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1 Introduction

Many environments involve individuals acquiring and using information toward both learning more

about the world and inferring the information of others. This ubiquitous dual role of information

plays out in financial markets, labor markets, social networks and trends, as well as in professional

communities. Relevant to each of these examples, individuals commonly face asymmetric incentives

to invest in costly information depending on their identity, market position, and social ties. And

when information is used to infer the observations of influential players, the strategic response to

signals establishes a crucial component to the private value of information. This paper studies the

role of such peer effects in shaping the incentives to acquire and strategically respond to information.

It examines both the positive and normative implications of the resulting disparities in acquired

information qualities.

An example embodying this duality while in the presence of directed peer effects is given with

the following vignette. At some point in time, an independent research institute develops and

patents a novel drill technology. The new drill potentially means that a large, previously untapped

field of deep-sea oil deposits can now be safely resourced. The institute advertises the promise

of the drill, and is willing to lease out the rights to operate the technology on a per-drill basis.

A three-player market consists of two petroleum firms (firms A and B) comprising a competitive

duopoly and a lobbyist for the petroleum industry. The three players pursue their own due diligence

as to confirm or refute the drill’s value. We can capture the resulting network of relationships with

the following figure.

firm A

firm B

lobbyist

−
−

+

+

+

+

Figure 1: An oil industry and political lobbyist network

The sign and direction of links emanating from each individual capture the competitive and sup-

portive influences that others’ investment choices have on their private incentive to adopt the drill.

Peer effects in technology adoption feed into the incentives to acquire and respond to private

information in the following ways. With both firms simultaneously researching the technology,1 any

acquired information regarding the drill’s value brings with it the knowledge of greater competition.

That is, a firm that learns the drill is effective also learns that they are likely to face stiff competition

1Hendricks and Porter (1996) [37] provide evidence of non-cooperative exploration in these industries.
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when drilling. This is precisely because information regarding the drill’s efficacy can also be used

to infer the competition’s observations and subsequent investment in the drill. The lobbyist, on the

other hand, will decide whether to utilize her resources promoting subsidies toward the employment

of the drill technology or focus her efforts elsewhere. Choosing the optimal agenda to pursue requires

her own due diligence. And as a function of the connections that she has with firms A and B, her

incentives to acquire information will depend on how informed she can expect the firms will be.

This is because upon learning of the drill’s value, the more she subsequently promotes the drill

the more she will need the firms to follow suit and utilize the technology. For the firms, the more

efficient the drill appears the more likely they can expect subsidization in the near future – if the

lobbyist is also expected to do her research.

Crucially, the clarity in any individual’s inference of others’ observations depends on the equilib-

rium extent of research undergone by the others in the market. Those who learn of the technology’s

value also learn that other highly informed individuals observe its value. Put succinctly, the col-

lective incentives of firms A, B and the lobbyist to acquire information intricately depend on each

individual’s expectation of the information acquisitions, observations and subsequent actions of

the others. The in-equilibrium incentives to invest in information will ultimately depend on the

strategic interdependencies that each player’s market position entails. Those in highly competitive

positions in the market (e.g. competitive firms) will, ceteris paribus, face less value to information

than those in supported or complimented market roles (e.g. lobbyists and experts).

With weighted, directed, and signed peer effects pushing and pulling equilibrium incentives,

what are the welfare implications of equilibrium information acquisition? Precisely, who over

invests and who under invests in information relative to the utilitarian benchmark? And, do players

carry incentives to distort other’s beliefs regarding their acquired information qualities? While

a rich literature studying coordination games with endogenous information2 broadly focusing on

symmetric beauty-contests has offered a number of results relevant to these questions,3 the following

network setup offers a novel platform toward assessing inefficiencies in more diverse economies.

First, the essential structural property that drives the direction of inefficiencies is the extent of

symmetry in pairwise relationships. Symmetric networks, in which pairwise peer effects are identi-

cal, provide generalizations to many features obtained in the coordination games with endogenous

information literature. For example, in symmetric beauty contests under/over acquisition of in-

formation in equilibrium has been shown to accompany strategic complements/substitutes in the

second stage. In symmetric networks, a more general bunching in acquired information qualities

obtains. For example, those facing a majority of strategic complements acquire the most informa-

2This literature is commonly referred to as “global games with endogenous information”.
3To list a few examples, Morris and Shin (2002) [47] and later Myatt and Wallace (2009) [49] illustrate how strategic

effects in actions can influence information choice. Vives (1988) [61], (2008) [62] and Hellwig and Veldkamp (2009)
[34] show how strategic complements (substitutes) can directly spill into complements (substitutes) in information
acquisition, and in turn derive inefficient under (over) acquisition in equilibrium. And, Colombo et al. (2014)
[19] provide an encompassing analysis of the inefficiencies that arise from the strategic use of private and public
information, casting equilibrium play against both the efficient acquisition and efficient use of information. Section
5.3 further discusses relation to this literature.
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tion in equilibrium but also under acquire relative to the utilitarian benchmark. Those facing a

majority of strategic substitutes acquire the least but over acquire. Departing from these results,

the direction of inefficiencies reverse upon introducing sufficient anti-symmetry in pairwise relation-

ships. Precisely, when pairwise peer effects exhibit opposing signs, acquired information exhibits

inefficient spreading in equilibrium.

A second novelty unique to network settings is the introduction of players strategically moving

against their signals. Under sufficient network irregularity and for players occupying adverse posi-

tions in the network (i.e. facing significant strategic substitutes), the endogenous choice to invest

in costly information and strategically move against signal realizations arises. Put crudely, players

may short the network. Inefficiencies naturally arise with this behavior, with the direction of these

inefficiencies continuing to be driven by pairwise symmetry. In symmetric networks, the equilibrium

extent to which these players acquire and move against their signals is inefficiently low. Precisely,

the rationality in this equilibrium behavior is valued by the very neighbors that invoke it. And

consistent with the preceding message, this value reverses when peer effects are anti-symmetric.

That is, those moving against their signals impose a net cost on those they influence.

An important question arises when considering such environments comprised of a finite number

of strategically informed players. What would happen if players could influence others’ beliefs?

With signal qualities privately acquired, players face a marginal cost due to their inability to

directly influence others’ perceptions of their expertise. In reality, firms in an array of industries

are commonly observed marketing the qualities of their research departments. Lobbyists are found

promoting the extent of their expertise in their given industry or interest. While such marketing

may serve a number of goals, this paper taps into a common impetus for this behavior, found within

equilibrium information acquisition and response. Once again, the strength and direction of this

force ultimately depends on the network’s extent of symmetry among pairwise relationships.

Elaborating on this, our three-player petroleum market is seen to display symmetry in each

pair’s peer effects. In this environment, the marginal value derived from the strategic use of

information takes on a uniformly-positive orientation, regardless of players’ positions in the network.

If firm A, for example, is able to influence firm B’s beliefs by acquiring additional information, this

discourages firm B’s strategic responsiveness. For the lobbyist, firms A’s additional informativeness

only encourages her corresponding behavior. Both of these effects work in firm A’s favor. A similar

story holds for firm B. For the lobbyist, her additional informativeness encourages the actions of

both firms. And if the firms consequently acquire additional information, the value that the lobbyist

obtains from her own research, which allows her to infer the observations and subsequent actions of

the firms, only increases. In other words, everyone carries the incentive to exaggerate the quality

of their acquired information. As will be seen, the extent of connectedness to others in the network

drives the magnitude of the strategic incentives to information acquisition.

To study these heterogeneous environments in a reduced form while maintaining scope, the

following model employs a familiar quadratic-payoffs setup under the general linear peer-effects

pioneered by Ballester et al. (2006) [5]. Incorporating incomplete information, the model captures
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players’ information investments in an initial stage. Signals are observed, informing players of their

marginal values to second-stage action. When correlation between payoffs is introduced, signals

begin to inform of the likely observations of neighbors. In line with the above vignette, the clarity

of this inference is a function of the signal’s quality as well as the qualities that neighbors are

expected to acquire. An information-response game is derived and characterized, played on the

same network of peer effects but transformed by the equilibrium correlation in signals. Here, players

choose the extent to which their strategies respond to their information. The resulting equilibrium

profile of strategic responses defines players’ informational centralities in the game.

As a function of the unique linear equilibrium of the information-response game, the incentives

to acquire information across players are derived. Marginal values to information are shown to

scale with the square of each player’s responsiveness. The scaling of marginal values with absolute

informational centralities carries with it the potential for players moving against their signals. As

such, information acquisition takes on a U-shaped non-monotonicity in networks. Acquisition at the

bottom decreases with centrality in the information-response game, with the least central players

investing in high levels of information as to move against the anticipated actions of neighbors.

After characterizing equilibrium behaviors and addressing the welfare and strategic implications

of information acquisition, we turn to optimal policy design. A hypothetical neutral player is

designated. Though an active member in the network, this player behaves as though she is in

isolation, without peer influences. Then given a symmetric network, players that respond more

so than the neutral player under-acquire information. Those responding less so but positively to

their signal realizations over acquire information. And those moving against their signals under

acquire information. With positive strategic values to information throughout the network, allowing

players to publicly observe the information investments of the most central players as well as those

moving against their signals increases aggregate welfare. As these players internalize the strategic

value to information acquisition, the network collectively adjusts information investments efficiently.

Importantly, this alignment in strategic values and informational externalities for these two sets

of players persists in anti-symmetric networks. Thus together, the origin (i.e. no information

acquisition) and the extent of acquisition and response of the neutral player provide a normalized

yardstick useful for designing optimal transparency-based interventions, portable across network

structures.

Applications of the model are then considered. The incorporation of both strategic substitutes

and complements into the analysis affords a high level of flexibility and scope. Our three player

network of firms A, B and our lobbyist provides one industrial organization incorporating both

strategic substitutes and complements. Supply chains may also embody an array of both positive

peer effects (e.g. between vertically positioned firms) and negative peer effects (e.g. between

horizontal competing firms).4 Section 5.1 further explores two more applications: financial markets

under liquidity crises and two-sided markets. Both of these examples call on networks with both

4Ostrovsky (2008) [54] and Kotowski and Leister (2014) [40] study the tension between vertical strategic comple-
ments and horizontal strategic substitutes in competitive supply chains.
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positive and negative links, with the former also exhibiting anti-symmetric relationships.

The implications for markets in crises are as follows. In liquidity flush markets, with traders

unconstrained in their asset positions, strategic substitutes in asset demand implies strategic substi-

tutes in information acquisition. Market crowding between firms’ information investments parallels

the market’s informational inefficiency derived in rational expectations, as in the seminal work of

Grossman and Stiglitz (1980) [30]. From a welfare perspective, the strategic use of costly infor-

mation implies over investment of information in the market. The application then move beyond

competitive markets to explore the implications of firms facing severe funding constraints during a

liquidity crises. À la the type of liquidity spirals studied in Brunnermeier and Pedersen (2009) [11],

a subset of firms are assumed to exhibit upward sloping demands, with high market prices allowing

them to retain inventories and avoid unwanted liquidations. As the proportion of constrained firms

to unconstrained firms grows large, firms throughout the market under acquire information. Con-

strained firms impose positive externalities on each other as they collect information, and aim to

coordinate on high market liquidity outcomes. While unconstrained firms impose negative exter-

nalities on each other, they fail to internalize the sizable value that their information investments

provide to constrained firms.

Taking job-search networks as a tangible example of a two-sided market, industry insiders and

workers researching job opportunities compete with those within their group while complimenting

the investment choices in the counterpart group. With these networks exhibiting extensive sym-

metry amongst pairwise relationships, the shorter, less competitive side of the market (insiders,

commonly) under invests in information. The longer, competitive side of the market (workers)

over acquires information. Here, insiders fail to internalize the value that their expertise endows

workers, while workers over exert themselves researching job opportunities.

The organization of the paper is as follows. Section 2 provides the model’s setup and discusses

the optimal information acquisition and response problem of a single, isolated player. Section 3 then

defines and characterizes equilibria in general networks. It discusses and derives the information-

response game, and corresponding ex ante incentives to invest in information. It then offers a

number of revealing examples describing the potential for equilibrium multiplicities and negative

signal responses. Section 4 formalizes the welfare and strategic considerations discussed above

under moderately sized peer effects. Welfare and strategic information acquisition for players

moving against their signals are then addressed. A more general analysis of optimal policy design

is then developed. Finally, Section 5 discusses applications, covers basic extensions of the model,

returns to related literature, and concludes. A Supplemental Section S after the appendix more

closely explores the relationship between network structure and information costs.

2 Model Setup

Time is discrete with two periods t = 1, 2. Period t = 1 gives the information acquisition game

(first stage). Period t = 2 gives a Bayesian game in which N players simultaneously act in response
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to their information (second stage). For the second stage we adopt the bilinear payoffs studied by

Ballester et al. (2006) [5]. We extend their setup to incorporate incomplete information regarding

the marginal benefits of action xi ∈ R for each player i ∈ {1, . . . , N}.
The following notation is used. Each player i directly cares about state ω̃i := γω +

√

1− γ2ωi,

a mixture of a player-specific state ωi with a common (shared) state ω, each drawn from Ω ⊂
R.5 The loading

√

1− γ2 on ωi merely normalizes the variance of ω̃i, simplifying the following

analysis. A more general treatment is addressed in Section 5.2 with minor modification to the

following. The respective state pairs (ω, ωi) for each i and (ωi, ωj) for each i and j 6= i are taken as

jointly independent. Together, γ and ω scale the public alignment in preference shocks. γω should

be interpreted as a publicly-shared but commonly-unknown component to the marginal value to

adopting some technology in the second stage.
√

1− γ2ωi gives the corresponding idiosyncratic

component.

All information is learned after the second stage, with each player i realizing her payoff:

ui (x|ω, ωi) = (ai + ω̃i)xi −
1

2
σiix

2
i +

∑

j 6=i

σijxixj .

ai scales i’s publicly-known average marginal gain to xi, or her expected predisposition for second-

stage action. It incorporates her average marginal value to action xi, leaving residual uncertainty

to be captured by the state ω̃i. σii gives a positive constant scaling the concavity in her utility,

capturing diminishing returns to xi. σij measures the influence that j’s action xj has on i’s marginal

gain to xi (j’s peer effect on i) and takes values in R. Positive σij will correspond to strategic

complements, negative values to strategic substitutes, with σij = 0 designating that j lies outside

of i’s neighborhood. Σ will be used to denote the square matrix [σij ] with 0’s along the diagonal.

The sizes of the elements ai and σij for each j 6= i relative to σii determine the responsiveness of

i’s ideal action to the second-stage actions of her neighbors.

Each player i does not directly observe any component of ω. However, at t = 2 i does receive

information (θi, ei), giving signal realization θi ∈ Θ ⊂ R of quality ei ∈ [0, 1] informing her of ω̃i.

i does not observe (θj , ej) for each j 6= i. Thus, i is free to choose private information-contingent

second-stage strategy Xi (·|·) : Θ× [0, 1] → R mapping privately observed signal θi to an action in

R given her quality ei.

In the first stage each i privately invests in the signal quality ei. The cost of quality (i.e.

information acquisition effort) is given by the convex function κ ∈ C2 satisfying: κ (0) = 0 and

κ′ (ei) , κ
′′ (ei) ≥ 0 for each ei ∈ [0, 1]. Beyond these standard conditions we assume the following:

Assumption 1. κ ∈ C3 satisfies: κ′(0) = 0, κ′′′(ei) ≥ 0 for every ei ∈ [0, 1], and there exists an

unique e† ∈ (0, 1) solving e† = κ′
(
e†
)
.

5While here ω will denote the vector of states (ω, (ωi)
N

i=1
), bold symbols will generally be used to denote profiles

(vectors) of respective parameters and variables, with components for each i ∈ {1, . . . , N}. We can consider ω and
ωi to follow standard normal distributions, though the more general properties in players’ expectations required in
the analysis are given below with E1-E4.
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κ′(0) = 0 implies that the marginal cost to the lowest quality information is negligible. κ′′′(ei) ≥ 0

implies that the convexity in information qualities are non-decreasing, and primary serves as a

technical condition sufficing for existence of a first-stage equilibrium. Uniqueness of a solution to

e† = κ′
(
e†
)
will be seen to yield a unique interior solution to any isolated player’s information

acquisition problem.

Without significant loss of generality we normalize σii = 1 for each i and scale other terms

as needed.6 Again, Section 5.2 discusses extensions incorporating heterogeneous σii, individual

costs functions κi, as well as additional idiosyncrasies into ω̃i. All of these extensions preserve the

following analysis and results.

Together, the couple (ei, Xi) defines a pure strategy for each i in the two-stage game. As players

do not directly observe quality investments of others, µij : [0, 1] → R+ will denote the t = 2 belief

held by player i regarding j’s first-stage quality investment ej . Thus, the initial period t = 2

expected payoff of player i as a function of the vector of other players’ strategies X−i, private

information (θi, ei), and beliefs µi can be written:

ui (xi,X−i|θi, ei, µi) = (ai + Ei [ω̃i|θi, ei])xi −
1

2
x2i +

∑

j 6=i

σijxiEi [Xj (θj |ej) |θi, ei, µi, ] . (1)

This yields a second-stage linear best response:

BRi (X−i|θi, ei, µi) = ai + Ei [ω̃i|θi, ei] +
∑

j 6=i

σijEi [Xj (θj |ej) |θi, ei, µi] . (2)

That is, each i responds to her conditional expectation of ω̃i and to what her information informs

her of the observations and actions of neighbors.

States and signals may be taken to be joint-normally distributed. The following requires only

that priors be centered about the origin and posteriors be linear-in-qualities:

E1. Ei [ω] = Ei [ωi] = Ei [θi] = 0,

E2. Ei [ω̃i|θi, ei] = eiθi for each ei ∈ [0, 1],

E3. Ei

[
θ2i |ei

]
= 1 for each ei ∈ [0, 1], and

E4. Ei [θj |θi, ei, µi] =
∫

[0,1] µij (ej) γ
2ejeiθidej .

As is common to model information investment as a number of costly draws of a normally dis-

tributed signal of given precision, Appendix A.1 applies this particular structure to derive proper-

ties E1-E4 directly. Information structures with two states also easily satisfy E1-E4.7 Together,

these give the essential properties used through the following analysis.

Conditions E1 and E2 together imply θi = ω̃i at ei = 1. Condition E3 requires a normaliza-

tion obtained by the appropriate increasing affine transformation to signals. The factor γ2ejei in

6Setting σii = σjj for each i and j does carry the implication that all players face common total variation in their
payoffs. This allows the network of peer effects to drive all variation in equilibrium information acquisition.

7Additional examples incorporating an arbitrary finite number of states can be constructed.

8



condition E4 gives the correlation of the signals θi and θj .
8 Noting that any strictly-monotonic

transformation does not change the informational content of signals,9 conditions E1-E3 merely

simplify the following analysis. Loss of generality does come with the linear-multiplicative separa-

bility of condition E4. The following analysis and results hinge only on multiplicative separability,

however. All qualitative properties remain intact under the more general (non-linear) extension

Ei [θj |θi, µi,ei] =
∫

[0,1] µij (ej) γ
2η(ej)η(ei)θidej for any non-negative and strictly monotone η ∈ C1.

Finally, as the following will consider pure first-stage strategy profiles e ∈ [0, 1]N , sequential ratio-

nality in beliefs requires µ∗
ij (ej) = 1 for each i and j. Therefore, condition E4 reduces in equilibrium

to Ei [θj |θi, ei, µ∗
i ] = γ2ejeiθi.

Though this paper’s focus is on the role of general peer effects in equilibrium information

acquisition, to help fix ideas the following example solves the information acquisition and optimal

response problems of a single, isolated player.

Example. [isolated player’s problem] Consider the information response problem of a single

player i having chosen quality ei in period t = 1, and now maximizing the following period t = 2

objective:

ui (xi|θi, ei) = (ai + Ei [ω̃i|θi, ei])xi −
1

2
x2i = (ai + eiθi)xi −

1

2
x2i .

The first order condition to her problem, conditioning on information (θi, ei), yields:

∂

∂x
ui (xi|θi, ei) = (ai + eiθi)− xi = 0,

which gives:

X∗ (θi|ei) = ai + eiθi.

That is, i responds to her realized signal by an amount equal to the qualities of the signal, ei. This

yields period t = 1 expected (indirect) utility:

Ei [ui (X
∗ (θi|ei) |θi, ei) |ei] = Ei

[

(ai + eiθi) (ai + eiθi)−
1

2
(ai + eiθi)

2 |ei
]

=
1

2

(
a2i + e2i

)
,

which uses condition E3: Eθ

[
θ2i |ei

]
= 1. Then, the period t = 1 first-order condition for any

interior e† ∈ (0, 1) is given with:

e† = κ′
(

e†
)

. (3)

Under Assumption 1, a unique e† ∈ (0, 1) solving (3) obtains. Further, as the above holds for all

values of ai, we see that without peer effects the isolated player (i) acquires a nonzero amount of

8With κ(·) a function of the quality of information that is used directly to infer ω̃i, we can interpret the efforts
of i to be focused toward information sources most relevant to her particular qualities or tastes. For example, a
firm’s inference of the value of a production technology requires acquiring information of the technology’s particular
attributes most consequential to the firm’s marginal product. The most important attributes should depend on the
firm’s specific qualities, preexisting input profile, and compatibility between coexisting technologies. Thus, κ should
be interpreted as a general cost to research.

