βnk (xm, v) → β (xm, v) = bm (xm, v). Note that by Claim 1: bnm,v ≤ (vh − κ) /vh

for all v and m and therefore πnm ≤ (vh − κ) /vh, i.e. πm ≤ (vh − κ) /vh. We will now show that
πm > 0. Suppose otherwise, i.e. there is some m such that πnm → 0. Then this implies that
µ̄m = µ̄m+1. Let:

f (k, l) =
W
(

k
1−k l

)
k
(

1 +W
(

k
1−k l

))
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then using W (z) = z/eW (z) we obtain:

f (k, l) =

(
l

1− k

)
1

exp
(
W
(

k
1−k l

))(
1 +W

(
k

1−k l
))

and therefore f (0, l) = l. Hence, using the mean value theorem, for every M there is a k∗ ∈ [0, anm]

such that:∣∣∣pnm,v − c1−e−r∆v

(
pnm+1,v

)e−r∆ ∣∣∣ =
∣∣∣f (anm, c1−e−r∆v

(
pnm+1,v

)e−r∆)− f (0, c1−e
−r∆

v

(
pnm+1,v

)e−r∆)∣∣∣
≤

∣∣∣∣∂f∂k (k∗, c1−e−r∆v

(
pnm+1,v

)e−r∆)∣∣∣∣ anm
but:

∂f

∂k
=

1− (1− k)
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k

=

 1−
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k
+
f (k, l)

1− k

which, since k∗ < 1 we have that f (k, l) / (1− k) is bounded in the range (k, l) ∈ [0, (vh − κ) /vh]×
[0, cvh ]. In addition:

lim
k→0

 1−
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k
=

(
lim
k→0

f (k, l)

)
lim
k→0

1−
(

1 +W
(

k
1−k l

))2

k


assuming the limit limk→0 k

−1

(
1−

(
1 +W

(
k

1−k l
))2

)
exists. Using L’Hopital’s rule:

lim
k→0

k−1

(
1−

(
1 +W

(
k

1− k
l

))2
)

= lim
k→0

2
(

1 +W
(

k
1−k l

))
exp

(
W
(

k
1−k l

))(
1 +W

(
k

1−k l
)) ( l

(1− k)
2

)

= lim
k→0

2

exp
(
W
(

k
1−k l

)) ( l

(1− k)
2

)
= 2l
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thus, ∂f
∂k is bounded, implying that

∣∣∣pnm,v − c1−e−r∆v

(
pnm+1,v

)e−r∆ ∣∣∣ → 0 and therefore pm,v =

c1−e
−r∆

v (pm+1,v)
e−r∆ for all v. But:∑

v

µ̄m (v) pm,v = lim
Mn→∞

∑
v

µ̄nm (v) pnm,v = 1

and therefore we’ve obtained:

1 =
∑
v

µ̄m (v) c1−e
−r∆

v (pm+1,v)
e−r∆

>
∑
v

µ̄m (v) pm+1,v

=
∑
v

µ̄m+1 (v) pm+1,v = 1

where the inequality follows cv ≥ pm+1,v for all v and cvl > 1 ≥ pm+1,vl , a contradiction. Hence,
we have πm > 0 for all m.

Thus, by Lemma 40, offering zm,v for sure in period m conditional on the quality of the good
being v regardless of the history is a best response for the seller conditional on the buyer using β.

We will now show that β is a best response to σ defined by the seller offering zm,v for sure in
period m conditional on the quality of the good is v. Note that:

κ ln

(
1− bm,v
1− πm

)
= e−r∆

(
v − zm+1,v − κ ln

(
bm+1,v

πm+1

))
therefore, for every n < m, consider the buyer’s quasi-value, Um (β, σ|xn, v), is equal to:

∞∑
j=m

e−r∆(j−m)

j−1∏
k=m

(1− bm,v)

 bj,v

(
v − zj,v − κ ln

(
bj,v
πj

))
− (1− bj,v)κ ln

(
1− bj,v
1− πj

)


=

∞∑
j=m

e−r∆(j−m)

j−1∏
k=m

(1− akpk,v)


v − zj,v − κ ln

(
bj,v
πj

)
−e−r∆ (1− bj,v)×(

v − zj+1,v − κ ln

(
bj+1,v

πj+1

))


= v − zm,v − κ ln

(
bm,v
πm

)
Thereby implying, by Theorem 5, that β is a best response to σ. We will now prove that β is a
credible best response to σ. Note that Lemma 36 implies that for every m and n: znm,v ∈ [vl, vh]
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and therefore zm,v ∈ [vl, vh]. As such, for every (xm, v) ∈ X × V , there is a x̃m and α ∈ (0, 1) such
that:

αbm (xm, v) + (1− α) bm (x̃m, v) = bm,v

define µS to be such that for every v
′ 6= v: µS

(
z1,v′ , . . . , zm,v′ , v

′
)

= µm

(
z1,v′ , . . . , zm,v′ , v

′
)
. For

v, set µS (xm, v) = (1− α)µm (z1,v, . . . , zm,v, v) and µS (x̃m, v) = αµm (z1,v, . . . , zm,v, v). Note that
by construction the buyer’s posterior over V after using βm and reaching period m+ 1 is the same
under µm and µS . The same holds for every µε = εµS + (1− ε)µm for ε ∈ (0, 1). Hence, it is
straightforward to show that (βm, . . .) satisfies the conditions of theorem 5 when the distribution
over Xm × V is µε = εµS + (1− ε)µm for ε ∈ (0, 1) and future offers are drawn from σ. The fact
that β is a credible best response follows.

Note that we’ve shown that every sequence of equilibria {(µn, βn, σn)}∞n=1 in BMn
(µ0) with

Mn → 0 has a convergent subsequence {(µnk , βnk , σnk)}∞k=1 whose limit (µ, β, σ) is an attentive rec-
ommendation perfect equilibrium. As such, if a sequence of equilibria {(µn, βn, σn)}∞n=1 converges
then the limit must be an equilibrium of the infinite horizon game.

E.2 Proof of equations 7 and 8
Follows from Lemma 29 and Proposition 7.

E.3 Additional Properties of Infinite Horizon Equilibria

E.3.1 Monotonicity of bm,v in infinite horizon

We now prove the following lemma.

Lemma 41. For every m, bm,v is strictly increasing in v.