9Precisely, such a transformation merely rescales the value of θi for each ω̃i.
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information and (ii) responds positively to her information ( ∂
∂θi

X∗ (θi|ei) ≥ 0).

As seen in the example, the value of information exhibits a natural convexity, even when a

player i acts in isolation at t = 2. This is because more precise information increases i’s posterior

belief that her response to her signal is in the optimal direction, while holding the size of her

response fixed. Then, additionally allowing her to optimally increase the size of her response

provides additional value. These two effects multiply each other, yielding an increasing marginal

value to signal quality.

3 Equilibrium information acquisition and response

3.1 Equilibrium definitions

The following equilibrium notions are presented backward inductively.

Definition 1. [second-stage equilibrium] Given profile of qualities e and beliefs µ, an information

response equilibrium (IRE) is a profile of strategies X∗ := (X∗
1 , . . . , X

∗
N ) given as a Bayesian Nash

equilibrium of the second stage game:

X∗
i (θi|ei) ∈ argmax

x∈R

Ei

[

ui

(

x,
(
X∗

j (θj |ej)
)

j 6=i
|ω, ωi

)∣
∣
∣ θi, ei, µi

]

,

for each θi ∈ Θ and i ∈ N . Expectation Ei is taken over ω̃i, θ−i and e−i using beliefs µi, taking

other players’ strategies X∗
−i as given.

Given private information (θi, ei), each player i best responds to her signal by investing in her

action, taking the profile of all other players’ actions X−i as fixed. Her information is relevant to

learning about both ω̃i and what other players observe and do at t = 2.

The first-stage equilibrium for given second-stage equilibrium X∗ and beliefs µ is defined as

follows.

Definition 2. [first-stage equilibrium] Given IRE X∗ and beliefs µ, an information acquisition

equilibrium (IAE) is a profile of qualities e∗ := (e∗1, . . . , e
∗
n) given as a Nash equilibrium of the first

stage game:

e∗i ∈ argmax
e∈[0,1]

Ei

[

ui

(

X∗
i (θi|e) ,

(
X∗

j (θj |ej)
)

j 6=i
|ω, ωi

)∣
∣
∣ e, µi

]

− κ (e) ,

for each i, where expectation Ei is taken over ω̃i, θ and e−i using beliefs µi, taking strategies X∗

as given.

That is, each player i optimally invests in the quality of her signal θi at cost κ(e∗i ), anticipating

second-stage play as given by X∗. Together, IAE e∗, IRE X∗ and sequentially rational beliefs µ∗

define a weak perfect Bayesian equilibrium of the two-stage game.
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The following begins by characterizing equilibrium information acquisition and response under

our general network setting. Section 3.3 then provides a number of examples exploring the breadth

of equilibrium behaviors.

3.2 Equilibrium characterizations

Here, we characterize IRE and interior IAE of the two-stage game. As displayed below, an ex ante

expected equilibrium α∗ ∈ R
N can be obtained to yield average second-stage actions by averag-

ing over realized signals.10 A key innovation, however, is that in addition to this expected game

played on a network, players play an information-response game on the same network. However,

the network of peer effects is transformed by the correlation in signals, which is induced by qualities

acquired in the first stage. Information now tells players not only about their marginal gain to

action (i.e. the relevant state of the world ω̃i) but also about what to expect neighbors will see and

do at t = 2. Accordingly, the relative responsiveness of each player i’s strategy to their signal θi

will depend not only on their quality of information ei, but also on each neighbor j’s equilibrium

information investment and corresponding strategic responsiveness to their own signal, θj . Cru-

cially, the resulting intricate interdependence of information responses is introduced precisely when

players’ payoffs are correlated through the common state ω: when γ > 0.

Formalizing the discussion, define the correlation adjusted adjacency matrix as:

Σc :=
[
γ2eiσijej

]

i,j;i 6=j
(4)

= γ2IeΣIe,

where Iφ denotes the diagonal matrix with entries given by (generic) vector φ.11 Then, when

(I− Σ) and (I− Σc) are invertible12 the following unique linear second-stage solution obtains.

Theorem 1. [linear IRE] For any e and sequentially rational µ∗ there exists a unique linear IRE

of the form:

X∗ = (I− Σ)−1 a+ Iθ (I− Σc)−1 e (5)

= [α∗
i + β∗

i θi] ,

denoting:

α∗ := (I− Σ)−1 a,

β∗ := (I− Σc)−1 e.

Note that α∗ is independent of e, while β∗ is a function of the vector of qualities chosen in the

10α∗ corresponds to the solution of Ballester et al. (2006) [5] but in expectation.
11
IeΣIe is referred to as a Hadamard product of [eiej ] with Σ, named after Jacques Salomon Hadamard (1865

–1963).
12Assumption A1 in Appendix A.2 provides a weak sufficient condition for this to hold.
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first stage. As shown in Appendix A.2 with the theorem’s proof, IRE X∗ is the unique equilibrium

in a broad class of strategies that yield convergent higher-order expectations across players in the

network.

A valuable interpretation of Theorem 1 utilizes the notion of weighted Bonacich centrality

(Bonacich (1987) [7]). Formally, for given N × N graph G := [gij ] of interaction terms (with

zero diagonal) and weighting vector φ ∈ R
n, the weighted Bonacich centrality measure is defined

as:

b (G,φ) := (I−G)−1
φ

=
∞∑

τ=0

Gτφ.

This measure is well defined provided (I−G) is invertible. Each i’th component of b (G,φ) gives

an aggregation of the total number of paths starting from player i, with sub-paths emanating from

each player j weighted by φj .
13 While the matrix G provides a benchmark network of bilateral

relationships, the components of φ capture each player’s relative prominence within the network.

Placing this centrality concept into the context of Theorem 1, we see that ex ante expected

actions are proportional to players’ Bonacich centrality on Σ weighted by the vector of constants a,

b (Σ,a). The strategic response of each player’s strategy to her private information also depends on

her centrality. However, the centrality of interest is now (i) adjusted for the correlation of players’

signals, and (ii) weighted by the vector of signal qualities e. For the former, scaling down links

by signal correlations adjusts for the inference of neighbors’ second-stage actions. For the latter,

weighting the resulting Bonacich centrality measure by e accounts for the value that information

carries toward directly inferring the payoff-relevant state, ω̃i. The resulting alternative measure of

centrality, or informational centrality, resonates with the unweighted Bonacich centrality b (Σ,1)

directly derived from the network Σ. b (Σc, e) instead offers an adjusted measure of player position

in the information-response game.

In light of Theorem 1 and as a technical note, scaling γ is analytically equivalent to uniformly

scaling each term in Σ, via the product γ2eiσijej in (4). Much of the following analysis will consider

small or bounded values of γ. Thus, with γ directly scaling links in Σc, this can be aptly interpreted

as taking moderately sized peer effects in the information-response game.

As seen with (5), the ways in which players respond to their information in the unique linear

IRE depends in an intricate way on the network of peer effects and on the acquired signal qualities

of neighbors.14 The following begins to characterize the collective incentives to acquire information,

providing a necessary condition for any interior first-stage strategy.

Theorem 2. [IAE and information response] Given signal quality profile e−i, player i’s

private marginal gain to signal quality ei is given by β2
i /ei, yielding the necessary condition for any

13Other variations of this centrality measure are defined with weighted walks starting from neighbors (see Jackson
(2008) [39]), while this definition’s weighting begins at the originating node.

14Or more precisely, the sequentially rational beliefs regarding the signal qualities of others.
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IAE e∗:
β∗2
i

e∗i
= κ′ (e∗i ) , (6)

for each i with e∗i ∈ (0, 1).15

With eiκ(ei) an increasing function in ei, e
∗ is thus ordered with respect to the size of players’

informational centrality, |β∗|. Intuitively, we should expect the responsiveness of each player’s

strategy to their signal to be proportional –in some way– to the quality of her information, regardless

of the presence of peer effects. Theorem 2 affirms this intuition.

Next, Corollary 1 ties player degree with their incentives to acquire information under moderate

peer effects. It describes the speeds and directions that players diverge from e† as peer effects are

introduced.

Corollary 1. Under Assumption 1, the following limit obtains:

lim
γ→+0

∂e∗i
∂(γ2)

=
e†2
∑

k 6=i σik

κ′(e†)− 1
. (7)

As γ departs from zero, or as peer effects are introduced, players with the highest degree depart

upward away from quality e† relatively faster than those with lower degree. The speed at which

players adjust their qualities decreases in the concavity of κ(e†), which measures the sensitivity

in marginal gains to information around e†. This speed increases in e†2, which measures the

initial marginal informational content that signals provide toward inferring neighbors’ second-stage

observations.

As will be observed in Sections 3.3, the degree-wise ordering in e∗ that is implied by Corollary 1

may not persist as γ is further increased. That is, while degree describes players’ initial incentives to

acquire quality, it does not fully determine these incentives when peer effects are more pronounced.

The ease and extent to which this ordering may be violated will intimately depend on both the

network’s structure and the shape of κ. Supplemental Section S further explores this relationship,

and develops network properties that allow player degree to persistently order the equilibrium

extent of information acquisition.

3.3 Examples

The following examples illustrate the breadth of equilibrium properties in this setting. The first

example illustrates the potential for multiple IAE, even under the unique IRE given with Theorem

1. Multiplicity can arise under either strategic complements or strategic substitutes.

Example 1. For this and subsequent examples we consider the following strictly convex information

cost function:

κ (e) = K
eη1

(1− e2)η2
,

15The existence of an IAE is established with Proposition S.1 in Supplemental Section S.
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where η1 ≥ 2 and η2 > 0. It can be shown that Assumption 1 is satisfied under these bounds, yielding

isolation quality e†. This functional form provides a standard family of convex costs functions that

asymptote as ei →− 1. It also allows for a broad range of convexities. Crudely, increasing η1

increases convexity at higher values of ei while increasing η shifts convexity toward lower values of

ei.

First, consider any regular network in which each player i is connected to four other players

with symmetric peer effects σij = σji = p > 0 (for neighbor j). Normalize γ = 1, and set η1 = 3,

η2 = .5 and K = .312. Figure 2(a) provides the set of symmetric equilibria of the information

acquisition game as we increase the size of p above. In these examples, information responses are

given by the increasing relationship β∗
i =

√
e∗iκ

′(e∗i ) from Theorem 2.

Under second stage strategic complements, first stage information acquisition reinforces itself.

The added convexity in the value of information introduces potential coordination problems. For

values of p above 5/22 the players can coordinate on low, medium, or high levels of information.

Higher levels of information further incentivize acquisition as the players’ signals correlate with

each other.

(a) strategic complements

4.0 4.25 4.5 4.75 5.0 5.25 5.5

0.2

0.4

0.6

0.8

1.0

p×22

e∗i
(b) strategic substitutes

0.6 0.7 0.8 0.85 0.9 1.0

0.2

0.4

0.6

0.8

1.0

p

e∗i

Figure 2: [Example 1] equilibrium multiplicity

Next, consider the two player network of players 1 and 2, with symmetric negative peer effect

σ12 = σ21 = −p ≤ 0. Set η1 = 2, η2 = 1, with K = .03.16 Now, the propensity for an asymmetric

equilibrium arises, as seen in Figure 2(b). For values of p below .85 the symmetric equilibrium

of the information acquisition game gives the unique IAE (solid line). Information responses are

again given using β∗
i =

√
e∗iκ

′(e∗i ). Above p = .85 there also exists an asymmetric equilibrium

in which one player acquires a highly precise signal while the other acquires an imprecise signal

16K is adjusted down with the new values of η1 and η2 to obtain interior solutions, with the latter set so that the
qualitative properties of the equilibrium are well displayed.
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(dashed lines). It can be verified that in this equilibrium the low-quality player rather prefers the

symmetric equilibrium, while the high-quality player strictly prefers her equilibrium informational

advantage.

The next example exhibits the potential for players to move against their information given

substantial negative peer effects. Precisely, for players facing enough negative influence from others,

the incentives to acquire information may increase with the size of these influences, but with these

players moving against their signals in anticipation of their neighbors’ actions. Strikingly, this non-

monotonicity can be quite significant, with the incentives to acquire information quickly falling to

zero and abruptly restoring itself at more extreme influences.

Example 2. Again, normalize γ = 1. Take the wheel and spoke network with center player 1 and

peripheral players i ∈ {2, 3, 4}, as depicted in Figure 3(left).

1

2

3 4

1/3 1/3

1/3

-p

-p -p

0.0 0.05 0.1 0.15 0.2 0.25 0.3

0.2

0.4

0.6

0.8

1.0

e†

−0.2

−0.1

0.0

0.1

0.2

0.3

p

e∗i β∗
i

e∗1
e∗per.

β∗
1

β∗
per.

Figure 3: [Example 2] unique equilibrium with negative signal response

Each player imposes a symmetric negative externality on 1: σ1i = σi1 = −p ≤ 0 for each

i ∈ {2, 3, 4}. Finally, the peripheral players are symmetrically linked in a circle with weights

σij = 1/3 for each pair i, j ∈ {2, 3, 4}. Take the information cost function given in Example 1,

setting η1 = 2 and η2 = 1 with K = .03.

Figure 3(right) plots qualities e∗i and responses β∗
i in the unique equilibrium of the information-

response game symmetric across the peripheral players 2-4 (‘per.’), over a range of p values. As p

departs from zero, information acquisition drops slightly for the center, as the negative externalities

between the peripheral clique and the center increase. For values of p between 0.111 and 0.183

the center acquires no information. Then, for values of p above 0.183 the incentives to acquire

information are quickly restored. However, now the center moves against the network, with 1

acquiring information and moving opposite to her signal (i.e. β∗
1 < 0) in anticipation of the actions

of the periphery. As negative externalities become more acute, further information is incentivized,

with 1’s behavior further reinforcing information acquisition throughout the network.
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Example 2 highlights the potential for non-monotonicity in information acquisition. The re-

sponsiveness of each player to her private information in an IRE X∗ remains unbounded at the

origin. Players with intermediate centrality in the information-response game face moderate incen-

tives to acquire information in period t = 1. And as illustrated in Figure 3, such non-monotonicity

need not be gradual, but rather the incentives to acquire information can quickly vanish for players

with particularly low centrality. Then, for ever lower levels of centrality the incentives to acquire

information may be restored to great extent, but now with information used to infer and move

against neighbors’ second-stage actions.

Both multiplicity and negative signal responses come as interesting equilibrium incarnations.

None the less, the following establishes sufficient conditions for the exclusion of these cases. Under

moderate peer effects, a unique equilibrium in which players move in the direction of their signals

always obtains.

Proposition 1. Under Assumption 1:

1. there is some γu > 0 such that if γ ∈ [0, γu) a unique IAE exists, and

2. there is some γp > 0 such that if γ ∈ [0, γp) all players acquire qualities in (0, 1) and respond

positively to their signals (i.e. β∗
i > 0 for each i) in equilibrium.

4 Equilibrium welfare and the strategic value to information

The welfare analysis takes the following approach. First, we will see that when allowing players’

to respond optimally to signal realizations, correlation in signals is necessary for the presence of

inefficiencies in information acquisition. That is, externalties and strategic motives arise in the first

stage only when players can use their information in the second stage to infer the observations of

neighbors. Departing from the case of zero correlation (i.e. γ = 0), strong welfare statements are

derived given moderately sized peer effects (i.e. small γ). These results address the directions of

both (i) the equilibrium profile of information qualities when information investments are publicly

observed and (ii) the utilitarian solution relative to the equilibrium described in Theorem 2. We

then turn to more significantly sized peer effects, incorporating the welfare implications of players

moving against their signals and under the potential for multiple information acquisition equilibria.

In the following welfare benchmark, we take the second-stage information response equilibrium

X∗ –a function of qualities e– as given. Further, given quality profile e we impose sequential

rationality in beliefs throughout: µj∗
i (ej) = 1 for each i and j. That is, the planner is free to publicly

announce the information qualities that she prescribes. This prevents inefficiencies derived from

inconsistent beliefs. Incorporating these elements into our benchmark leaves first-stage behavior as

the sole endogenous (potential) source of inefficiencies.

As a function of the realized quality profile e, and given IRE X∗ and sequentially rational beliefs
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µ∗, players’ ex ante values reduce as follows:

ν (X∗|e) := [Ei[ui (X
∗|θi, ei, µ∗

i ) |ei, µ∗
i ]− κ (ei)]

=
1

2

(
Iα∗α∗ + Iβ∗β∗

)
− κ (e) . (8)

This reduction to quadratic payoffs is easily shown in Appendix A.3. Then taking ν (X∗|e) we can

define the following Pareto problem:

max
e∈[0,1]N

∑

k

λkνk (X
∗|e) , (9)

for non-negative Pareto weights λ taken from the (N − 1)-simplex. First order conditions yielding

the planner’s solution epo (λ) are given for each i ∈ N by:

∑

k

λk
∂

∂ei
νk (X

∗|e) = 0. (10)

The following establishes correlation in the players’ payoffs as necessary for any equilibrium ineffi-

ciencies that may arise.

Proposition 2. At γ = 0 we have e∗i = epoi (λ), and e∗i = e† under Assumption 1, for each i.

Proof. With α∗ independent of e, (10) can be written:

∑

k

λk
∂

∂ei
νk (X

∗|e) = λi
∂

∂ei
νi (X

∗|e) +
∑

k 6=i

λk
∂

∂ei
νk (X

∗|e)

= λi





(
∂

∂ei
Ei[ui (X

∗|θi, ei, µ∗
i ) |ei, µ∗

i ]− κ′ (ei)

)

+ β∗
i

∑

k 6=i

γ2eiekσik
∂

∂ei
β∗
k



+
∑

k 6=i

λkβ
∗
k

∂

∂ei
β∗
k,

where the first term in brackets takes β∗
−i fixed. The first order condition of i’s IAE problem is

given by setting this term to zero. Now, β∗ = b ([0] , e) = e when γ = 0, and thus ∂
∂ei

β∗
k = 0 for

each k 6= i. Thus, when γ = 0 the Pareto optimal and IAE solutions align. Finally, e∗i = e† for

each i under Assumption 1 follows from β∗ = e at γ = 0 and Theorem 2.

Under our general treatment of peer effects, it does not come surprisingly that equilibria are

not generally Pareto efficient. We next begin to more completely describe the nature of inefficiency

in the model. The following measures for the strategic value to information and informational

externalities are required.

First, a loss in value to information is realized by each player i who, in equilibrium, is unable

to directly influence others’ beliefs regarding her information investment. Precisely, with qualities

privately chosen at t = 1, incentive compatibility constrains each i when weighing the costs and

benefits of acquiring information quality. If instead i could publicly invest in quality ei and directly

influence others’ beliefs, she may derive additional value from acquiring more or less quality than
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in equilibrium (holding e∗−i fixed). Informational externalities, on the other hand, are directly

imposed on i’s neighbors. Also derived from the influences that ei has on neighbors’ responses,

these externalities are instead measured by the effect that ei has on neighbors’ welfare.

Formalizing this, consider the following utilitarian problem, given from (9) by setting λ = 1
N
1:

max
e∈[0,1]N

∑

k

νk (X
∗|e) . (11)

The partial derivative of aggregate welfare with respect i’s quality is given by:

∂

∂ei

∑

k

νk (X
∗|e) = β∗

i

∂β∗
i

∂ei
+
∑

k 6=i

β∗
k

∂β∗
k

∂ei
− κ′ (ei)

=

(
β∗2
i

ei
− κ′ (ei)

)

︸ ︷︷ ︸

= 0 in IAE e
∗ f.o.c.

+β∗
i

∑

k 6=i

γ2eiekσik
∂

∂ei
β∗
k

︸ ︷︷ ︸

= 0 in public acquisition equilibrium e
pb f.o.c.

+
∑

k 6=i

β∗
k

∂

∂ei
β∗
k

︸ ︷︷ ︸

= 0 in planner’s solution e
pl f.o.c.

. (12)

In IAE e∗, where qualities are privately acquired, the first term in brackets is set to zero by i in her

optimization problem.17 That is, the term β∗2
i /ei is given by β∗

i multiplied by the marginal influence

of i’s quality on her own response ∂β∗
i /∂ei, while setting the marginal influence of i’s information

quality on others’ responses ∂β∗
k/∂ei to zero. This corresponds with Theorem 2. The middle sum

adjusts for the marginal effect that i’s information quality imposes on each k’s response in IRE X∗,

when the acquisition of ei is directly observed by each k 6= i. This term is excluded in IAE under i’s

incentive compatibility constraint, again where e∗i is chosen fixing µk and in turn β∗
k for each k 6= i.

If instead i were free to publicly choose her signal quality in the first stage she would internalize this

influence. The term captures i’s strategic incentive toward influencing her neighbors’ information

responses. Setting these terms in (12) to zero for each i yields the public information acquisition

equilibrium epb. Finally, in the planner’s problem the direct marginal influence that i’s quality

carries for others’ payoffs is also accounted for. That is, when total marginal gains to welfare from

i’s quality is set to zero, we obtain one of N first order conditions that determine the planner’s

solution epl := epo( 1
N
1).18 Together, the final two terms adjust for the effect that i’s quality has

on welfare that is not internalized by i in the first stage.

17Note that the private information acquisition benchmark is equivalent to a one-stage game in which players
simultaneously choose information qualities and information contingent strategies.

18This planner’s benchmark e
pl is commonly referred to as the “second-best team” solution, with the “first-best

team” or “team-efficient” solution determined when the planner can also control how players use their information.
See Burguet and Vives (2000) [12] or Vives (2008) [62] chapter 6 for discussions.

18



Thus, we can define the following measures:

ξsti (e,X∗) := β∗
i

∑

k 6=i

γ2eiekσik
∂

∂ei
β∗
k, (13)

ξexi (e,X∗) :=
∑

k 6=i

β∗
k

∂

∂ei
β∗
k, (14)

ξi (e,X
∗) := ξsti (e,X∗) + ξexi (e,X∗) . (15)

We refer to ξsti (e,X∗) as i’s marginal strategic value to information at quality profile e. At IAE

e∗, it informs us in which direction i would deviate in the first stage if her quality investment

were publicly observed by t = 2. In addition, it tells us how much i would be willing to pay

(in utils) per unit of quality if she could directly influence her neighbors’ beliefs of ei. We refer to

ξexi (e,X∗) as i’s marginal informational externalities at quality profile e. This marginal cost would

not be internalized in the event that i could publicly choose her information quality. Taking these

marginal costs together, ξi (e,X
∗) gives the sum of i’s marginal strategic value and informational

externalities. We term this the marginal public value from quality ei (at e). When evaluated at

IAE e∗, the vector ξ (e∗,X∗) evaluates the equilibrium gradient of
∑

k νk (X
∗|e), pointing in the

direction of the social planner’s optimal deviation from the equilibrium quality profile e∗.

Closed forms of these measures are derived in Appendix A.3. In accordance with Proposition

2, all equate to zero at γ = 0, when private signals are uninformative of others’ second-stage

observations and responses. When γ > 0 this no longer holds. For moderate peer effects, ξsti (e,X∗)

and ξexi (e,X∗) are proportional to the following network measures.

Lemma 1. [limiting marginal inefficiencies] The following limits obtain:

lim
γ→+0

∂ξsti (e∗,X∗)

∂(γ4)
= 2e†5

∑

k 6=i

σikσki, (16)

lim
γ→+0

∂ξexi (e∗,X∗)

∂(γ2)
= 2e†3

∑

k 6=i

σki. (17)

That is, the rate of increase of i’s marginal strategic value as γ4 departs from zero is proportional to

(e†)5 multiplied by the sum-of-products of i’s peer effects (i.e. the sum of her out-links multiplied

by their respective in-links). The rate-of-increase of i’s marginal externalities as γ2 departs from

zero is approximately (e†)3 multiplied by i’s in-degree.

The intuition behind these limits goes as follows. Each i’s marginal strategic value as the

network of peer effects is pronounced in the information-response game depends on both i’s outward

and inward directed links. Outward links measure the extent to which i cares about each of her

neighbor’s second-stage actions. Inward links measure the influence that i’s quality has on each

neighbors’ payoffs. Together, the neighbor-wise product of links scale i’s marginal strategic value

to her information. Marginal externalities, on the other hand, depend only on the influence that

i’s quality has on others. Precisely, marginal externalities scale by the sum of influences imposed
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on the network. For moderately size peer effects, this is propotional to i’s in-degree.

As in (7), the sizes of these limiting derivatives depend on the initial level of information

acquisition, e†. e† scales the initial strategic responsiveness of strategies, as well as the initial

extent to which players can infer others’ signal realizations from their own signals. With strategic

values involving the additional inference by neighbors of i’s signal realization, (16) scales with an

additional factor of e†2.

To explore the broader implications of Lemma 1, we next focus in on the set of symmetric

networks. This family of network architectures offers a broad and flexible class of familiar environ-

ments.

4.1 Symmetric pairwise peer effects and welfare

Here we further describe the nature of inefficient information acquisition by focusing on symmetric

network structures. This is primarily done as symmetry is commonly observed in many real-world

peer-effects environments. Be them competitive or cooperative, most relationships in society tend

to be reflexive, in both direction and size. Competitors tend to be competitors, while collaborators

can find a sometimes delicate balance of cooperative synergies. Symmetric peer-effects networks

represent environments in which individual pairs can be either competitive or cooperative, and at

various extents. As will be shown, such networks carry with them a natural tendency for strategic

information acquisition.

First, we show that marginal strategic values borne by players interacting under symmetric and

moderate peer effects are positive. This holds regardless of other network details. When influences

between player pairs balance with each other, revealing and even exaggerating one’s signal quality (if

this were feasible) unambiguously increases private payoff. Remarkably, both positive and negative

links reinforce this effect.

Secondly, we show that in these environments, the equilibrium response to the network of peer

effects is weak relative to the utilitarian benchmark. This is manifested as an inefficient dispersion

in e∗. When both positive and negative links are present, this can imply that the most informed

players under acquire information while the least informed players over acquire.

Formally, we consider the following family of network structures.

Assumption 2A. Σ is symmetric: σij = σji for each i 6= j.

Taking (16) under the symmetry of Assumption 2A, each i’s marginal strategic value positively

scales with her sum-of-squared degree:
∑

k σ
2
ik. As such, ξ

st
i (e∗,X∗) is strictly positive in symmet-

ric, connected networks under moderate peer effects. Both positive and negative links reinforce

the size of i’s marginal strategic value to information. And with (17), each i’s marginal externali-

ties positively scale with her in-degree, which under Assumption 2A equates with her out-degree.

With these measures taking on clear directions under symmetric, moderately-sized peer effects, the

following can be shown.
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Proposition 3A. [symmetric, moderate peer effects] For symmetric Σ, there exists some γw

with 0 < γw ≤ min{γm, γs} such that if γ ∈ (0, γw) and for e∗, epb and epl we have19:

1. epb > e∗, with (ei
pb − ei

∗) > (ej
pb − ej

∗) > 0 for any i and j with
∑

k 6=i σ
2
ik >

∑

k 6=j σ
2
jk,

2. e∗i > e∗j and (ei
pl − ei

∗) > (ej
pl − ej

∗) for each i and j with
∑

k 6=i σik >
∑

k 6=j σjk.

From 1., players are disincentivized to acquire information as a result of incentive compatibility

constraints. If players’ could convincingly persuade others of their first-stage actions, they would

always exaggerate their informativeness. The relative strength of this incentive scales with each

player’s sum-of-squared degree. With 2., the planner’s optimal deviation from IAE e∗ entails

increases to signal qualities to higher degree players that are no less than increases prescribed

to players with lesser degree. With equilibrium qualities similarly ordered according to player

degree (for moderate peer effects), the asymmetry in acquired information qualities are inefficiently

low as a result of marginal externalities. That is, the players’ equilibrium information qualities

are “bunched”. And if all links in the network of peer effects are non-negative (non-positive),

then ξexi (e∗,X∗) will be non-negative (non-positive) with the most informed players imposing the

greatest externalities. When both strategic complements and substitutes exist in the network, the

ordering provided in Proposition 3A.2 establishes the more general result.

The economic interpretation of parts 1. and 2. in Proposition 3A are more broadly described as

follows. For part 1., consider a player i with both positive and negative links with other players.

If i could publicly acquire additional quality, this would encourage the responsiveness of positively

linked neighbors, and simultaneously discourage the responsiveness of her negatively linked neigh-

bors. Such directed influences are precisely due to the correlation in signals: learning that ω is

likely high also informs i’s neighbors that i likely observes similar information and will respond

accordingly. These directional influences strictly work in i’s favor regardless of the sign of her link

with j. The symmetry in each pair’s relationship implies a clear direction in these incentives. Thus,

a player’s connectedness in a symmetric network determines the size of the marginal strategic value

to her information.20

With part 2., the network of peer effects can more broadly be interpreted as simultaneously

quantifying the sizes and directions of externalities in the economy (in-links), as well as the sizes

and signs of network effects imposed on each player (out-links). Externalities and network effects

balance in symmetric networks. Thus, those that respond most positively to the network –through

their information investments– are precisely those that endow the most value upon others from

acquiring their information. And those that respond most negatively are precisely those that impose

the most negative externalities upon others. Thus with respect to the utilitarian benchmark, players

collectively under respond to a symmetric network of peer effects.

All of the above equilibrium properties are illustrated with the following example.

19For 1., we assume Σ to have no isolated players: σij 6= 0 for some j for every i.
20Hauk and Hurkens (2001) [33] obtain a similar under acquisition in homogenous Cournot markets. In the network

setting, a player i’s connectedness –sum-of-squared degree– scales the size of her under acquisition arising from the
privacy of ei.
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Figure 4: [Example 3] a network with three classes of players. Solid nodes give class x, gray nodes
give class y, white nodes give class z.
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Figure 5: [Example 3] Left: equilibrium qualities. Middle: absolute welfare difference. Right:
marginal strategic value. All: solid lines give class x, gray lines give class y, dashed lines give class
z.

Example 3. Take the network structure given in Figure 4, having three classes of players comprised

of the center triad (class “x”), outer triad (class “z”), and three players bridging the two triads

(class “y”). A general definition of player classes is provided in Supplemental Section S. Here, γ

is set to 1.

Taking the cost function from Example 2 with η1 = 2, η2 = 1, and K = .1, we consider the

unique equilibria symmetric across players within each class. Equilibrium qualities e∗c , differences

(eplc − e∗c), and marginal strategic value ξstc (e∗,X∗) are provided in Figure 5 for each class c ∈
{x, y, z} over a range of p values. At p = 0 peer effects include only complements. Accordingly,

externalities remain positive for all classes over a range of small p. As competition between classes

y and z heightens, class z’s (eplz −e∗z) drops below zero. Marginal strategic value, on the other hand,

unambiguously rises for classes y and z as these players place additional weight on each other.
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With negative links representing inter-player competition, the incentives of low informational

centrality players to distort the beliefs of more central neighbors –as to discourage their information

responses– only heighten with great inter-class competition. While marginal externalities derive

the majority of the marginal public value to ei, marginal strategic value continues to capture and

describe the incentives to distort beliefs. If strategic substitutes are significant for some players,

the miss-orientation between the planner’s and these players’ preferences magnifies with greater

competition.

4.2 Network asymmetries and welfare

Here we further explore the ramifications of network symmetry. We first consider analogues of

the above results in networks with anti-symmetric pairwise peer effects. These anti-symmetric

networks provide the opposite extreme to symmetric networks. As illustrated with the application

to financial markets in liquidity crises of Section 5.1, such anti-symmetry in pairwise relationships

may pervade a market when traders face asymmetric constraints in the second stage.

Formally, consider the following condition on Σ:

Assumption 2B. Σ is anti-symmetric: σij = −σji for each i 6= j.

That is, for each peer effect the opposite-pointing effect gives the opposite-signed relationship. We

refer to these pairwise relationships as anti-symmetric. Here, the natural analogue to Proposition

3A obtains.

Proposition 3B. [anti-symmetric, moderate peer effects] For anti-symmetric Σ, there exists

some γw with 0 < γw ≤ min{γm, γs} such that if γ ∈ (0, γw) and for e∗, epb and epl we have:

1. epb < e∗, with 0 < (ei
pb − ei

∗) < (ej
pb − ej

∗) for any i and j with
∑

k 6=i σ
2
ik >

∑

k 6=j σ
2
jk,

2. e∗i > e∗j and (ei
pl − ei

∗) < (ej
pl − ej

∗) for each i and j with
∑

k 6=i σik >
∑

k 6=j σjk.

In this setting, players face opposite strategic incentives. They now face the incentives to understate

their informativeness: to “play dumb”. IAE now exhibit over-dispersion under moderate peer

effects. In these networks, the most informed players will tend to over acquires while the least

informed players will under acquire.

But, what if the network is neither purely symmetric nor anti-symmetric? With the strategic use

of information taking extremes under symmetric and anti-symmetric networks, their manifestation

in networks with both symmetric and anti-symmetric relationships may be less pronounced. The

following example explores this more general setting.

Example 4. First consider the two-player directed network where player 1 faces strategic substitutes

in 2’s action, σ12 = −p < 0, while player 2 faces strategic complements in 1’s action of equal size,

σ21 = p. Then, one can derive an exact expression for marginal strategic values:

ξsti (e∗,X∗) = −γ42
β2∗
i

e∗i
p2e∗21 e∗22 ,
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Figure 6: [Example 4] an asymmetric network

for i = 1, 2. That is, both players face the incentive to understate their information investment, in

accordance with Proposition 3B.1. Precisely, player 1 has the incentive to understate her quality

as to encourage 2’s information investment. On the other hand, player 2 faces a similar incentive,

but rather in order to discourage player 1’s information investment.

Now consider the extended network in which player 2 is positively and symmetrically influenced

by a player 3: σ23 = σ32 = q > 0. The structure of peer effects is offered in Figure 6. One can

similarly derive:

ξst1 (e∗,X∗) = −γ42β2∗
1 p2e∗1e

∗2
2 ,

ξst2 (e∗,X∗) = γ42β2∗
2 e∗2

(
q2e∗23 − p2e∗21

)
,

ξst3 (e∗,X∗) = γ42β2∗
3 q2e∗3e

∗2
2 .

Thus, player 2 may no longer face significant marginal strategic value to her acquired information

if q2e∗23 ≈ p2e∗21 in IAE e∗.

We see that environments that couple symmetric and anti-symmetric relationships carry am-

biguous strategic motives. When positive strategic values induced by symmetric relationships

counterbalance negative strategic values induced by asymmetric relationships, players may be left

without a unidirectional motive to influence others’ beliefs. The private investment of information

simultaneously imposes positive and negative strategic motives behind information acquisition. The

net result is left as a function of each particular player’s position in the networks of directed peer

effects.

Next we address welfare implications when peer effects are large, incorporating negative infor-

mation responses and multiple equilibria.

4.3 General peer effects and welfare

This section extends our welfare analysis to include more significant peer effects, and incorporates

the potential for negative signal responses and multiple equilibria. As we will see, the observed

U-shaped non-monotonicity in the incentives to invest in information carries over to externalities.

As suggested throughout the preceding sections, the essential structural property driving the di-

rection of the utilitarian optimum will be the extent of symmetry or anti-symmetry in pairwise
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relationships. We continue by taking Assumptions 2A and 2B as extremal benchmarks to pairwise

symmetry and anti-symmetry (resp.) through the network. While clearly most real-world networks

may not align exactly with one of these two cases, the following welfare properties can be applied by

considering the extent of symmetry at a local level for sub-components of an observed peer-effects

network.

To derive Lemma 1, Appendix A.3 takes the geometric expansions of the closed forms of ξst

and ξex, respectively. Then taking their leading terms –which dominate their respective sums for

small γ– the limits (16) and (17) are established. While affording formal proofs of Propositions 3A

and 3B under moderate peer effects, these leading terms remain useful in assessing the directions

of informational externalities and strategic values in the network. As derived in Appendix A.3, the

approximations to ξst and ξex for symmetric networks are given as:

ξsti (e∗,X∗) ≈ 2
β∗2
i

e∗i
γ4
∑

k 6=i

e∗2i σ2
ike

∗2
k , (18)

ξexi (e∗,X∗) ≈ 2
β∗
i

e∗i
(β∗

i − e∗i ) , (19)

for each i. And for anti-symmetric networks the negations of these corresponding approximations

obtain.

In symmetric networks, we see that (18) is strictly positive for β∗
i 6= 0, consistent with Proposi-

tion 3A.1. We can assess (19), on the other hand, using Figure 7(a). In the top panel e∗i is graphed

against β∗
i . The exact form of this relationship is implicitly defined with expression (6) of Theorem

2. For any given Σ and in any IAE e∗, the players will be spread across the domain at various

points, yielding each i’s e∗i . Below this, the approximation (19) is plotted. With the exact form of

marginal externalities scaling with signal response β∗
i /e

∗
i , these marginal costs always pass through

the origin. When β∗
i = e∗i = e†, (19) again obtains a value of zero.

Thus, we obtain a reversal in the sign of marginal externalities when players move against their

information. Non-monotonicity in the private value of information extends to the public value of

information. For β∗
i < 0, the second-stage optimality of i’s negative response implies that the value

she derives from strategically moving against her signal outweighs the value from inferring and

responding with her expectation of ω̃i. This is precisely because in IRE X∗, the network imposes

significant cost to i if she moves in the direction of her information. In symmetric networks and

when β∗
i < 0, this cost translates to value imparted to i’s competitors: to each j with σji < 0 and

β∗
j > 0. And with i failing to internalize this positive externality, she under acquires information

relative to the efficient benchmark.

This reversal in the direction of the utilitarian solution relative to e∗i can be illustrated with

Example 2. p again gives the size of the negative links connecting the center player 1 to the

peripheral players {2, 3, 4}. For p values below 0.111 player 1 moves in the direction of her signal

realization, for values between 0.111 and 0.183 she acquires no information, and for values above

0.183 she moves against her signal in anticipation of the periphery’s second-stage actions.
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Figure 7: [Directional inefficiencies] leading terms of marginal externalities.

Figure 8 provides the planner’s solution epl1 for the center (dashed line) along with IAE e∗1.

Below p = 0.111 player 1 over acquires information while facing positive marginal strategic values,

as consistent with Proposition 3A. Internalizing marginal externalities on the periphery (as well

as 1’s marginal strategic values), the planner sends i’s quality to zero early. Then for p > .145,

(epl1 −e∗1) becomes positive with the planner setting β∗
1 to be negative. Thus, player 1 under acquires

information, and moves against her signal late. When player 1 finally starts moving against her

signal (for p > 0.183) the gap between the planner’s solution epl1 and e∗1 drops. Thus, the reversal in

ξex1 as β∗
1 crosses the origin translates to a leftward horizontal shift in epl1 . While the corresponding

figures for the periphery are omitted, (eplper. − e∗per.) and ξstper. remain strictly positive and vary only

mildly over the range of p values shown.

The economic message is noteworthy. When players acquire and move against their information

in symmetric networks, the direction of this strategic behavior is socially efficient from a utilitarian

perspective. But, the equilibrium extent to which these players invest in information is inefficiently

low. The periphery now benefits from 1’s negative response, and is only further encouraged to

respond positively to their own private information. The value that such players create for others

by acquiring and moving against their information is, once again, not internalized in equilibrium.

Returning to (18) and Figure 7(a), if ξexi ’s leading term plays a dominant role in its sum, the

exact form will shadow the depicted quadratic form. Inclusion of second order terms, or of marginal

strategic values giving ξi –both of which will be positive away from the origin– give a more accurate

approximation to the gradient of the utilitarian function. This higher-order approximation will (i)
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Figure 8: [Example 2] welfare inefficiency of player 1 equilibrium signal quality

continue to cross the origin, with higher-order terms also scaled by β∗
i /ei, and (ii) cross the β∗

i -axis

(again) at some point to the left of β∗
i = e†.

The exact point at which ξi crosses the β∗
i -axis to the right of the origin designates the lower

bound of the set of players that exhibit positive margin public values to e∗i , while setting β∗
i > 0.

This includes all i that set β∗
i > e†: region (III) in the figure. Players setting β∗

i ∈ (0, e∗i ) in region

(II) face negative marginal externalities up to some β∗
i left of e†. Finally, for players moving against

their information, for β∗
i < 0 giving region (I), marginal externalities once again switch positive.21

For the hypothetical “knife-edge” player that sets β∗
i = e∗i = e†, such an i must satisfy the

equilibrium condition:
∑

k 6=i σike
∗
kβ

∗
k = 0. That is, the sum of i’s inferred network effects –the

weighted sum of expected neighbors’ responses– equals zero. Responding as an informed player

within the network, such an i continues to use her information to infer the actions of neighbors.

However, on net, i’s incentives to strategically respond by adjusting her signal response upward or

downward from e† perfectly balance. From the outside observer, i behaves as though she acts in

isolation. But in actuality, the net influence that the network imposes on her behavior equates with

zero. And given the symmetry of the network, so must her total externality imposed on others.

We term such an i the “neutral player”.

Figure 7(b) provides the corresponding functions under an anti-symmetric network (Assumption

2B). While the equilibrium relationship providing e∗i as a function of β∗
i remains unaltered, the

corresponding approximations to marginal externalities and marginal strategic values invert. Now,

players face negative marginal strategic values. The resulting influence –either up or down– on

others’ incentives to acquire information from understating their informativeness always works in

their favor. In region (IV) we now see players that significantly move against their information

21While marginal externalities and marginal strategic values are zero at β∗
i = 0, we see from Figure 8 that the

planner’s solution can depart from zero information. Though the gradient of the utilitarian function is fixed at zero
at the origin, this does not imply that the planner and IAE solutions align: β∗

i = 0 may give an inflection point to
the planner’s objective.
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imposing negative externality on the network. Their strategic behavior only reduces the incentives

of more central players to acquire information. Players in region (V), moving in the direction of

their signals but less so than the neutral player, under acquire information. The very peer influences

that induce them to respond less to their information add value, on net, to the network. Those

in regions (VI), to the right of the neutral player, face additional incentive to acquire information,

which translates to negative marginal externalities.