Proof. Consider any M -horizon equilibrium (θ, b, z). By equation 33 we have that:(
bM,v

1− bM,v

)
e

(
bM,v

1−bM,v

)
=

(
πM

1− πM

)
e
v−κ
κ

and therefore bM,v is strictly increasing in v. An inductive argument using equation 33 then
establishes that bm,v is strictly increasing in v for all m in the finite equilibrium. Clearly, this
implies that for any limit (θ∞, b∞, z∞), b∞m,v is weakly increasing in v. Using equation 33 again
implies that b∞m,v is strictly increasing.
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E.3.2 Boundedness of bm,v and πm

In the following subsection, assume that (µ, b, z) is an equilibrium in the infinite horizon game. The
following three claims follow immediately from (µ, b, z) being the limit of finite horizon equilibria
and Claims 1, 2 and 3. We therefore give them without proof.

Claim 4. Then 1
2πm ≤ bm,v ≤ e

v−κ
κ πm

Claim 5. For every m and v: bm,v ≤ vh−κ
vh

.

Claim 6. For every m, there exists a v such that:

bm,v ≤
(
1− e−r∆

)
(v − κ)

(1− e−r∆) (v − κ) + κ

E.3.3 Calculating values in infinite horizon equilibria

Lemma 42. Let (µ, b, z) be an equilibrium of B (∆, κ) and take (F, u, w) be its corresponding
equilibrium collection. Then:

um =
∑
v

µ0 (v)

κ ∞∑
j=m

e−r∆(j−m) ln

(
1− πj
1− bj,v

)
πm,v = κ

∞∑
j=m

e−r∆(j−m)

(
bj,v

1− bj,v

)

Proof. By Lemma 13, we know that in equilibrium the buyer’s quasi-value in period m conditional
on zm−1

v = (z1,v, . . . , zm−1,v) and on v is:

Um
(
β, σ|zm−1

v , v
)

= κ

∞∑
j=m

e−r∆(j−m) ln

(
1− πj
1− bj,v

)

the buyer’s expected value conditional on arriving to period m is:

um =

ˆ
Um
(
β, σ|xm−1, v

)
dµm

=
∑
v

µ̄m (v)Um
(
β, σ|zm−1

v , v
)

= κ
∑
v

µ̄m (v)

 ∞∑
j=m

e−r∆(j−m) ln

(
1− πj
1− bj,v

)
For profits, in any finite equilibrium we have by Lemma 31 that the seller’s expected utility con-
ditional on arriving to period m and having a good of quality v is zm,v − κ. The conclusion then
follows for the infinite horizon equilibrium by Lemma 40.
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E.3.4 Trade occurs for sure

Lemma 43. Let (µ, b, z) be an equilibrium. Then for every v:

lim
m→∞

m∏
j=1

(1− bj,v) = 0

Proof. Suppose otherwise. Note that by Claim 4, bm,v/πm ≥ 1/2. Thus, we must have πm → 0 as
m→∞. By Claim 4, bm,v/πm is bounded both from above and from below, we must have:

lim
m→∞

κ

∞∑
j=m

e−r∆(j−m)

(
bj,v

1− bj,v

)
= 0

for all v. But equation 8 then implies that zm,v → κ, contradicting Proposition 2 which implies
zm,v ≥ zm,vl > vl > κ.

E.4 Proof of Proposition 2
By Lemma 41, bm,v is strictly increasing for all v. Monotonicity of zm,v then follows from equation
8 from lemma 1. To prove that v − zm,v is strictly increasing, take natural log of both sides of
equation 7 and rearrange to obtain:

zm,v + κ ln

(
bm,v
πm

)
= v + κ ln

(
1− bm,v
1− πm

)
+ e−r∆

(
zm+1,v + κ ln

(
bm+1,v

πm+1

))
which, through repeated substitution implies:

zm,v + ln

(
bm,v
πm

)
= v + κ

∞∑
j=m

er∆(j−m) ln

(
1− bj,v
1− πj

)
(36)

or:

v − zm,v = κ

ln

(
bm,v
πm

)
−
∞∑
j=m

e−r∆(j−m) ln

(
1− bj,v
1− πj

)
which implies from bm,v being strictly increasing in v for allm. Finally, note that the above equation
implies: (

bm,v
πm

)
= exp

v − zm,v + κ

∞∑
j=m

e−r∆ ln

(
1− bj,v
1− πj

)
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for all m and v. However, by definition of πm:
∑
v µ̄m (v) (bm,v/πm) = 1. Since bm,v is strictly

increasing, bm,v/πm must be strictly increasing as well, which implies:

vl − zm,vl + κ

∞∑
j=m

e−r∆ ln

(
1− bj,vl
1− πj

)
< 0 < vh − zm,vh + κ

∞∑
j=m

e−r∆ ln

(
1− bj,vh
1− πj

)

But bj,v being strictly increasing for all j implies:

κ

∞∑
j=m

e−r∆ ln

(
1− bj,vh
1− πj

)
< 0 < κ

∞∑
j=m

e−r∆ ln

(
1− bj,vl
1− πj

)

thereby concluding the proof.

E.5 Proof of Proposition 5
We begin by proving for every equilibrium we have u1 > 0 and:

u1 +
∑
v

µ0 (v)w1,v >
∑
v∈V

µ0 (v) (v − κ)

Let (µ, b, z) be an equilibrium of B (∆, κ) and take (F, u, w) to be its corresponding equilibrium
collection. Repeated substitution of Equation 8 from lemma 1 implies:

z1,v = κ+ κ

∞∑
j=1

e−r∆(j−1)

(
bj,v

1− bj,v

)
= w1,v + κ

where the second equality follows from Lemma 42. Thus, using equation 36 we obtain that:

1 =
∑
v

µ0

(
b1,v
π1

)
=
∑
v

µ0 exp

v − κ− w1,v − κ
∞∑
j=1

e−r∆(j−1) ln

(
1− πj
1− bj,v

)
Note that b1,v is strictly increasing, and therefore by Jensen’s inequality and Lemma 42:

1 > exp

∑
v

µ0 (v)

v − κ− w1,v − κ
∞∑
j=1

e−r∆(j−1) ln

(
1− πj
1− bj,v

)
= exp

(∑
v

µ0 (v) (v − κ)−

(
u1,v +

∑
v

µ0 (v)w1,v

))

Therefore implying that the total expected surplus in (µ, b, z) is strictly higher than
∑
v µ0 (v) (v − κ).