4.4 Policy design

A number of policies could be implemented that nudge the economy in the direction of an efficient

outcome. A tax and transfer policy gives an invasive but effective approach. If ξi is negative for

at least some i and positive for others, a revenue neutral plan taxing the information investments

of the former while subsidizing the latter could be at least partially effective. When all links are

non-positive or non-negative, subsidy-only and tax-only plans, respectively, would be required.

A less invasive policy geared toward acquisition transparency provides an alternative design.

Public certification of the information investments of targeted individuals give one example. Cen-

tralized verification and publication of research, or policies that physically display the efforts of

individuals within the network give others. All of these examples involve targeting selected posi-

tions within the information-response game.

The preceding section suggests a more descriptive design for each of these policy types. Let

us focus on symmetric networks, leaving the natural analogue for anti-symmetric networks. For

tax and transfer policies, players moving against their information or who set β∗
i > e† should be

incentivized (subsidized) to acquire additional information, while those with β∗
i ∈ (0, e†) should

be discouraged (taxed). If links are non-negative and the network resides in region (III), then

a natural policy multiplier is realized. Each dollar publicly offered to encourage the acquisition

activities of highly central players in the information-response game feeds through to influence the

acquisition activities of less central players. Upon introducing negative peer effects as well, such

an incentive scheme continues to feed through to others’ incentives. Less central players exhibiting

ξi < 0 will be discouraged from acquiring information: an aggregate welfare enhancing effect. And

conversely, taxing the acquisition activities of these low-centrality players will tend to encourage

the acquisitions of the most central players.

For policies enhancing first-stage transparency, players with β∗
i > e† or β∗

i < 0 should be

targeted. Under only positive links or when negative links are also present, such policies again

exhibit a natural multiplier. The incorporation of marginal strategic values into the objectives of

the targeted players further encourages others in regions (I) and (III), and discourages those in

region (II). In both Figures 7(a) and 7(b), we see a preservation of the property that players to

the left of the origin and right of the neutral player tend to exhibit marginal strategic values that

are aligned with their marginal externalities, while for those just right of the origin these measures

miss-align. Thus, increasing transparency of players with responses outside of the interval (0, e†)

remains a robust and simple rule-of-thumb for these designs, regardless of the extent of symmetry
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or anti-symmetry in pairwise peer effects.22

Certification-based policies will be most feasible in symmetric networks for the following rea-

son. Implementation for players facing positive marginal strategic values requires only a one time

certification of their information investments. For those facing negative marginal strategic values

(i.e. anti-symmetric peer effects), nothing prevents these players from acquiring additional informa-

tion subsequent to certification. With other players rationally anticipating this behavior, one-time

certifications in anti-symmetric networks may be unimplementable.23

A few empirical challenges must also be addressed in any of these designs. First, unless data on

information responses in the market can be obtained, retrieval of the peer effects network Σ will

be necessary in order to derive equilibrium β∗. Further, understanding of the costs of information

κ is needed to elicit the value of e†. Players may also face their own idiosyncratic information

costs in real-world peer-effects environments. Section 5.2 addresses extensions that incorporate

heterogeneous information costs.

5 Discussion

In this section we explore applications to financial markets in crises and to two-sided markets.

Then, basic extensions of the model incorporating further heterogeneity across players’ preferences

are developed. The model’s broader relation to the literature is discussed before concluding.

5.1 Applications

MARKET EFFICIENCY and CRISES. Here we apply the above setup to financial markets

and crises. The above welfare properties are cast against the Efficient Market Hypothesis, and

applied toward equilibrium information acquisition during financial crises. For the latter, this will

require a mixture of both symmetric and anti-symmetric pairwise peer effects.

First consider the following stylized model of a competitive, liquidity-flush market. N traders

comprise nontrivial shares of a market for a risky asset. The market price in the second stage is an

increasing function of the total of their chosen holdings: φ(x̄) = A+Bx̄, where xi gives i’s holding

of the asset, x̄ :=
∑N

i=1 xi, and A,B > 0. Then, as a function of the asset’s fundamental value ω,

each i’s payoff is given by:

ui(x|ω) = (ω + piφ(x̄))xi − x2i

= (piA+ ω)xi + (piB − 1)x2i + xipiB
∑

k 6=i

xk, (20)

where here we set pi < 0 capturing a downward sloping demand from each trader. Then, the

t = 2 expectation Ei[ω + piφ(x̄)|θi, ei] in i’s best response (2) captures her long-term expected

22An even more precise design to the above proposals would target players with positive marginal public values to
their information, ξi > 0, which includes some players in region (II). However, with second-order effects and marginal
strategic values shifting the intercept to the left, targeting all i with β∗

i > e† can be taken as a conservative design.
23When feasible, continuous monitoring of players below 0 and above e† could insure policy compliance.
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return to her investment, a decreasing function of the expected market price at which assets are

purchased. The quadratic term −x2i captures decreasing returns to holding inventory, derived from

the opportunity costs of funds.

The market price φ(x̄), which here traders do not condition on when choosing second-stage

actions, is meant to capture the strategic value that players derive from private information in

the market. We can think of each trader i’s final holding xi to be realized by i placing some

market order (buy or sell) in the second stage, without complete knowledge of the transaction price

ultimately realized.24 As seen in (20), the sensitivity of the asset’s price to others’ demands scales

by B, which will depend on the total size of the N traders in proportion to the broader market.

The larger is B and pi (in size) the more i cares about the short-term demands of the other N − 1

traders in the market. And the larger the size of piB < 0, the more i will strategically avoid highly

demanded assets. Thus in reduced form, this stylized setup captures the strategic uses of private

information in financial markets under monopolistic competition.

The application can be placed against the Efficiency Market Hypothesis, as follows. As first

characterized by Grossman and Stiglitz (1980) [30], when prices are observed and used to infer the

private information acquired by others, the asset’s price can not both fully and rationally reveal

all information of the asset’s underlying value.25 Precisely, if costly private information is fully

transmitted through observation of the asset’s market-clearing price, then the ex ante incentives to

acquire the information are compromised. Here, through the strategic use of information, the shear

presence of competing traders similarly reduces the incentives to acquire private information. This

is now due to the inference of others’ observations and equilibrium actions: privately observing

that the asset has high long-term value also informs traders of high short-term market prices. The

traders continue to crowd each other as they compete for valuable assets.

The application elicits an important distinction between the informational efficiency versus

the welfare efficiency of the market. While the incentives to acquire information display strategic

substitutes, the extent of crowding out that ensues is inefficient. With each peer effect taking a

negative value, each i will obtain ξi < 0 with e∗i > epl. In other words, the market will reside in

region (II) of Figure 7(a). The informational inefficiency of the market is efficient from a utilitarian

perspective, but to an inefficient extent. In other words, the traders over exert themselves in

competition as they research the asset’s long-term value.26

We can further apply the model to yield similar statements on inefficiencies during financial

24This is akin to Kyle (1984a) [41] and (1985) [42], where an insider’s market order is a function only of the asset’s
value and not the market-clearing price. In rational-expectations equilibrium, Kyle (1989) [43] allows traders to
submit demand schedules over market prices. The strategic use of information comes in the form of inference of
market depth: each informed trader i submits her demand schedule given her information, inferring (i) the private
observations of other informed traders, and thus (ii) their submitted demand schedules and the extent of noise traders
in the market, and ultimately (iii) the sensitivity of the asset’s price to i’s demand.

25Hellwig and Veldkamp (2009) [34] also highlight a similar kinship with Grossman and Stiglitz (1980) [30].
26Sanford Grossman and Joseph Stiglitz [30] close with an open question of ‘whether it is socially optimal to have

‘informationally efficient markets’,”. The above model thus provides one answer, and that is “no”. When price
discovery is introduced, complementarity in information acquisition may also arise, pushing in the opposite direction
of over acquisition while reinforcing the under acquisition during crises by all N traders, as described below.
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Figure 9: Market with liquidity-constrained traders

crises. Consider some subset of the traders undergoing severe funding constraints. Precisely, while

these traders carry asset holdings prior to the second stage, their abilities to retain their inventories

will depend on the market price φ(x̄). If liquidity is sufficiently thin amongst these traders, liquidity

spirals may ensue.

Brunnermeier and Pedersen (2009) [11] provide a theoretical framework of liquidity spirals

during crises. Their model captures the dynamic interdependence of market prices and traders’

funding constraints. With an initial fall in the asset’s perceived fundamental value, speculators’

funding constraints force liquidity-starved traders to sell off inventory. As the market price drops,

margin calls force these traders to further liquidate, causing a further drop in the asset’s market

price. This only further constrains the traders, and the spiral worsens.27

In effect, these severely constrained traders’ demand functions exhibit an upward sloping form.28

As a reduced representation, we capture this by setting pi > 0 for each of these traders. How exactly

would the market look? Figure 9 illustrates the network architecture for the N traders. Liquidity

constrained traders, facing positive and directed peer effects, will be the most central players in the

information-response game.29 With respect to Figure 7, unconstrained traders will lie to the left

of the neutral player, while highly constrained traders will lie to the right.

The stakes are high for constrained traders. If ω is high, this implies both that the traders

can expect a large returns on their holdings, but more importantly, that the current market price

will remain high. This is crucial, as the availability of market liquidity is necessary for them to

maintain their holdings without the burden of funding constraints.30

27Here, the strategic component of information to constrained firms is even more evident as private information
may allow them to forecast market prices and infer the potential for constraints to bind over the short term.

28See also Gennotte and Leland (1990) [26], Angeletos and Werning (2006) [2] and Gárleanu et al. (2014) [25] for
models with inverted equilibrium demand functions of constrained traders in crises.

29In the language of Supplemental Section S, these firms’ weighting functions lie strictly above those of uncon-
strained traders, and thus there will always exist an equilibrium in which they acquire more information. While
marginal values to information may be higher for these traders, so too may their marginal costs if the opportunity
costs of funds to these traders are large. This can be captured using idiosyncratic κi: see Section 5.2.

30One can either model information as directly acquired by the traders’ funders, or by the banks but with signal
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Figure 10: [Efficiency and liquidity crises] Unique equilibrium information qualities versus number
of constrained traders (# cnst.) out of eight traders. All links are of size .1, η1 = 2, η2 = 1, and
K = .01 for the cost function in Example 1, giving e† = 0.927.

As illustrated in Figure 10 for a market of eight traders, equilibrium welfare exhibits a paradigm

shift as the extent of liquidity through the market declines. This shift is driven by the orientation

(i.e. symmetry or anti-symmetry) in the local peer effects that each market participant faces. First,

when most traders are unconstrained (i.e. “normal” times) the market takes on one similar to the

competitive market described above. For the few constrained traders in the market, the majority

of their relationships will be anti-symmetric. Residing in region (VI) of Figure 7(b), these traders

will over invest in equilibrium. Responding intensely to the news of a high ω, their impact on the

market price only crowds the market activities of unconstrained traders. Then, as the proportion

of constrained traders grows, these traders face more symmetric and positive peer effects while

unconstrained traders face more anti-symmetric relationships. When liquidity problems pervade

the market, the constrained traders enter region (III) in Figure 7(a), with unconstrained traders

moving to region (V) of Figure 7(b). When the number of constrained traders grows to three or

more, all traders under invest in information. Those under significant funding constraints face

positive externalities from the information investments of others. Their informativeness allows the

constrained traders to coordinate on asset retention in high market-liquidity outcomes (i.e. high

realizations verifiable to the funders.
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φ(x̄)), which tend to occur when the asset is “good” (i.e. high ω).

A striking set of equilibrium behaviors arise among the few unconstrained traders during a

crisis. Their acquisition activities impose positive externalities on constrained traders. Moving

with their information in region (V) in Figure 7(b), unconstrained traders’ informativeness further

aids constrained traders to coordinate on high market-liquidity outcomes. They thus under acquire

in equilibrium. When six or seven constrained traders pervade the market, the few unconstrained

traders acquire zero information in the planner’s solution. When the number of constrained traders

rises to seven, however, the lone unconstrained trader moves to region (IV) and finds additional

value to acquiring information, inferring and moving against the actions of others in the market.

Observation. As the extent of funding constraints across traders increases, the market equilibrium

shifts from being over informed to under informed from a welfare perspective. Crucially, in severe

liquidity crises as constrained traders attempt to coordinate on high market-liquidity outcomes, both

constrained and unconstrained traders do not internalize the positive externalities their information

imposes on the constrained side of the market. In extreme crises, unconstrained firms acquiring

and moving against the market do so at a cost to aggregate welfare.

One can also introduce additional network irregularity by applying this framework to over-the-

counter markets. As in Babus and Kondor (2014), if a network designating feasible trades constrains

the market, and with each bilateral transaction assigned its own clearing price, Figure 9 would take

on a more incomplete network structure. Only trading pairs would be linked in the corresponding

peer-effects network, with the sign of out-links determined by the extent of available liquidity to the

corresponding trader. The above observation extends. Precisely, highly connected traders that are

liquidity deprived may significantly over acquire information relative to the utilitarian benchmark

if their neighbors are generally unconstrained. Traders that are unconstrained but have many

constrained neighbors will, again, under acquire in equilibrium.

Finally, the above policy discussion applies to the application as follows. Competition amongst

firms in normal times suggests that certification-based policies may be unimplementable. During

crises, however, constrained banks face positive strategic values. Stress tests, coupled with the

certification of identified constrained firms, offers a simple and implementable policy intervention.

Constrained banks’ anticipation of being identified and certified encourages them to internalize

their strategic use to information. As they acquire additional information, the market is pushed in

the direction of the utilitarian solution.

With marginal strategic values to these firms scaling with their quality-weighted sum-of-squared

degree (see expression (18) above), one can verify that such transparency-based policies will be most

effective in incomplete network structures under large pairwise peer effects (e.g. in over-the-counter

markets). In these networks, marginal strategic values can be sizable in proportion to marginal

externalities.31 With a few constrained neighbors imposing large positive externalities on each

31To formalize the statement in the context of Section 5.2, trader i will have large strategic values relative to
externalities when γiσij is large relative to σii for each neighbor j.
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trader, and vice versa, the effect of internalized strategic values moves the market farther toward

the utilitarian solution than in completely but weakly connected network structures.

TWO-SIDED NETWORKS. As an example of a two sided network, consider a job-search

market with network structure depicted in Figure 11. Here, a pool of insiders, which may include

head hunters or industry professionals, link to workers searching for a job. A particular firm to

whom each insider has ties posts a number of open positions. The quality of the firm as an employer

(culture, benefits, job security and growth, etc.) are captured by an unknown common state ω.

At t = 2, each insider i exerts resources xi toward filling the firm’s vacancies with workers they

know. Each worker j invests time and effort xj tailoring their resumes to align with the firm’s

qualifications and formally applying to relevant positions through their acquainted insiders. The

optimal second-stage actions of each player will depend on the expected quality of the firm as an

employer, as well as the anticipated actions of neighbors. The workers compete with each other to

fill job vacancies, while the insiders compete with each other to connect the workers with the firm

and collect value in the form of commission or gained social capital.

insiders workers

−

−

−
−

−

−

−

+

+

+

i
j

Figure 11: A job-search network

Abstracting away from variability in the size of counterpart links, the network will generally

be symmetric with the welfare properties depicted in Figure 7(a) applying. If the insiders out

number workers, facing more positive links across the two groups than negative links amongst

other competing insiders, then they will generally reside in region (III). This places the workers in

region (II). In this case, insiders face greater incentive to research the firm and will under acquire

information in equilibrium. This is because they fail to internalize the positive externalities that

their expertise provide their clientele. The less informed workers will over acquire information and

over exert themselves researching .

Strategic substitutes within each side and complements across each side of the market introduce

clear network irregularities. However, additional heterogeneity may exist across peer effects within

either side of the market. As seen in Figure 11, insider i enjoys only two links with workers, which
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pushes against her centrality in the information-response game. However, i faces the luxury of

being the only insider connected to worker j. On the other hand, while the other two insiders enjoy

high connectivity with workers, they face stiff competition between each other as their clienteles

highly overlap. More generally, the insiders most central in the information-response game will be

those that strike an ideal balance between their connectedness (i.e. degree) and the centrality of

the workers they connect with (here, client exclusivity).32

While this example lends itself well to job-search networks, an array of two-sided markets should

adopt similar welfare properties. Entrepreneurs and venture capital investing in new platforms

or technologies, Hospitals and pharmaceutical sales firms investing in new medicines or medical

technologies, or any other two-sided market in which all players acquire information regarding a

fundamental common state will apply.

Observation. Two-sided markets in which the shorter side of competing insiders matches com-

peting workers with value-creating transactions exhibit under acquisition amongst experts and over

acquisition amongst workers. Experts fail to internalize the positive externalities that their informa-

tion impose on workers, and workers fail to internalize the negative externalities their information

impose on other workers.

5.2 Basic Extensions

A number of generalizations to the basic model can be considered. As suggested by footnote 6,

setting σii = σjj = 1 comes with loss in generality in the degree of variation in players’ payoffs. To

account for idiosyncrasies in this variation, one can rather define ω̃i = γiω + ιiωi for γi, ιi ∈ R+,

and take the ex post payoff structure:

ui (x|ω, ωi) = (ai + ω̃i)xi −
1

2
σiix

2
i + ρ

∑

j 6=i

σijxixj ,

where ρ ∈ R+ directly scales the size of peer effects. The corresponding second-stage linear best

response is:

BRi (X−i|θi, ei, µi) =
ai + Ei [ω̃i|θi, ei]

σii
+ ρ

∑

j 6=i

σij
σii

Ei [Xj (θj |ej) |θi, ei, µi] .

Such a generalization comes with only two necessary modifications to the model’s primitives, made

to conditions E2 and E4 to give Ei [ω̃i|θi, ei] = vieiθi and Ei [θj |θi, µi,ei] =
∫

[0,1] µij (ej) γjejγieiθidej ,

respectively, where vi :=
√

γ2i + ι2i gives the variance in i’s relevant state ω̃i.

Inline with these generalizations, an updated correlation-adjusted adjacency matrix

Σc := [γieiσijγjej ] can be defined. With vi scaling i’s interim expectation of ω̃i, informational

centralities are now further weighted by the extent of variation in players’ relevant states:

32Supplemental Section S discusses this further.
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β∗ = (I− Σc)−1 Ive.

The analogue to network symmetry incorporates an adjustment to peer effects:

Assumption 2C. I−1
σ IγΣIγ where σ := [σii] is symmetric: γi

σii
σij =

γj
σjj

σji for each i 6= j.

This generalization of Assumption 2A comes with a natural interpretation. Players with low σii

possess relatively high propensities to choose high actions in the second stage, on average, as well

as to acquire information and respond highly to their signal realizations, ceteris paribus. These

are exactly the players that have significant influence in the information-response game. Thus,

Assumption 2C requires that these influential players have proportionally greater impact on the

preferences of those with less influence.33 The weighting by γi and γj adjusts for the loading that

each player places on the shared state ω. That is, the players’ impacts scale directly with the

extent that their preferences correlate with others’ preferences. The corresponding assumption for

anti-symmetric networks can also be defined and applied in a similar way.

Finally, one is free to introduce further idiosyncrasies through the curvature of information costs

by providing κi(ei) for each i. With these extensions, all of the above results are preserved. With

all of these modifications, we obtain the identical expression to (6): β∗2
i /e∗i = κ′i (e

∗
i ) for any interior

e∗i . Players that are most “central” in the information-response game are now those with the right

combination of being (i) central in the updated network Σc, and (ii) having a natural propensity

to acquire information, as determined by the relative sizes of
√

γ2i + ι2i and σii and the extent of

convexity in κi.

Analogous limit results are easily obtained, with partials taken with respect to ρ rather than

γ2, and by sending ρ →+ 0. The corresponding expressions to (7), (16), and (17) are respectively:

lim
ρ→+0

∂e∗i
∂ρ

=
γie

†
i

κ′i(e
†
i )− 1

∑

k 6=i

γke
†
k

σik
σii

,

lim
ρ→+0

∂ξsti (e∗,X∗)

∂(ρ2)
= e†i (γie

†
i )

2
∑

k 6=i

(γke
†
k)

2σik
σii

σki
σkk

, and

lim
ρ→+0

∂ξexi (e∗,X∗)

∂ρ
= γie

†2
i

∑

k 6=i

γke
†
k

σki
σkk

.

As one may anticipate Proposition 3A maintains, but with
∑

k 6=i γke
†
k
σik

σii
defining each player i’s

effective degree for moderate peer effects:34

Proposition 3C. [symmetric, moderate peer effects] For symmetric Σ, there exists some γw

with 0 < γw ≤ min{γm, γs} such that if γ ∈ (0, γw) and for e∗, epb and epl we have:

33Taking the inter-bank network as an example, The Bank of America’s expected extent of information acquisition
should carry proportionally greater influence on the preferences of smaller banks than do the information investments
of these banks on the incentives of The Bank of America.

34The results of Supplemental Section S also maintain, with our notions of degree centrality and weighting function
defined in terms of normalized peer effects γi

σii
σij for each i and j.
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1. epb > e∗, with (ei
pb − ei

∗) > (ej
pb − ej

∗) > 0 for any i and j with
∑

k 6=i

(

γke
†
k
σik

σii

)2
>

∑

k 6=j

(

γke
†
k

σjk

σjj

)2
,

2. e∗i > e∗j and (ei
pl − ei

∗) > (ej
pl − ej

∗) for each i and j with
∑

k 6=i γke
†
k
σik

σii
>
∑

k 6=j γke
†
k

σjk

σjj
.

And, the analogues to Assumption 2B and Proposition 3B that incorporate these extensions can

similarly be constructed.

Crucially, the basic message of Figure 7 will continue to hold. Approximations to ξsti and ξexi
are derived with γi and 1/σii scaling each peer effect σij . Thus, the corresponding figures can be

produced for each individual player. Under Assumption 1, exactly where each i falls on their β∗
i -axis

relative to the origin and their respective e†i continues to be driven by the network of peer effects.

In symmetric networks (now, Assumption 2C), those in their corresponding region (III) choosing

β∗
i above e†i underinvest, those to the right of the origin falling in region (II) tend to overinvest,

and players moving against their signals in region (I) again underinvest. All players to the right

of the origin moving in the direction of their signal realizations continue to face positive marginal

strategic values.

Thus, one can view the above model’s homogenous setup in the first-stage information-acquisition

game –outside of network effects– as simplifying the analysis, allowing the network to “speak

clearly”. None the less, the extent of symmetry in pairwise peer effects coupled with players’ in-

formational centralities continue to play crucial roles shaping equilibrium inefficiencies in a much

broader set of economies.

5.3 Related Literature

Here related papers are discussed, along with a number of potential avenues for future research. The

paper relates to a family of papers studying information games with communication on networks.

In Calvó-Armengol and de Mart́ı (2007) [13], (2009) [14], and Calvó-Armengol et al. (2009) [15] the

network is defined by the exogenous correlation matrix between signals. In Calvó-Armengol et al.

(2011) [16] this network is endogenized through a communications device, and the authors study the

relative extent of active and passive communication in equilibrium (i.e. “speaking” and “listening”,

resp.). Thus, each player’s communication quality is endogenously directed to each of her neighbors.

Beyond the above setup’s treatment of acquired information as pertaining directly to fundamental

payoffs, these papers have a number of model elements that distinguish them from this one. As

a closest comparative, Calvó-Armengol et al. (2011) [16]’s first-stage signal qualities are fully

observed in the second stage. Thus, strategic values are fully internalized in their model. And as

only strategic complements are considered in their formal analysis, the characterization of negative

signal responses and corresponding welfare implications discussed above are not considered. The

authors find underinvestment in communication, which relates with the under acquisition above

when σij ≥ 0 for each i and j. In the above, however, states are global rather than local via common

state ω, and thus inefficient acquisition under strategic compliments is driven by the correlation in
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and strategic use of information in the second stage. Further, players facing negative peer effects

and with signal responses β∗
i in some interior subset of (0, e†) over acquire in symmetric networks.

As discussed in the introduction, this paper is closely related to the coordination games with

costly information acquisition literature. The above case of symmetric networks provides a gener-

alization to many related results found in the literature, while incorporating strategic substitutes

and complements simultaneously through the network. Hellwig and Veldkamp (2009) [34] study

costly acquisition of signals chosen from a subset of available signals of various qualities and cor-

relation profiles. The authors Proposition 1 offers a closest analogue to the above Theorems 1 and

2, which establish the feed through of strategic complementarity and substitutability (separately)

into first-stage information values.35 Also reminiscent of their findings, strategic complementarity

can imply multiple symmetric equilibria. However, the type of multiplicity of equilibria illustrated

above in Example 2 are derived solely from strategic complements, rather than discreteness in the

signal technology. In contrast, equilibrium uniqueness under strategic complements and continuous

signals is derived in Hellwig and Veldkamp (2009) [34] as well as Myatt and Wallace (2009) [49]. In

beauty contest games with a continuum of agents, the extents of complementarities are implicitly

bounded. In the above network setting, strategic complements can be more pronounced while the

set of convex cost functions considered are less constrained,36 thus yielding the observed multiplicity

under significant positive peer effects.

This literature also offers an exciting research agenda studying the effects of public information

on the equilibrium actions and welfare in a general network setting. Morris and Shin (2002)

[47] first highlighted the potential adverse effects of public information, showing that players may

coordinate on less precise public announcements. In an information acquisition setting, Colombo

et al. (2014) [19]37 show that public information crowds out private information38, while acquired

private information is inefficiently low if and only if the equilibrium degree of coordination falls

short of the efficient benchmark (see Colombo et al. (2014) [19] Corollary 1 and Proposition 5

(ii), resp.). In a network setting under both strategic complements and substitutes, the efficiency

of equilibrium coordination depends on each player’s informational centrality (e.g. Proposition

3A, above). The effects of public information on both the positive and normative properties of

equilibrium information acquisition in these settings are left as open questions.

The above coordination games literature assumes agents to reside on a continuum, and thus

the strategic values studied here are not realized. In a network setting, a continuum of players is

clearly inapplicable. With the exception of Hauk and Hurkens (2001) for a competitive Cournot

35Vives (1988) [61] together with Vives (2008)’s [62] exercise 8.15 similarly establish this feed through for strategic
substitutes and compliments, respectively.

36To see this, here qualities are chosen from [0, 1] while in these and most of the coordination games literature
they are taken from [0,∞). Appendix A.1 provides a mapping from the accumulated i.i.d. normal draws setup to
information qualities. Note that a constant marginal cost to these draws excludes the possibility of initial positive
gains as players search for and locate the most efficient sources of informative signals.

37They allow for both strategic complements and substitutes (though not simultaneously) in their setting. Their
welfare benchmark that corresponds to that taken here involves not allowing the planner to enforce the efficient use
of information.

38Myatt and Wallace (2009) [49] find a similar result, with the publicity of information endogenously determined.
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production market, the welfare implication of incentive compatibility in information acquisition

are novel. The extent of player connectedness in the network as driving the size of her strategic

values provides a network characterization. Further, the symmetry in the coordination games

with endogenous information that have thus far been studied plays an important part in driving

inefficiencies in information acquisition. While symmetric networks offers analogous welfare results

to many seen in these papers, the fact that the direction of the utilitarian solution inverts under

anti-symmetric networks suggests caution when applying these welfare properties in settings that

incorporate anti-symmetric relationships. And as the above application of Section 5 suggests, anti-

symmetric relationships may be common in environments with a subset of constrained players.

A number of oligopoly models have studied information acquisition outside of a network setting.

Novshek and Sonnenschein (1982) [52] and Vives (1983) [60] study the effects of private informa-

tion when firms face an uncertain demand function. Taking the extent of information acquisition

exogenously, the authors’ consider comparative statics of equilibrium production and welfare with

respect to signal qualities. Their Lemma 1 establishes a direct dependence in the slope of equi-

librium strategies to signal quality, as a function of the extent of complementarity between firms’

goods. Similar equilibrium properties obtain under the more general network treatment of Theo-

rems 1 and 2 above, upon homogenizing the size and direction of links. Beyond this close similarity

at a positive level, the papers’ welfare analyses depart from each other with the consumer side of

the market excluded in network games.

Related to transparency, a number of papers have addressed information transmission in a

network settings similar to that taken here, but without endogenizing information qualities. Ha-

genbach and Koessler (2010) [31] and Galeotti et al. (2013) [24] study cheap talk in networks, taking

exogenous biases as common information amongst the players. Kondor and Babus (2014) [3] study

information diffusion and trade between traders connected through a network.39 The authors define

a “conditional guessing game”, which solves for transmission of information in rational expectations,

as a function of observed prices and the network structure. And taking an extreme to transparent

play, Hagenbach et al. (2014) [32] study full disclosure under certifiable pre-play communication.

In the above setting, these authors’ acyclicity condition is satisfied.40

The above model’s exclusion of information transmission provides a first benchmark to infor-

mation acquisition in a network setting, while maintaining reach in its applications. Studying the

incentives to acquire the information that agents carry when also faced with particular transmission

mechanisms offers an exciting avenue for research. Both the positive and normative implications

under full information disclosure offers a promising starting point.

Finally, Bramoulle et al. (2014) [9] study the set of network games equivalent to potential

games. The authors characterize both the presence of multiple equilibria and of equilibria that

involve players taking zero action (i.e. a corner solution in their setup) using the size of the lowest

eigenvalue for the network’s adjacency matrix. In the above, corner solutions in the information-

39That is, their network captures the set of feasible trades that can occur.
40Precisely, where the worst type in finite set Si ⊆ Θ is given by the lowest element if β∗

i > 0, and the highest
element if β∗

i < 0.
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response game play an important role when incorporating the possibility of players moving against

their signals, as illustrated with Example 2. Bramoulle et al. (2014) [9]’s eigenvalue characterization

of corner equilibria provides a valuable tool to designate the presence of players moving against

their information. Here, the second-stage game can be characterized as a potential game if the

network is symmetric.41

5.4 Conclusion

A flexible framework for studying information acquisition in linear peer-effects networks is devel-

oped. An intuitive characterization of the equilibrium strategic responsiveness of players to their

private signals is derived. Using this characterization, marginal information values are derived in

equilibrium. Scaling with the square of this responsiveness, marginal values to information take on

a U-shaped dependence on network centrality in the information-response game. Under significant

strategic substitutes, the least central players find additional use from information through inferring

and moving against the actions of neighbors.

Equilibrium welfare and the strategic motives behind information acquisition are analyzed. The

extent of symmetry in pairwise relationships drives the direction of inefficiencies, both when players

move in the direction of or against their information. Under moderate and symmetric relationships,

players under respond to the network of peer effects. With both strategic complements and substi-

tutes present, the most informed players under acquire information and the least informed players

over acquire. Incorporating players moving against their signals, the extend of information ac-

quired by these players is inefficiently low. Thus, the U-shaped non-monotonicity in the incentives

to acquire information in networks carries over to welfare.

All of these welfare properties reverse when the presence of anti-symmetric relationships pervade

the network structure. As our example of a market in crisis illustrates, anti-symmetric relationships

may play an important role when a nontrivial set of traders in the market face liquidity constraints

and thus value high market prices. When liquidity becomes scarce through the market, the few

unconstrained firms fail to internalize the externalities they impose on the constrained side of the

market. When these unconstrained firms move in the direction of their signal realizations, they

under acquire information. If they instead move against their signals, their strategic acquisition

of information quality exceeds that of the social planner’s prescription. The flexibility in peer-

effects networks is essential when assessing the welfare implications in these heterogeneous settings,

capturing an ray of equilibrium behaviors.

Marginal strategic values take on unambiguous and opposing directions in symmetric and anti-

symmetric networks. Players face clear incentives to overstate and understate their informativeness

in these respective settings. The size of these incentives are proportional to players’ sum-of-squared

degrees. Thus, player connectedness characterizes the size of marginal strategic values to informa-

tion, while symmetry in pairwise relationships continues to capture its direction. The analysis elicits

a transparency based policy with a simplistic implementation: certify the information acquired by

41The information-response game is no longer equivalent to a potential games when Σ is not symmetric.
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the experts: the most central players in the information response game. And when possible, certify

the information investments of those moving against their signals: the least central players in the

information response game.

In summary, the above network setting offers a flexible framework to both extend and assess

the robustness of many results offered by the coordination games with endogenous information

literature. While moderate, symmetric networks offer a natural extension to heterogeneous envi-

ronments, anti-symmetry and the incorporation of players moving against their information offer

both positive and normative properties unattained in symmetric settings. The role of observable

prices determined in market clearing under rational expectations, as well as to other forms of

information transmission are left as important open questions for future work.
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[5] Ballester, Coralio; Calvó-Armengol, Antoni; Zenou, Yves. “Who’s Who in Networks. Wanted:

The Key Player”. Econometrica, 74(5):1403–1427, September 2006.

[6] Blume, Lawrence; Brock, William; Durlauf, Steven; Jayaraman, Rajshri. “Linear Interactions

Models”. NBER Working Paper Series, Working Paper 19212, 2013.

[7] Bonacich, Phillip. “Power and Centrality: A Family of Measures”. American Journal of

Sociology, 92(5):1170–1182, March 1987.
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[13] Calvó-Armengol, Antoni; de Mart́ı, Joan. “Communication Networks: Knowledge and Deci-

sions”. The American Economic Review, 97(2):86–91, May 2007.
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[21] Diego Garćıa; Strobl, Günter. “Relative Wealth Concerns and Complementarities in Informa-

tion Acquisition”. mimeo, July 2010.

[22] Elliott, Matthew; Golub, Benjamin. “A Network Approach to Public Goods”. mimeo, 2014.

[23] Fainmesser, Itay; Galeotti, Andrea. “The Value of Network Information”. mimeo, 2013.

[24] Galeotti, Andrea; Ghiglino, Christian; Squintani, Francesco. “Strategic Information Transmis-

sion Networks”. Journal of Economic Theory, 148(5):1751–1769, 2013.

[25] Gárleanu, Nicolae; Panageas, Stavros; Yu, Jianfeng. “Financial Entanglement: A Theory of

Incomplete Integration, Leverage, Crashes, and Contagion”. forthcoming, American Economic

Review, 2013.

[26] Gennotte, Gerard; Leland, Hayne. “Market Liquidity, Hedging, and Crashes”. American

Economic Review, 80(5):999–1021, December 1990.

[27] Golosov, Michael; Lorenzoni, Guido; Tsyvinski, Aleh. “Decentralized trading with private

information”. Econometrica, 82(3):1055–1091, July 2014.

[28] Goyal, Sanjeev. “Connections: An Introduction to the Economics of Networks”. Princeton

University Press, 2007.

[29] Grossman, Sanford. “On the Efficiency of Competitive Stock Markets Where Trades Have

Diverse Information”. The Journal of Finance, 31(2):573–585, May 1976.

[30] Grossman, Sanford; Stiglitz, Jospeh. “On the Impossibility of Informationally Efficient Mar-

kets”. American Economic Review, 70(3):393–408, June 1980.

42



[31] Hagenbach, Jeanne; Koessler, Frédéric. “Strategic Communication Networks”. The Review of

Economic Studies, 77:10721099, 2010.

[32] Hagenbach, Jeanne; Koessler, Frédéric; Perez-Richet, Eduardo. “Certifiable Pre-Play Com-

munication: Full Disclosure”. mimeo; forthcoming Econometrica, 2014.

[33] Hauk, Esther; Hurkens, Sjaak. “Secret Information Acquisition in Cournot Markets”. Eco-

nomic Theory, 18:661–681, 2007.

[34] Hellwig, Christian; Veldkamp, Laura. “Knowing What Others Know: Coordination Motives

in Information Acquisition”. The Review of Economic Studies, 76:223–251, 2009.

[35] Hellwig, Martin. “On the Aggregation of Information in Competitive Markets”. Journal of

Economic Theory, 22:477–498, 1980.

[36] Helsleya, Robert; Zenou, Yves. “Social Networks and Interactions in Cities”. Journal of

Economic Theory, 150:426–466, 2014.

[37] Hendricks, Kenneth; Porter, Robert. “The Timing and Incidence of Exploratory Drilling on

Offshore Wildcat Tracts”. American Economic Review, 86(3):388–407, June 1996.

[38] Hiller, Timo. “Peer Effects in Endogenous Networks”. mimeo, 2013.

[39] Jackson, Matt. “Social and Economics Networks”. Princeton University Press, 2008.

[40] Kotowski, Maciej; Leister, C. Matthew. “Trading Networks and Equilibrium Intermediation”.

mimeo, 2014.

[41] Kyle, Albert. “Market Structure, Information, Futures Markets, and Price Formation”. Storey,

G. G. Schmitz, A. and Sarris, A. H. (eds), International Agriculurla Trade: Advanced Readings

in Price Formation, Market Structure, and Price Stability, 53:45–64, 1984a.

[42] Kyle, Albert. “Continuous Auctions and Insider Trading”. Econometrica, 53(6):1315–1335,

1985.

[43] Kyle, Albert. “Informed Speculation with Imperfect Competition”. The Review of Economic

Studies, 56(3):317–355, July 1989.

[44] Li, Lode; McKelvey, Richard. “Optimal Research for Cournot Oligopolists”. Journal of Eco-

nomic Theory, 42:140–166, 1987.

[45] Malamud, Semyon; Rostek, Marzena. “Decentralized Exchange”. mimeo, 2012.

[46] Marschak, Thomas; Reichelstein, Stefan. “Network Mechanisms, Informational Efficiency, and

Hierarchies”. Journal of Economic Theory, 79:106–141, 1998.

[47] Morris, Stephen; Shin, Hyun Song. “The Social Value of Public Information”. American

Economic Review, 92(5):1521–1534, December 2002.

[48] Morris, Stephen; Shin, Hyun Song. “Coordination Risk and the Price of Debt”. European

Economic Review, 48(1):133–153, 2003.

[49] Myatt, David; Wallace, Chris. “Endogenous Information Acquisition in Coordination Games”.

The Review of Economics Studies, 79:340–374, 2012.

43



[50] Myatt, David; Wallace, Chris. “Cournot Competition and the Social Value of Information”.

mimeo, 2013.

[51] Nikitin, Maxim; Smith, Todd. “Information Acquisition, Coordination, and Fundamentals in

a Financial Crisis”. Journal of Banking & Finance, 32:907–914, 2008.

[52] Novshek, William; Sonnenschein, Hugo. “Fulfilled Expectations Cournot Duopoly with In-

formation Acquisition and Release”. The Bell Journal of Economics, 13(1):214–218, Spring

1982.

[53] Oliveros; Santiago. “Abstention, Ideology and Information Acquisition”. Journal of Economic

Theory, 148(3):871–902, May 2013.

[54] Ostrovsky; Michael. “Stability in Supply Chain Networks”. American Economic Review,

98(3):897–923, 2008.

[55] Persico, Nicola. “Information Acquisition in Auctions”. Econometrica, 68(1):135–148, January

2000.

[56] Szkupy, Michal; Trevino, Isabel. “Information Acquisition and Transparency in Global

Games”. mimeo, 2014.

[57] Takayama, Akira. “Mathematical Economics”. Cambridge University Press, 2nd edition, 1985.

[58] Veldkamp, Laura. “Information Choice in Macroeconomics and Finance”. Princeton University

Press, 2011.

[59] Verracchiq, Robert. “Information Acquisition in a Noisy Rational Expectations Economy”.

Econometrica, 50(6):1415–1430, 1982.

[60] Vives, Xavier. “Duopoly Information Equilibrium: Cournot and Bertrand”. Journal Of Eco-

nomic Theory, 34:71–94, 1983.

[61] Vives, Xavier. “Aggregation of Information in Large Cournot Markets”. Econometrica,

56(4):851–876, July 1988.

[62] Vives, Xavier. “Information and Learning in Markets: The Impact of Market Microstructure”.

Princeton University Press, 2008.

[63] Vives, Xavier. “Strategic Supply Function Competition With Private Information”. Econo-

metrica, 6(76):19191966, November 2011.

[64] Yang, Ming. “Coordination with Flexible Information Acquisition”. mimeo, 2014.

[65] Zhou, Junjie; Chen, Ying-Ju. “Targeted Information Release in Social Networks”. NET

Institute working paper series, (13-4), September 2013.

44



A Appendix

A.1 Linear-in-qualities expectations: examples

Two states. As the most basic example of an information structure embodying Conditions E1-E4, consider

the case of two aggregate states ω ∈ {−1, 1} with γ = 1 and priors Pr (ω = 1) = Pr (ω = −1) = 1/2. Then,

player i’s quality ei gives the probability of the signal being correct, Pr (θi = ω) = ei+1
2 . The conditional

expectation Ei [θj |θi, ei, µ∗
i ] = eiejθi for each j 6= i can be derived as the correlation in the players i and j’s

signals, eiej , multiplied by i’s signal realization θi. In this case, ω is naturally interpreted as giving ‘high’

(ω = 1) and ‘low’ (ω = −1) marginal gains to action xi, for each player i.

Multiple normal draws. Considering the more general definition of ω̃i provided Section 5.2, one can

also consider a normally distributed states and signals setup with normal errors. Assume ω ∼ N (0, 1),

ωi ∼ N (0, 1), and thus ω̃i ∼ N (0, v0) where v0 := γ2
i + ι2i . Now, consider player i who draws Si ∈ Z+ signals

{ϑs
i}

Si

s=1 taking values ϑs
i = ω̃i + εsi with error εsi ∼ N (0, v1); that is, each ϑs

i has precision v−1
1 . Clearly E1

is satisfied. Player i can then use her signals to infer ω̃i by the usual Bayesian updating rule:

Ei

[

ω̃i

∣
∣
∣{ϑs

i}Si

s=1

]

=
v−1
1

∑Si

s=1 ϑ
s
i

v−1
0 + Siv

−1
1

.