We will now prove that the buyer’s expected surplus is strictly larger than zero. Since bm,v is strictly
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increasing, for every v > v
′
:

µ̄m+1 (v)

µ̄m+1 (v′)
=

(1− bm,v) µ̄m (v)(
1− bm,v′

)
µ̄m (v′)

<
µ̄m (v)

µ̄m (v′)

thus, µ0 first order stochastically dominates µ̄m for all m ≥ 2. Using Lemma 42 again implies:

u1 = −
∑
v

µ0 (v)

∞∑
j=1

e−r∆(j−1) ln

(
1− bj,v
1− πj

)

> −
∑
v

µ0 (v)

∞∑
j=1

e−r∆(j−1) ln

(∑
v µ0 (v) (1− bj,v)

1− πj

)

> −
∑
v

µ0 (v)

∞∑
j=1

e−r∆(j−1) ln

(∑
v µ̄j (v) (1− bj,v)

1− πj

)
= 0

where the first inequality follows from Jensen’s inequality and the second follows from µ0 first order
stochastically dominating µ̄j .

Suppose now that there is no τ for which u1 +E [w1,v] > v−κ+ τ for all equilibria. then there
exists a sequence of equilibria (µn, bn, zn) with corresponding values (un, wn) such that

un1 +
∑
v

µ0 (v)wn1,v →
∑
v∈V

µ0 (v) (v − κ)

Note that for every n, m and v
(
µ̄nm (v) , bnm,v, z

n
m,v

)
is in a compact set of R+. Therefore there

exists a convergent subsequence. Let that subsequence be the sequence itself. Let pnm,v = bnm,v/π
n
m.

Note that πnm ≤ vh−κ
vh

for all m and n by claim 5 and therefore πm = limn→∞ πnm ≤ vh−κ
vh

< 1. We
will show that for all m: πm > 0. Suppose otherwise, i.e. there is some m such that πnm → 0. Then
this implies that µ̄m = µ̄m+1. Let:

f (k, l) =
W
(

k
1−k l

)
k
(

1 +W
(

k
1−k l

))
then using W (z) = z/eW (z) we obtain:

f (k, l) =

(
l

1− k

)
1

exp
(
W
(

k
1−k l

))(
1 +W

(
k

1−k l
))

and therefore f (0, l) = l. Hence, using the mean value theorem, for every M there is a k∗ ∈ [0, πnm]

98



such that:∣∣∣pnm,v − c1−e−r∆v

(
pnm+1,v

)e−r∆ ∣∣∣ =
∣∣∣f (πnm, c1−e−r∆v

(
pnm+1,v

)e−r∆)− f (0, c1−e
−r∆

v

(
pnm+1,v

)e−r∆)∣∣∣
≤

∣∣∣∣∂f∂k (k∗, c1−e−r∆v

(
pnm+1,v

)e−r∆)∣∣∣∣πnm
but:

∂f

∂k
=

1− (1− k)
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k

=

 1−
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k
+
f (k, l)

1− k

which, since k∗ < 1 we have that f (k, l) / (1− k) is bounded in the range (k, l) ∈ [0, (vh − κ) /vh]×
[0, cvh ]. In addition:

lim
k→0

 1−
(

1 +W
(

k
1−k l

))2

(1− k)
(

1 +W
(

k
1−k l

))2

 f (k, l)

k
=

(
lim
k→0

f (k, l)

)
lim
k→0

1−
(

1 +W
(

k
1−k l

))2

k


assuming the limit limk→0 k

−1

(
1−

(
1 +W

(
k

1−k l
))2

)
exists. Using L’Hopital’s rule:

lim
k→0

k−1

(
1−

(
1 +W

(
k

1− k
l

))2
)

= lim
k→0

2
(

1 +W
(

k
1−k l

))
exp

(
W
(

k
1−k l

))(
1 +W

(
k

1−k l
)) ( l

(1− k)
2

)

= lim
k→0

2

exp
(
W
(

k
1−k l

)) ( l

(1− k)
2

)
= 2l

thus, ∂f
∂k is bounded, implying that

∣∣∣pnm,v − c1−e−r∆v

(
pnm+1,v

)e−r∆ ∣∣∣ → 0 and therefore pm,v =

c1−e
−r∆

v (pm+1,v)
e−r∆ for all v. But:∑

v

µ̄m (v) pm,v = lim
Mn→∞

∑
v

µ̄nm (v) pnm,v = 1
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and therefore we’ve obtained:

1 =
∑
v

µ̄m (v) c1−e
−r∆

v (pm+1,v)
e−r∆

>
∑
v

µ̄m (v) pm+1,v

=
∑
v

µ̄m+1 (v) pm+1,v = 1

where the inequality follows cv ≥ pm+1,v for all v and cvl > 1 ≥ pm+1,vl , a contradiction. Hence,
we have πm > 0 for all m.

Note that:
pm,v = R (πm, v, pm+1,v)

for all m and v. Since pnm+1,v is weakly increasing and πm > 0, we have by Lemma 20 that pm,v is
strictly increasing and therefore bm,v is strictly increasing. We can now use the same argument as
in the single equilibrium case to establish that

lim
n→∞

un1 = u1 > 0

and:
lim
n→∞

un1 +
∑
v

µ0 (v)wn1,v >
∑
v

µ0 (v) (v − κ)

a contradiction.
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F Frequent Offers Environment
In this section of the appendix we prove the results of sections 5 and 6. We begin by stating some
preliminary definitions and results used in the proof of Theorem 3. We then prove an omnibus
theorem that includes Theorem 3, Proposition 3 and Corollary 2.

F.1 Preliminaries
In what follows, let ϕ be the unique σ-additive measure over Ω =

(
R+,BR+

)
, where BR+ is the Borel

σ-algebra, satisfying ϕ ([t, t+ s]) =
(
e−rt − e−r(t+s)

)
for all t, s ≥ 0. As usual, let L2 (Ω,dϕ) be the

set of all equivalence classes of measurable functions satisfying: f : Ω→ R, f is ϕ-measurable and:´
R+
|f |2 dϕ < ∞, equipped with the norm: ‖f‖2 =

(´
R+
|f |2 dϕ

)1/2

. A map L from L2 (Ω,dϕ) to
the real numbers is a linear functional if: L (af1 + bf2) = aL (f1) + bL (f2). A linear functional
is continuous if L (fn) → L (f) whenever fn → f (according to the ‖·‖2), and it is bounded if
|L (f)| ≤ K ‖f‖2 for some finite number K. It is well known that a functional is continuous if and
only if it is bounded. We let L2 (Ω,dϕ)

∗ be the set of continuous linear funtionals, also known
as the dual of L2 (Ω,dϕ). A sequence of functions (fn) ∈ L2 (Ω,dϕ) is said to converge weakly
to f ∈ L2 (Ω,dϕ), denoted by fn ⇀ f if: L (fn) → L (f) for every L ∈ L2 (Ω,dϕ)

∗. Below is a
statement of a few famous theorems from functional analysis, specialized to the current setting.
The next theorem is often seen as a consequence of the Hahn-Banach theorem.