Define the aggregate signal and information quality:

θi :=
1

√

v0 +
v1

Si

1

Si

Si∑

s=1

ϑs
i ,

ei :=
1√
v0

v−1
1

v−1
0 + Siv

−1
1

Si

√

v0 +
v1
Si

=

√

v0
v0 +

v1

Si

.

The average 1
Si

∑Si

s=1 ϑ
s
i will have precision Siv

−1
1 . It is then straight forward to show that (the extended

version of) E2 and E3 are satisfied:

Ei [ω̃i|θi, ei] =
√

γ2
i + ι2i eiθi,

Ei

[
θ2i |ei

]
= 1.

Now consider player j who draws Sj ∈ Z+ signals {ϑs
j}Si

s=1 taking values ϑs
j = ω̃j + εsj with error

εsj ∼ N (0, v1). Then Ei [θj |θi, ei, µ∗
i ] is derived from simple linear regression of θj on θi:

Ei [θj |θi, ei, µ∗
i ] =

Cov (θi, θj)

Sd (θj)
θi

=
γiγjv0

√

v0 +
v1

Si

√

v0 +
v1

Sj

θi

= γiγjeiejθi,

establishing (the extended version of) condition E4 under sequentially rational µ∗
i .
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A.2 Section 3.1 proofs: Equilibrium information acquisition and response

Existence of a second-stage equilibrium is only ensured if the size of peer effects are suitably constrained.

This motivates the following assumption, maintained throughout.

Assumption A1. (I− [pijσij ])
−1

is well defined for every p ∈ [0, 1]
N(N−1)

.

Assumption A1 is a strengthening of the condition p > λµi(G) in Bellester et al. (2006) [5] Theorem

1 bounding the spectral radius of the relevant diagonally dominant matrix under complete information.

Assumption A1 implies that the relevant diagonally-dominant matrix in the second stage’s information-

response game remains invertible for all first-stage outcomes. Primarily a technical condition, this suffices

for existence and uniqueness of a pure linear Bayesian equilibrium at period t = 2.

Proof of Theorem 1. For all purposes, I will denote the n × n identity matrix. Linearity of the ex-post

best responses allows us to take expectations of (2) and obtain i’s first order condition of her information

response problem. This gives optimal action:

Xi (θi, ei) = (ai + Ei [ω̃i|θi, ei]) +
∑

k 6=i

σikEi [Xk (θk, ek) |θi, ei, µ∗
i ] (21)

= (ai + eiθi) +
∑

k 6=i

σikEi [Xk (θk, ek) |θi, ei, µ∗
i ] .

Next, we are free to take expectations of (21) over realizations of player i’s signal θi. Denoting the vector of

expected stage two actions α∗, this gives:

α∗ = a+Σα∗. (22)

This can easily be solved to give the following expectations equilibrium:

α∗ = [I− Σ]
−1

a. (23)

Note that α∗ does not depend on e.42

Next, we derive the information responses given in (5). Linearity of this expression is derived by the

linearity in best responses (2) and in expectations. Consider the following profile of strategies:

X∗ (θ)=α∗ + Iθβ
∗,

with β∗
i ∈ R denoting each player i’s responsiveness to her signal. For each component i taking β∗

−i as above

we verify that i plays a linear strategy. Taking differences of (21) at θi and θ′i < θi then gives43:

42Expression (23) is analogous to expression (4) in Ballester et al. (2006) [5], but now in expectations.
43One can always find such a signal pair, else signals are never informative.
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X∗
i (θi|ei)−X∗

i (θ
′
i|ei) =

(

Ei [ω̃i|θi, ei, µ∗
i ]− Ei [ω̃i|θ′i, ei, µ∗

i ]

+
∑

k 6=i σik (Ei [X
∗
k (θk|ek) |θi, ei, µ∗

i ]− Ei [X
∗
k (θk|ek) |θ′i, ei, µ∗

i ])

)

= eiθi − eiθ
′
i +
∑

k 6=i

σik (Ei [α
∗
k + θkβ

∗
k |θi, ei, µ∗

i ]− Ei [α
∗
k + θkβ

∗
k |θ′i, ei, µ∗

i ])

= ei (θi − θ′i) +
∑

k 6=i

σik ((Ei [θk|θi, ei, µ∗
i ]− Ei [θk|θ′i, ei, µ∗

i ])β
∗
k)

= ei (θi − θ′i) +
∑

k 6=i

σij

((
γ2eiekθi − γ2eiekθ

′
i

)
β∗
k

)

= (θi − θ′i)



ei +
∑

k 6=i

σikγ
2eiekβ

∗
k



 .

With
X∗

i (θi|ei)−X∗
i (θ

′
i|ei)

θi−θ′
i

independent of the choice of θi and θ′i, player i also plays a linear strategy, with

(optimal) responsiveness

β∗
i =

X∗
i (θi|ei)−X∗

i (θ
′
i|ei)

θi − θ′i
= ei +

∑

k 6=i

σikγ
2eiekβ

∗
k . (24)

We thus have:

β∗ = e+ γ2IeΣIeβ
∗. (25)

With
(
I− γ2IeΣIe

)−1
well defined by Assumption A1, solving for β∗ gives the unique linear information

response equilibrium:

β∗ =
(
I− γ2IeΣIe

)−1
e.

Finally, we can easily write:

X∗
i (θi|ei) = α∗

i + θiβ
∗
i ,

for each i, giving the t = 2 IRE strategy seen in (5).

To establish the stronger uniqueness claim succeeding Theorem 1, the following establishes a similar

result to that shown in Dewan and Myatt (2008), adapted to our network setting. The second stage best

response function of any i given first stage outcome e (and correct beliefs µ∗
i regarding e−i) is again:

BRi (X−i|θi, ei, µ∗
i ) = ai + Ei [ω̃i|θi, ei, µ∗

i ] +
∑

k 6=i

σikEi [X
∗
k (θk|ek) |θi, ei, µ∗

i ] .

Suppressing the (ei, µ
∗
i ) conditionals, the composition of BRi (X−i|θi) with BRj (X−j |θj) for each j 6= i
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gives:

BR2
i (·|θi) = ai + Ei [ω̃i|θi] +

∑

k 6=i

σikEi



ak + Ek [ω̃k|θk] +
∑

k′ 6=k

σkk′Ek [·|θk]

∣
∣
∣
∣
∣
∣

θi





= ai + Ei [ω̃i|θi] +
∑

k 6=i

σik



ak + Ei [Ek [ω̃k|θk] |θi] +
∑

k′ 6=k

σkk′Ei [Ek [·|θk] |θi]





= ai + Ei [ω̃i|θi] +
∑

k 6=i

σikak +
∑

k 6=i

σikEi [Ek [ω̃k|θk] |θi] +
∑

k 6=i

∑

k′ 6=k

σikσkk′Ei [Ek [·|θk] |θi]

= ai +
∑

k 6=i

σikaj + eiθi +
∑

k 6=i

σikγ
2e2keiθi +

∑

k 6=i

∑

k′ 6=j

σikσkk′Ei [Ek [·|θk] |θi] .

In vector form44:

BR2 (·|θ) =
(

a+Σa+ Iθe+ Iθγ
2IeΣIee

+
[
∑

k 6=i

∑

k′ 6=k σikσkk′Ei [Ek [·|θk] |θi]
]

)

.

We can iterate this to yield the τ ’th best-response dynamic BRτ (·|θ):

BRτ (·|θ) =





(
I+

∑τ
t=1 Σ

t−1
)
a+ Iθ

(

I+
∑τ

t=1 γ
2 (IeΣIe)

t−1
)

e

+
[
∑

k 6=i · · ·
∑

h 6=j σik · · ·σjhEi [· · ·Ej [·|θj ] |θi]
]



 .

When each |σij | < 1 the bottom term will converge to zero provided strategies are bounded. More

generally, we require the following property to hold.

Definition 3 (non-explosive expectations). For any sequence of players (i1, i2, . . .) with it 6= it+1 and each

it ∈ {1, . . . , N} and t ∈ N, the operator Eit [·] is defined inductively as Eit [·] := σit−1itEit−1
[Eit [·]], with

Ei1 [·] = Ei1 [·]. Then for any given (potentially non-linear) IRE X∗ and quality profile e, expectations over

the network are non-explosive if limt→∞ Eit [Xit (θit |eit)] = 0.

Given expectations are non-explosive, we then obtain:

lim
τ→∞

BRτ (·|θ) = lim
τ→∞

(

I+

k∑

τ=1

Στ

)

a+ Iθ

(

I+

k∑

τ=1

γ2 (IeΣIe)
τ

)

e

= (I−Σ)
−1

a+ Iθ (I− IeΣIe)
−1

e

= α∗ + Iθβ
∗ =: X∗

which gives the unique linear information response equilibrium of Theorem 1. Thus, any equilibrium in

which expectations are non-explosive must be X∗.

44
Iφ gives the diagonal matrix with elements from generic vector φ.
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Proof of Theorem 2. Writing each player k 6= i’s information response strategy asX∗
k (θk|ek) = α∗

k+θkβ
∗
k :

ui

(
xi,X

∗
−i|θi, ei, µi

)
= (ai + Ei [ω̃i|θi, ei])xi −

1

2
x2
i +

∑

k 6=i

σikxiEi [X
∗
k (θk|ek) |θi, ei, µi]

= (ai + eiθi)xi −
1

2
x2
i +

∑

k 6=i

σikxi (α
∗
k + β∗

kEi [θk|θi, ei, µi])

= (ai + eiθi)xi −
1

2
x2
i +

∑

k 6=i

σikxi

(
α∗
k + β∗

kγ
2eiekθi

)
.

By the optimality of X∗
i in stage two, we can apply the envelope theorem:

∂

∂β∗
i

Ei [ui (X
∗ (θ|e) |ω, ωi) |θi, ei, µi] = 0.

Further, as information acquisition is unobserved by others in t = 2, incentive compatibility of e∗i requires

that the response of β∗
j to shifting ei be set to zero: ∂

∂ei
β∗
j = 0. Thus we obtain:

∂

∂ei
Ei [ui (X

∗ (θ|e) |ω, ωi) |ei, µi]

=
∂

∂ei
Ei [Ei [ui (X

∗ (θ|e) |ω, ωi) |θi, ei, µi]]

=
∂

∂ei
Ei

[

(ai + eiθi) (α
∗
i + θiβ

∗
i )− 1

2 (α
∗
i + θiβ

∗
i )

2

+
∑

k 6=i σik (α
∗
i + θiβ

∗
i )
(
α∗
k + β∗

kγ
2eiekθi

)

]

=
∂

∂ei
Ei

[ (

β∗
i ei − 1

2β
∗2
i + γ2

∑

k 6=i σikeiekβ
∗
i β

∗
k

)

θ2i

+const0 + const1 · θi

]

= Ei

[

∂

∂ei

( (

β∗
i ei − 1

2β
∗2
i + γ2

∑

k 6=i σikeiekβ
∗
i β

∗
k

)

θ2i

+const0

)]

=




β∗
i

(

1 + γ2
∑

k 6=i σikβ
∗
ke

∗
k

)

Eθi

[
θ2i |ei

]

+
(

β∗
i ei − 1

2β
∗2
i + γ2

∑

k 6=i σikβ
∗
i β

∗
keiek

)
∂
∂ei

Eθi

[
θ2i |ei

]





= β∗
i



1 + γ2
∑

k 6=i

σikekβ
∗
k



 ,

with Eθi

[
θ2i |ei

]
= 1 and ∂

∂ei
Eθi

[
θ2i |ei

]
= 0 by condition E3. This yields i’s period t = 1 marginal gains to

information acquisition:

∂

∂ei
ui (X

∗
i |ei, e−i) = β∗

i



1 + γ2
∑

k 6=i

σikekβ
∗
k



 (26)

Thus, the period t = 1 vector of marginal gains to quality is given by:

[
∂

∂ei
ui (X

∗
i |ei, e−i)

]

= γ2Iβ∗ΣIeβ
∗ + β∗. (27)

When γ = 0 then (25) reduces to β∗ (e) = e. Equating marginal gains to marginal costs of quality in IAE

gives e∗ = κ′ (e∗), which corresponds to expression (6), and yields e† from (3) for each i so that each player
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chooses the quality that the isolated player chooses.

When γ > 0 then (25) can be rearranged as:

γ2ΣIeβ
∗ = I−1

e
(β∗ − e) . (28)

Substituting this into (27) gives the marginal gains to information:

[
∂

∂ei
ui (X

∗
i |ei, e−i)

]

= I−1
e

Iβ∗β∗.

Equating this with the marginal cost of information then gives the first-stage interior IAE condition (6):

Iβ∗β∗ = Ie∗κ′ (e∗) . (29)

Proof of Corollary 1. Applying the implicit function theorem to expression (6)45:

∂e∗i
∂ (γ2)

= −
∂(β∗2

i /e∗i )
∂(γ2)

∂(β∗2
i /e∗i −κ′(e∗i ))

∂ei

+
∑

k 6=i

∂e∗i
∂β∗

k

∂β∗
k

∂ (γ2)

= −
2β∗

i /e
∗
i

∂β∗
i

∂(γ2)

∂(β∗2
i /e∗i )
∂ei

− κ′′ (e∗i )
+
∑

k 6=i

∂e∗i
∂β∗

k

∂β∗
k

∂ (γ2)

=
2
β∗
i

e∗i

∂β∗
i

∂(γ2)

κ′′ (e∗i )−

(

e∗i 2β
∗
i

∂β∗
i

∂ei
−β∗2

i

)

e2i

+
∑

k 6=i

∂e∗i
∂β∗

k

∂β∗
k

∂ (γ2)

=
2
β∗
i

e∗i

∑

k 6=i e
∗
i σike

∗
kβ

∗
k

κ′′ (e∗i )−

(

e∗i 2β
∗
i

∂β∗
i

∂ei
−β∗2

i

)

e2i

+
∑

k 6=i

∂e∗i
∂β∗

k

∂β∗
k

∂ (γ2)
.

Taking the limit γ →+ 0 of the expression, and noting that limγ→+0
∂β∗

i

∂ei
= 1 while limγ→+0

∂e∗i
∂β∗

k
= 0 for each

k 6= i, yields:

lim
γ→+0

∂e∗i
∂ (γ2)

=
2e†3

∑

k 6=i σik

κ′′ (e†)− 1
.

Note that κ′′
(
e†
)
− 1 > 0 by the optimality of e† at γ = 0 and Assumption 1.

Proof of Lemma 1. The existence of the bound γm follows from Assumption 1, by continuity in β∗ and

e∗ for each i at γ = 0, and by the implicit function theorem. Precisely, β∗ = e∗ :=
(
e†, . . . , e†

)
> 0 when

γ = 0, and thus that marginal gains to quality β∗2
i /e∗i are continuous at γ = 0. Assumption 1 implies a

45One could employ the multivariate implicit function theorem, noting that changes in e∗i will result as second-stage
β∗
k for each k 6= i adjust with γ2. We avoid the multivariate implicit function theorem by employing the chain rule,

and summing over partials of e∗i with respect to β∗
k for each k 6= i (last term).
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unique e† solving β∗2
i /e∗i = e† = κ′

(
e†
)
for each i. Further,

det
(
De[β

∗2
i /e∗i − κ′ (e∗i )]

)∣
∣
(e=(e†,...,e†),γ=0)

= det
((
1− κ′

(
e†
))

I
)

=
(
1− κ′

(
e†
))N 6= 0,

and thus by the IFT there exists an open neighborhood U ⊆ [0, 1]N of
(
e†, . . . , e†

)
and W ⊆ [0, 1] of γ = 0

such that for every γ ∈ W there is a unique IAE e∗,γ ∈ U .

Now, the best response correspondence BR (e,β∗,µ∗; γ) (see proof of Proposition S.1) is upper hemicon-

tinuous in (e,γ) by continuity of β∗2
i /ei in e and γ and of κ (·) in ei at e =

(
e†, . . . , e†

)
and γ = 0. There must

then also exist some neighborhood V ⊆ [0, 1]N × [0, 1] of (
(
e†, . . . , e†

)
, 0) such that BR (e,β∗,µ∗; γ) ⊆ U for

any (e, γ) ∈ V . This then implies that [0, 1]N\U does not contain any IAE for all γ ∈ W ∩ V ⊆ [0, 1], and

thus that e∗,γ gives the unique IAE for each γ ∈ [0, γm) ⊆ W ∩ V .

We construct the interval [0, γs) as follows, which incorporates the potential for multiplie equilibria. β∗

is continuous in e with β∗ =
(
e†, . . . , e†

)
> 0 at γ = 0. Thus for each i, there must exist some γs

i > 0 such

that if γ < γs
i then β∗

i > 0 for any e ∈[0, 1]N .46 Then defining γs := mini {γs
i } and by the existence of IAE

given with the proof of Proposition S.1 below, we must have that β∗ > 0 provided γ ∈ [0, γs) and any IAE

e∗.

A.3 Section 4 proofs: Equilibrium welfare and the strategic value to informa-

tion

First we derive equilibrium welfare, expression (8) in the text. Restating player i’s expected payoff:

ui (xi,X−i|θi, e) = (ai + eiθi)xi −
1

2
x2
i +

∑

k 6=i

σikxi

(
α∗
kj + β∗

kγ
2eiekθi

)
.

Subtracting information cost κ (ei) and taking expectations over signals θ gives her period t = 1 value:

νi (X
∗
i |ei, e−i) = Ei

[(

(ai + eiθi) (α
∗
i + θiβ

∗
i )− 1

2 (α
∗
i + θiβ

∗
i )

2

+
∑

k 6=i σik (α
∗
i + θiβ

∗
i )
(
α∗
k + β∗

kγ
2eiekθi

)

)]

− κ (ei)

= aiα
∗
i + eiβ

∗
i − 1

2

(
α∗2
i + β∗2

i

)
+
∑

k 6=i

σik

(
α∗
iα

∗
k + β∗

i β
∗
kγ

2eiek
)
− κ (ei) .

Writing this in vector form gives:

ν (X∗|e) =
(

Iaα
∗ + Ieβ − 1

2

(
Iα∗X̄∗ + Iβ∗β∗

)
+ Iα∗Σα∗ + γ2Iβ∗IeΣIeβ

∗

)

− κ (e) . (30)

Next, left multiplying (22) by Iα∗ gives:

Iα∗α∗= Iaα
∗ + Iα∗Σα∗, (31)

while rearranging (25) gives:
1

γ2
(β∗ − e) = IeΣIeβ

∗. (32)

46This uses Assumption A1 to maintain that β∗ is well defined for each e ∈[0, 1]N .
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Substituting (31) and (32) into (30) then gives:

ν (X∗|e) =

(

IX̄∗α∗ + Ieβ
∗ − 1

2
(Iα∗α∗ + Iβ∗β∗) + Iβ∗ (β∗ − e)

)

− κ (e)

=
1

2
(Iα∗α∗ + Iβ∗β∗)− κ (e) ,

giving expression (8).

For the proofs of Lemma 1 and Proposition 3A we next derive expressions for partials ∂β∗

∂ei
. This yields

expressions for ξsti (e,X∗) and ξexi (e,X∗) solely in terms of Σ and e

Using u and v for row and column dummies (respectively) the system of equations giving IRE β∗ can

be written as:

[u]: β∗
u − eu



1 + γ2
∑

k 6=u

σukekβ
∗
k



 = 0,

for each u ∈ {1, . . . , N}. Partial differentiating each [u] by β∗
v gives:

[fuv]:
∂[u]

∂β∗
v

=

{

−γ2euσuvev if u 6= v

1 if u = v
,

for each u, v ∈ {1, . . . , N}. In matrix form this is exactly I− γ2IeΣIe. Partial differentiating each [u] by ei

gives:

[du]:
∑

v

fuv
∂β∗

v

∂ei
+ bu = 0,

for each du ∈ {d1, . . . , dN}, where

bu :=
∂[u]

∂ei
= −β∗

i

ei
·
{

γ2euσuiei if u 6= i

1 if u = i
.

In vector form b gives
β∗
i

ei

(
I−γ2IeΣIe − 2I

)
1i, where 1u gives the vector of zeros with a one in row u.

Solving for
∂β∗

u

∂ei
in matrix form gives the comparative static of β∗ with respect to ei:

47

∂β∗

∂ei
= −F−1b

= −
(
I− γ2IeΣIe

)−1
(
β∗
i

ei

(
I− γ2IeΣIe − 2I

)
1i

)

= −β∗
i

ei

(

I− 2
(
I− γ2IeΣIe

)−1
)

1i

=
β∗
i

ei

(

2
(
I− γ2IeΣIe

)−1 − I
)

1i (33)

=
β∗
i

ei

(
I+ γ2IeΣIe

) (
I− γ2IeΣIe

)−1
1i. (34)

ξsti (e,X∗) and ξexi (e,X∗) can be expressed solely in terms of Σ and e by substituting (33) into the

following expressions:

47An equivalent setup of the above is provided in Takayama (1985) [57], pgs. 403-5.
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ξsti (e,X∗) : = β∗
i

∑

k 6=i

γ2eiekσik
∂

∂ei
β∗
k

= β∗
i 1

′
iγ

2IeΣIe
∂β∗

∂ei

ξexi (e,X∗) : =
∑

k 6=i

β∗
k

∂

∂ei
β∗
k

=
(
β∗ − 1β∗

i

)′ ∂β
∗

∂ei
.

For ξsti (e,X∗) we have:

ξsti (e,X∗) = β∗
i 1

′
iγ

2IeΣIe
∂β∗

∂ei

=
β∗2
i

ei
1′
iγ

2IeΣIe
(
I+ γ2IeΣIe

) (
I− γ2IeΣIe

)−1
1i

=
β∗2
i

ei
1′
iγ

2IeΣIe
(
I+ γ2IeΣIe

)

(
∑

τ=0

(
γ2IeΣIe

)τ

)

1i

=
β∗2
i

ei
1′
iγ

2IeΣIe

(

I+ 2

(
∑

τ=1

(
γ2IeΣIe

)τ

))

1i

=
β∗2
i

ei
1′
i

(

γ2IeΣIe∗ + 2

(
∑

τ=2

(
γ2IeΣIe

)τ

))

1i

= 2
β∗2
i

ei
1′
i

(
∑

τ=2

(
γ2IeΣIe

)τ

)

1i

= 2
β∗2
i

ei
1′
iγ

2IeΣIe
(
I− γ2IeΣIe

)−1
γ2IeΣIe1i.

For ξexi (e,X∗) we have:

ξexi (e,X∗) =
β∗
i

ei

(
β∗ − 1β∗

i

)′ (
I+ γ2IeΣIe

) (
I− γ2IeΣIe

)−1
1i

=
β∗
i

ei

(
β∗ − 1β∗

i

)′ (
I+ γ2IeΣIe

)

(
∑

τ=0

(
γ2IeΣIe

)τ

)

1i

=
β∗
i

ei

(
β∗ − 1β∗

i

)′

(

I+ 2
∑

τ=1

(
γ2IeΣIe

)τ

)

1i

=
β∗
i

ei

(
β∗ − 1β∗

i

)′

(

2
∑

τ=1

(
γ2IeΣIe

)τ

)

1i

= 2
β∗
i

ei

(
β∗ − 1β∗

i

)′

(
∑

τ=1

(
γ2IeΣIe

)τ

)

1i

= 2
β∗
i

ei

(
β∗ − 1β∗

i

)′
γ2IeΣIe

(
I− γ2IeΣIe

)−1
1i.
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Together:

ξsti (e,X∗) = γ42
β∗2
i

e∗i
1′
iIeΣIe

(
I− γ2IeΣIe

)−1
IeΣIe1i,

ξexi (e,X∗) = γ22
β∗
i

e∗i
(β∗ − β∗

i 1i)
′
IeΣIe

(
I− γ2IeΣIe

)−1
1i.

One can also use Theorem 1 to substitute in corresponding expressions for β∗ and β∗
i , respectively, that are

solely in terms of Σ and e.

Lemma 1 is established using the leading term of the Taylor expansion:

(
I− γ2IeΣIe

)−1
=

∞∑

τ=0

(
γ2IeΣIe

)τ
,

which will dominate the sum for small γ. Formal proofs are as follows.

Proof of Lemma 1 and derivations of (18) and (19). We can rewrite the expression for ξsti (X∗, e) by

expanding
(
I− γ2IeΣIe

)−1
as follows:

ξsti (e,X∗) = γ42
β∗2
i

e∗i
1′
iIeΣIe

(
I− γ2IeΣIe

)−1
IeΣIe1i (35)

= 2
β∗2
i

ei
1′
i

(
∞∑

τ=2

(
γ2IeΣIe

)τ

)

1i (36)

= 2
β∗2
i

ei
1′
i

(

(
γ2IeΣIe

)2
+
(
γ2IeΣIe

)3
∞∑

τ=0

(
γ2IeΣIe

)τ

)

1i (37)

= γ42
β∗2
i

ei
1′
i (IeΣIe)

2
1i + γ62

β∗2
i

ei
1′
i (Ie∗ΣIe)

3 (
I− γ2IeΣIe

)−1
1i. (38)

For the second term:
∂

∂(γ4)

(

γ62
β∗2
i

ei
1′
i (IeΣIe)

3 (
I− γ2IeΣIe

)−1
1i

)

→ 0,

for each i, as γ → 0. Thus focusing on the first term:

γ42
β∗2
i

ei
1′
i (IeΣIe)

2
1i = γ22

β∗
i

ei
1′
i




∑

k 6=i

eiσikekekσkjej



1i

= γ42
β∗2
i

ei

∑

k 6=i

eiσikekekσkiei. (39)

Taking a partial derivative of (38) with respect to γ2, and with e∗i → e† as γ → 0 for each i, we obtain

expression (16):

lim
γ→+0

∂ξsti (e∗,X∗)

∂(γ4)
= 2e†5

∑

k 6=i

σikσki.

For symmetric Σ (Assumption 2A) with σki = σik, we can rewrite (41) to give expression (18), as well

as the corresponding (negated) expression under network anti-symmetry (Assumption 2B).

Next, we can rewrite the expression for ξexi (X∗, e), again expanding
(
I− γ2IeΣIe

)−1
:
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ξexi (e,X∗) = γ22
β∗
i

ei
(β∗ − β∗

i 1i)
′
IeΣIe

(
I− γ2IeΣIe

)−1
1i

= 2
β∗
i

ei
(β∗ − β∗

i 1i)
′

(
∞∑

τ=1

(
γ2IeΣIe

)τ

)

1i

= 2
β∗
i

ei
(β∗ − β∗

i 1i)
′

(

γ2IeΣIe +
(
γ2IeΣIe

)2
∞∑

τ=0

γ2τ (IeΣIe)
τ

)

1i

= γ22
β∗
i

ei
(β∗ − β∗

i 1i)
′
(

IeΣIe + γ2 (IeΣIe)
2 (

I− γ2IeΣIe
)−1
)

1i. (40)

For the second term:

∂

∂(γ2)

(

γ42
β∗
i

ei
(β∗ − β∗

i 1i)
′
(

(IeΣIe)
2 (

I− γ2IeΣIe
)−1
)

1i

)

→ 0,

for each i, as γ → 0. Focusing again on the first term:

γ22
β∗
i

ei
(β∗ − β∗

i 1i)
′
IeΣIe1i = γ22

β∗
i

ei
β∗′IeΣIe1i

= γ22
β∗
i

ei









∑

k 6=i

ekσkjejβ
∗
k





N

j=1






′

1i

= γ22
β∗
i

ei

∑

k 6=i

ekσkieiβ
∗
k . (41)

Then:

lim
γ→+0

∂ξexi (e∗,X∗)

∂(γ2)
= 2e†3

∑

k 6=i

σki,

for each i, yielding expression (17).

For symmetric Σ with σki = σik, we can rewrite (41) to give expression (18):

ξexi (e,X∗) ≈ γ22
β∗
i

ei

∑

k 6=i

ekσikeiβ
∗
k = γ22

β∗
i

ei
(β∗

i − ei) ,

with the second equality using Theorem 1. This also yields the corresponding (negated) expression under

network anti-symmetry (Assumption 2B).

Proof of Propositions 3A and 3B. For part 1 of Proposition 3A, apply the implicit function theorem to

the difference (epbi − e∗i ) to give48:

∂
(

epbi − e∗i

)

∂ (γ4)
= −

∂(β∗2
i /epbi +ξsti (epb,X∗))

∂(γ4)

∂(β∗2
i /epbi +ξsti (epb,X∗)−κ′(epbi ))

∂ei

+

∂(β∗2
i /e∗i )

∂(γ4)

∂(β∗2
i /e∗i −κ′(e∗i ))

∂ei

+
∑

k 6=i

(

∂epbi
∂β∗

k

− ∂e∗i
∂β∗

k

)

∂β∗
k

∂ (γ2)
.

48One could employ the multivariate implicit function theorem, noting that changes in e
pb
i and e∗i will result as

second-stage β∗
k for each k 6= i adjust with γ2. We avoid the multivariate implicit function theorem finding the total

derivative, summing over partials of epbi and e∗i with respect to β∗
k for each k 6= i (last term).
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Taking the limit γ →+ 0 of the expression, limγ→+0
∂ξsti (epb,X∗)

∂epbi
= 0, because ξexi

(
epb,X∗

)
= 0 at γ = 0,

and ξexi
(
epb,X∗

)
is C1 in γ. Thus, the denominators of the first two terms converge to κ′′

(
e†
)
− 1, as in

the proof of Corollary 1. With e∗i → epbi as γ →+ 0 with both e∗i and epbi C1 in γ,
∂(β∗2

i /epbi )
∂(γ2) → ∂(β∗2

i /e∗i )
∂(γ2) .

Again noting that limγ→+0
∂β∗

i

∂e∗i
= 1 while limγ→+0

∂e∗i
∂β∗

k
= limγ→+0

∂epbi
∂β∗

k
= 0 for each k 6= i, implying that the

second sum converges to zero as γ →+ 0, this leaves:

lim
γ→+0

∂
(

epbi − e∗i

)

∂ (γ4)
=

∂ξsti (epb,X∗)
∂(γ4)

κ′′ (e†)− 1
=

e†5
∑

k 6=i σ
2
ik

κ′′ (e†)− 1
> 0.

The second equality following from Lemma 1. By continuity of all functions in γ, this positivity must hold

for some neighborhood of γ = 0.

A similar expression can be derived for j, giving:

lim
γ→+0

∂
(

epbi − e∗i

)

∂ (γ4)
− lim

γ→+0

∂
(

epbj − e∗j

)

∂ (γ4)
=

e†5
(
∑

k 6=i σ
2
ik −∑k 6=j σ

2
jk

)

κ′′ (e†)− 1
> 0,

the final inequality following by assumption:
∑

k 6=i σ
2
ik >

∑

k 6=j σ
2
jk. Again, by continuity of all functions in

γ, this positivity must hold for some neighborhood of γ = 0.

For part 2 of Proposition 3A, again apply the implicit function theorem to the difference (epli − e∗i ) to

give:

∂
(

epli − e∗i

)

∂ (γ2)
=










−
∂(β∗2

i /e
pl
i

+ξsti (epl,X∗)+ξexi (epl,X∗))
∂(γ2)

∂(β∗2
i

/e
pl
i

+ξst
i (epl,X∗)+ξex

i (epl,X∗)−κ′(epli ))
∂ei

+

∂(β∗2
i /e∗i )

∂(γ2)
∂(β∗2

i
/e∗

i
+ξst

i (epb,X∗)−κ′(e∗i ))
∂ei





+
∑

k 6=i

(
∂epli
∂β∗

k
− ∂e∗i

∂β∗
k

)
∂β∗

k

∂(γ2)








.

∂
(

epli − e∗i

)

∂ (γ2)
=










−
∂(β∗2

i /e
pl
i

+ξsti (epl,X∗)+ξexi (epl,X∗))
∂(γ2)

∂(β∗2
i

/e
pl
i

+ξst
i (epl,X∗)+ξex

i (epl,X∗)−κ′(epli ))
∂ei

+

∂(β∗2
i /e∗i +ξsti (epb,X∗))

∂(γ2)
∂(β∗2

i
/e∗

i
+ξst

i (epb,X∗)−κ′(e∗i ))
∂ei





+
∑

k 6=i

(
∂epli
∂β∗

k
− ∂epbi

∂β∗
k

)
∂β∗

k

∂(γ2)








.

Taking the limit γ →+ 0 of the expression, limγ→+0
∂ξexi (epb,X∗)

∂epbi
= 0, limγ→+0

∂ξsti (epl,X∗)
∂(γ2) = 0 from (38),

while e∗i → epli , along with all of the limits above. This leaves:

lim
γ→+0

∂
(

epli − e∗i

)

∂ (γ2)
=

∂ξexi (epb,X∗)
∂(γ2)

κ′′ (e†)− 1
=

e†3
∑

k 6=i σik

κ′′ (e†)− 1
> 0.

A similar expression can be derived for j, giving:

lim
γ→+0

∂
(

epli − e∗i

)

∂ (γ2)
− lim

γ→+0

∂
(

eplj − e∗j

)

∂ (γ2)
=

e†3
(
∑

k 6=i σik −∑k 6=j σjk

)

κ′′ (e†)− 1
> 0,

the final inequality following by assumption:
∑

k 6=i σik >
∑

k 6=j σjk. By continuity of all functions in γ, this

positivity must hold for some neighborhood of γ = 0.

By Corollary 1 and a similar argument, e∗i > e∗j in some neighborhood of γ = 0. Taking the meet of

these two neighborhoods, as well as for each pair i, j with
∑

k 6=i σik >
∑

k 6=j σjk, gives the result.
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The proof of Proposition 3B is analogous to the above.
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C. Matthew Leister∗

this draft: Wednesday 21st January, 2015

S Supplemental Section: Who is more Informed?

Theorem 2 offers an important step toward describing information acquisition under general peer

effects. However, the fact that β∗ is endogenously determined as a function of e∗ limits this result

from providing a full description of the incentives to acquire information as a function of player-

position in the network. Here we reveal a basic challenge in the task of characterizing exactly who

acquires more information than others. In light of this fact, we then develop a class of network

structures that robustly order the relative extent of information acquisition across players, for all

γ > 0 and over the set of convex κ.1 All of the results of this Section will refrain from assumptions

on the extent (or lack of) symmetry in pairwise peer-effects. Further, we can modify Assumption

1 requiring only the conditions κ′(0) = 0 and κ′′′ ≥ 0. As shown in the proof of Proposition S.1,

these will suffice for IAE existence for all γ ∈ [0, 1].

Toward better understanding the players’ underlining incentives to acquire information, a useful

thought experiment is to walk through the best-response dynamic of the period t = 1 game. We

allow players to simultaneously choose their preferred ei taking as given their current sequentially

rational belief µ∗
ij (ej) for each j 6= i. Start from the profile e(1) := (0, . . . , 0), and for this discussion

assume Assumption 1 to hold. Here, signals are neither informative of the state nor informative of

the actions of neighboring players. However, each player –mindful of the positive direct effect that

the state has on their marginal gains to period t = 2 action– will prefer to invest in (unique) quality

e† that solves e† = κ′
(
e†
)
(see Example 2). Then, given positive quality profile e(2) = (e†, . . . , e†)

and updated beliefs µ∗
ij

(
e†
)
, correlation between players’ signals is introduced. That is, players’

signals now inform them of what others will see and do. Players with high degree will realize an

extra kick to their marginal benefit to information in the first stage, as additional quality further

informs them of their neighbors’ t = 2 actions. Players with particularly low degree will also obtain

information regarding what their neighbor’s will see and do. However, the optimal response to

“learning neighbors will likely choose high actions” moves against their private response to learning

∗Department of Economics, UC Berkeley; leister@econ.berkeley.edu
1For the former, this is provided the second-stage system yields a finite solution.
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that their marginal gains to action are likely high. Thus, the net responsiveness of these players’

strategies to their signals decrease. By Theorem 2, this in turn decays the incentives to acquire

precise signals in the first stage.

The direction of the best-response dynamic
{
e(n)

}∞

n=1
from n = 3 and on will depend on the

structure of the network. Whether or not high degree players will continue to invest more in

information than low degree players depends on the relative informativeness of neighbors. Thus,

though information acquisition can be ordered with respect to informational centrality b (Σc, e),

whether the ordering in this measure ultimately aligns with players’ degrees in equilibrium depends

on both (i) more delicate properties of the network Σ, (ii) the shape of κ, and (iii) the size of γ.

The potential for such sensitivity in e∗ is illustrated with the following example.

Example S.1. Take the six-player star network with center player 1 and periphery players i ∈
{2, . . . , 6}. We assume center-periphery peer-effects to be undirected: σi1 = σ1i = p > 0 (while

σij = 0 for each pair i, j ∈ {1, . . . , 6}). Here, the center player acquires the most information in a

unique equilibrium (see Proposition S.2 below).

Now, as depicted in Figure 1, consider adding two more players (7 and 8) with links to the

center that are weaker than those of the original periphery players: links of size cp with c ∈ [0, 1).

However, these additional players enjoy an added positive link of size q > 0 between each other,

reinforcing their behavior. Now, players 2 through 6 are highly influenced by the most central player

(player 1), while players 7 and 8 place less weight on the center but together reinforce each other’s

actions.

1

23

4

5 6

7

8

pp

p

p p

cp

cp

q

Figure 1: [Example S.1] star with clique

Taking p = 1/5 and c = 0, for example. For any q > 1/5 players {7, 8} have greater degree

than players {2, . . . , 6}. As such, players {7, 8} acquire more information when γ is sufficiently

small, by Corollary 1. The ordering in a unique e∗ when γ is large, however, will also depend on

the curvature of the cost function κ. Thus, take γ = 1 and q = 6.9 for example, we borrow again

the cost function from Example 2 setting ζ = 2 and range η from .5 to 2, yielding the black and

2



gray cost functions depicted in Figure 2(left).

When η = .5 (low convexity) the marginal cost of information varies mildly over a wide range of

small ei values. This results in high dispersion across equilibrium qualities. In this scenario, having

access (high influence) to the center player bears heavily on the incentives to acquire a precise signal.

As seen in Figure 2(right), players {2, . . . , 6} acquire more information than {7, 8}. If instead η = 2

(high convexity) and the marginal cost of information varies quickly over a narrow range of small

ei, equilibrium dispersion is more slight: e∗1 lies only slightly above the equilibrium qualities of the

other players. In this scenario, degree centrality again most encourages information acquisition.

As under small gamma, {7, 8} acquires more information than {2, . . . , 6}.

0.1 0.2 0.3 0.4 0.5 0.6
0.0

.001

.002

.003

.004

.005

η = .5

η = 2

ei

κ

0.5 1.0 1.5 2.0
−.008

−.004

0.0

.004

.008

η

(e∗per. − e∗cl.)

Figure 2: [Example S.1] Sensitivity in e∗ ordering to κ.

Example S.1 illustrates the tautology that the curvature of information costs and the details

of the network structure work in tandem to determine the relative extent of acquired qualities

across players. This makes the goal of robustly ordering e∗ over players using some fully portable

centrality measure, defined solely over the network structure Σ, unreachable. With intercentrality

(Ballester et al. (2006) [5]) and Bonacich centrality measures defined solely on Σ, a one-to-one

representation of equilibrium information acquisition and the network structure can not exist. This

is true even when the network is undirected and non-negative, as Example S.1 shows.

The following begins to constrain the problem of describing information acquisition in our gen-

eral network setting. We establish network properties that suffice to order equilibrium qualities.

This ordering will be independent over γ and hold over the set of convex κ, for at least one IAE.

The properties derived will exclude examples such as the star-with-clique above, and align the es-

sential network properties discussed in Example S.1: degree centrality and neighbors’ informational

centralities.

First, the following definition and equilibrium notion will help to simplify the task of describing

the role of network architecture.
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Definition S.1. For given network Σ consider a partition P = {Pc}Cc=1 of {1, . . . , N}, with subsets

(“ classes”) indexed by c = 1, . . . , C ≤ N , where C := |P|.2 Then, player i’s weighting function

wi : {1, . . . , C} → R with respect to P is defined by:

wi (c) =
∑

k 6=i:k∈Pc

σik.

P gives an equivalence relation if wi (·) = wj (·) for each i, j ∈ Pt and for every c.

Weighting functions aggregate the weights that a given player places on the individual members of

each class. We will use wc (·) to denote the common weighting function of players in equivalence class

Pc. Note that an equivalence relation always exists for any network: namely, the discrete partition of

individual players. One can also find a suitably coarse relation that groups all players of equivalent

objectives.3 The goal of partitioning the players in this manner is to discard details of Σ less

essential to the problem of information acquisition, while preserving the more germane network

properties that drive equilibrium dispersion in e∗. Conducive to this goal, for any equivalence

relation P an equilibrium that is symmetric within classes will always exist.

Proposition S.1. [class-symmetric IAE] For equivalence relation P and any κ ∈ C3 with κ′(0) =

0 and κ′′, κ′′′ ≥ 0, there exists a class-symmetric equilibrium in which β∗
i = β∗

j and e∗i = e∗j if

i, j ∈ Pc for c ∈ {1, . . . , C}.

The second half of Example 1 provides an IAE that violates class symmetry. Precisely, the asym-

metric equilibrium violates class symmetry when both players are included within the same class.

Reflecting again on Example S.1, we see that three classes are used to induce sensitivity in

the ordering of e∗ to the shape of κ. When players place non-negative aggregate weight on those

within their class, this extent of network irregularity (i.e. three classes) is necessary to establish

such sensitivity.

Proposition S.2. [two-class networks] For equivalence relation P = {r, s} with wr(r), ws(s) ≥ 0

and wr (r) + wr (s) > ws (r) + ws (s), and any κ ∈ C3 with κ′(0) = 0 and κ′′, κ′′′ ≥ 0, there exists

a class-symmetric equilibrium such that e∗r ≥ e∗s, and where if e∗r , e
∗
s ∈ (0, 1) then e∗r > e∗s with

β∗
r > β∗

s .