Theorem 7. Suppose f ∈ L2 (Ω,dϕ) satisfies L (f) = 0 for all L ∈ L2 (Ω,dϕ)
∗. Then f = 0, and

therefore if fn ⇀ g and fn ⇀ h then g = h

Proof. Lieb and Loss (2010), pages 56 to 57.

Theorem 8. Let (fn)n≥0 be a sequence of functions in L2 (Ω,dϕ) such that for every L ∈ L2 (Ω,dϕ)
∗,

the sequence L (fn) is bounded. Then there exists a finite C > 0 such that ‖fn‖2 < C for all n.

Proof. Lieb and Loss (2010), pages 58 to 59.

The theorem below is a specialization of the Riesz representation theorem specific for our
purposes.

Theorem 9. For every L ∈ L2 (Ω,dϕ)
∗ there exists a unique g ∈ L2 (Ω,dϕ) such that: L (f) =´

R+
g (x) f (x)ϕ (dx). Moreover, for every g ∈ L2 (Ω,dϕ), Lg (f) =

´
R+
g (x) f (x)ϕ (dx) is a

bounded linear functional.

Proof. Lieb and Loss (2010), pages 61 to 63.

The following is a version of the Banach-Alaoglu theorem.
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Theorem 10. Let (fn)n≥0 be a sequence of functions bounded in L2 (Ω,dϕ). Then there exists a
subsequence (fnk)k≥0 and an f ∈ L2 (Ω,dϕ) such that fnk ⇀ f .

Proof. Lieb and Loss (2010), pages 68 to 69.

Lemma 44. Let (fn)n≥0 , (g
n)n≥0 be two sequences in L2 (Ω,dϕ). Suppose fn ⇀ f and gn → g

for some f and g in L2 (Ω,dϕ). Then:
´
R+
fn (x) gn (x) dϕ→

´
R+
f (x) g (x) dϕ.

Proof. Note that: fngn − fg = fn (gn − g) + (fn − f) g. Then:∣∣∣∣∣
ˆ
R+

fn (x) (gn (x)− g (x)) dϕ

∣∣∣∣∣ ≤ ‖fn‖2 ‖gn − g‖2 ≤ C ‖gn − g‖2 → 0

Since g ∈ L2 (Ω,dϕ), we have that L (h) =
´
R+
h (x) g (x) dϕ ∈ L2 (Ω,dϕ)

∗ and therefore
´
R+

(fn (x)− f (x)) g (x) dϕ→
0. The conclusion follows.

F.2 Preliminary Definitions
Definition 11. An extended equilibrium collection of B (∆, κ) is a collection

(
F̄ , F, w, ũ

)
such that

there exists an equilibrium (µ, β, σ) for which:

1. F̄ : R → [0, 1] is a cdf satisfying; F̄ (t) =
∑
v µ0 (v)F (t, v), i.e. it is the cdf of the time of

trade, unconditional on v.

2. ũ : T (∆) × V → R is the buyer’s quasi-value conditional on arriving to period t/∆ and on
v, i.e.

ũt,v = Ut/∆
(
β, σ|z

t
∆−1
v , v

)
where zmv = (z1,v . . . , zm,v) is the history of offers that is made on equilibrium by a v type
seller up to and including period m.

3. F is a timing distribution function.

4. w : T (∆)×V → R+ is the seller’s expected utility conditional on arriving to period t/∆and
on v in period t/∆ terms.

Note that one can find an extended equilibrium collection for every equilibrium collection.

Definition 12. An potential extended continuous limit is a collection
(
F̄ , F, w, ũ

)
,where:

1. F̄ : R+ → [0, 1] is an absolutely continuous cdf.

2. F : R+ × V → [0, 1] is such that t 7→ F (t, v) is an absolutely continuous cdf.

3. w : R+ × V → R+ and ũ : R+ × V → R are both continuous in their first variable.
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We say that
(
F̄ , F, w, ũ

)
is an extended continuous limit of B (0, κ) if there exists a refining sequence

of extended equilibrium collections,
{(
F̄n, Fn, wn, ũn

)}∞
n=1

of B (∆n, κ) such that:

1. wnt,v → wt,v and ũnt,v → ut,v for all (t, v) ∈ ∪nT (∆n).

2. F̄n (t)→ F̄ (t) and Fn (t, v)→ F (t, v) for all t and v.

We then say that
{(
F̄n, Fn, wn, ũn

)}∞
n=1

converges to
(
F̄ , F, w, u

)
.

F.3 Proof of theorem 3 and proposition 3
In the following section, we prove the following result that combines Theorem 3 and Proposition 3.

Theorem 11. Let {∆n}∞n=1 be a refining sequence, and take
{(
F̄n, Fn, wn, ũn

)}∞
n=1

to be a sequence
of extended equilibrium collections of B (∆n, κ). Then there exists a subsequence

{(
F̄nk , Fnk , wnk , ũnk

)}∞
k=1

that converges to an extended continuous limit of B0 (κ),
(
F̄ , F, w, ũ

)
. Moreover, there exists two

functions: λ̄ : R+ → R+ and λ : R+ × V → R+ such that:

1. λ̄t is the time dependent hazard rate of F̄ , i.e. F̄ (t) = 1− e−
´ t
0
λ̄sds, and λ̄t ≤ 3r

(
vh−κ
κ

)
.

2. λt,v is the time dependent hazard rate of F , i.e. F (t, v) = 1− e−
´ t
0
λs,vds.

Moreover,
(
w, ũ, λ̄, λ

)
satisfy:

3. wt,v =
´∞
t
e−r(s−t)λs,vds

4. ũt,v =
´∞
t
e−r(s−t)

(
λs,v − λ̄s

)
ds

5. λt,v/λ̄t = exp 1
κ (v − κ− wt,v − ũt,v) ∈

[
1
2 , e

v−κ
κ

]
.

6. For every t:

λ̄t =
∑
v

µ0 (v)

(
1− F (t, v)

1− F̄ (t)

)
λt,v

7. λ̄t > 0 and λt,v > 0 for almost all t.

8. λt,v is strictly increasing in v for almost all t.

Proof of Theorem

Proof of parts 1 and 2 Let ∆n be a refining sequence,
(
F̄n, Fn, wn, ũn

)
be an extended

collection of B (∆n, κ) for every n. Let (µn, βn, σn) be the sequence of corresponding equilibria,
and let bnt,v := βnt/∆

(
z
t/∆
v , v

)
and πnt =

∑
v µ̄t/∆ (v) bnt,v for every t ∈ T (∆n).

By Helly’s selection theorem, there exists a subsequence of
(
F̄nk , Fnk , wnk , ũnk

)
and a finite

collection of increasing, right-continuous functions Fv and F̄ such that F̄nk (t)→ F̄ (t) for all t for
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which F̄ (t) is continuous, and for every v: Fnk (t, v)→ F (t, v) := Fv (t) for all t for which Fv (t) is
continuous. Let

(
F̄n, Fn, wn, ũn

)
denote this subsequence. For every n, t and v ∈ V define:

λ̄nt = − 1

∆n
ln

(
1− πnd t

∆n
e

)

= − 1

∆n
ln

1− F̄
(⌊

t
∆n

⌋
+ ∆n

)
1− F̄

(⌊
t

∆n

⌋)


λnt,v = − 1

∆n
ln

(
1− bnd t

∆n
e,v

)

and define for every t: Ḡn (t) = 1 − e−
´ t
0
λ̄ns ds and Gn (t, v) = 1 − e−

´ t
0
λns,vds. Note that for every

t ∈ T∆n
:

ˆ t

0

λ̄ns ds =

t/∆∑
j=1

∆n

(
− 1

∆n
ln
(
1− πnj

))

= −
t/∆n∑
j=1

ln
(
1− πnj

)
and therefore:

Ḡn (t) = 1−
t/∆∏
j=1

(
1− πnj

)
= F̄n (t)

and similarly Gnv (t) = Fn (t) for all t ∈ T∆n
. Define:

π̄∆n
=

(
1− e−r∆n

)
(vh − κ)

(1− e−r∆n) (vh − κ) + κ

and note that by Claim 5, πnt ≤ 2π̄∆n
for all n. Therefore:

λ̄nt ≤ −
1

∆n
ln (1− 2π̄∆n

)

note that:

1− 2π̄∆n
= 1− 2

( (
1− e−r∆n

)
(vh − κ)

(1− e−r∆n) (vh − κ) + κ

)

=
κ− 2

(
1− e−r∆n

)
(vh − κ)

(1− e−r∆n) (vh − κ) + κ

104



and therefore:

− 1

∆n
ln (1− 2π̄∆n

) =
1

∆n

(
ln
((

1− e−r∆n
)

(vh − κ) + κ
)
− ln

(
κ− 2

(
1− e−r∆n

)
(vh − κ)

))
→ 3r

(
vh − κ
κ

)

Similarly, Claim 4 implies that bnm,v ≤ 2e

(
vh−κ
κ

)
π̄∆n

for all n. Therefore:

λns,v ≤ − 1

∆n
ln

(
1− 2e

(
vh−κ
κ

)
ā∆n

)
=

1

∆n

(
ln
((

1− e−r∆n
)

(vh − κ) + κ
)
− ln

(
κ− 2e

(
vh−κ
κ

) (
1− e−r∆n

)
(vh − κ)

))
→

(
1 + 2e

(
vh−κ
κ

))
r

(
vh − κ
κ

)
for all v. Thus, for every ε > 0, there exists an Nε such that for all n > Nε: 0 < λ̄ns ≤ 3r

(
vh−κ
κ

)
+ ε

and 0 < λns,v ≤
(

1 + 2e

(
vh−κ
κ

))
r
(
vh−κ
κ

)
+ ε for all s and v. This implies that:

∥∥λ̄ns ∥∥2
,
∥∥λns,v∥∥2

≤
((

1 + 2e

(
vh−κ
κ

))
r

(
vh − κ
κ

)
+ ε

)2

and therefore, by the sequential Banach-Alaoglu theorem (theorem 10), there exists a subsequence
in which λ̄nk ⇀ λ and λnkv ⇀ λv. Note that ϕ is absolutely continuous with respect to Lebesgue
measure, with density −re−rt. Letting gt (s) = −1[s≤t]

ers

r , note that the linear functional defined
by:

|L (f)| =

∣∣∣∣∣
ˆ
R+

gt (s) f (s) dϕ

∣∣∣∣∣
≤

∣∣∣∣ertr
∣∣∣∣
∣∣∣∣∣
ˆ
R+

f (s) dϕ

∣∣∣∣∣ ≤
∣∣∣∣ertr

∣∣∣∣ ‖f‖2
therefore:

´
gt (s) λ̄nks dϕ→

´
gt (s) λ̄sdϕ for all t. However:

ˆ
gt (s) fsdϕ =

ˆ t

0

fsdt

and therefore we’ve obtain that Ḡnk (t) → 1 − e−
´ t
0
λ̄sdt ≡ Ḡ (t) for all t. Clearly, Ḡ is continuous

everywhere. Since F̄nk (t) = Ḡnk (t) for all t ∈ T∆nk
, this implies that for all t ∈ ∪k≥0T∆nk

:
F̄nk (t) → Ḡ (t), and therefore Ḡ (t) = F̄ (t) for all t ∈ ∪k≥0T∆nk

. For every t /∈ ∪k≥0T∆nk
, there
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exists a sequence
(
tia
)
i≥0

in ∪k≥0T∆nk
such that tia ↓ t. Since F̄ is right-continuous, we have that

F̄
(
tia
)
→ F̄ (t). But F̄

(
tia
)

= Ḡ
(
tia
)
→ Ḡ (t). Therefore: Ḡ (t) = F̄ (t) for all t. A similar argument

establishes that Fnk (t, v)→ F (t, v) = 1− e−
´ t
0
λs,vds for all t.