Note that given e∗r > e∗s, β
∗
r > β∗

s in the last statement of the theorem is equivalent to β∗
r > 0 by

Theorem 2. Thus, signal responses are ordered with the highest degree class moving positively with

their signal. Allowing for β∗
s < 0, Proposition S.2 captures a striking equilibrium property. For

a class s moving against their information, anticipating the actions of players in Pr, each j ∈ Ps

chooses a quality that is bounded above by e∗r . With each j’s signal used merely to infer the the

actions of those in Pr, and with e∗r intrinsically bounding the extent of this inference, e∗r provides a

2That is,
⋃

P = N with Ps ∩ Ps′ = ∅ for distinct s, s′ ∈ {1, . . . , C}.
3Equivalent in the sense that players within a class set place equivalent weights on other classes. Note that given

partitions P1 and P2 one can construct coarser partition P by joining elements P 1 ∈ P1 and P 2 ∈ P2 to give
P 1 ∪P 2 = P ∈ P when P 1 ∩P 2 6= ∅. That is, a coarsesed set of partitions can be obtained, most often being s single
coarsesed set pooling interchangeable players.
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natural bound on j’s incentives to acquire information.4 This natural bound can be clearly observed

above in Figure 3(right).

Next, the following notions allow for any arbitrary number of classes, and establish alternative

conditions on the network structure that suffice for an ordering in e∗, again robust to the relative

convexity in κ. This family of class-ordered networks will offer a generalization of core-periphery-

like structures, incorporating signed, weighted, and directed links. Note that the following ordering

in P is defined solely using properties of the network Σ.

Definition S.2. We say that class r dominates class s (denoted r % s) if the following two

conditions hold:

1. wr crosses ws at most once from below: wr (c) ≥ ws (c) if c ≥ x and wr (c) ≤ ws (c) if c ≤ x

for some x ∈ {1, . . . , C}, and

2. players in Pr have degree no smaller than players in Ps:

∑C

c=1
wr (c) ≥

∑C

c=1
ws (c) . (1)

r strictly dominates s (denoted r ≻ s) if the inequality in (1) is strict.

The cumulative ordering (1) with single crossing in condition 1 imply that more central classes are

more influenced by others (have higher degree), and that these classes tend to place relatively more

weight on the most central players.

wc

c′

wr

ws

f

0

x y z

−p

0

.1

.2

c′

wc

Figure 3: Left Dominance orders weighting functions to aggregate any non-negative, non-
decreasing f in similar order. Right The network in Example 3 (Figure 4) is class ordered for
all p > 0.

4The qualification e∗r < 1 is needed to exclude equilibria in which the classes coordinate on simultaneously acquiring
perfectly precise signals in order to move against them.
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From a technical vantage point, dominance gives an appealingly weak condition that suffices

for the relative weighting functions to aggregate any non-negative, non-decreasing function f in

similar order. That is, and as illustrated in Figure 3 (left), r % s implies that wr (c
′) must lie

weakly above ws (c
′) for the highest classes c′ which give the greatest values f (c′). Formally, this

gives the following lemma.

Lemma S.1. If r % s then:

∑C

c=1
f (c)wr (c) ≥

∑C

c=1
f (c)ws (c) , (2)

for any non-decreasing function f on {1, . . . , C}: f (c′) ≥ f (c) ≥ 0 for c′ ≥ c. If r ≻ s then the

inequality in (2) is strict.

The proof of this is simple to obtain and is provided in the appendix. The following class of

network structures can now be defined. Note that the ordering in index {1, . . . , C} has thus far

been immaterial. Here, however, the ordering in P plays a more central role.

Definition S.3. The network Σ is class ordered if there is an equivalence relation P such that for

each r ∈ {2, . . . , C} we have r % r − 1. The network Σ is strictly class ordered if r ≻ r − 1 for

each r > 1.

The class orderedness of a network establish a definitive ordering amongst its classes. The most

connected nodes will place proportionally more of their weight on precisely those classes that are

most connected in the network. Above in Example 3, Definition S.3 is satisfied under class ordering

x % y % z (see Figure 4, above). Each class’s weighting function is plotted in Figure 3 (right). wc

exhibits dominance between adjacent classes: wy single crossing wz from below for all p ≥ 0.5

Though examples of networks of two classes may come readily (e.g. star, circle-spoke), the

range of class-ordered networks may be less obvious to the reader. The following example lends to

the scope of class-ordered structures.

Example S.2. The binary networks given in Figure 4 where each link designates positive peer effect

σij = p > 0 are class ordered. The most central class (i.e. the “core”) are given with solid nodes,

with the subsequent ordering over classes designated for representative members. Alternatively, all

of these examples are also class ordered for p < 0 with the ordering over classes reversed.

We see that class-ordered networks encompass a wide range of structures exhibiting a natural or-

dering over its players. These networks can be viewed as a generalized family of core-periphery

like structures, allowing for weighted links that may be positive, negative, or directed. Many hi-

erarchical6 social settings will embody these properties. And in network formation environments,

5Note that here, x % z. Such transitivity need not hold for the network to be class ordered.
6I thank Anja Prummer for suggesting the natural application to social hierarchies.
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standard core-periphery
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small-world
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3
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5

tree

Figure 4: [Example S.2] class-ordered networks

many related models of investment with endogenous link formation –both under strategic substi-

tutes (Bala and Goyal (2000) [4]) and complements (Hiller (2013) [33])– have been shown to yield

core-periphery structures.7

We come to the main result of the section. When the network of peer effects takes on the above

ordering, the following class-ordered equilibria always exist.

Proposition S.3. [class-ordered equilibria] If Σ is class ordered, taking r, s ∈ {1, . . . , C} with

r % s and constrain γ ∈ [0, γs). Then, for any κ ∈ C3 with κ′(0) = 0, and κ′′, κ′′′ ≥ 0, there exists

a class-symmetric equilibrium such that e∗r ≥ e∗s.

Thus, provided players always move in the direction of their signals, player degree robustly orders

signal responsiveness independent of the convexity of κ.

The appealing property of class-ordered networks is that highly central players (here, players

with the highest degree) proportionally place more of their weight on players that are also of high

centrality. Definition S.3 provides an ordering underlining such nested weighting. In class-ordered

networks, this ordering captures both value to having high degree with the value to being connected

to the most informed players. In a class-ordered equilibria, it is precisely the neighbors with greatest

degree who are most informed.

Returning the two-sided market application, if highly connected insiders are also those that

enjoy exclusivity in their clientele, informational centrality will likely be ordered according to

degree, with the network adopting a class-ordered structure. If instead the more connected insiders

tend to compete with each other for workers, as in the case of Figure 11, the ultimate informational

centralities realized by each insider will more intimately depend on the shape of κ. Akin to Example

3, when κ displays significant elasticity yielding moderate dispersion in e∗, degree centrality will

dominate. If instead κ displays moderate elasticity yielding significant dispersion in e∗, exclusivity

will drive information centrality. While all insiders on the sufficiently short side of the market

under acquire information relative to the utilitarian benchmark, exactly who most acquires and

simultaneously most under acquires information will depend on the precise properties of Σ and κ.

7Refer to Calvó-Armengol et al. (2011) [13] Section 5.2 for class of “hierarchical” structures that yield properties
similar to class orderedness.
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B Supplemental Appendix

B.1 Section S proofs: Class-ordered networks

Proof of Proposition S.1. Take the compact subspace of [0, 1]
N

comprising all class-symmetric vectors

e:

Es :=
{
e ∈[0, 1]N : ei = ej if i, j ∈ P ∈ P

}
.

Note that Es is a closed subset of a compact space, and is thus compact. Now, take the incentive-compatible

first-stage best response correspondence for player i:

BRi (ei|µ∗
i ,β

∗) = argmax
ei∈[0,1]

Ei [ui (X
∗|ω, ωi) |ei, µ∗

i ]− κ (ei) ,

= argmax
ei∈[0,1]

1

2
β∗2
i − κ (ei) , (3)

which holds β∗
−i and µ∗

i fixed but allows β∗
i to optimally adjust to ei. The second equality uses expression

(8) derived in Section A.3. First, by the compactness of [0, 1] and continuity of β∗
i and of κ (ei) in ei,

8

BRi (ei|µ∗
i ,β

∗) is non-empty by the Weierstrass extreme-value theorem.

By construction, the set:

[BRi (ei|µ∗
i ,β

∗)] ∩ Es

is non-empty, and thus the restriction:

BR (e,β∗,µ∗) := [BRi (ei|µ∗
i ,β

∗)] ∩ Es, (4)

is a well defined vector-valued mapping from Es → Es. By continuity of β∗ and κ in e ∈ [0, 1] a compact set,

and applying the Maximum theorem, BR (e,β∗,µ∗) is upper hemicontinuous. Marginal gains to information

are given by:

β∗2
i /ei = ei



1 +
∑

k 6=1

σikekβ
∗
k





2

by Theorem 1, which is linear in ei by incentive compatability (µ∗
k and β∗

k are held fixed) and obtains

β∗2
i /ei = 0 at ei = 0. When κ′(0) = 0 and κ′′′ ≥ 0, each BRi (e,β

∗,µ∗) is convex valued: if β∗2
i /ei > κ′(ei)

for some ei then β∗2
i /e′i > κ′(e′i) for each e′i > ei, and if β∗2

i /ei < κ′(ei) then β∗2
i /e′i < κ′(e′i) for each

0 < e′i < ei (excluding ei = 0 which gives a minimum).9 BR (e,β∗,µ∗) then gives a convex polyhedron in

[0, 1]
N
. Then, by Kakutani’s fixed point theorem, BR (e,β∗,µ∗) yields a fixed point in Es. By construction

of Es, the properties of the fixed point satisfy those of the theorem.

Proof of Proposition S.2. Assuming quality profile er ≥ er we show that there exists a first-stage best

response for class r weakly above every best response for class s. Write the system giving the IRE as a

function of (er, es):

8Continuity follows from Assumptions A1 and κ ∈ C.
9With κ′(0) = 0 and κ′′′ ≥ 0, each BRi (e,β

∗,µ∗) will either (i) give a unique value in [0, 1] if κ′′′ > 0 or (i) give
a corner or the entire unit interval if κ′′′ = 0 (quadratic κ).
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[1] β∗
r −

(
er + γ2er (wr (r) erβ

∗
r + wr (s) esβ

∗
s )
)
= 0

[2] β∗
s −

(
es + γ2es (ws (s) esβ

∗
s + ws (r) erβ

∗
r )
)
= 0

.

Together these imply:

β∗
r =

er
(
1 + γ2e2s (wr (s)− ws (s))

)

(1− γ2wr (r) er) (1− γ2ws (s) es)− γ4wr (s)ws (r) e2re
2
s

, (5)

β∗
s =

es
(
1 + γ2e2r (ws (r)− wr (r))

)

(1− γ2wr (r) er) (1− γ2ws (s) es)− γ4wr (s)ws (r) e2re
2
s

. (6)

Multiplying by er and es, respectively:

erβ
∗
r =

e2r
(
1 + γ2e2s (wr (s)− ws (s))

)

(1− γ2wr (r) er) (1− γ2ws (s) es)− γ4wr (s)ws (r) e2re
2
s

,

esβ
∗
s =

e2s
(
1 + γ2e2r (ws (r)− wr (r))

)

(1− γ2wr (r) er) (1− γ2ws (s) es)− γ4wr (s)ws (r) e2re
2
s

.

With er ≥ es, then erβ
∗
r ≥ esβ

∗
s is implied by:

wr (s)− ws (s) > ws (r)− wr (r)

⇔ wr (s) + wr (r) > ws (r) + ws (s) ,

which is assumed.

Now, rewriting the system as:

[1] β∗2
r = erβ

∗
r

(
1 + γ2 (wr (r) erβ

∗
r + wr (s) esβ

∗
s )
)

[2] β∗2
s = esβ

∗
s

(
1 + γ2 (ws (s) esβ

∗
s + ws (r) erβ

∗
r )
) .

β∗2
r − β∗2

s = erβ
∗
r − esβ

∗
s + γ2 (erβ

∗
r (wr (r) erβ

∗
r + wr (s) esβ

∗
s )− esβ

∗
s (ws (s) esβ

∗
s + ws (r) erβ

∗
r ))

= erβ
∗
r − esβ

∗
s + γ2esβ

∗
serβ

∗
r

((

wr (r)
erβ

∗
r

esβ∗
s

+ wr (s)

)

−
(

ws (s)
esβ

∗
s

erβ∗
r

+ ws (r)

))

= erβ
∗
r − esβ

∗
s + γ2esβ

∗
serβ

∗
r

(

wr (r)
(

erβ
∗
r

esβ∗
s

− 1
)

− ws (s)
(

esβ
∗
s

erβ∗
r

− 1
)

+(wr (r) + wr (s))− (ws (s) + ws (r))

)

= erβ
∗
r − esβ

∗
s + γ2esβ

∗
serβ

∗
r

(

(erβ
∗
r − esβ

∗
s )
(

wr(r)
esβ∗

s

+ ws(s)
erβ∗

r

)

+(wr (r) + wr (s))− (ws (s) + ws (r))

)

=

(

(erβ
∗
r − esβ

∗
s )
(
1 + γ2 (wr (r) erβ

∗
r + ws (s) esβ

∗
s )
)

+γ2esβ
∗
serβ

∗
r (wr (r) + wr (s))− (ws (s) + ws (r))

)

.

If wr (r) and ws (s) are positive, then β∗2
r − β∗2

s ≥ 0 is implied by (wr (r) + wr (s)) − (ws (s) + ws (r)) > 0

(with strict inequality when es, er > 0), which are all assumed. Take any class-symmetric e and β that

satisfy er ≥ es. Again denote BR (e|µ∗,β∗) := [BRi (ei|µ∗
i ,β

∗)] from the proof of Proposition S.1. For each

j ∈ Ps and any ej ∈ BRj

(
ej |µ∗

j ,β
∗
)
, by Theorem 2 we must have either ej = 1 with ejκ

′ (ej) < β∗2
j or

ej < 1 with ejκ
′ (ej) = β∗2

j for ej to be a best response. Thus, in either case by β∗2
r ≥ β∗2

s , the marginal

9



gain β∗2
r /ej ≥ β∗2

s /ej when ei is set to ej , implying that any i ∈ Pr would have a profitable deviation up

away from ej . This then implies existence of some ei ∈ BRi (e|µ∗
i ,β

∗) ≥ ej .

Now take the compact subspace of [0, 1]
2
that includes all weakly increasing class-symmetric vectors e:

E+ :=
{
e ∈[0, 1]2 : ei ≥ ej , i ∈ Pr, j ∈ Ps

}
. Note that E+ is a closed subset of a compact space, and is thus

compact. By the above, BR (e|µ∗,β∗) ∩ Es ∩ E+ is non-empty, and thus the restriction:

BR (e|µ∗,β∗) := BR (e|µ∗,β∗) ∩ Es ∩ E+,

where Es is given by (B.1), is a well defined mapping from Es ∩ E+ → Es ∩ E+. By continuity of β∗ and

κ in e ∈ [0, 1] a compact set, and applying the Maximum theorem, BR (e|µ∗,β∗) is upper-hemicontinuous.

κ′(0) = 0 and κ′′′ ≥ 0 again suffice for BR (e,β∗,µ∗) to be convex valued (see proof of Theorem S.1). By

Kakutani’s fixed point theorem, BR (e|µ∗,β∗) yields a fixed point in Es ∩ E+.

Finally, we show that e∗r > e∗s and β∗
r > 0 when e∗r , e

∗
s ∈ (0, 1). Rewriting (5) and (6) evaluated at IAE

with e∗r ≥ e∗s:

β∗
r

e∗r
=

(
1 + γ2e∗2s (wr (s)− ws (s))

)

(1− γ2wr (r) e∗r) (1− γ2ws (s) e∗s)− γ4wr (s)ws (r) e∗2r e∗2s
,

β∗
s

e∗s
=

(
1 + γ2e∗2r (ws (r)− wr (r))

)

(1− γ2wr (r) e∗r) (1− γ2ws (s) e∗s)− γ4wr (s)ws (r) e∗2r e∗2s
.

If β∗
r < 0, this impies that γ2e∗2s (wr (s)− ws (s)) < 1, which implies also that γ2e∗2r (ws (r)− wr (r)) < 1

and γ2e∗2r (ws (r)− wr (r)) < γ2e∗2s (wr (s)− ws (s)) by (ws (r)− wr (r)) < (wr (s)− ws (s)) and e∗2r ≥ e∗2s .

Thus, β∗
s/e

∗
s < β∗

r/e
∗
r , implying that β2∗

s /e∗s > β∗2
r /e∗r , and thus by Theorem 2 that e∗s > e∗r as e∗r < 1,

yielding a contradiction. Thus β∗
r > 0 with β∗2

r > β∗2
s by the above, implying that e∗r > e∗s.

Proof of Lemma S.1. Let x be defined as in Definition S.2. Rearranging the second part of Definition S.2

gives:
∑

c≥x
(wr (c)− ws (c)) ≥

∑

c<x
(ws (c)− wr (c)) . (7)

Then, rearranging the result:

C∑

c=1

f (c)wr (c)−
C∑

c=1

f (c)ws (c) =

( ∑

c≥x f (c) (wr (c)− ws (c))

−
∑

c<x f (c) (ws (c)− wr (c))

)

≥
( ∑

c≥x f (x) (wr (c)− ws (c))

−∑c<x f (x) (ws (c)− wr (c))

)

= f (x)

( ∑

c≥x (wr (c)− ws (c))

−
∑

c<x (ws (c)− wr (c))

)

≥ 0.

The first inequality follows from f (·) non-decreasing, while the second inequality follows from (7) and

f (x) ≥ 0. The final inequality is strict if f (c) > 0 for each c and r ≻ s.
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Proof of Proposition S.3. We use class indices for all strategies and weighting functions, when convenient.

First, we will need the following definitions and Lemma. Take i ∈ Pr ∈ P and j ∈ Ps ∈ P\ {Pr}. Take any

class-symmetric e that satisfies the conditions of the theorem. The set of class-ordered profiles:

E+ :=
{
e ∈[0, 1]N : ei ≥ ej or each i ∈ Pr, j ∈ Ps with r ≥ s

}

is a closed, compact subset of R2N . By i’s first order condition of the IRE:

β∗
i = β∗

r = er

(

1 + γ2
∑

c

wr (c) ecβc

)

. (8)

Denote as a function of e and β:

Λr :=
∑

c

wr (c) ecβc.

Λr captures the size of the aggregate peer effect on i in β∗. Analogous expressions can be derived for class

s. By our choice of (e,β) and with γ ∈ [0, γs), ecβc is non-negative and non-decreasing across classes. By

the class orderedness of Σ and Lemma S.1, the factor (1 + γ2
∑

c wr (c) ecβc) must also be increasing across

classes, and by our choice of e the vector of optimal responses β∗ must also respect the ordering β∗
r ≥ β∗

s if

and only if r ≥ s. We can now establish the following Lemma.

Lemma S.B.1. If γ ≤ γs, Σ is class ordered and e is class ordered (i.e. weakly increasing across classes),

then for i ∈ Pr, j ∈ Pr−1, and for every ej ∈ BRj

(
ej |µ∗

j ,β
∗
)
, there exists ei ∈ BRi (ei|µ∗

i ,β
∗) with ei ≥ ej .

Proof of Lemma S.B.1. Again use BRi (ei|µ∗
i ,β

∗) to denote i’s first-stage incentive-compatible best re-

sponse. If β∗
s ≥ 0 then β∗2

r ≥ β∗2
s . For any ej ∈ BRj

(
ej |µ∗

j ,β
∗
)
, by Theorem 2 we must have either ej = 1

with ejκ
′ (ej) < β∗2

j or ej < 1 with ejκ
′ (ej) = β∗2

j for ej to be a best response. Thus, in either case by

β∗2
r ≥ β∗2

s , the marginal gain β∗2
r /ej ≥ β∗2

s /ej when ei is set to ej , implying that any i ∈ Pr would have a

(weak) profitable deviation up away from ej . This then implies existence of some ei ∈ BRi (e|µ∗
i ,β

∗) ≥ ej .

The proof proceeds analogous to that of Proposition S.1. Take BRi (ei|µ∗
i ,β

∗) the incentive-compatible

best-response correspondence for i in her first-stage problem, holding µ∗
−i and β∗

−i fixed. The set:

[BRi (ei|µ∗
i ,β

∗)] ∩ Es ∩ E+

is non-empty by construction,10 and thus the restriction:

BR (e,β∗,µ∗) := [BRi (ei|µ∗
i ,β

∗)] ∩ Es ∩ E+

is a well defined vector-valued mapping from Es ∩ E+ → Es ∩ E+. By continuity of β∗ and κ in e ∈ [0, 1] a

compact set, and applying the Maximum theorem, BR (e,β∗,µ∗) is upper-hemicontinuous. κ′(0) = 0 and

κ′′′ ≥ 0 again suffice for BR (e,β∗,µ∗) to be convex valued (see proof of Theorem S.1). By Kakutani’s fixed

point theorem, BR (e,β∗,µ∗) yields a fixed point in Es ∩ E+. By construction of Es and E+, the properties

of the fixed point satisfy those of the theorem.

10To include r > s+ 1, Lemma S.B.1 is used here r − s times.
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