Proof of parts 3 and 4: Note that for every t ∈ T∆nk
:

ln

(
1− πnkt/∆
1− bnkt/∆,v

)
= ∆

(
λnkt/∆,v − λ̄

nk
t/∆

)
and therefore:

ũnkt,v = κ

∞∑
j=t/∆nk

e−r(j∆nk
−t)∆

(
λnkj∆nk

,v − λ̄
nk
j∆nk

)

let: g∆nk
(t) = − 1

r e
r
(
t−∆nk

⌊
t

∆nk

⌋)
. Then:

ũnkt,v = κert
ˆ ∞
t

g∆nk
(s)
(
λnks,v − λ̄nks

)
dϕ

= κert
(ˆ ∞

t

g∆nk
(s)λnks,vdϕ−

ˆ ∞
t

g∆nk
(s) λ̄nks dϕ

)

however, for every ∆ > ∆nk :
(
g∆nk

(t)
)2

≤ 1
r2 e

2r∆, and therefore by the dominated convergence

theorem: g∆nk
→ − 1

r in L2 (R+,dϕ). Hence, by lemma 44:

ũnkt,v = κert
(ˆ ∞

t

g∆nk
(s)λnks,vdϕ−

ˆ ∞
t

g∆nk
(s) λ̄nks dϕ

)
→ −κe

rt

r

ˆ ∞
t

(
λs,v − λ̄s

)
dϕ = κ

ˆ ∞
t

e−r(s−t)
(
λs,v − λ̄s

)
ds

for all t ∈ ∪k≥0T∆nk
. Similarly, for every t ∈ T∆nk

:

wnkt,v = κ

∞∑
j=t/∆nk

e−r(j∆nk
−t)

(
bj∆nk

,v

1− bj∆nk
,v

)

= κ

∞∑
j=t/∆nk

e−r(j∆nk
−t)
(
e

∆nk
λ
nk
j∆nk

,v − 1
)
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using the mean value theorem, there exists a ∆∗nk ∈ (0,∆nk) such that:

wnkt,v = κert
∞∑

j=t/∆nk

e−rj∆nk∆nkλ
nk
j∆nk

,ve
∆∗nk

λ
nk
j∆nk

,v

= κert
ˆ ∞
t

e
∆∗nk

λ
nk
j∆nk

,vg∆nk
(s)λnkj∆nk

,vdϕ

since we have
(
λnkj∆nk

,v

)2

<

((
1 + 2e

(
vh−κ
κ

))
r
(
vh−κ
κ

)
+ ε

)2

, we can again use the dominated

convergence theorem to obtain that e∆∗nk
λ
nk
j∆nk

,vg∆nk
→ − 1

r in L2 (R+,dϕ), thereby implying:
wnkt,v → κ

´∞
t
e−r(s−t)λs,vds. For every nk and t /∈ T∆nk

set:

ũnkt,v = ũnk
∆nkdt/∆nke,v

wnkt,v = wnk
∆nkdt/∆nke,v

Clearly, these converge to the obvious extensions of ũt,v and wt,v to all t: ũt,v = κ
´∞
t
e−r(s−t)

(
λs,v − λ̄s

)
ds

and wt,v = κ
´∞
t
e−r(s−t)λs,vds which are continuous.

Proof of parts 5 and 6: For every nk and t (not necessarily in T∆nk
), set: pnkt,v =

exp 1
κ

(
v − κ− wnkt,v − ũ

nk
t,v

)
. Since ũnkt,v → ũt,v and wnkt,v → wt,v, we have that pnkt,v → pt,v ≡

exp 1
κ (v − κ− wt,v − ũt,v). Morevoer, 1

2 ≤ pnkt,v ≤ e
v−κ
κ for all v and t by claim 4, meaning that(

pnkt,v
)2 ≤ e2( v−κκ ). Hence, by the dominated convergence theorem, pnkt,v → pt,v in L2 (R+,dϕ). But

this means that for every g ∈ L2 (R+,dϕ), gtpnkt,v → gtpt,v in L2 (R+,dϕ). Thus, by Lemma 44 and
Riesz representation thoerem (theorem 9) we have that pnkt,vλ̄

nk
t ⇀ pt,vλ̄t. Note, however, that every

t:

pt,v =
1− e−∆nk

λ
nk
t,v

1− e−∆nk
λ̄
nk
t

and therefore by the mean-value theorem, there exists ∆1
nk
,∆2

nk
∈ (0,∆nk) such that:

pnkt,v =
λnkt,ve

−∆1
nk
λ
nk
t,v

λ̄nkt e−∆2
nk
λ̄
nk
t

and therefore:

e
−∆nk

((
1+2e(

vh−κ
κ )

)
r
(
vh−κ
κ

)
+ε

)
λnkt,v < λ̄nkt pnkt,v < λnkt,ve

∆nk

(
3r
(
vh−κ
κ

)
+ε
)
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therefore, for every bounded linear operator L ∈ L2 (R+,dϕ):

L
(
λ̄nkt pnkt,v

)
< e

∆nk

(
3r
(
vh−κ
κ

)
+ε
)
L (λnkv )→ L (λv)

L
(
λ̄nkt pnkt,v

)
> e

−∆nk

((
1+2e(

vh−κ
κ )

)
r
(
vh−κ
κ

)
+ε

)
L (λnkv )→ L (λv)

and therefore pnkv λ̄nk ⇀ λv. Hence, by theorem 7, pt,vλ̄t = λt,v in L2 (R+,dϕ). Therefore: λt,v/λ̄t =

exp 1
κ (v − κ− wt,v − ũt,v). Moreover, since pnkt,v ∈

[
1
2 , e

v−κ
κ

]
(Claim 4) for all t ∈ T (∆nk) we have

pt,v ∈
[

1
2 , e

v−κ
κ

]
for all t ∈ ∪kT (∆nk) which implies pt,v ∈

[
1
2 , e

v−κ
κ

]
by continuity of pt,v in t. Note

that for every k and every t ∈ T∆k
:

1 =
∑
v

µ0 (v)

(
1− Fnk (t−∆nk , v)

1− F̄nk (t−∆nk)

)
pnkt,v

→
∑
v

µ0 (v)

(
1− F (t, v)

1− F̄ (t)

)
pt,v =

∑
v

µ0 (v)

(
1− F (t, v)

1− F̄ (t)

)
pt,v

which extends to all t by continuity in t of F (t, v), F̄ (t) and pt,v. This implies:

λ̄t =
∑
v

µ0 (v)

(
1− F (t, v)

1− F̄ (t)

)
λt,v

for all t.

Proof of part 7: To see that λ̄t > 0 for almost all t, assume there is an open ball, (t, t+ ε)

such that s ∈ (t, t+ ε) implies λs = 0. Then:

λt,v/λ̄t = exp
1

κ

(
v − κ− e−rε (wt+ε,v + ũt+ε,v)

)
=

(
e
v−κ
κ

)1−e−rε (
λt+ε,v/λ̄t+ε

)e−rε ≥ λt+ε,v/λ̄t+ε
for all v with a strict inequality for vl since

(
λt,vl/λ̄t

)
≤ 1 < e

vl−κ
κ for all t (since pnkt,vl < 1 for all

t ∈ ∪kT (∆nk)). Therefore:

∑
v

µ0 (v) e−
´ t+ε
0 (λs,v−λ̄s)ds

(
λt,v
λ̄t

)
>
∑
v

µ0 (v) e−
´ t+ε
0 (λs,v−λ̄s)ds

(
λt+ε,v
λ̄t+ε

)
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but λ̄s = 0 for all s ∈ (t, t+ ε) implies:

∑
v

µ0 (v) e−
´ t+ε
0 (λs,v−λ̄s)ds

(
λt,v
λ̄t

)
=

∑
v

µ0 (v) e−
´ t
0 (λs,v−λ̄s)ds

(
λt,v
λ̄t

)
= 1

=
∑
v

µ0 (v) e−
´ t+ε
0 (λs,v−λ̄s)ds

(
λt+ε,v
λ̄t+ε

)

a contradiction. Therefore λ̄t > 0 for almost all t.

Proof of Part 8: Suppose there is an open ball (t, t+ ε) for ε > 0 and v < v
′
such that

λs,v = λs,v′ for all s ∈ (t, t+ ε), and λt,v = λt,v′ by continuity of λt,v/λ̄t. Therefore:

1 =
λt,v′

λt,v

= exp
1

κ

(
v
′
− v −

((
wt,v′ + ũt,v′

)
− (wt,v + ũt,v)

))
= exp

1

κ

(
v
′
− v − 2κ

ˆ ∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds

)

implying that: κ
´∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds = 2

(
v
′ − v

)
> 0. But:

1 ≤ λt+ε,v′

λt+ε,v

= exp
1

κ

(
v
′
− v − 2erεκ

ˆ ∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds

)
< exp

1

κ

(
v
′
− v − 2κ

ˆ ∞
t+ε

e−r(s−t)
(
λs,v′ − λs,v

)
ds

)
= 1

since erε > 1, a contradiction. Therefore λt,v is strictly increasing almost everywhere.

Proof that F̄ and F (·, v) are cdfs: Suppose otherwise. Then
(
λt,v/λ̄t

)
≥ 1/2 for all

t and v implies that λ̄t → 0. But, since λ̄t is bounded, we can use the dominated convergence
theorem to obtain that:

(
λt,vl/λ̄t

)
= exp 1

κ

(
vl − κ− κ

´∞
t
e−r(s−t)

(
2λs,vl − λ̄s

)
ds
)
→ e

vl−κ
κ > 1,

a contradiction.

F.4 A few additional properties of extended continuous limits
Let

(
F̄ , F, w, ũ

)
be a continuous time limit of B (0, κ) and take

(
λ̄, λ

)
be the hazard rates from

Theorem 11.
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Lemma 45. For almost all t: wt,vh + ũt,vh < vh − κ.

Proof. By part 5 of Theorem 11:

(
λt,vh/λ̄t

)
= exp

1

κ
(vh − κ− wt,vh − ũt,vh)

Part 6 of Theorem 11 along with λt,v being strictly increasing in v (part 8 of Theorem 11) implies
the desired conclusion.

G Proof of Theorem 4

G.1 Proof of Corollary 2
Let {∆n}∞n=1 be a refining sequence, and take {(µn, bn, zn)}∞n=1 to be a sequence of corresponding
equilibria. Let

{(
F̄n, Fn, wn, ũn

)}∞
n=1

be a corresponding sequence of extended equilibrium collec-
tions. Then by Theorem 11 there exists a subsequence {(µnk , bnk , znk)}∞k=1 such that

{(
F̄nk , Fnk , wnk , ũnk

)}∞
k=1

converges to a continuous limit
(
F̄ , F, w, ũ

)
. But:

E [Un1 ] =
∑
v

µ0 (v)wnv,(1/∆n) →
∑
v

µ0 (v)wv,0 = Ū1

E [Un2 ] =
∑
v

µ0 (v) ũnv,(1/∆n) →
∑
v

µ0 (v) ũv,0 = Ū2

as required.

G.2 Proof of Theorem 4
Note that Theorem 11, for every Ū1 and Ū2 of B (0, κ) there exists an extended continuous limit(
F̄ , F, w, ũ

)
of B (0, κ) such that:

Ū1 =
∑
v

µ0 (v)wv,0

Ū2 =
∑
v

µ0 (v) ũv,0

Thus, for every {κn}∞n=1 such that κn → 0 and corresponding sequence of frequent offer utilities
, let

(
F̄n, Fn, wn, ũn

)
be the corresponding sequence of extended continuous limits of B (0, κn).

Let
(
λ̄n, λn

)
be the hazard rates from Theorem 11 for

(
F̄n, Fn, wn, ũn

)
. Note that for every t:(

λnt,vl/λ̄
n
t

)
∈
[

1
2 , 1
]
, implying that 1

κ

(
vl − κ− wnt,vl − ũ

n
t,vl

)
must remain finite. As such, wnt,vl +
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ũnt,vl → vl. Since this is true for all t, and:

wnt,vl + ũnt,vl = κn

ˆ t+ε

t

e−r(s−t)
(
2λns,vl − λ̄

n
s

)
ds+ e−rε

(
wnt+ε,vl + ũnt+ε,vl

)
we obtain that:

κn

ˆ t+ε

t

e−r(s−t)
(
2λns,vl − λ̄

n
s

)
ds→

(
1− e−rε

)
vl

for all t and every ε > 0. Note this implies that λ̄nt →∞ for almost all t, since λ̄ns > λns,vl for all s
and therefore:

ˆ t+ε

t

λ̄nt ds =

ˆ t+ε

t

(
2λ̄nt − λ̄nt

)
ds

>

ˆ t+ε

t

(
2λns,vl − λ̄

n
s

)
ds

>

ˆ t+ε

t

e−r(s−t)
(
2λns,vl − λ̄

n
s

)
ds→ lim

n→∞

(
1− e−rε

) vl
κn

=∞

Suppose that there exists a subsequence
(
F̄ k, F k, wk, ũk

)
, an interval [t1, t2], and a Borel measurable

function f : R+ → R satisfying f > 0 almost everywhere in [t1, t2] such that vh−κ−wkt,vh− ũ
k
t,vh

>

f (t) almost everywhere in [t1, t2] for all k larger than some K. Then for k > K:

wkt1,vh + ũkt1,vh >

ˆ t2

t1

e−r(s−t1)κk
(
2λkt,vh − λ̄

k
t

)
ds

≥
ˆ t2

t1

e−r(s−t1)

(
2e

f(s)
κk − 1

)
κkλ̄

k
t ds

≥
ˆ t2

t1

e−r(s−t1) lim inf
k→∞

(
2e

f(s)
κk − 1

)
κkλ̄

k
t ds

where the second inequality follows from Fatou’s lemma. By Theorem 11, part 1: κnλ̄
n
t ∈

[0, 3r (vh − κn)] for all t. However, for almost every t we have both f (t) > 0 and, from before:

lim inf
k→∞

κk

ˆ t2

t1

λ̄ksds >
(

1− e−r(t2−t1)
)
vl

implying that: 2κk
´ t2
t1
λ̄kse

f(s)
κk ds → ∞. Thus, wkt1,vh + ũkt1,vh → ∞. But by lemma 45: wkt1,vh +

ukt1,vh < vh, a contradiction. Therefore vh − κ − wnt,vh − ũnt,vh → 0 for almost all t. Since λnt,v
is stricly increasing in v, the difference v − κ − wnt,v − ũnt,v is also strictly increasing in v. Thus:
v − κ− wnt,v − ũnt,v → 0 for all v for almost all t. But this implies that for almost all t:

wnt,v + ũnt,v −
(
wnt,vl + ũnt,vl

)
→ v − vl
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which, since ũnt,v − ũnt,vl =
´∞
t
e−r(s−t)

(
λns,v − λns,vl

)
ds = wnt,v − wnt,vl implies:

wnt,v − wnt,vl →
v − vl

2

for almost all t and all v. Therefore, for every t, s > 0:
(
wnt,v − wnt,vl

)
− e−rs

(
wnt+s,v − wnt+s,vl

)
converges to (1− e−rs)

(
v−vl

2

)
. Note that for every n, and almost every t > ε > 0:

ˆ t

0

(
λns,v − λns,vl

)
ds >

ˆ t

ε

(
λns,v − λns,vl

)
ds

>

ˆ t

ε

e−r(s−ε)
(
λns,v − λns,vl

)
ds

=
1

κn

((
wnε,v − wnε,vl

)
− e−r(t−ε)

(
wnt,v − wnt,vl

))
→∞

which implies that:
µ0 (v) (1− Fn (t, v))

µ0 (vl) (1− Fn (t, vl))
→ 0

for almost all t and for all v > vl. Therefore:

1− F̄n (t)

1− Fn (t, vl)
=

∑
v

µ0 (v)

(
1− Fn (t, v)

1− Fn (t, vl)

)
= µ0 (vl) +

∑
v>vl

µ0 (v)

(
1− Fn (t, v)

1− Fn (t, vl)

)
→ µ0 (vl)

And therefore:

0 ≤

(∑
v

(
µ0 (v) (1− Fn (t, v))

1− F̄n (t)

)
ũnt,v

)
− ũnt,vl

=

(
1− F̄n (t)

1− Fn (t, vl)

∑
v

(
µ0 (v) (1− Fn (t, v))

1− Fn (t, vl)

)
ũnt,v

)
− ũnt,vl

= µ0 (v)

(
1− Fnvl (t)

1− F̄n (t)

)
ũnt,vl

+

(
1− F̄n (t)

1− Fnvl (t)

)∑
v>vl

(
µ0 (v) (1− Fnv (t))

1− Fnvl (t)

)
ũnt,v − ũnt,vl

→ 0
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by Theorem 11 parts 4, 6 and 8:

ũt,vl =

ˆ ∞
t

e−r(s−t)
(
λs,vl − λ̄s

)
ds < 0

and:

∑
v

µ0 (v)

(
1− Fn (t, v)

1− F̄n (t)

)
ũnt,v =

ˆ ∞
t

e−r(s−t)

(∑
v

µ0 (v)

(
1− Fn (t, v)

1− F̄n (t)

)
λs,v − λ̄s

)
ds

>

ˆ ∞
t

e−r(s−t)

(∑
v

µ0 (v)

(
1− Fn (s, v)

1− F̄n (s)

)
λs,v − λ̄s

)
ds

= 0

and therefore:

0 ≤ −ũnt,vl ≤

(∑
v

(
µ0 (v) (1− Fnv (t))

1− F̄n (t)

)
ũnt,v

)
− ũnt,vl

for all n. But this implies: limn→0 ũ
n
t,vl
→ 0 for almost all t. This means that: wnt,vl → vl for almost

all t, and therefore wnt,v → v+vl
2 for all v. To extend to time 0, note first that

∑
v µ0 (v)

(
λn0,v/λ̄

n
0

)
=

1 for all n and
(
λn0,v/λ̄

n
0

)
≥ 1

2 for all v implies that exp 1
κ

(
v − κ− wn0,v − ũn0,v

)
converges to a

strictly positive but finite number, and therefore v − κn − wn0,v − ũn0,v → 0. As such, we have:
wn0,v − wn0,vl →

1
2 (v − vl) for all v. Note that for every t > 0:

0 > ũn0,vl = κn

ˆ t

0

e−rs
(
λns,vl − λ̄

n
s

)
ds+ e−rtunt,vl

> κn

ˆ t

0

e−rs
(
λns,vl − λ

n
s,vh

)
λns ds+ e−rtunt,vl

=
((
wn0,vh − w

n
0,vl

)
− e−rt

(
wnt,vh − w

n
t,vl

))
+ e−rtunt,vl

→ −
(
1− e−rt

)(vh − vl
2

)
taking t→ 0 then gives ũn0,vl → 0. But this implies wn0,vl → vl, and therefore wn0,v → v+vl

2 for all v,
which imples ũn0,v → v−vl

2 since wn0,v + ũn0,v → v. The Theorem then follows from:

Ūns =
∑
v

µ0 (v)wn0,v

Ūnb =
∑
v

µ0 (v) ũn0,v

for all n.
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